US009253164B2
12 United States Patent (10) Patent No.: US 9,253,164 B2
Gouge et al. 45) Date of Patent: Feb. 2, 2016
(54) DISTRIBUTION OF PORTIONS OF CONTENT (56) References Cited
(75) Inventors: Christopher S Gouge, Redmond, WA .5, PALENT DOCUMENTS
(US); David Pokluda, Redmond, WA 7,058,722 B2 6/2006 Ikami et al.
(US); Rajasekaran Rangarajan, 7478381 B2 1/2009 Roberts et al.
Kirkland, WA (US) 7,539,686 B2 5/2009 Shepard et al.
7,860,804 B2 12/2010 Littrell
: : : : 2007/0234343 Al1* 10/2007 Gougeetal. 717/174
(73) Assignee: Microsoft Technology Licensing, LLC, 2000/0144810 A 6/2000 Babl:%ar of al
Redmond, WA (US) 2009/0204727 Al 8/2009 Wang
2010/0318632 Al1* 12/2010 Yooetal.covvvenn 709/219
i P - : : - 2011/0055312 Al 3/2011 Purdy, Sr.
(*) Notice: Subject. to any (élsglalme; the ’fierm ctljf th;g 5011/0119547 Al 52011 Kim ot al
patent 1s extended or adjusted under 2011/0184964 AL* 7/2011 Li wocoovvveoineceeeercenenenn 707/756
(21) Appl. No.: 13/230,646 L1, et al., “Mutualcast: An Efficient Mechanism for Content Distri-
bution 1n a Peer-to-Peer (P2P) Network”, Published on: Sep. 2004,
(22) Filed: Sep. 12, 2011 Availlable at: http://research.microsoit.com/pubs/70097/tr-2004-

100.pdf, 9 pages.
U.S. Appl. No. 13/230,607, filed Sep. 12, 2011.

(65) Prior Publication Data
US 2013/0064370 Al Mar. 14, 2013 * cited by examiner
Primary Examiner — Shewaye Gelagay
(51) Int. CL Assistant Examiner — Kendall Dolly
HO4L 29/06 (2006'();*) (74) Attorney, Agent, or Firm — Bryan Webster; Judy Yee;
HO4N 21/232 (2011.01) Micky Minhas
HO4N 21/239 (2011.01)
HO4N 21/262 (2011.01) (57) ABSTRACT
HO4N 21/658 (2011.01) Techniques for obtaining and providing a portion of content
HO4N 21/6587 (2011.01) include receiving a request for the portion of the content,
HO4N 21/845 (2011.01) requesting and receiving one or more data chunks, processing
(52) U.S.CL. the one or more data chunks, and providing one or more data
CPC HO4L 63/0428 (2013.01); HO4N 21/232 blocks as the requested portion of the content. The processing

(2013.01); HO4N 21/2393 (2013.01); HOAN may include validating, decrypting, and/or decompressing

21/26258 (2013.01); HO4N 21/6581 (2013.01); the one or more data chunks to create the one or more data

HO4N 21/6587 (2013.01); HO4N 21/8456 blocks. Techniques for providing metadata and one or more
(2013.01) data chunks may include receiving content and dividing the

: : : content into data blocks. Processing may then be performed
(58) gls(l:d of Classlilf(i)(;glg;l /géf;;?hHO AN 21/6587- TIOAN on the data blocks to create data chunks, and the metadata
""""" '21 293 104N 2’1 12456: TT0AN 2’1 16581 may be generated from the processing. The metadata and one

’ 04N 21 /2393_’ F04N 21/262 58’ or more of the data chunks may be provided to a device.

See application file for complete search history. 20 Claims, 6 Drawing Sheets

l RECEIVE CONTENT 402 | Pk
DiviDE CONTENT INTO BLOCKS
404
-

PROCESS BLOCK 406

-
COMPRESS 408 l
-
EMCRYPT 410 l
r
CREATE VALIDATION
INFORMATION 412

WRITE PROCESSED BLOGK TO
SOURCE A3 CHUNEK 414

STORE METADATA 415

YES

SAVE METADATA TO BLOCK
DEFINITION TABLE 420
PROVIDE GONTENT AND BLOGK
DEFINITION TABLE 422

N

US 9,253,164 B2

Sheet 1 of 6

Feb. 2, 2016

U.S. Patent

(NOILYDIddY

NOILVYTTV.LSNI
“IAVY1d
vIQaW o 3)

801
HOL1SINDIY
INILINOD

oo_\l\\

8Ll
43ANIGNOD %0019

cll
MOSSIO0Ud 0019

20l 3021A3Q

911 INION3
ONISSTD0H]

YLl 31av]
L|NOLLINIZ3@ »007d |,

s)IMo01g ¢ 01 ¥3avOINMOQ
I. Ls3n0ay l

Q0| d3ddINOdd INJd1INQD

((S)NOILVYDITddY

'v1vdad vIaIw “"o'3)

ANNHD

(S)MNNHD
1SINDIY

SYNNHO 7] - -7 @

INJLNO A ,.7 2 vl
e NOILINIZAJ
A00 1Y
01 304NOS INIINOD

S
& ©|
) -
C\l| 2 <
- %S -
oY Q 0
— O X
praa 0 z
= <[T
E — O
e
O S I‘E
© <
_ . <
pd prd
N
S QO
& O
C 9
an an
&
N
&
: N
#
S G N
- = : : |
-) LE 2
N
. : = : (0
T a 8
= = :
: T
. Q: 11 m
=] 2
- > : S
= g =
m i
> an
>
Lu ----------------------
i o
a
3 | o, —p
: -
: al
L S
r o M
o e
N O
N
=
O M)
|_
: % 5 | —»
: Q
D.< ¥ :
a S g
LL] C\ 9
A S M
2| | S
LL| 0
Y
_
S S
© ©
an an

U.S. Patent Feb. 2, 2016 Sheet 3 of 6 US 9,253,164 B2

300
Y

/
/ | PROCESSOR(S) 320 I
/
/

/ MEMORY 322

N
/ CONTENT PROCESSING MODULE
/ 326
CONTENT BLOCK DEFINITION
\ 328 TABLE 330
CONTENT SOURCE . \

\ NETWORK INTERFACE(S) 324

NETWORK(S)
306

PROCESSOR(S) 308 I

r"

MEMORY 310

CONTENT CONTENT
REQUESTOR PROVIDER
MODULE 314 MODULE 316

BLOCK DEFINITION TABLE 318 l

NETWORK INTERFACE(S) 312

U.S. Patent

Feb. 2, 2016 Sheet 4 of 6

RECEIVE CONTENT 402

DIVIDE CONTENT INTO BLOCKS
404

PROCESS BLOCK 406

COMPRESS 408

ENCRYPT 410
CREATE VALIDATION
INFORMATION 412
WRITE PROCESSED BLOCK TO
SOURCE AS CHUNK 414
STORE METADATA 416

NO

LAST BLOCK 41

YES
SAVE METADATA TO BLOCK
DEFINITION TABLE 420

PROVIDE CONTENT AND BLOCK
DEFINITION TABLE 422

FIG. 4

US 9,253,164 B2

400
/_

U.S. Patent

Feb. 2, 2016

RECEIVE REQUEST FOR
PORTION OF CONTENT 502

ACCESS TO BLOCK
CFINITION TABLE 504

YES

NO

Sheet 5 of 6 US 9,253,164 B2

500
/_

RETRIEVE BLOCK DEFINITION
TABLE OR PORTION OF BLOCK

DEFINITION TABLE 5006

DETERMINE BLOCK(S) TO
REQUEST 508

RETRIEVE CF

PROC

=SS CH

UNK(S) AND
UNK(S) 510

COMBINE BLOCKS 512
REMOVE UNNEEDED DATA 514
PROVIDE PORTION OF
CONTENT 516

FIG. 5

U.S. Patent

Feb. 2, 2016 Sheet 6 of 6

CONVERT REQUEST FOR
BLOCK(S) TO REQUEST FOR
CHUNK(S) 602

REQUEST CHUNK(S) 604

RECEIVE CHUNK(S) 606

PROCESS CHUNK(S) 608

VALIDATE 610

DECRYPT 612

DECOMPRESS 614

PROVIDE PROCESSED
CHUNK(S) AS BLOCK(S) 616

US 9,253,164 B2

000
/—

US 9,253,164 B2

1
DISTRIBUTION OF PORTIONS OF CONTENT

BACKGROUND

A large and growing number of devices are downloading
only a portion of content that will be used by the device. These
devices are subject to bandwidth and/or storage limitations
and request portions of the content to meet these limitations.
These devices request a range of bytes defining the portion of
the content and download the content through a distribution
channel including, for example, publishing services and net-
work providers. During distribution, the content 1s often pro-
cessed to provide security of the content and increase eifi-
ciency of the distribution. Such processing may include, for
example, validating/veriiying, encrypting, and/or compress-
ing the content.

In this approach, the content 1s designed specifically for
requirements of the distribution channel. For example, in
order to distribute only a portion of the content while provid-
ing validation and/or verification, the content 1s designed
specifically for the validation and/or verification require-
ments of the distribution channel. That 1s, during creation of
the content, the content 1s designed to provide validation
and/or verification at a specific data range. In this approach, 1t
1s difficult to distribute the content on a distribution channel
that 1s not1dentical or similar to the distribution channel of the
original design. In addition, in this approach, a device must
request a portion of content based on ranges that are fixed
during creation of the content.

There 1s an 1ncreasing opportunity to distribute a portion of
content while providing validation, encryption, and/or com-
pression of the content 1rrespective of design or specifics of
content creation.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description refers to the accompanying fig-
ures. In the figures, the left-most digit(s) of a reference num-
ber 1dentifies the figure 1n which the reference number first
appears. The use of the same reference number 1n different
figures indicates similar or 1dentical items.

FI1G. 1 1llustrates an exemplary architecture usable to dis-
tribute portions of content.

FI1G. 2 illustrates exemplary content at various stages dur-
ing distribution to a content requestor.

FI1G. 3 1llustrates an exemplary architecture usable to dis-
tribute portions of content from a content source via a content
provider.

FI1G. 4 1llustrates an exemplary process of distributing con-
tent and/or metadata to a device.

FIG. 5 illustrates an exemplary process of providing a
portion of content to a content requestor.

FIG. 6 illustrates an exemplary process of retrieving and
processing data chunks.

DETAILED DESCRIPTION

As discussed above, there 1s an 1increasing opportunity to
distribute a portion of content while providing validation,
encryption, and/or compression of the content. For example,
there 1n an increasing opportunity to distribute an arbitrary
range of the content.

This disclosure describes techniques that, among other
things, distribute a portion of content to one or more devices.
These techmques may distribute an arbitrary range of the
content while providing validation and protection of the con-
tent which 1s transparent to a requestor of the content. Fur-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

thermore, these techniques may distribute the content 1n a
manner that 1s independent of the content format.

Aspects of this disclosure are directed to techniques for
providing a portion of content. For instance, 1n one example,
the portion of content (e.g., a portion of a media file, appli-
cation, etc.) 1s distributed from a content source to a content
requestor (e.g., a media player, installation application, etc.)
via a content provider. In this example, the portion of the
content 1s provided from the content source to the content
provider as data chunks. These data chunks may be created at
the content source by dividing the content into data blocks
and performing processing on the data blocks. The processing
may include, for example, creating validation information,
encrypting the data blocks, and/or compressing the data
blocks.

Meanwhile, in this example, the content requestor requests
the portion of the content stored at the content source. Here,
the content provider receives the request for the portion of the
content, and determines the data blocks that correspond to the
requested portion of the content. The content provider may
then determine the data chunks that correspond to the data
blocks. These determinations may be based on metadata indi-
cating the processing performed at the content source when
creating the data chunks. This metadata may be received from
the content source. Thereatter, 1n this example, the content
provider may request and receive the determined data chunks
from the content source, and perform processing on the data
chunks to recreate the data blocks. The processing may
include, for example, validating, decrypting, and/or decom-
pressing the data chunks to recreate the data blocks. In this
example, the content provider may then combine these data
blocks, and provide the combined data blocks to the content
requestor as the requested portion of the content.

The sections below are examples provided for the reader’s
convenience and are not intended to limit the scope of the
claims, nor the proceeding sections. Furthermore, the tech-
niques described in detail below may be implemented 1n a
number of ways and in a number of contexts. One example
implementation and context 1s provided with reference to the
tollowing figures, as described below 1n more detail. How-
ever, the following implementation and context 1s but one of
many.

Overview

FIG. 1 1llustrates an exemplary architecture 100 in which
techniques described herein may be implemented. Here, the
techniques are described in the context of a device 102 to
communicate with a content source 104 to provide and
receive data. For instances, device 102 may communicate
with content source 104 to request and/or receive content
(e.g., media data, application(s)) and/or metadata stored 1n
content source 104.

Device 102 may include a content provider 106 and a
content requestor 108. Content provider 106 may perform
operations to obtain content stored 1n content source 104 and
provide the content to content requestor 108. Although 1llus-
trated as included within device 102, content provider 106
may also be located remotely from device 102. For example,
content provider 106 may be implemented on one or more
servers 1n a data center or cloud computing environment.

Content provider 106 may include a chunk downloader
110, a block processor 112, a block definition table 114, a
processing engine 116, and a block combiner 118 to be
described 1n further detail herein. Chunk downloader 110,
block processor 112, processing engine 116, and block com-
biner 118 may be implemented as components of content
provider 106. Although the following section describes, in
part, techmques that are implemented by specific components

US 9,253,164 B2

3

ol content provider 106, this implementation 1s but one of
many. For example, the techniques may alternatively, or in
addition, be implemented by one or more general purpose
computers including one or more software and/or hardware
components.

Content source 104 may include content and a block defi-
nition table. Content may be generated at content source 104
or at another device and provided to content source 104 to
distribute to one or more devices, such as device 102. The
content may include one or a combination of media data,
application(s), software, etc. For instance, the content may be
a video file, audio file, text file, and/or multimedia file to be
provided over a network and presented on a device. Alterna-
tively, or in addition, the content may be a content update to be
distributed to devices. Meanwhile, the block definition table
may include metadata associated with the content, such as
information indicating processing performed on the content
at content source 104 and/or other information relating to the
content.

In one aspect of this disclosure, content source 104 may
divide content (e.g., a media file, application, soitware, etc.)
into a plurality of data blocks. Content source 104 may divide
the content based on one or more predefined parameters or
characteristics of the content or distribution channel. For
instance, the content may be divided based on a predeter-
mined number of bytes (e.g., 32 kilobytes (KB)) such that
cach data block includes 32 KB of data. The predetermined
number of bytes may be set by a user associated with content
source 104. Alternatively, or 1n addition, the content may be
divided based on sections included 1n the content such that a
data block ends or begins at the start or end of a section. These
sections may be defined from chapters, bookmarks, songs, or
other delimiters within the content.

The content may also be divided based on a type or format
of the content. For example, video content may be divided
into data blocks of 24 KB whereas application data may be
divided into data blocks of 56 KB. The content may also be
divided based on types of information included 1n the content.
For instance, a video file may be divided into audio data
blocks and video data blocks. Meanwhile, the content may
also be divided based on the requirements of a distribution
channel. In one example, the content 1s divided 1nto smaller
data blocks when the distribution channel includes one or
more wireless networks (e.g., cellular networks, Wi-Fi® net-
works, Bluetooth® networks, etc.), and 1s divided 1nto larger
data blocks when the distribution channel includes networks
which are not wireless. This example may satisiy different
elliciency requirements of the networks.

Alternatively, or 1n addition, the content may be divided
based on usage limitations of the distribution channel, such as
bandwidth limitations. For example, the content may be
divided into smaller data blocks when bandwidth usage 1s
limited on the distribution channel, and may be divided into
larger data blocks when bandwidth 1s unlimited on the distri-
bution channel. This may account for networks which charge
by data usage.

The content may also be divided based on expected ranges
of data requested from a content requestor (e.g., an installa-
tion application). For instance, content source 104 may ref-
cerence nformation associated with a specific file format
which indicates a structure of the file format. This informa-
tion may provide an indication of the types and/or location of
content that may be requested from the content requestor.

In one embodiment, the content 1s divided based on an
analysis ol the content. Here, content source 104 may analyze
the content to determine types of information or data included
in the content. The analysis may determine that the content

10

15

20

25

30

35

40

45

50

55

60

65

4

includes a first type of mformation or data (e.g., software
which 1s 1dentical to a previous version of the software), and
a second type of information or data (e.g., soltware which 1s
different from a previous version of the software). Thereatter,
the content may be divided into a plurality of data blocks such
that at least some of the data blocks include the first type of
information or data and at least some of the data blocks
include the second type of information or data. In one
example, this allows the content to be divided and distributed
so that only some of the data blocks need to be downloaded.

Meanwhile, content source 104 may perform processing,
on a plurality of data blocks to create a plurality of data
chunks. The processing may include compressing some or all
of the plurality of data blocks, encrypting some or all of the
plurality of data blocks, and/or creating validation informa-
tion for some or all of the plurality of data blocks. The com-
pressing and encrypting may include generally known com-
pression and encryption methods.

The processing may be different or the same for each of the
plurality of data blocks. In one example, one or more first data
blocks are processed with a first type of processing, and one
or more second data blocks are processed with a second type
of processing which 1s different than the first type of process-
ing. The first type of processing may include a different type
and/or order of compression, encryption, and/or validation
information than the second type of processing, such as a
different compression rate, compression method, encryption
method, and/or hash algorithm.

The processing may result in one or more data chunks
where each data chunk corresponds to a portion of one data
block, an entirety of one data block, or more than an entirety
of one data block. For example, a resulting data chunk may
correspond to one data block in a one to one relationship.
Alternatively, a resulting data chunk may correspond to a
portion of one data block or more than one data block.

Meanwhile, a size of a resulting data chunk may be based
on the processing and/or characteristics of the content. For
example, the size of the resulting chunk may be based on the
type of processing and/or an order of the processing when
creating the chunk. The size may also be based on character-
1stics of the content, such as the compressibility of the con-
tent. In one example, processing 1s performed on one or more
data blocks to create one or more data chunks which are equal
in size to each other and/or the data blocks. In another
example, the same, or a different processing, 1s performed on

one or more data blocks to create one or more data chunks
which are not equal 1n size to each other and/or the data
blocks.

The s1ze of a resulting data chunk may affect a position of
the data chunk with respect to the original content. In one
embodiment, when a resulting data chunk has a size that 1s
equal to a size of the corresponding data block, the resulting
data chunk also has a same position as the corresponding data
block with respect to the original content. In other words, the
position of a data chunk with respect to the original content
may be the same as a position of a corresponding data block
with respect to the original content. In another embodiment,
when a resulting data chunk has a size that 1s not equal to a
s1ze ol the corresponding data block, the resulting data chunk
has a different position than the corresponding data block
with respect to the original content.

FIG. 2 1llustrates an exemplary content before and after
processing. Here, content 202 1s divided to create data blocks
204. Thereatter, data blocks 204 are processed to create data

chunks 206. In this example, data chunks 206 are 1llustrated

US 9,253,164 B2

S

as smaller 1n si1ze than data blocks 204, however, data chunks
206 may be smaller than, equal to, or larger than data blocks
204.

As noted above, the processing performed at content
source 104 may include creating validation information for
some or all of the plurality of data blocks. Validation infor-
mation may generally include information relating to valida-
tion and/or verification of the content as a whole, as groups of
data blocks or chunks, or as individual data blocks or chunks.
This information may be utilized to validate and/or verify that
the content, and/or individual data blocks or chunks, has not
be altered during distribution.

In one embodiment, the validation information includes
information for each of the plurality of data blocks or chunks.
For example, the validation information may include a com-
puted hash value for each of the plurality of data blocks or
chunks. In one implementation, the validation information
also 1ncludes and/or i1dentifies a hash algorithm utilized at
content source 104.

During processing, or thereafter, content source 104 may
also generate metadata. The metadata may indicate, or be
associated with, the types of processing performed at the
content source and/or an order of the processing. For
example, the metadata may indicate that content source 104
compressed and encrypted the plurality of data blocks, cre-
ated validation information for the plurality of data blocks,
and performed processing 1n that order.

The metadata may also include information to decompress,
decrypt, and/or validate one or more data chunks. For
example, the metadata may include compression, encryption,
and/or validation information. The validation information
may correspond to the validation information created during
processing of one or more data blocks.

Compression information may generally indicate a type of
compression (e.g., a compression method), bit-rate, and/or
other information associated with compressing each of the
plurality of data blocks at content source 104. Meanwhile,
encryption information may indicate a type of encryption
(e.g., encryption method) performed at the content source 104
to encrypt the plurality of data blocks, and may include infor-
mation for decryption, such as a decryption key.

The metadata may also include position, size, and/or 1den-
tification information. In one example, the position, identifi-
cation, and/or size information may provide information
about a data block and/or data chunk when the processing
creates a plurality of data chunks which have different sizes
than the plurality of data blocks. This information may pro-
vide a means to 1dentily a data block that corresponds to a data
chunk or to identify a data chunk that corresponds to a data
block.

Position information may generally indicate a position of
some or all of the plurality of data blocks and/or data chunks
with respect to the content. For instance, the position infor-
mation may indicate that a particular data block or chunk 1s
positioned 1n the content from KB 33 to KB 64. Meanwhile,
the s1ze information may indicate a data size for some orall of
the plurality of data blocks and/or data chunks. The data size
may be different or the same for each of the plurality of data
blocks or chunks. For example, the size mnformation may
indicate that one or more data blocks or chunks are 32 KB 1n
s1ze. Identification information may generally 1identily a par-
ticular data block that 1s associated with a data chunk. For
example, the 1dentification mnformation may include an 1den-
tifier (e.g., name, ndex, hash, etc.) for a data chunk that 1s
associated with a data block.

Thereafter, or during processing, the metadata may be
saved to a block definition table. The metadata may be saved

5

10

15

20

25

30

35

40

45

50

55

60

65

6

after a data block 1s processed or after a plurality of data
blocks are processed. The block definition table may include
one or a combination of encryption, compression, validation,
position, size, and 1dentification information for some or all
of a plurality of data blocks and/or chunks. In one implemen-
tation, the block definition table includes an entry for each of
the plurality of data blocks or chunks. The block definition
table may be stored in a format that can be provided to one or
more devices, such as an XMUL-based format.

After completion, the block definition table may be stored
in content source 104 and/or provided to one or more other
devices upon request. Content source 104 may provide an

entirety of the metadata within the block definition table or
portions of the metadata. The metadata may be provided in
response to a request to content source 104, such as a web
service call.

In one embodiment, a block definition table includes vali-
dation information 1 an XML-based format, and 1s imple-
mented according to the following:

<AppxBlockTable File="8719a54789be48c73294="

BlockS1ze="32768" DigestAlgorithm="SHA2">
<Block
Hash=""54788719a9be48c732948719a54789bed8c732940123=" />
<Block
Hash="e48c¢73294871{9a54789b871{9a8c73294012354789bed="" />
<Block
Hash="9bed8c738719a54789bed8c719a547829401233294R7=" />
<Block

Hash="89bedR719alc73254719a54789bed8c732940123ccde=" />

</AppxBlockTable>

In another embodiment, a block definition table includes
validation, encryption, and compression information, and 1s
implemented according to the following:

<AppxBlockTable File="8719a54789be48c73294=""
BlockSi1ze="32768” DigestAlgorithm="SHA2>
<Block

Hash=""54788719a9%be48c73294871{9a54789be4d8c732940123="
FinalSize="32768"
SourceS1ze="16487"
Encrypted="AES”
Compressed="LZW" />

</AppxBlockTable>

This implementation may utilize the following schema:

<simple’Type name=""BlockDigestAlgorithm">
<annotation>
<documentation>A cryptographic hash algorithm
indicating the type of digest specified for each
logical block.</documentation>
</annotation>
<restriction base="token">
<gnumeration value="SHA256" />
</restriction>
</simpleType>
<simpleType name="FEncryptionAlgorithm">
<annotation>
<documentation>A cryptography algorithm indicating
the type of encryption performed on each
block.</documentation>
</annotation>
<restriction base="token">
<enumeration value="none" />
<enumeration value="AES" />
</restriction>

US 9,253,164 B2

-continued
</simpleType>
<simpleType name="CompressionAlgorithm'>
<annotation>

<documentation>A compression algorithm indicating the
type of compression performed on each
block.</documentation>
</annotation>
<restriction base=""token">
<gnumeration value="none" />
<enumeration value="LZW" />
</restriction>
</simpleType>
<complexType name="AppxBlockTableBlock'>
<attribute name="BlockSize" type="bt:positiveL.ong"
use="optional"” />
<attribute name=""Hash" type="baset4Binary"
use="required" />
</complexType>
<complexType name="AppxBlockTable'">
<sequence>
<glement name=""Block” type="appx: AppxBlockTableBlock"
minQOccurs="1"
maxQOccurs="unbounded" />
</sequence>
<attribute name=""TF1leld" type="bt:FileDigest"
use="required" />
<attribute name=""TF1nalSize" type="bt:positiveL.ong"
use=""required” />
<attribute name=""SourceSize" type="bt:positiveLong"
use=""optional” />
<attribute name=""DigestAlgorithm"
type="appx:BlockDigestAlgorithm' use="required" />
<attribute name="Encrypted”
type="appx:EncryptionAlgorithm" use="optional"” />
<attribute name="Compressed"
type="appx:CompressionAlgorithm" use="optional" />
</complexType>

Meanwhile, device 102 may request and/or recetve a por-
tion of the content stored in content source 104, the block
definition table, and/or a portion of the block definition table.
In one aspect of this disclosure, content requestor 108 sends a
request to content provider 106 requesting the portion of the
content stored in content source 104, as illustrated by the
arrow from content requestor 108 to content provider 106 1n
FIG. 1. The request may include a requested data range of the
content, such as a range of bytes, bits, and/or other units. The
requested data range may be less than a range of an entirety of
the content.

Upon receipt of the request, content provider 106 may
determine whether metadata associated with the content (e.g.,
block definition table) 1s stored 1n content provider 106. I1 1t
1s determined that the metadata 1s not stored 1n content pro-
vider 106, content provider 106 may request and recerve the
metadata from content source 104. The metadata may be
received directly from content source 104 or through another

device or communication means. The metadata may be
received 1n a table format and stored at content provider 106
as block definition table 114.

Thereafter, block processor 112 may reference the meta-
data stored within block definition table 114 and determine a
l1st of data blocks to request from content source 104 based on
the requested data range. For example, the list of data blocks
may be determined based on position, size, and/or 1dentifica-
tion information associated with the content and included
within the metadata. For instance, if the requested data range
1s for KB 33-85 of the content, block processor 112 may
reference the metadata to determine which data blocks cor-
respond to KB 33-85. Here, the metadata may indicate that
the content 1s divided 1nto a plurality of data blocks of size 32
KB, and may indicate that the second and third data blocks of

10

15

20

25

30

35

40

45

50

55

60

65

8

the content 1include the requested portion. The second and
third data blocks may then be added to the list of data blocks.

Block processor 112 may then send a request to chunk
downloader 110 to obtain the list of data blocks. Chunk down-
loader 110 may reference the metadata stored 1n block defi-
nition table 114 and convert the list of data blocks mto a
corresponding list of data chunks. The conversion may
account for differences 1n sizes and/or positions of data
blocks with respect to sizes and/or positions of the data
chunks. For instance, this conversion may account for pro-
cessing performed at content source 104 which creates data
chunks having sizes that are less than or greater than corre-
sponding data blocks.

In one example, chunk downloader 110 utilizes position,
size, and/or identification information included within the
metadata to convert the list of data blocks 1nto a correspond-
ing list of data chunks. The position, size, and/or 1dentifica-
tion information may be utilized to 1dentily one or more data
chunks which correspond to a data block included within the
list of data blocks. For example, the metadata may indicate
that a requested data block defined by KB 33-64 within a
plurality of data blocks at content source 104, 1s compressed
and encrypted into a corresponding data chunk defined by KB
29-54 within a plurality of data chunks at content source 104.

In one embodiment, the metadata i1dentifies one or more
data chunks that correspond to a requested data block 1n the
list of data blocks. Here, chunk downloader 110 may identity
the one or more data chunks by an identifier (e.g., name,
index, hash, etc.) included 1n the metadata.

Based on this list of data chunks, chunk downloader 110
may request each of the data chunks within the list from
content source 104. In one example, chunk downloader 110
utilizes a data chunk identifier to request one or more data
chunks. In response, content source 104 may provide the
requested data chunks to chunk downloader 110. These data
chunks may be requested and received independently, collec-
tively, or 1n groups. The recetved data chunks may, after
processing, result i blocks that collectively include more
data than the requested data range. This may allow content
provider 106 to account for differences between a block size
and a chunk size.

FIG. 2 illustrates an exemplary requested portion 208 of
content 202 and exemplary received data chunks 210. Here,
requested portion 208 includes all of the data within Block 2
and a portion of the data within Block 3. Received data
chunks 210 represent data chunks recerved at device 102 from
content source 104. As 1llustrated, received data chunks 210
include Chunks 2 and 3 which correspond to Blocks 2 and 3
stored at content source 104.

Meanwhile, chunk downloader 110 may provide one or
more of the data chunks recerved from content source 104 to
processing engine 116. Upon receipt, processing engine 116
may perform processing on one or more of the received data
chunks, such as validation, decryption, and/or decompres-
sion. The processing may be performed on a data chunk
immediately after the data chunk has been recerved or after
two or more data chunks have been received. The processing
may be performed based on an order of the processing per-
formed at content source 104. This order may be a pre-estab-
lished order or may be an order indicated in the metadata
stored 1n block definition table 114.

In one embodiment, processing engine 116 references the
metadata stored 1n block definition table 114 to determine the
processing performed at content source 104 and/or an order
of the processing. Here, processing engine 116 may perform
processing on the one or more recerved data chunks based on
the determined processing and/or determined order. For

US 9,253,164 B2

9

instance, processing engine 116 may decrypt and/or decom-
press each of the received data chunks when the metadata
indicates that the one or more received data chunks are com-
pressed and/or encrypted. The decryption may be based on a
decryption key which 1s previously stored in device 102,
provided by content source 104, or provided by another
device. Processing engine 116 may also validate each of the
one or more recetved data chunks when the metadata mdi-
cates that validation information was created or when the
metadata includes validation imnformation.

Processing engine 116 may also process the one or more
received data chunks based on imnformation included within
the metadata, such as validation, encryption, and/or compres-
sion information. This information may be identical to the
validation, encryption, and/or compression information gen-
erated at content source 104. This information may corre-
spond to some or all of the one or more received data chunks,
and may be utilized by processing engine 116 to process the
one or more recerved data chunks independently.

In one example, processing engine 116 validates the one or
more recerved data chunks based on validation information.
The validation process may include utilizing a computed hash
value and/or hash algorithm included or indicated within the
validation information. The computed hash value may be
generated at content source 104 before the data chunks are
provided to chunk downloader 110. Meanwhile, the hash
algorithm may be indicated or included within the metadata
or predefined. In one embodiment, processing engine 116
performs processing on the one or more recetved data chunks
by validating the one or more received data chunks without
decrypting or decompressing the one or more received data
chunks. This may account for situations where the data
chunks are not encrypted or compressed.

FIG. 2 1illustrates exemplary processed data chunks 212
corresponding to received data chunks 210 which have been
processed by, for example, processing engine 116. Processed
data chunks 212 correspond to recerved data chunks 210
which have been validated, decrypted, and decompressed by
processing engine 116. In this illustration, processed data
chunks 212 are identical to Blocks 2 and 3 of data blocks 204.
This 1llustrates an example in which the data chunks recerved
at device 102 have not been altered during distribution from
content source 104 to device 102.

Meanwhile, after the one or more received data chunks are
processed at processing engine 116, the processed data
chunks correspond to data blocks. In other words, the pro-
cessing recreates the data blocks from the data chunks. These
data blocks may be provided to block combiner 118 before
distribution to content requestor 108.

At block combiner 118, the data blocks may be combined
to form a continuous portion of the content. For instance, the
data blocks may be combined such that the data blocks are
ordered and/or positioned 1n a same order and/or position as
the portion of the data in the original content stored at content
source 104. The order and/or position of the data blocks may
be based on the metadata stored 1n block definition table 114.
For example, block combiner 118 may utilize position infor-
mation included within the metadata to determine an order
and/or position of the data blocks with respect to the original
content.

In one embodiment, the combined data blocks are provided
to content requestor 108 without removing and/or discarding,
data. This may account for a situation where the combined
data blocks directly correspond to the portion of the content
requested from content requestor 108.

In another embodiment, the combined data blocks are fur-
ther processed before the combined data blocks are provided

10

15

20

25

30

35

40

45

50

55

60

65

10

to content requestor 108. This embodiment may account for a
situation where one or more processed data chunks 212
include more data than requested. Here, block combiner 118
removes and/or discards data ol the combined data blocks that
are not part of a requested portion of the content. For example,
block combiner 118 may remove and/or discard data (e.g.,
bytes, bits, etc.) which are not within a requested data range.
Block combiner 118 may utilize position, size, and/or 1den-
tification information included within the metadata stored in
block definition table 114. Some or all of data that 1s removed
may be stored in a cache of device 102 and utilized later in
time, such as at a time of satistying a future request.

FIG. 2 illustrates an exemplary provided portion 214 of
data which 1s provided to content requestor 108. Here, pro-
vided portion 214 corresponds to the portion of the content
that was requested from content requestor 108 and 1s 1llus-
trated by the solid-lined rectangle. Provide portion 214 cor-
responds to Blocks 2 and 3 which have been combined and
processed to remove and/or discard unrequested data.

Meanwhile, content requestor 108 may be implemented as
one or more software and/or hardware components config-
ured to request and recerve content. For example, content
requestor 108 may be mmplemented as an application of
device 102 which requests a portion of content stored at
content source 104. The application may include, {for
example, a media player, an installation application, and/or
other applications configured to request content.

The techniques described above may allow, among other
things, a content requestor to receirve any portion of content.
In addition, these techniques may allow, among other things,
the portion of the content to be distributed while performing
validation, encryption, and/or compression that is transparent
to the content requestor. In other words, the content requestor
may receive a portion of the content without involvement in
and/or knowledge of processing performed on the portion of
the content.

[llustrative Architecture

FIG. 3 illustrates an exemplary architecture 300 1n which
techniques described herein may be implemented. Here, the
techniques are described in the context of a device 302 to
communicate with a content source 304 by means of a net-
work(s) 306. For instance, device 302 may communicate with
content source 304 to provide and/or recetve content and/or
metadata. Device 302 may implement some or all of the
techniques discussed above with respect to device 102, while
content source 304 may implement some or all of the tech-
niques discussed above with respect to content source 104.

Device 302 may include any combination of hardware
and/or soltware resources configured to process data. Device
302 may be implemented as any number of devices including,
for example, a personal computer, a laptop computer, a cell
phone, a tablet device, a personal digital assistant (PDA), etc.
Device 302 may be equipped with a processor(s) 308,
memory 310, and a network interface(s) 312.

Memory 310 may be configured to store applications and
data. An application, such as content requestor module 314
and content provider module 316, running on device 302,
perform operations for requesting content and providing con-
tent. Memory 310 may also be configured to store a block
definition table 318 including metadata associated with the
content.

Although memory 3101s depicted in FIG. 3 as a single uniat,
memory 310 may include one or a combination of computer
readable media. Computer readable media may include com-
puter storage media and/or communication media. Computer
storage media includes volatile and non-volatile, removable
and non-removable media implemented in any method or

US 9,253,164 B2

11

technology for storage of information such as computer read-
able instructions, data structures, program modules, or other
data. Computer storage media includes, but 1s not limited to,
phase change memory (PRAM), static random-access
memory (SRAM), dynamic random-access memory
(DRAM), other types of random-access memory (RAM),

read-only memory (ROM), electrically erasable program-
mable read-only memory (EEPROM), flash memory or other
memory technology, compact disk read-only memory (CD-
ROM), digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmis-
s1ion medium that can be used to store information for access
by a computing device.

In contrast, communication media may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave,
or other transmission mechanism. As defined herein, com-

puter storage media does not include communication media.

Meanwhile, architecture 300 also includes network(s) 306
and content source 304. Network(s) 306 may include any one
or combination of multiple different types of networks, such
as cellular networks, wireless networks, local area networks,
and the Internet. Content source 304 may include any com-
bination of hardware and software configured to process data.
Content source 304 may be implemented as any number of
devices, including, for example, a server, a personal com-
puter, a laptop computer, etc. In one example, content source
304 includes one or more servers m a data center or cloud
computing environment.

Content source 304 may be equipped with a processor(s)
320, memory 322, and a network interface(s) 324. Memory
322 may include one or a combination of computer readable
media. Memory 322 may be configured to store applications
and data. An application, such as content processing module
326, running on content source 304 performs operations for
processing content 328, such as dividing, encrypting, com-
pressing, and/or creating validation information for content
328. Memory 322 may also be configured to store a block
definition table 330 including metadata associated with con-
tent 328.

[llustrative Processes

The following section describes, 1n reference to FIGS. 4-6,
exemplary processes for distributing content. Processes 400,
500, and 600 (as well as each process described herein) are
illustrated as a logical flow graph, each operation of which
represents a sequence of operations that can be implemented
in hardware, software, or a combination thereof. In the con-
text of software, the operations represent computer-execut-
able instructions stored on one or more computer-readable
storage media that, when executed by one or more processors,
perform the recited operations. Generally, computer-execut-
able instructions include routines, programs, objects, compo-
nents, data structures, and the like that perform particular
functions or implement particular abstract data types. The
order in which the operations are described 1s not intended to
be construed as a limitation, and any number of the described
operations can be combined in any order and/or 1n parallel to
implement the process.

For ease of illustration, processes 400, 500, and 600 are
described as being performed in environment 100 of FIG. 1.
For example, process 400 may be performed by content
source 104, and processes 300 and 600 may be performed by
device 102. However, processes 400, 500, and 600 may be
performed 1n other environments. Moreover, the environment
of FIG. 1 may be used to perform other processes.

10

15

20

25

30

35

40

45

50

55

60

65

12

Process 400 includes an operation 402 for receiving con-
tent from a device, such as a content generating device. The
content may be received for distribution to one or more
devices. Thereafter, process 400 may proceed to an operation
404 to divide the content into a plurality of data blocks.
Process 400 may then proceed to an operation 406 for pro-
cessing each ol the plurality of data blocks to create a plurality
of data chunks. Operation 406 may include an operation 408
for compressing one or more data blocks, an operation 410 for
encrypting the one or more data blocks, and an operation 412
for creating validation information for the one or more data
blocks. Operation 406 may perform one or more of operations
408, 410, and 412 1n any order. During processing or there-
alter, operation 406 may also generate metadata from the
processing. The metadata may be associated with the one or
more data blocks and/or indicate the processing performed to
create the one or more data chunks.

Process 400 may also include an operation 414 for writing
one or more processed data blocks to content source 104 as
one or more data chunks. The processed one or more data
blocks may be the one or more data blocks processed in
operation 406. The writing may include storing the one or
more processed data blocks 1nto memory of content source
104. Thereaftter, process 400 may proceed to an operation 416
for storing the metadata 1n, for example, memory of content
source 104.

Process 400 may also include an operation 418 for deter-
mining whether the one or more processed data blocks are the
last data blocks of the content. When 1t 1s determined that the
one or more processed data blocks are the last data blocks,
then process 400 proceeds to an operation 420. Altematwely,
when 1t 1s determined that the one or more processed data
blocks are not the last data blocks, then process 400 returns to
operation 406 to perform processing on one or more further
data blocks, such as the next data blocks in the content.
Process 400 may perform operations 406, 414, and 416 on
cach of the plurality of data blocks individually, collectively,
or 1n groups ol one or more data blocks. In one embodiment,
process 400 performs operations 406,414, and 416 oneach of
the plurality of data blocks individually. Here, process 400
performs operations 406, 414, and 416 1teratively until a last
data block of the plurality of data blocks 1s processed.

Process 400 may also include operation 420 for saving
metadata mto a block definition table. This operation may
include saving metadata for some or all of the plurality of data
blocks 1nto a table 1n a format that may be provided to a
device, such as an XML-based format. Therealiter, process
400 may proceed to an operation 422 for providing the con-
tent and block definition table to one or more devices, such as
device 102. The content may be provided as one or more of
the plurality of data chunks corresponding to the plurality of
processed data blocks. The content and block definition table
may be provided directly to a device or over one or more
networks.

Meanwhile, process 500 of FIG. 5 may include operations
for providing a portion of content to, for example, a content
requestor. Process 500 may include an operation 502 for
receiving a request for the portion of content. In one example,
the request 1s received at content provider 106 from content
requestor 108. Thereatter, process 300 may proceed to an
operation 504 for determining whether the device has access
to a block definition table or a necessary portion of the block
definition table. When the device does not have access to the
block definition table, or a necessary portion thereot, process
500 may perform an operation 506 for retrieving the block
definition table, or a portion thereot, from a content source,
such as content source 104. In one example, the device has

US 9,253,164 B2

13

access to the block definition table, or a portion thereot, when
the block definition table, or portion thereot, 1s stored 1n the
device. When device has access to the block definition table,
or portion thereof, process 500 may perform an operation 508
for determining one or more data blocks to request from a
content source, such as content source 104. This operation
may include utilizing metadata stored within the block defi-
nition table.

Thereatfter, process 500 may proceed to an operation 510
for retrieving one or more data chunks and processing the one
or more data chunks. One example of this operation will be
described 1n further detail with reference to FIG. 6. After
performing processing on the one or more data chunks in
operation 310, the one or more data chunks may correspond
to one or more data blocks. Process 500 may then perform an
operation 312 for combining the one or more data blocks, and
an operation 514 for removing and/or discarding unneeded
data from the combined data blocks. Operation 514 may
include removing and/or discarding data which 1s not
included within the requested portion of the content. There-
alter, process 500 may perform an operation 516 for provid-
ing the data resulting from operation 514 to a content
requestor, such as content requestor 108. This data may be
provided as the requested portion of the content.

Meanwhile, process 600 of FIG. 6 may include operations
for retrieving and processing one or more data chunks, which
may be performed 1n operation 510 of FIG. 5. For example,
process 600 may include an operation 602 for converting a
request for one or more data blocks 1nto a request for one or
more data chunks. In converting the request, operation 602
may utilize metadata stored within a block definition table,
such as position, size, and/or identification information
included within block definition table 114. Thereatter, pro-
cess 600 may proceed to an operation 604 for requesting the
one or more data chunks from a content source, such as
content source 104. Process 600 may also include an opera-
tion 606 for recerving the one or more data chunks from the
content source.

In response to recerving the one or more data chunks,
process 600 may perform an operation 608 for processing
some or all of the received one or more data chunks. Opera-
tion 608 may include an operation 610 for validating some or
all of the received one or more data chunks, an operation 612
for decrypting some or all of the received one or more data
chunks, and an operation 614 for decompressing some or all
of the recerved one or more data chunks. Operations 610, 612,
and 614 may be performed 1n any order and may be per-
formed based on the metadata stored in the block definition
table, such as validation, encryption, and/or compression
information of the metadata. In one example, operations 610,
612, and 614 are performed based on the order of the pro-
cessing performed at the content source. This order may be an
implicit, predefined, or explicit order. Thereatter, process 600
may proceed to an operation 616 for providing the processed
one or more data chunks as one or more data blocks. The one
or more data blocks may be provided to a block combiner,
such as block combiner 118. In one example, process 600
proceeds to operation 512 after performing operation 616.
Conclusion

Although embodiments have been described 1n language
specific to structural features and/or methodological acts, 1t 1s
to be understood that the disclosure 1s not necessarily limited
to the specific features or acts described. Rather, the specific

features and acts are disclosed herein as illustrative forms ot

implementing the embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

14

The mvention claimed 1s:
1. A client device, comprising:
one or more processors; and
memory, communicatively coupled to the one or more
processors, storing one or more modules configured to:
receive, from an application of the client device, a
request for a range of bytes of content that 1s stored at
a content source, the range of bytes being equal to or
less than a byte range of an entirety of the content;
determine one or more data blocks associated with the
range ol bytes of content to request from the content
SOUrce;
convert the request for the one or more data blocks into
a request for one or more data chunks associated with
the range of bytes of content, the one or more data
chunks comprising the one or more data blocks that
have been processed;
request the one or more data chunks from the content
SOUrce;
receive the one or more data chunks from the content
SQUrce;
process the one or more data chunks by at least one of
validating, decrypting, or decompressing the one or
more data chunks;
re-create, responsive to processing the one or more data
chunks, the one or more data blocks from the one or
more data chunks to create re-created one or more
data blocks;
combine the re-created one or more data blocks:;
remove portions of the re-created one or more data
blocks to create refined one or more data blocks that
correspond to the requested range of bytes of the
content; and
provide the refined one or more data blocks to the appli-
cation of the client device as the requested range of
bytes of the content.
2. A method implemented by a device, comprising:
recerving, at the device, a request for a portion of content
being stored in a content source as a plurality of data
chunks, the request indicating a data range of the con-
tent;
recerving, at the device, metadata from the content source,
the metadata indicating processing performed at the
content source on a plurality of data blocks to create the
plurality of data chunks;
requesting, by the device, one or more data chunks of the
plurality of data chunks from the content source based
on the data range and the metadata;
recerving, at the device, the one or more data chunks from
the content source;
processing, at the device, the one or more data chunks into
one or more data blocks of the content, the processing,
comprising:
at least one of validating, decrypting, or decompressing,
the one or more data chunks;
creating, responsive to processing the one or more data
chunks, the one or more data blocks from the one or
more data chunks; and
removing data from the one or more data blocks that 1s
not part of the data range; and
providing, by the device, the one or more data blocks as the
portion of the content.
3. The method of claim 2, wherein the recerving the request

includes receiving the request for the portion of the content
from an application of the device.

US 9,253,164 B2

15

4. The method of claim 2, further comprising;

betfore receiving the metadata, determining that the meta-
data indicating processing performed at the content
source 1s not stored 1n the device; and

requesting the metadata from the content source.

5. The method of claim 2, wherein the processing the one or

more data chunks includes processing the one or more data
chunks based on the metadata.

6. The method of claim 2, wherein:

the metadata includes validation information for the plu-

rality of data chunks; and

the processing the one or more data chunks includes vali-

dating the one or more data chunks based on the valida-
tion information included in the metadata.

7. The method of claim 6, wherein:

the validation information includes at least one of a com-

puted hash value for the plurality of data chunks or a
hash algorithm utilized at the content source; and

the processing the one or more data chunks includes vali-

dating the one or more data chunks based on at least one
of the computed hash value or the hash algorithm.

8. The method of claim 2, wherein the metadata includes
validation information, encryption information, and com-
pression information for the plurality of data chunks, and

the processing the one or more data chunks includes:

validating the one or more data chunks with the valida-
tion information;

decrypting the one or more data chunks with the encryp-
tion information; and

decompressing the one or more data chunks with the
compression mformation.

9. The method of claim 2, wherein the metadata includes
position information, size information, and identification
information for at least one of the plurality of data blocks or
the plurality of data chunks,

the position information indicating a position of the at least

one of the plurality of data blocks or the plurality of data
chunks with respect to the content,

the 1dentification information 1dentifying a data block that

1s associated with a data chunk, and

the size information indicating a data size of the at least one

of the plurality of data blocks or the plurality of data
chunks.

10. The method of claim 9, further comprising:

determining, 1n response to receiving the request for the

portion of content, a list of data blocks based on the data

range and at least one of the position information, size
information, or 1identification information; and

converting the list of data blocks to a list of data chunks
based on at least one of the position mformation, size
information, or identification information.

11. The method of claim 2, further comprising:

combining, before removing the data from the one or more
data blocks, the one or more data blocks to create com-
bined one or more data blocks corresponding to the
portion of the content;

removing the data from the combined one or more data
blocks; and

providing the combined one or more data blocks as the
portion of the content.

12. The method of claim 2, wherein:

the content comprises an application to be installed on the
device; and

the receiving the request includes receiving a request for a
portion of the application from an installation applica-
tion of the device.

10

15

20

25

30

35

40

45

50

55

60

65

16

13. The method of claim 2, wherein:

the content comprises media data to be reproduced on the

device; and

the recerving the request includes recerving a request for a

portion of the media data from a media application con-
figured to reproduce the media data.

14. One or more computer storage media storing computer-
readable instructions that, when executed by a computing
device having one or more processors, instruct the one or
more processors to perform operations comprising;

receving a request for a portion of content, the content

being stored 1n a content source as a plurality of data
chunks, the request indicating a data range of the con-
tent;

recerving metadata from the content source, the metadata

indicating processing performed at the content source on
a plurality of data blocks to create the plurality of data
chunks;

requesting one or more of the plurality of data chunks from
the content source based on the data range and the meta-
data;

receving the one or more data chunks of the plurality of

data chunks from the content source;

processing the receirved one or more data chunks 1nto one

or more data blocks of the content, the processing com-

prising:

at least one of validating, decrypting, or decompressing,
the one or more data chunks:

creating, responsive to processing the one or more data
chunks, the one or more data blocks from the one or
more data chunks; and

removing data from the one or more data blocks that 1s
not part of the data range; and

providing the one or more data blocks as the portion of the

content.

15. The one or more computer storage media of claim 14,
wherein the receiving the request includes receiving the
request for the portion of content from an application of the
computing device.

16. The one or more computer storage media of claim 14,

wherein the operations further comprise:
belore receiving the metadata, determining that the meta-
data indicating processing performed at the content
source 1s not stored 1n the computing device; and
requesting the metadata from the content source.

17. The one or more computer storage media of claim 14,
wherein the processing the one or more data chunks includes
processing the one or more data chunks based on the meta-
data.

18. The one or more computer storage media of claim 14,
wherein:

the metadata includes validation information for the plu-

rality of data chunks; and

the processing the one or more data chunks includes vali-

dating the one or more data chunks based on the valida-
tion information 1included in the metadata.

19. The one or more computer storage media of claim 14,
wherein:

the validation information includes at least one of a com-

puted hash value for the plurality of data chunks or a
hash algorithm utilized at the content source; and

the processing the one or more data chunks includes vali-

dating the recerved one or more data chunks based on at
least one of the computed hash value or the hash algo-

rithm.

US 9,253,164 B2

17

20. The one or more computer storage media of claim 14,
wherein the metadata includes wvalidation information,

encryption information, and compression information for the

plurality of data chunks, and
the processing the received one or more data chunks

includes:
validating the one or more data chunks with the valida-

tion information;
decrypting the one or more data chunks with the encryp-

tion information; and
decompressing the one or more data chunks with the
compression mformation.

¥ H H ¥ ¥

10

18

	Front Page
	Drawings
	Specification
	Claims

