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SYSTEMS AND METHODS FOR
CORRECTING FOR WARPAGE OF A SENSOR
ARRAY IN AN ARRAY CAMERA MODULE
BY INTRODUCING WARPAGE INTO A
FOCAL PLANE OF A LENS STACK ARRAY

CROSS-REFERENCE TO RELATED
APPLICATION

The present invention claims priority under 35 U.S.C. §119
(e) to U.S. Provisional Patent Application Ser. No. 61/976,
3335 entitled “Sensor Array Warpage Compensation by Inten-
tionally Introducing Warpage into the Lens Array”, filed Apr.
7, 2014, the disclosure of which 1s incorporated by reference
herein 1n 1ts entirety.

FIELD OF THE INVENTION

The present mvention generally relates to reducing the
variation of the back focal length of lens 1n a lens stack array
of an array camera module.

BACKGROUND

In response to the constraints placed upon a traditional
digital camera based upon the camera obscura, a new class of
cameras that can be referred to as array cameras has been
proposed. Array cameras are characterized in that they
include an 1imager array, or sensor, that has multiple arrays of
pixels, where each pixel array 1s intended to define a focal
plane, and each focal plane has a separate lens stack. Typi-
cally, each focal plane includes a plurality of rows of pixels
that also forms a plurality of columns of pixels, and each focal
plane 1s contained within a region of the imager that does not
contain pixels from another focal plane. An image 1s typically
formed on each focal plane by its respective lens stack. In
many instances, the array camera 1s constructed using an
imager array that incorporates multiple focal planes and an
optic array of lens stacks.

SUMMARY OF THE INVENTION

An advance 1n the art 1s by systems and methods for cor-
recting warpage of a sensor array 1n an array camera module
by 1ntroducing warpage into a projection plane of 1mages
formed by the lens stack 1n accordance with at least some
embodiments of this imvention. In accordance with some
embodiments of the mvention, an array camera includes an
array camera module. The array camera module includes a
sensor and a lens stack array. The sensor includes an array of
pixels that 1s subdivided 1nto a sub-arrays of pixels and each
of the sub-arrays forms a focal plane. The lens stack array
includes a set of lens stacks. Each of lens stacks includes an
aperture and forms an 1mage on a focal plane formed by one
of the sub-array of pixels on the sensor. The surface of the
sensor on which images are formed includes a warpage and a
projection plane of 1images formed by the lens stack array
incorporates a warpage that at least partially corrects the
warpage 1n the sensor.

In accordance with some embodiments, the warpage of the
sensor has a curvature of a bow that 1s convex. In accordance
with some embodiments, the warpage of the focal plane of the
lens stack array has a curvature of a bow that 1s convex.

In accordance with many embodiments, the curvature of
the warpage of the focal of the lens stack array 1s substantially
equal to the curvature of the warpage of the sensor.
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In accordance with some embodiments, the warpage of the
lens stack array corrects the warpage of the sensor to provide
back focal lengths for each of the lens stacks 1n the lens stack
array that are substantially consistent.

In accordance with some embodiments, a method of manu-
facturing array cameras that correct for warpage 1n a sensor
array with warpage 1n the focal plane of a lens stack 1s per-
formed 1n the following manner. A first set of sensors for
camera arrays are manufactured. Each of the sensors includes
an array ol pixels that 1s subdivided into of sub-arrays of
pixels and each of the sub-arrays forms a focal plane. The
warpage 1n each of the sensors manufactured 1s measured and
used to generate warpage information. A lens stack array
comprising a set of lens stacks where each of the lens stacks
1s associated with a focal plane formed by one of the sub-
arrays ol pixels 1n the sensor 1s designed based upon the
warpage mformation. The designed lens stack array 1s con-
figured to have a projection plane of 1images formed by the
lens stack array that has a warpage that corrects the warpage
in the sensor. A second set of sensors 1s manufactured and a
lens stack arrays are manufactured in accordance with the
design. The lens stack are then placed over the sensor to form
and array camera module.

In accordance with some embodiments the lens stacks 1n
cach of the stack arrays 1s aligned with focal planes formed by
the plurality of sub-arrays 1n each of the second set of sensors.
In accordance with a number of embodiments, the warpage 1n
the lens stack array design corrects the warpage of the first set
ol sensors to provide back focal lengths for each of the lens
stacks 1n the lens stack array that are substantially consistent
when placed over the second set of sensors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 conceptually illustrates an array camera in accor-
dance with an embodiment of the invention.

FIG. 2 1illustrates an array camera module 1n accordance
with an embodiment of the imnvention.

FIG. 3 illustrates an array camera module that employs a
filter 1n accordance with an embodiment of the mnvention.

FIG. 4 conceptually illustrates variations in focal length
that can occur during the manufacture of an array camera
module using a lens stack array and a sensor 1n accordance
with embodiments of the invention.

FIG. 5 conceptually illustrates a convex warpage of a sen-
sor of an array camera in accordance with embodiments of
this invention.

FIG. 6 conceptually illustrates a concave warpage of a
sensor of an array camera in accordance with embodiments of
this 1nvention.

FIG. 7 conceptually illustrates a lens stack array aligned
over a sensor 1 accordance with an embodiment of this
ivention.

FIG. 8 conceptually 1llustrates a lens stack array that 1s
designed with a projection plane that has a warpage that 1s
substantially equal to the warpage in a warped sensor in
accordance with an embodiment of this invention.

FIG. 9 1llustrates a flow diagram of a process for manufac-
turing an array camera with a lens stack array that 1s designed
with a warpage that 1s opposite the warpage 1n a warped
sensor 1n accordance with an embodiment of this invention.

FIG. 10 illustrates a flow diagram of a process for mass
manufacture of an array camera with a lens stack array that 1s
designed with a warpage that 1s opposite the warpage 1n a
warped or deformed sensor 1n accordance with an embodi-
ment of this mnvention.
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DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for
correcting warpage of a sensor of an array camera module by
introducing warpage into a lens stack array in accordance
with embodiments of the invention are illustrated. Processes
for constructing array camera modules using lens stack arrays
are described 1n U.S. Patent Publication No. 2001 1/0069189,
entitled “Capturing and Processing of Images Using Mono-
lithic Camera Array with Heterogeneous Imagers™, Venkat-
araman et al. The disclosure of U.S. Patent Publication No.
20011/0069189 1s incorporated by reference herein 1n 1ts
entirety. The monolithic array camera modules illustrated 1n
U.S. Patent Publication No. 20011/0069189 can be con-
structed from an optic array of lens stacks, also termed a ‘lens
stack array’, where each lens stack in the array defines an
optical channel, and where the lens stack array 1s associated
with a monolithic imager array, or ‘sensor’, including a plu-
rality of focal planes corresponding to the optical channels in
the lens stack array. Each focal plane can include a plurality of
rows ol pixels that also forms a plurality of columns of pixels,
and each focal plane may be contained within a region of the
imager array that does not contain pixels from another focal
plane. An 1mage may be formed on each focal plane by a
respective lens stack. The combination of a lens stack array
and a sensor can be understood to be an ‘array camera mod-
ule’ and the combination of an individual lens stack and its
corresponding focal plane within the sensor can be under-
stood to be a ‘camera.’ Ideally, the lens stack array of an array
camera 1s constructed so that each lens stack within 1t has the
same focal length. However, the large number of tolerances
involved 1n the manufacture of a lens stack array can result 1n
the different lens stacks having varying focal lengths. The
combination of all the manufacturing process variations typi-
cally results in a deviation of the actual (“first order”) lens
parameters—such as focal length—from the nominal pre-
scription. As aresult, each lens stack can have a different axial
optimum 1mage location. And consequently, since the sensor
1s monolithic, 1t typically cannot be placed a distance that
corresponds with the focal length of each camera within an
array camera module. There are a variety of processes 1n the
manufacturing of conventional camera modules that can be
utilized to align a lens stack array with a sensor to achieve
acceptable 1maging performance including active alignment
processes and passive alignment processes.

One particular problem that arises during manufacture 1s
that the lens stack array and/or the sensor may not be suifi-
ciently flat when the components are combined into an array
camera module. IT either the lens stack array (or more par-
ticularly, the projection plane of the images projected from
the lens stack) and/or the sensor are warped, the individual
lens stacks may be misaligned with the desired focal planes
when the lens stack array 1s affixed to the sensor causing
varying focusing problems to arise. The sensor may be
warped due to many factors, including, but not limited to,
mismatch 1ssues of the Coellicient of Thermal Expansion
(CTE) of material of the sensor and of the Printed Circuit
Board (PCB) during the attachment process in which the
components are subjects to elevated curing temperatures. The
lens stack array (or more particularly, the projection plane of
the images projected from the lens stack) may be warped due
to factors including, but not limited, manufacturing defects in
the lens stack arrays and the stress induced by placement of
the lens stack ito a holder over the sensor. Although much of
the discussion that follows refers to sensor warpage, the tech-
niques described herein can be equally applied to correct any
form of sensor deformation as appropriate to the require-
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ments of specific manufacturing processes 1n accordance
with embodiments of the invention.

The warpage of the lens stack array and/or the sensor may
cause the distance and/or angle between the individual lens
stacks and individual pixel arrays in the sensor to vary. This
variation in distance and/or angle may cause a back focal
length vanation of the individual lens 1n the lens array over
the focal planes on the sensor array of the array camera that 1s
referred to as warpage of the projection plane of the lens stack
where the projection plane 1s the plane 1n which the 1images
are focused. Typically, the curvature sign of the bow of the
warpage ol the sensor 1s convex while the curvature sign of
the bow of the warpage of the projection plane of the lens
stack array may vary between convex and concave. Com-
monly, the only way to minimize back focal length variations
1s to minimize the warpage 1n between the projection plane of
the lens stack and the sensor prior to alignment.

In accordance with some embodiments of this invention,
the variations 1n the back focal lengths of the individual lens
stacks 1n the lens stack array are reduced by matching the
warpage of the sensor and the warpage 1n the projection plane
of lens stack array such that the warpage in the projection
plane of the lens stack array corrects for the warpage of the
sensor. In accordance with some embodiments, the warpage
may be corrected by forming the components such that the
curvature sign ol the bows for each component are substan-
tially equal to one another. In accordance with some other
embodiments, the warpage in the sensor may be corrected by
varying the BFL of individual lens stacks in the lens stack
array such that the curvature sign of the warpage of the
projection plane 1s substantially equal to the curvature sign of
the warpage of the sensor. The equality of the curvature signs
of the deformation in the sensor and the projection plane of
the lens stacks results in a defocusing pattern in the array
camera that 1s substantially free of the bow. The variation 1n
the resulting Back Focal Length (BFL) pattern of the array
camera module 1s decreased relative to an array camera mod-
ule manufactured using a planar lens stack array (1.e. a lens
stack array manufactured to minimize warpage).

In accordance with some embodiments of the invention,
the process for manufacturing an array camera module
includes manufacturing and/or packaging a sensor without
enforcing a flatness requirement. The warpage of the manu-
factured sensor can be measured to determine warpage infor-
mation for the sensor. The warpage information for the sensor
can be used to design a lens stack array with a warpage in the
projection plane that corrects for the warpage 1n the sensor. In
accordance with some embodiments, the warpage 1n the sen-
sor 1s corrected by having a warpage 1n the lens stack array
that has a bow curvature sign that 1s substantially equal to the
bow curvature sign of the manufactured sensor array. In
accordance with some other embodiments, the warpage in the
sensor may be corrected by varying the BFL of individual lens
stacks 1n the lens stack array such that the curvature sign of the
warpage ol the focal plane 1s substantially equal to the cur-
vature sign of the warpage of the sensor. Conventional align-
ment and assembly processes can then be used to align the
lens stack relative to the sensor and form an array camera
module.

A process for manufacturing individual lens array stacks
for each sensor array would costly and time consuming. Fur-
thermore, while the magnitude of warpage observed 1n the
sensor may be significant. For example the warpage may be as
much as 25 um. However, the vanation of the warpage
between sensors arrays manufactured 1n the same manufac-
turing lot 1s typically less than 5 um and 1s more typically on
the order of 3 um. Thus, a process for matching the warpage
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of a lot of produced lens stack arrays to warpage 1n a lot of
manufactured sensors arrays may be performed in 1n accor-
dance with embodiments of this invention to reduce the BFL-
variation 1n mass produced array camera modules. In some
embodiments of this mvention, the process includes manu-
facturing a group of sensors in an array using a standard
process without enforcing flatness requirements. The
warpage of each of the produced sensors in the group are then
measured to generate warpage information. In accordance
with some embodiments the warpage information may
include an average bow curvature sign of the group of sensors.
The warpage information of the group of sensors 1s then used
to design a lens stack arrays with warpage of the array image
surface that corrects for the warpage 1n sensors. In accordance
with some embodiments, the lens stack array design has a
bow curvature sign that i1s substantially equal to the bow
curvature sign of the warpage in the group of sensors. Lens
stack arrays can then be manufactured in accordance with the
design and additional sensors can be manufactured 1n accor-
dance with the process used to manufacture the mitial group
of sensors that formed the basis of the lens stack array design.
Conventional alignment and assembly processes can then be
used to form array camera modules from the lens stack arrays
and sensors. The resulting array camera modules can have
reduced BFL-variation relative to array camera modules
manufactured without moditying the design of the lens stack
arrays based upon the measured warpage of the mitial group
of sensors. In many instances, designing the lens stack array
considering measured sensor warpage can increase array
camera module yield and provide reductions in manufactur-
Ing costs.

Alignment of sensors and lens stack arrays may be per-
formed using active/or passive alignment. In the context of
the manufacture of camera systems, the term active alignment
typically refers to a process for aligning an optical component
or element (e.g. a lens stack array) with an 1mage receiving
component or element (e.g. a monolithic sensor) to achieve a
final desirable spatial arrangement by evaluating the efficacy
of the 1mage recerving component’s ability to capture and
record 1mages as a function of the spatial relationship
between the optical component and the 1image recerving com-
ponent, and using this evaluation information to assist in the
alignment process. Processes for actively aligning a lens
stack array with an array of focal planes are described 1n U.S.
Patent Publication No. 2014/0002674, entitled “Systems and
Methods for Manufacturing Camera Modules Using Active
Alignment of Lens Stack Arrays and Sensors”, Duparre et al.
The disclosure of U.S. Patent Application Publication No.
2014/0002674 1s incorporated by reference herein in 1ts
entirety.

Ideally, when manufacturing camera modules in bulk, each
camera module would be individually assembled using a
rigorous assembly process, such as an active alignment pro-
cess, to provide a quality configuration. However, performing
such processes 1n bulk may be costly and time-consuming. An
alternative to the use of an active alignment process to manu-
facture camera modules 1s the use of a passive alignment
process. The term passive alignment typically refers to align-
ing an optical system with an 1maging system to achieve a
final desirable spatial arrangement using predetermined con-
figuration parameters (e.g., the spacing between the lens stack
array and the sensor 1s predetermined). Processes for utilizing
alignment mformation obtained during active alignment of
one or more representative lens stack arrays and sensors to
form array camera modules to manufacture array camera
modules using passive alignment processes are disclosed in
U.S. patent application Ser. No. 14/195,675 entitled “Passive
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Alignment of Array Camera Modules Constructed from Lens
Stack Arrays and Sensors Based Upon Alignment Informa-
tion Obtained During Manufacture of Array Camera Modules
Using an Active Alignment Process™ to Duparre et al. The
disclosure of U.S. patent application Ser. No. 14/195,675 1s
incorporated by reference herein 1n 1ts entirety.

Processes for aligning lens stack arrays with sensors 1n
accordance with many embodiments of the invention mvolve
aligning the lens stack arrays with respect to sensors so as to
enhance the resulting array camera module’s ability to pro-
duce high-resolution images using super-resolution pro-
cesses. Super-resolution refers to the process of synthesizing
a plurality of low-resolution 1mages of a particular scene—
cach 1image providing a sub-pixel shifted view of that scene
(1.e. the object space sampled by the pixels 1s shifted relative
to the other images captured by the array camera)—to derive
a corresponding high-resolution image. Essentially, 1n a
super-resolution process, sampling diversity between the low
resolution 1mages of a scene captured by an array camera
module 1s utilized to synthesize one or more high resolution
images of the scene. Thus, an array camera can capture and
record a plurality of low-resolution 1mages, and employ a
super-resolution algorithm to generate a high-resolution
image. Super-resolution processes that can be used to synthe-
s1ze high resolution 1images from a plurality of low resolution
images of a scene are described in U.S. Patent Publication
2012/014205 entitled “System and Methods for Synthesizing
High Resolution Images Using Super-Resolution Processes”™
published Jun. 14, 2012, the disclosure of which 1s incorpo-
rated by reference herein 1n 1ts entirety.

The extent to which super-resolution processing can be
utilized to obtain an increase 1n resolution of an 1mage syn-
thesized from a plurality of low resolution images can depend
on the sampling diversity and sharpness of the images. Impor-
tantly, the sampling diversity of the captured low resolution
images 1s partly a function of the spatial relationship between
the lens stack array and the sensor. Thus, many embodiments
of the mmvention further align the lens stack array with the
array of focal planes to enhance the sampling diversity within
the corresponding array camera module by discovering and
implementing a spatial relationship between the lens stack
array and the sensor that enables this result.

Array cameras and systems and methods for correcting
warpage of a sensor of an array camera module by manufac-
turing lens stack arrays that include warpages that at least
partially corrects for the warpage 1n the sensor 1n accordance
with embodiments of the invention are discussed further
below.

Array Camera Architectures

A variety of architectures can be utilized to construct an
array camera using one or more array camera modules and a
processor, mcluding (but not limited to) the array camera
architectures disclosed 1n U.S. Application Publication 2011/
0069189. A representative array camera architecture incor-
porating an array camera module incorporating a warped
sensor and a lens stack array incorporating warpage that at
least partially corrects for the warpage in the sensor and a
processor 1s illustrated in FIG. 1. The array camera 100
includes an array camera module 110, which 1s connected to
an 1mage processing pipeline module 120 and to a controller
130. In the illustrated embodiment, the 1mage processing
pipeline and the controller 130 are implemented using a pro-
cessor. In various embodiments, the 1image processing pipe-
line module 120 1s hardware, firmware, software, or a com-
bination for processing the images received from the array
camera module 110. The 1image processing pipeline module
120 1s capable of processing multiple 1images captured by
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multiple focal planes 1n the camera module and can produce
a synthesized higher resolution image. In a number of
embodiments, the 1mage processing pipeline module 120
provides the synthesized image data via an output 122.

In many embodiments, the controller 130 1s hardware,
soltware, firmware, or a combination thereof for controlling
various operational parameters of the array camera module
110. The controller 130 receives mputs 132 from a user or
other external components and sends operation signals to
control the array camera module 110. The controller can also
send information to the 1mage processing pipeline module
120 to assist processing of the images captured by the focal
planes in the array camera module 110.

Although specific array camera architecture 1s illustrated in
FIG. 1, camera modules incorporating a warped sensor and a
lens stack array incorporating warpage that at least partially
corrects for the warpage 1n the sensor i accordance with
embodiments of the ivention can be utilized 1n any of a
variety of array camera architectures. Camera modules that
can be utilized 1n array cameras and processes for manufac-
turing array camera modules 1 accordance with embodi-
ments of the invention are discussed further below.

Array Camera Modules

An array camera module may be formed by aligning a lens
stack array and an imager array. Each lens stack in the lens
stack array can include an aperture that defines a separate
optical channel. The lens stack array may be mounted to an
imager array that includes a focal plane for each of the optical
channels, where each focal plane includes an array of pixels
or sensor elements configured to capture an image. When the
lens stack array and the imager array are combined with
suificient precision, the array camera module can be utilized
to capture 1image data from multiple views of a scene that can
be read out to a processor for further processing, €.g., to
synthesize a high resolution 1mage using super-resolution
processing.

An exploded view of an array camera module formed by
combining a lens stack array with a monolithic sensor includ-
ing an array of focal planes in accordance with an embodi-
ment of the invention 1s illustrated in FIG. 2. The array camera
module 200 1includes a lens stack array 210 and a sensor 230
that includes an array of focal planes 240. The lens stack array
210 includes an array of lens stacks 220. Each lens stack
creates an optical channel that resolves an 1image on the focal
planes 240 on the sensor. Each of the lens stacks may be of a
different type. For example, the optical channels may be used
to capture images at different portions of the spectrum and the
lens stack 1n each optical channel may be specifically opti-
mized for the portion of the spectrum 1maged by the focal
plane associated with the optical channel. More specifically,
an array camera module may be patterned with “m filter
groups.” The term m filter groups refers to a pattern of color
filters applied to the lens stack array of a camera module and
processes for patterning array cameras with  filter groups are
described 1n U.S. Patent Publication 2013/0293228, entitled
“Camera Modules Patterned with wt Filter Groups”, Venkat-
araman et al. The disclosure relevant to m filter groups 1n U.S.
Patent Publication 2013/0293228 1s incorporated by refer-
ence herein 1n 1ts enftirety. FIG. 3 illustrates a single 7 filter
group, wherein 5 lenses are configured to receive green light,
2 lenses are configured to recerve red light, and 2 lenses are
configured to receive blue light. The lens stacks may further
have one or multiple separate optical elements axially
arranged with respect to each other.

A lens stack array may employ water level optics (WLO)
technology. WLO 1s a technology that encompasses a number
of processes, including, for example, molding of lens arrays
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on glass wafers, stacking of those waters (including wafers
having lenses replicated on either side of the substrate) with
appropriate spacers, followed by packaging of the optics
directly with the imager into a monolithic integrated module.

The WLO procedure may involve, among other proce-
dures, using a diamond-turned mold to create each plastic
lens element on a glass substrate. More specifically, the pro-
cess chain in WLO generally includes producing a diamond
turned lens master (both on an individual and array level),
then producing a negative mould for replication of that master
(also called a stamp or tool), and then finally forming a
polymer replica on a glass substrate, which has been struc-
tured with appropriate supporting optical elements, such as,
for example, apertures (transparent openings 1n light blocking
matenal layers), and filters.

Although the construction of lens stack arrays using spe-
cific WLO processes 1s discussed above, any of a variety of
techniques can be used to construct lens stack arrays, for
instance those mvolving precision glass molding, polymer
injection molding or water level polymer monolithic lens
processes. Issues related to variation 1n back focal length of
the lens stacks within lens stack arrays are discussed below.
Back Focal Plane Alignment

An array camera module 1s typically intended to be con-
structed 1n such a way that each focal plane (i.e. an array of
pixels configured to capture an image formed on the focal
plane by a corresponding lens stack) 1s positioned at the focal
distance of each lens stack that forms an optical channel.
However, manufacturing variations can result in the lens
stack 1n each optical channel varying from 1ts prescription,
and 1n many instances, these variations can result in each lens
stack within a lens stack array having a different focal length.
For example, parameters that may vary amongst individual
lens stacks 1n a lens stack array because of manufacturing
variations include, but are not limited to: the radius of curva-
ture 1n 1ndividual lenses, the conic, higher order aspheric
coellicient, refractive index, thickness of the base layer, and/
or overall lens height. As one of ordinary skill 1n the art would
appreciate, any number of lens prescriptions may be used to
characterize the lens fabrication process, and the respective
tolerances may mvolve departures from these prescriptions in
any number of ways, each of which may impact the back focal
length. Due to the monolithic nature of the sensor, the spatial
relationship of the focal planes (with respect to the lens
stacks) cannot be mdividually customized to accommodate
this variability.

The variations 1n focal length that can occur 1n a conven-
tional lens stack array are conceptually illustrated in FIG. 4.
The array camera module 400 includes a lens stack array 402
in which lens stacks 404 focus light on the focal planes 406 of
sensor 408. As 1s illustrated, variance between the actually
tabricated lens stack and 1ts original prescription can result in
the lens stack having a focal length that varies slightly from its
prescription and consequently an image distance that does not
correspond with the distance between the lens stack array and
the sensor. Accordingly, the 1mages formed on the focal
planes of the sensor can be out of focus. In addition, other
manufacturing tolerances associated with the assembly of the
array camera module including (but not limited to) variations
in spacer thickness and alignment of the lens stack array
relative to the sensor can 1impact all of the optical channels.
Theretore, as discussed in U.S. Patent Publication 2014/
0002674, active alignment processes may be incorporated 1n
the manufacture of array camera modules to mitigate this
elfect.

One cause of variations 1n the focal lengths 1n a lens stack
array 1s warpage of the lens stack array and/or sensor. A side
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view ol a sensor showing a convex warpage of a sensor in
accordance with an embodiment of the invention 1s shown 1n
FIG. 5. Although warpage 1s discussed with reference to the
sensor, the discussion equally applies to a lens stack array. In
FIG. 5, sensor 500 has warpage causing the sensor 500 to have
a convex bow. Typically stress induced during the packaging
of a sensor, e.g. mounting onto a PCB, leads to a convex bow
in a sensor such as sensor 500. By convex, 1t 1s understood that
convex describes the surface 505 of the sensor 500 that
includes the pixel surface bowing outwards from sensor 500
(1.e. 1n a direction toward the lens stack array to which the
sensor will be aligned) with respect to the expected plane 510
of the surface. The warpage may be caused by factors includ-
ing (but not limited to) CTE mismatches between the material
of the sensor and PCB material. For example a sensor gener-
ally includes a large amount of silicon and the PCB 1s made of
a material such as, FR4, that has a much larger CTE than
silicon Thus, elevated curing temperatures during bare die
and/or CSP attachment process(es) as well as actual board
manufacturing processes may introduce the convex warpage
into the sensor 500.

A sensor having a concave bow 1n accordance with
embodiments of this invention 1s shown in FIG. 6. One skalled
in the art will recognize that a lens stack array may also have
a concave bow and the following discussion also applies to a
lens stack array. Sensor 600 has concave bow. One skilled 1n
the art will recognize that a concave bow 1n a sensor typically
does not occur. By concave, 1t 1s understood that concave
describes the surface 605 of the sensor 600 that includes a
pixel surtface 605 bowing inwards towards sensor 300 (i.¢. in
a direction away from the lens stack to which the sensor 1s
aligned.

The lens stack array may also have warpage. Warpage in
the lens stack array and/or other factors may cause warpage in
the projection plane of the images from lens stack array. The
BFL-pattern of the warpage in the projection plane of the lens
stack array may vary between concave and convex. It 1s
understood that concave and convex describe the shape of the
warpage of the lens stack array with respect to the expected
plane of the surface of the pixels in the sensor array as
described above with reference to the sensor. In a conven-
tional array camera module, the warpage of the lens stack
array may be caused by the lens stack array being introduced
into a hold over the sensor and/or a vaniation of the focal
planes from the focal planes of a flat lens stack array.

In accordance with some embodiments of this invention,
the effective variations 1n the back focal lengths of the 1ndi-
vidual lens in the lens stack array causing warpage in the
projection plane of the lens stack array are reduced by match-
ing the warpage of the sensor and the warpage of the projec-
tion plane of lens stack array such that the curvature signs of
the bows for each warpage are substantially equal to one
another. The equality of the shape of the deformation in the
sensor and the projection plane of the 1mages formed by the
lens stack array results i an effective defocusing pattern 1n
the array camera that 1s substantially free of the bow. The
resulting eflective variation in the Back Focal Length (BFL)
pattern of the array camera module 1s decreased. The place-
ment of the lens stack array over the sensor in accordance with
embodiments of the invention 1s shown 1n FIG. 7. In FIG. 7,
lens stack array 710 1s positioned over sensor 720 such that
cach individual lens stack 711 1s aligned with an individual
tocal plane of pixels 721 to form array camera module 700.

The warpage of each ofthe lens stack array and sensor of an
array camera module 1n accordance with an embodiment of
the invention 1s shown in FIG. 8. In FIG. 8, sensor 720 has a
curvature that 1s convex 1n that the warpage causes a pixel
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surface of sensor 720 to bow outward from sensor 720 toward
the lens stack array with respect to the expected plane of the
surface of pixels 1n the sensor 720. Lens stack array 710 has
a curvature that 1s convex 1n that the warpage of lens stack
array 710 causes lens stack array 710 to bow outward from
sensor (1.e. away from the sensor) with respect to an expected
plane of the surface of pixels in the sensor. Thus, when lens
stack array 710 1s placed over sensor 720 the warpage of lens
stack 710 1s the substantially equal to the warpage of sensor
720. Thus, the axial alignment between the individual lens
and sensors 1s maintained. More particularly, the equality 1n
the warpage of each component causes the warpage of the
projection plane of the images formed by the lens stack to be
substantially equal to the warpage of the sensors. Thus, the
projected 1mages from the lens stack array have the same
focal distance with respect to the sensor. In accordance with
other embodiments, the warpage of the projection plane of
images other manners including, but not limited to, adjusting
the optics 1n one or more lens stacks 1n the lens stack array.
One skilled 1n the art will recognize that either component or
both components may have different curvatures signs of the
bows, the only requirement being that the warpage of the lens
stack array corrects for the warpage of the sensor 720 1n
accordance with some embodiments of this invention.

Processes for manufacturing an array camera module that
includes a lens stack array incorporating warpage that at least
partially corrects warpage 1n a sensor 1n accordance with an
embodiment of the invention 1s illustrate in FIG. 9. Process
900 1s a process for manufacturing a single array camera
module that includes a lens stack array that has warpage that
at least partially corrects warpage 1n a sensor 1n accordance
with an embodiment of the invention. In process 900, a sensor
1s manufactured using conventional processes (905). In
accordance with some embodiments, the flatness require-
ments of the sensor are relaxed during the manufacture pro-
cess of the sensor which includes the mounting of the sensor
to a PCB. The warpage of the sensor 1s then measured (910).
In accordance with some embodiments, the measurements
include a curvature sign of a bow. In accordance with some
embodiments, the measurements are performed using testing
equipment and the results are provided to processing system,
such as a computer. In some embodiments, the results of the
measurement are stored to a memory for later use.

The measurements of the warpage are then used to deter-
mine the warpage needed 1n the projection plane of the
images formed by the lens stack array. The required warpage
needed 1s then used to generate a design specification for a
lens stack array that provides the desired warpage in the
projection plane of the images formed by the lens stack array
(915). The design specification 1s a specification that results
in a lens stack array that provides a projection plane that has
a warpage that corrects for the warpage in the sensor. In
accordance with some embodiments, the correction causes
the projection plane of the lens stack array to have of curva-
ture sign of a bow that 1s the same as that the curvature signs
of the sensor. The design specification can be generated by a
computer system that receives the measurements from the
testing equipment and applies design algorithms to the mea-
surement results to determine the proper design specification
based upon the desired warpage of the projection plane.

The design specification 1s then used to generate a lens
stack array to match the measured sensor (920). Conventional
processes such as, but not limited to WLO techniques can be
used to manufacture the lens stack array in accordance with
embodiments of the imnvention. The manufactured lens stack
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can then be placed over (925) and aligned (930) with the
sensor using conventional processes to form an array camera
module.

Although specific embodiments of a process for manutac-
turing an array camera module 1n accordance with an embodi-
ment of this invention are described above with reference to
FIG. 9, other processes may be used to manufacture an array
camera module 1n accordance with other embodiments of this
ivention.

The making of a specific lens stack array for a specific
sensor may be too expensive and too time mtensive for mass
production of array camera modules. Thus, alternative pro-
cess for manufacturing array camera modules may use lens
stack modules that are configured to correct average warpage
ol manufactured sensors and/or warpages that are replicated
across multiple sensors by the sensor manufacturing process.
A flow chart of a process for the mass manufacture of array
camera modules having lens stack arrays that are designed to
correct the average warpage of manufactured sensors in
accordance with an embodiment of this invention 1s shown 1n
FIG. 10. Process 1000 includes manufacturing a test group of
sensors (1005). In accordance with some embodiments, the
flatness requirements of the sensors are relaxed during the
manufacturing and/or packaging process of the sensors. The
warpage of each sensor in the test group of sensors can then be
measured (1010). In accordance with some embodiments, the
measurements include a determination of the curvature of
cach sensor. In accordance with many embodiments, the mea-
surements are performed using testing equipment and the
results are provided to a processing system, such as a com-
puter. In several embodiments, the results of the measurement
are stored to a memory for later use.

The measurements of the warpage of the test group of
sensors are then used to determine one or more design speci-
fications for a lens stack array(s) (1015). The design specifi-
cation 1s a specification that results in a lens stack array that
provides a projection plane of the images formed by the lens
having a warpage of the projection plane of the images
tormed by the lens stack array (either by respective mechani-
cal deformation of the lens stack array itself, or by incorpo-
ration of the respective BFL-variation) that at least partially
corrects for the average warpage 1n the test group of sensors.
In accordance with some embodiments, the warpage of the
projection plane of the lens stack array 1s achieved by
mechanical deformation of the lens stack array itself. In
accordance with some other embodiments, the warpage of the
projection plane of the lens stack 1s achieved by BFL-varia-
tion of the optics in the individual lens stacks 1n the array. In
accordance with some embodiments, the correction causes
the projection plane of the lens stack array to have of a
curvature that 1s i1dentical to the curvature observed in the
initial group of sensors. The design specification can be gen-
crated by a computer system that receives the measurements
from the testing equipment and applies design algorithms to
the measurement results to determine the proper design speci-
fication for the lens stack array that corrects for the warpage
in the sensor.

Sensors can be manufactured 1n accordance with the pre-
vious processes used to manufacture the test group of sensors
(1020). The design specification can then be used to generate
lens stack arrays to match the manufactured sensors (1025).
Conventional processes such as, but not limited to WLO
techniques can be used to manufacture the lens stack array in
accordance with embodiments of the invention. The manu-
factured lens stack can then be placed over (1030) and aligned

with the sensor (1035) using conventional processes.
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Although specific embodiments of a process for manufac-
turing array camera modules 1n accordance with an embodi-
ment of this invention are described above with reference to
FIG. 10, other processes may be used to manufacture an array
camera module 1 accordance with other embodiments of this
invention.

Although the present invention has been described 1n cer-
tain specific aspects, many additional modifications and
variations would be apparent to those skilled 1n the art. It 1s
therefore to be understood that the present invention may be
practiced otherwise than specifically described. Thus,
embodiments of the present invention should be considered in
all respects as 1llustrative and not restrictive.

What 1s claimed 1s:

1. An array camera comprising:

an array camera module including:

a sensor mncluding an array of pixels that 1s subdivided into

a plurality of sub-arrays of pixels, where each of the
plurality of sub-arrays forms a focal plane; and
a lens stack array comprising a plurality of lens stacks
wherein each of the plurality of lens stacks includes an
aperture and forms an image on a focal plane formed by
one of the plurality of sub-array of pixels on the sensor;

wherein the surface of the sensor on which images are
formed by the lens stack array includes a warpage;

wherein a projection plane of images formed by the lens
stack array incorporates a warpage that at least partially
corrects the warpage 1n the sensor.

2. The array camera of claim 1 wherein the warpage of the
sensor has a curvature of a bow that 1s convex.

3. The array camera of 2 wherein the warpage of the focal
plane of the lens stack array has a curvature of a bow that 1s
COnvex.

4. The array camera of 1 wherein the curvature of the
warpage ol the focal of the lens stack array 1s substantially
equal to the curvature of the warpage of the sensor.

5. The array camera of claim 1 wherein the warpage of the
lens stack array corrects the warpage of the sensor to provide
back focal lengths for each of the plurality lens stacks in the
lens stack array that are substantially consistent.

6. A method for manufacturing an array camera module
comprising:

manufacturing a sensor including an array of pixels that 1s

subdivided into a plurality of sub-arrays of pixels
wherein each of the plurality of sub-arrays forms a focal
plane;

measuring a warpage ol the sensor to generate warpage

information;

generating a design for a lens stack array comprising a

plurality of lens stacks wherein each of the plurality of
lens stacks 1s associated with a focal plane formed by
one of the plurality of sub-array of pixels 1n the sensor
and wherein the lens stack array 1s configured to have a
projection plane of images formed by the lens stack
array that has a warpage that corrects the warpage 1n the
sensor based upon the warpage information for the sen-
SOT';

manufacturing the lens stack array in accordance with the

generated design; and

placing the lens stack array over the sensor to form an array

camera module.

7. The method of claim 6 further comprising;:

aligning the lens stacks in the lens stack array with focal

planes formed by the plurality of sub-arrays in the sen-
SOT.

8. The method of claim 6 wherein the warpage of the lens

stack array corrects the warpage of the sensor to provide back
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tocal lengths for each of the plurality of lens stacks 1n the lens
stack array that are substantially consistent.

9. The method of claim 6 wherein the warpage of the sensor
has a curvature of a bow that convex.

10. The method o1 9 wherein the warpage of the projection
plane of lens stack array has a curvature of a bow that 1s
cConvex.

11. The method of 9 wherein the curvature of the warpage
of the projection plane of the lens stack array 1s substantially
equal to the curvature of the warpage of the sensor.

12. The method of claim 6 wherein the flatness require-
ments for the sensor are relaxed during the manufacturing and
packaging of the sensor.

13. A method for mass manufacturing an array camera
module comprising:

manufacturing a first plurality of sensors wherein each of
the plurality of sensors includes an array of pixels that 1s
subdivided into a plurality of sub-arrays of pixels
wherein each of the plurality of sub-arrays forms a focal
plane;

measuring a warpage of each of the first plurality of sensors
to generate warpage information;

generating a design for a lens stack array comprising a
plurality of lens stacks wherein each of the plurality of
lens stacks 1s associated with a focal plane formed by
one of the plurality of sub-array of pixels 1n the sensor
and wherein the lens stack array 1s configured to have a
projection plane of images formed by the lens stack
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array that has a warpage that corrects the warpage 1n the
sensor based upon the warpage information for the first
plurality of sensor;

manufacturing a second plurality of sensors in accordance

with a process used to manufacture the first plurality of
SeNSOors;

manufacturing a plurality of lens stack arrays in accor-

dance with the generated design; and

placing a one of the lens stack arrays over one of the second

plurality of sensors to form array camera modules.

14. The method of claim 13 further comprising:

aligning the lens stacks 1n each of the plurality of lens stack

arrays with focal planes formed by the plurality of sub-
arrays 1n each of the second plurality of sensors.

15. The method of claim 13 wherein the warpage 1n the lens
stack array design corrects the warpage of the first plurality of
sensors to provide back focal lengths for each of the plurality
of lens stacks 1n the lens stack array that are substantially
consistent when placed over the second plurality of sensors.

16. The method of claim 13 wherein the warpage of the first
and second plurality of sensors has a curvature of a bow that
convex.

17. The method of 16 wherein the warpage of the projec-
tion planes of the plurality of lens stack arrays have a curva-
ture of a bow that 1s convex.

18. The method o1 16 wherein the curvature of the warpage
of the projection planes of the plurality of lens stack arrays 1s
substantially equal to a curvature of bow of the warpage of the
plurality of sensors.
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