US009244982B2
12 United States Patent (10) Patent No.: US 9,244,982 B2
Narayanan et al. 45) Date of Patent: Jan. 26, 2016
(54) STATIC ANALYSIS OF PL/SQL OBJECTS AND 2003/0131284 Al* 7/2003 Flanaganetal. ................ 714/38
SQL QUERIES 2003/0182276 Al1* 9/2003 Bossmanetal. .................. 707/3
2003/0200214 Al1* 10/2003 Dooleetal. ...........cooeen.i 707/8
: 2008/0126902 Al* 5/2008 Hickmanetal. .............. 714/741
(71)  Applicant: ORACLE INTERNATIONAL 2008/0270983 Al* 10/2008 Ahadian etal. ... 717/113
CORPORATION, Redwood Shores, 2010/0235349 Al 9/2010 Kuno et al.
CA (US) 2010/0325620 A1  12/2010 Rohde et al.
2013/0166513 Al* 6/2013 Rajaram ....................... 707/687
(72) Inventors: Sivabalan Narayanan, Trichy (IN);
Ankit Mahanot, Delhi (IN); Vilas OTHER PUBLICATIONS
Varghese, Kerala (IN)
Sybase http://infocenter.sybase.com/help/index.jsp?topi=/com.
(73) Assignee: ORACLE INTERNATIONAL sybase.infocenter.dc¢37696.1550/html/esqlcob/X28072 htm.
CORPORATION, Redwood Shores, Annamaa, A ., etal. “An interactive tool for analyzing embedded SQL
CA (US) Queries”, Programming Languages and Systems: 8" Asian Sympo-
sium, APLAS 2010, 2010, pp. 131-138.
(*) Notice:  Subject to any disclaimer, the term of this ~ U.S. Appl. No. 13/721,490, Patent Search mailed on Oct. 17, 2013.
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 329 days. * cited by examiner
(21) Appl. No.: 13/721,490
Primary Examiner — 11 B Zhen
(22) Filed: Dec. 20, 2012 Assistant Examiner — Viva Miller
_ o (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(65) Prior Publication Data Stockton TI.P
US 2014/0181798 Al Jun. 26, 2014
(51) Int.Cl. (57) ABSTRACT
GOOL" /45 (2006'03") Embodiments of the invention provide systems and methods
GO6l 17/30 (2006.01) . . . .
H for performing static analysis of query expressions embedded
GO6IF 9/44 (2006.01) . : .
(52) U.S. Cl. n Er%gram1n%f language Sfjurcelco‘de.fAccordmg to one
CPC ... GOG6F 17/3051 (2013.01); GOGF 8/427 Zﬁriséﬂifeﬁieﬁéﬁ?f pii;f;;iﬁ’f;ﬁn;:; NI
(2013.01); GO6r 8/75 (2013.01) - ‘ ‘
_ _ _ can comprise extracting the one or more query expressions
(58) Field of Classification Search | from the programming language source code, performing the
CPC ... GOOL' 8/427; GOOK 17/3051; GOOE 8/75 static analysis on the extracted one or more query expres-
USPC .:”...: .............................................. :... 717/143 SiOHSj and I'epOI'ﬁIlg I'@SllltS Ofpel'fOI'miIlg the StaﬁC analysis
See application file for complete search history. on the one or more query expressions, wherein the results
(56) References Cited relate errors and warning generated by performing the static

7,370,049 B2
2001/0011371 Al*

U.S. PATENT DOCUMENTS

5/2008 Doole et al.
8/2001 Tang .........cocooeeiiiiiiinininnnnn, 717/9

analysis to the source code from which the one or more query
expressions are extracted.

15 Claims, 6 Drawing Sheets

300

4

Source Code

Application Server

PL/SGL

Tool

Parser
220

y

Extractor
220

Y

Stalic Analysis
235

Y

Errar Handling

340
A 32

Executable

v ¥

Compilar

245




U.S. Patent Jan. 26, 2016 Sheet 1 of 6 US 9,244,982 B2

D000
D00

0ocl -

DOOD 000 D000 000
000 0oo 0000 0oa
D000 000 0D00 ODo
DO0OD OO0 D000 000
DOA0 000 0000 ODO
o000 000 0000 000
D00 Ooo 0000 0oa

20 29 30

I =
15

05 110

100

Database

39

FIG. 1



U.S. Patent Jan. 26, 2016 Sheet 2 of 6 US 9,244,982 B2

225b
Computer
Readable
Storage Media
205 210 215 220
225a
Computer
CPU(S) Input Output Storage Readable
Device(s) Device(s) Device(s) Storage Media
Reader
55
T
Communications | Processing | Working
System | Acceleration | Memory
L _ J
230 K235 Operating
System
245 240
Other Code
(Programs)

250




U.S. Patent

Jan. 26, 2016 Sheet 3 of 6

300

z

Application Server

Tool

Parser
325
310
Extractor
330

Source Code

PL/SQL
315

320

Executable _
Compiler

o0

FIG. 3

US 9,244,982 B2

305



U.S. Patent Jan. 26, 2016 Sheet 4 of 6 US 9,244,982 B2

405
Extract embedded
gquery expressions

410
Analyze extracted
gquery expressions

415

Report results of
analysis




U.S. Patent

Jan. 26, 2016

Read and parse
source file

Extract query
expression code
from parsed
source

Create
procedure(s) from
extracted query
expression code

Compile the
created
procedure(s)

Sheet Sof 6

505

510

515

520

US 9,244,982 B2



U.S. Patent

Jan. 26, 2016

Recelve errors anc
warnings from
compilation of

created procedure

Categorize the
received errors
and warnings

Map the
categorized errors
and warning to
source file

(Generate report o
categorized and
mapped errors and
warnings

Sheet 6 of 6

605

610

615

620

US 9,244,982 B2



US 9,244,982 B2

1

STATIC ANALYSIS OF PL/SQL OBJECTS AND
SQL QUERIES

BACKGROUND OF THE INVENTION

Embodiments of the present invention relate generally to
methods and systems for performing a static analysis on
soltware source code and more particularly to performing
static analysis of query expressions embedded in program-
ming language source code.

Applications that utilize a database are often developed
with database commands, queries, and/or objects embedded
in the source code of those applications. For example, Proce-
dural Language/Structured Query Language (PL/SQL) 1s a
programming language often embedded 1n applications uti-
lizing databases. As a database implementation grows, the
amount of business logic coded 1n 1t becomes quite signifi-
cant. Additionally, for large applications such as enterprise
applications, use of the database and the embedded SQL code
for doing so can be extensive and voluminous. A need exists
to 1mprove the quality of the code used in such PL/SQL
program units. However, current approaches to verifying or
analyzing source code do not provide a way to also analyze
the embedded database commands or queries. As a result,
there 1s often a failure to verily the quality of PL/SQL or other
embedded SQL code to locate potentially vulnerable code.
The cost of bugs or vulnerabilities exponentially increases
with the delay 1in finding them. Hence, there 1s a need for
improved methods and systems for performing static analysis
of query expressions embedded 1n programming language
source code which would analyze PL/SQL 1in the source code
files to find out both critical and trivial bugs which would be
of usetul to the developer to improve the quality of the code.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the invention provide systems and meth-
ods for performing static analysis of query expressions
embedded in programming language source code. According
to one embodiment, performing static analysis of one or more
query expressions embedded in programming language
source code can comprise extracting the one or more query
expressions from the programming language source code and
performing the static analysis on the extracted one or more
query expressions. Extracting the one or more query expres-
s1ons and performing the static analysis can comprise reading
the source code 1n which the one or more query expressions
are embedded, parsing the source code 1n which the one or
more query expressions are embedded, extracting query
expression code for the one or more query expressions from
the parsed source code, creating a procedure from the
extracted query expression code, and compiling the created
procedure.

Results of performing the static analysis on the one or more
query expressions can be reported. The results can relate
errors and warning generated by performing the static analy-
s1s to the source code from which the one or more query
expressions are extracted. For example, reporting the results
of performing the static analysis on the one or more query
EXPressions can comprise receiving one or more errors or
warnings from compiling the created procedure, categorizing,
the received one or more errors or warnings, mapping the
categorized errors or warnings to the source code from which
the one or more query expressions were extracted, and gen-
erating a report of the categorized and mapped one or more
€rrors or warnings.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some cases, performing the static analysis can further
comprise analyzing use of one or more database tables by the
extracted one or more query expressions, detecting a collision
between triggers 1n the extracted one or more query expres-
sions based on said analyzing, and generating an error or
warning based on detecting the collision. Additionally or
alternatively, performing the static analysis can comprise
applying one or more user defined rules to the extracted one or
more query expressions and, in response to any ol the
extracted one or more query expressions violating the one or
more user defined rules, generating an error or warning. In
one embodiment, generating the report of the categorized and
mapped one or more errors or warnings can additionally or
alternatively comprise categorizing the one or more errors or
warnings based on a content of each error or warning and
assigning an additional message to errors and warnings con-
sidered to be difficult to understand based on said categoriz-
ing. In yet another embodiment, generating the report of the
categorized and mapped one or more errors or warnings can
additionally or alternatively comprise assigning to one or
more of the errors or warnings a help snippet from a reposi-
tory of help information and based on the error or warning.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1llustrating components of an
exemplary operating environment 1n which various embodi-
ments of the present mmvention may be implemented.

FIG. 2 1s a block diagram illustrating an exemplary com-
puter system 1n which embodiments of the present invention
may be implemented.

FIG. 3 1s a block diagram 1illustrating, at a high-level,
functional components of a system for performing static
analysis of query expressions embedded in programming
language source code according to one embodiment of the
present invention.

FIG. 4 1s a flowchart illustrating a process for performing
static analysis of query expressions embedded 1n program-
ming language source code according to one embodiment of
the present invention.

FIG. 5 1s a flowchart illustrating additional details of a
process for extracting query expressions from programming,
language source code and performing static analysis on the
extracted query expressions according to one embodiment of
the present invention.

FIG. 6 1s a flowchart illustrating additional details of a
process for reporting results of performing a static analysis of
query expressions extracted from programming language
source code according to one embodiment of the present
ivention.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth 1n order to provide
a thorough understanding of various embodiments of the
present invention. It will be apparent, however, to one skilled
in the art that embodiments of the present invention may be
practiced without some of these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form.

The ensuing description provides exemplary embodiments
only, and 1s not intended to limit the scope, applicability, or
configuration of the disclosure. Rather, the ensuing descrip-
tion of the exemplary embodiments will provide those skilled
in the art with an enabling description for implementing an
exemplary embodiment. It should be understood that various



US 9,244,982 B2

3

changes may be made 1n the function and arrangement of
clements without departing from the spirit and scope of the
invention as set forth 1n the appended claims.

Specific details are given 1n the following description to
provide a thorough understanding of the embodiments. How-
ever, 1t will be understood by one of ordinary skill 1n the art
that the embodiments may be practiced without these specific
details. For example, circuits, systems, networks, processes,
and other components may be shown as components 1n block
diagram form 1in order not to obscure the embodiments 1n
unnecessary detail. In other instances, well-known circuits,
processes, algorithms, structures, and techniques may be
shown without unnecessary detail i order to avoid obscuring
the embodiments.

Also, 1t 1s noted that individual embodiments may be
described as a process which 1s depicted as a flowchart, a flow
diagram, a data tlow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations as
a sequential process, many of the operations can be per-
tormed 1n parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process 1s terminated when
its operations are completed, but could have additional steps
not mcluded 1 a figure. A process may correspond to a
method, a function, a procedure, a subroutine, a subprogram,
etc. When a process corresponds to a function, its termination
can correspond to a return of the function to the calling
function or the main function.

The term “machine-readable medium™ includes, but 1s not
limited to portable or fixed storage devices, optical storage
devices, wireless channels and wvarious other mediums
capable of storing, contaiming or carrying instruction(s) and/
or data. A code segment or machine-executable instructions
may represent a procedure, a function, a subprogram, a pro-
gram, a routine, a subroutine, a module, a software package,
a class, or any combination of instructions, data structures, or
program statements. A code segment may be coupled to
another code segment or a hardware circuit by passing and/or
receiving 1information, data, arguments, parameters, or
memory contents. Information, arguments, parameters, data,
etc. may be passed, forwarded, or transmitted via any suitable
means mncluding memory sharing, message passing, token
passing, network transmission, etc.

Furthermore, embodiments may be implemented by hard-
ware, software, firmware, middleware, microcode, hardware
description languages, or any combination thereof. When
implemented in software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored 1n a machine readable medium.
A processor(s) may perform the necessary tasks.

Embodiments of the invention provide systems and meth-
ods for performing static analysis of query expressions
embedded 1n programming language source code or of
PL/SQL code not embedded 1n source code. Generally speak-
ing, embodiments of the present invention provide for per-
forming static analysis of query expressions embedded 1n
programming language source code which would analyze
Procedural Language/Structured Query Language (PL/SQL)
or other scripts and commands embedded 1n the source code
files to find out both critical and trivial bugs which would be
of usetul to the developer to improve the quality of the code.
According to one embodiment, performing static analysis of
one or more query expressions embedded 1n programming
language source code can comprise extracting the one or
more query expressions irom the programming language
source code. The static analysis can be performed on the
extracted one or more query expressions. Results of perform-
ing the static analysis on the one or more query expressions

10

15

20

25

30

35

40

45

50

55

60

65

4

can be reported, e.g., through a user interface of an analysis
tool etc. The results can relate errors and warning generated
by performing the static analysis to the source code from
which the one or more query expressions are extracted, e.g.,
by line number, function or module name, and/or 1 other
ways.

In some implementations, embodiments of the present
invention can allow third-party static analyzers to be inte-
grated, thereby giving the combined reports of results
obtained from a static analyzer native to a given development
environment together with results from another, third-party
static analyzer. Embodiments of the present invention can
also provide the flexibility to define conventions, guidelines,
and/or rules for use 1n the static analyzer. For instance, a
company may define a rule that all variable names for a
product “A” should start with alphabet “a_”. Additionally or
alternatively, embodiments of the present invention can pro-
vide understandable error messages mapped to the source
code together with help smippet. In some implementations,
embodiments of the present invention can provide collision
detection of triggers, 1.¢., collisions between triggering events
in the code for utilizing a database table or other resource,
which can be overlooked by the developers. Various addi-
tional details of embodiments of the present invention will be
described below with reference to the figures.

FIG. 1 1s a block diagram 1llustrating components of an
exemplary operating environment i which various embodi-
ments of the present mvention may be implemented. The
system 100 can include one or more user computers 1035, 110,
which may be used to operate a client, whether a dedicate
application, web browser, etc. The user computers 105, 110
can be general purpose personal computers (including,
merely by way of example, personal computers and/or laptop
computers running various versions ol Microsoit Corp.’s
Windows and/or Apple Corp.’s Macintosh operating sys-
tems) and/or workstation computers running any of a variety
of commercially-available UNIX or UNIX-like operating
systems (including without limitation, the variety of GNU/
Linux operating systems). These user computers 105, 110
may also have any of a variety of applications, including one
or more development systems, database client and/or server
applications, and web browser applications. Alternatively, the
user computers 105, 110 may be any other electronic device,
such as a thin-client computer, Internet-enabled mobile tele-
phone, and/or personal digital assistant, capable of commu-
nicating via a network (e.g., the network 115 described
below) and/or displaying and navigating web pages or other
types of electronic documents. Although the exemplary sys-
tem 100 1s shown with two user computers, any number of
user computers may be supported.

In some embodiments, the system 100 may also include a
network 115. The network may be any type of network famil-
1ar to those skilled 1n the art that can support data communi-
cations using any of a variety of commercially-available pro-
tocols, including without limitation TCP/IP, SNA, IPX,
AppleTalk, and the like. Merely by way of example, the
network 115 may be a local area network (“LAN), such as an
Ethernet network, a Token-Ring network and/or the like; a
wide-area network; a virtual network, including without limi-
tation a virtual private network (“VPN”); the Internet; an
intranet; an extranet; a public switched telephone network
(“PSTN™); an inira-red network; a wireless network (e.g., a
network operating under any of the IEEE 802.11 suite of
protocols, the Bluetooth protocol known 1n the art, and/or any

other wireless protocol); and/or any combination of these
and/or other networks such as GSM, GPRS, EDGE, UMTS,

3G, 2.5 G, CDMA, CDMA2000, WCDMA, EVDO etc.




US 9,244,982 B2

S

The system may also include one or more server computers
120, 125, 130 which can be general purpose computers and/or
specialized server computers (including, merely by way of
example, PC servers, UNIX servers, mid-range servers,
mainframe computers rack-mounted servers, etc.). One or
more of the servers (e.g., 130) may be dedicated to running
applications, such as a business application, a web server,
application server, etc. Such servers may be used to process
requests from user computers 1035, 110. The applications can
also 1nclude any number of applications for controlling
access to resources of the servers 120, 125, 130.

The web server can be running an operating system includ-
ing any of those discussed above, as well as any commer-
cially-available server operating systems. The web server can
also run any of a variety of server applications and/or mid-tier
applications, including HTTP servers, FTP servers, CGI serv-
ers, database servers, Java servers, business applications, and
the like. The servers) also may be one or more computers
which can be capable of executing programs or scripts in
response to the user computers 105, 110. As one example, a
server may execute one or more web applications. The web
application may be implemented as one or more scripts or
programs written 1n any programming language, such as
Java™,_ C, C# or C++, and/or any scripting language, such as
Perl, Python, or TCL, as well as combinations of any pro-
gramming/scripting languages. The servers) may also include
database servers, including without limitation those commer-
cially available from Oracle®, Microsolt®, Sybase®, IBM®
and the like, which can process requests from database clients
running on a user computer 105, 110.

In some embodiments, an application server may create
web pages dynamaically for displaying on an end-user (client)
system. The web pages created by the web application server
may be forwarded to a user computer 105 via a web server.
Similarly, the web server can recerve web page requests and/
or input data from a user computer and can forward the web
page requests and/or mput data to an application and/or a
database server. Those skilled 1n the art will recognize that the
functions described with respect to various types of servers
may be performed by a single server and/or a plurality of
specialized servers, depending on implementation-specific
needs and parameters.

The system 100 may also include one or more databases
135. The database(s) 135 may reside 1n a variety of locations.
By way of example, a database 135 may reside on a storage
medium local to (and/or resident 1n) one or more of the
computers 105, 110, 115, 125, 130. Alternatively, 1t may be
remote from any or all of the computers 105, 110, 115, 125,
130, and/or in communication (e.g., via the network 120) with
one or more of these. In a particular set of embodiments, the
database 135 may reside 1n a storage-area network (“SAN”)
familiar to those skilled in the art. Similarly, any necessary
files for performing the functions attributed to the computers
105, 110, 115, 125, 130 may be stored locally on the respec-
tive computer and/or remotely, as appropriate. In one set of
embodiments, the database 135 may be a relational database,
such as Oracle 10g, that 1s adapted to store, update, and
retrieve data 1n response to SQL-formatted commands.

FIG. 2 illustrates an exemplary computer system 200, in
which various embodiments of the present invention may be
implemented. The system 200 may be used to implement any
of the computer systems described above. The computer sys-
tem 200 1s shown comprising hardware elements that may be
clectrically coupled via a bus 255. The hardware elements
may include one or more central processing unmits (CPUs)
205, one or more input devices 210 (e.g., amouse, a keyboard,
etc.), and one or more output devices 215 (e.g., a display

5

10

15

20

25

30

35

40

45

50

55

60

65

6

device, a printer, etc.). The computer system 200 may also
include one or more storage device 220. By way of example,
storage device(s) 220 may be disk drives, optical storage
devices, solid-state storage device such as a random access
memory (“RAM”) and/or a read-only memory (“ROM™),
which can be programmable, tlash-updateable and/or the like.

The computer system 200 may additionally include a com-
puter-readable storage media reader 225a, a communications
system 230 (e.g., a modem, a network card (wireless or
wired), an inira-red communication device, etc.), and work-
ing memory 240, which may include RAM and ROM devices
as described above. In some embodiments, the computer sys-
tem 200 may also include a processing acceleration unit 235,
which can include a DSP, a special-purpose processor and/or
the like.

The computer-readable storage media reader 225a can fur-
ther be connected to a computer-readable storage medium
225b, together (and, optionally, 1n combination with storage
device(s) 220) comprehensively representing remote, local,
fixed, and/or removable storage devices plus storage media
for temporarily and/or more permanently containing com-
puter-readable information. The communications system 230
may permit data to be exchanged with the network 220 and/or
any other computer described above with respect to the sys-
tem 200.

The computer system 200 may also comprise software
clements, shown as being currently located within a working
memory 240, including an operating system 245 and/or other
code 250, such as an application program (which may be a
client application, web browser, mid-tier application,
RDBMS, etc.). It should be appreciated that alternate
embodiments of a computer system 200 may have numerous
variations from that described above. For example, custom-
1zed hardware might also be used and/or particular elements
might be implemented 1n hardware, soitware (including por-
table soitware, such as applets), or both. Further, connection
to other computing devices such as network input/output
devices may be employed. Software of computer system 200
may include code 250 for implementing embodiments of the
present invention as described herein.

FIG. 3 1s a block diagram 1illustrating, at a high-level,
functional components of a system for performing static
analysis of query expressions embedded 1n programming
language source code according to one embodiment of the
present invention. In this example, the system 300 includes an
application server 305 or other computer system such as
described above. The application server 305 can execute a
tool 320 adapted to perform a static analysis on a source code
file 310 that include embedded query instructions 313 or
other database commands. For example, Procedural Lan-
guage/ Structured Query Language (PL/SQL) commands and
other SQL commands may be embedded in Java, PHP or
other source files. Embodiments of the present invention are
directed to taking precautions during the development stage
to help 1n find potential bugs 1n the source code file 310 and 1n
the embedded query 1nstructions 315. With such an upiront
analysis, the tool 320 can perform a static analysis of the
query instructions and generate a report 355 of errors and
warnings based on the static analysis.

More specifically, the analysis can start with identiiying
PL/SQL scripts or other query statements by a parser 325 of
the tool 320 reading and parsing the source code file 310. In
some cases, the user may be given a chance by the tool 320 to
choose a list of packages or folders and the objects to be
considered (procedures, functions and triggers, etc.) and
identified by the parser 325. Static analysis of queries state-
ments can then proceed by an extractor 330 of the tool 320




US 9,244,982 B2

7

extracting code from the parsed statements and creating pro-
cedures out of them. For example, one procedure may be
made per source code file 310. Then, static analysis 335 can
be performed on the created procedure, e.g., by applying a set
of rules for naming conventions etc. to the parsed query
statements and/or created procedure. In some cases, static
analysis can 1include using a compiler 343 appropriate to the
source code file 310 and created procedures to compile the
procedure(s) created by the extractor 330 to create an execut-
able and/or get a list of error and warmings. The list of errors
and warning from the compiler and/or the static analysis 335
can be used to generate a report 355. The report can comprise
an error/warning list from the compiler and/or from the static
analysis applying defined rules. According to one embodi-
ment, 1n addition to or instead of the native or built-in static
analysis 335 of the tool, developers may use any other third-
party static analyzer (not shown here) as per their require-
ments. With the help of a proxy for such a third-party tool to
read the report/result generated, developers can be provided
with a comprehensive list of errors and warnings accumulat-
ing all 1n one 1n the generated report 355.

According to one embodiment, once the errors and/or
warnings are collected by the error handling module 340 of
the tool 320, they can be referenced back to the source code
310, e.g., by location, procedure name, etc., making 1t easier
tor the developer to find and fix the mistake causing the error.
Further for listing custom made errors and warnings, the tool
320 can parse 325 the scripts 315 against the custom, pre-
defined rules mentioned above. The generated errors and
warnings can be categorized and presented to the user 1n the
report 355. Besides providing the user with understandable
error message for those which are difficult to comprehend, the
report 355 may also provide help snippets which would assist
the user to fix the errors.

Stated another way, performing static analysis of one or
more query expressions 315 embedded in programming lan-
guage source code 310 can comprise the tool 320 extracting
the one or more query expressions from the programming,
language source code. The static analysis 355 can be per-
formed on the extracted one or more query expressions.
Results of performing the static analysis 355 on the one or
more query expressions can be reported, e.g., through a report
355 presented 1n a user interface of an analysis tool 320. The
results can relate errors and warning generated by performing
the static analysis 335 to the source code 310 from which the
one or more query expressions 315 are extracted, e.g., by line
number, function or module name, and/or 1n other ways.

Extracting the one or more query expressions 3135 and
performing the static analysis 335 can comprise a parser 325
reading and parsing the source code 310 1n which the one or
more query expressions 313 are embedded. Query expression
code can be extracted by the extractor 330 for the one or more
query expressions from the parsed source code. A procedure
can be created from the extracted query expression code and
the static analysis 335 can be performed on the created pro-
cedure, for example by the compiler 345 appropriate to the
source code file 310 compiling the created procedure.

Additionally or alternatively, performing the static analysis
335 can comprise analyzing use of one or more database
tables by the extracted one or more query expressions, detect-
ing a collision between triggers 1n the extracted one or more
query expressions based on said analyzing, and generating an
error or warning based on detecting the collision. Generally
speaking, a collision 1s an undesirable situation where more
than one trigger events in the query expressions 315 contlict
and thus enter 1nto an infinite loop. The following example
illustrates how triggers can enter into such collisions. Assum-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing two tables “abc” and “xyz” two triggers can be created as:
1) the INSERT Trnigger, triggerA on table “abc¢™ 1ssues an
UPDATE on table “xyz” and 2) the UPDATE Trigger, trig-
gerB on table “xyz” 1ssues an INSERT on table “abc¢.” In such
a situation, when there 1s a row 1nserted in table “abc,” trig-
gerA fires and will update table “xyz.” When the table “xyz”
1s updated, triggerB fires and will insert a row 1n table “abc¢.”

The {following example illustrates how a trigger can
become void or inefiective. Again assuming two tables “abc™
and “xyz” two triggers can be created: 1) The INSERT Trig-
ger, triggerA->update on table “abc” 1ssues an INSERT on
table “xyz” and 2) the DELETE Trigger, triggerB->update on
table “abc” 1ssues a DELETE on table “xyz.” In such a situ-
ation, when there 1s a row 1nserted in table “abc,” insertion
happens due to triggerA followed by a deletion due to trig-
gerB. By exploiting the data available 1n a user triggers table,
a check can be made for those triggers that conflict with the
triggering table. Thus, embodiments of the present invention
can maintain tables to store more information about triggers
like tables which are referenced 1n the trigger body. This can
help detect cyclic cascading and no-operation triggers.

According to one embodiment, reporting the results 355 of
performing the static analysis 335 on the one or more query
expressions by the error handling module 340 of the tool 320
can comprise recerving one or more errors or warnings from
compiling the created procedure. The received one or more
errors or warnings can be categorized by the error handling
module 340, e.g., by severity etc. The categorized errors or
warnings can be mapped by the error handling module 340 to
the source code 310 from which the one or more query
expressions 315 were extracted and a report 355 of the cat-
egorized and mapped one or more errors or warnings can be
generated by the error handling module 340.

For example 1n some cases, generating the report 355 of the
categorized and mapped one or more errors or warnings can
comprise categorizing by the error handling module 340 the
one or more errors or warnings based on a content of each
error or warning and assigning by the error handling module
340 an additional message to errors and warnings considered
to be difficult to understand based on said categorizing. That
1s, certain errors thrown by the compiler 345 may not be easily
comprehensible. Hence, embodiments of the present mven-
tion include certain custom error messages which would
assist the developer to understand the errors without much
difficulty. According to such embodiments, errors and warn-
ings can be categorized, e.g., as

Easily understandable™,
“Processable” or “Abstruse.” Those categorized as “Process-
able” and “Abstruse” can be given additional messages which
would help the user understand the errors or warnings easily.
For instance, “PLS-00996 out of memory” may be translated
as Cause 1: “Program might be recursing too deeply. Else you
might be referencing a wrong row 1n a PL/SQL table™ or
Cause 2: “Machine might have run out of space. Try running
with scalable one.”

Additionally or alternatively, generating the report of the
categorized and mapped one or more errors or warnings can
comprise assigning to one or more of the errors or warnings a
help snippet from a repository of help information and based
on the error or warning. This help snippet repository can grow
over time as solutions are found and help information 1s
added. With this, embodiments are not focusing only on
reporting errors/warning but also giving a direction to the
developer(s) for finding an appropriate solution to it and
fixing the problem with a low turn-around time.

FIG. 4 15 a flowchart 1llustrating a process for performing
static analysis of query expressions embedded in program-
ming language source code according to one embodiment of




US 9,244,982 B2

9

the present invention. As 1llustrated 1n this example, perform-
ing static analysis of one or more query expressions embed-
ded 1 programming language source code can comprise
extracting 405 the one or more query expressions from the
programming language source code. The static analysis can
be performed 410 on the extracted one or more query expres-
s1ons. Results of performing the static analysis on the one or
more query expressions can be reported 415, e.g., through a
user interface of an analysis tool etc. The results can relate
errors and warning generated by performing the static analy-
s1s to the source code from which the one or more query
expressions are extracted, e.g., by line number, function or
module name, and/or 1n other ways.

FIG. 5 1s a flowchart illustrating additional details of a
process for extracting query expressions from programming,
language source code and performing static analysis on the
extracted query expressions according to one embodiment of
the present invention. As 1llustrated 1n this example, extract-
ing the one or more query expressions and performing the
static analysis can comprise reading and parsing 505 the
source code 1n which the one or more query expressions are
embedded. Query expression code can be extracted 510 for
the one or more query expressions from the parsed source
code. A procedure can be created 515 from the extracted
query expression code and the static analysis can be per-
formed on the created procedure, for example by compiling
520 the created procedure. Additionally or alternatively, per-
forming the static analysis can comprise analyzing use of one
or more database tables by the extracted one or more query
expressions, detecting a collision between triggers in the
extracted one or more query expressions based on said ana-
lyzing, and generating an error or warning based on detecting
the collision. In other cases, performing the static analysis
may additionally or alternatively comprise applying one or
more user defined rules to the extracted one or more query
expressions and, in response to any of the extracted one or
more query expressions violating the one or more user
defined rules, generating an error or warning.

FIG. 6 1s a flowchart illustrating additional details of a
process for reporting results of performing a static analysis of
query expressions extracted from programming language
source code according to one embodiment of the present
invention. As illustrated in this example, reporting the results
of performing the static analysis on the one or more query
expressions can comprise recerving 605 one or more errors or
warnings from compiling the created procedure. The received
one or more errors or warnings can be categorized 610, e.g.,
by severity etc. The categorized errors or warnings can be
mapped 615 to the source code from which the one or more
query expressions were extracted and a report of the catego-
rized and mapped one or more errors or warnings can be
generated 620. For example 1n some cases, generating the
report of the categorized and mapped one or more errors or
warnings can comprise categorizing the one or more errors or
warnings based on a content of each error or warning and
assigning an additional message to errors and warnings con-
sidered to be difficult to understand based on said categoriz-
ing. Additionally or alternatively, generating the report of the
categorized and mapped one or more errors or warnings can
comprise assigning to one or more of the errors or warnings a
help snippet from a repository of help information and based
on the error or warning.

In the foregoing description, for the purposes of illustra-
tion, methods were described 1n a particular order. It should
be appreciated that 1n alternate embodiments, the methods
may be performed 1n a different order than that described. It
should also be appreciated that the methods described above

10

15

20

25

30

35

40

45

50

55

60

65

10

may be performed by hardware components or may be
embodied 1n sequences of machine-executable instructions,
which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits pro-
grammed with the instructions to perform the methods. These
machine-executable instructions may be stored on one or

more machine readable mediums, such as CD-ROMs or other
type of optical disks, floppy diskettes, ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, flash
memory, or other types of machine-readable mediums suit-
able for storing electronic instructions. Alternatively, the
methods may be performed by a combination of hardware and
soltware.

While 1llustrative and presently preferred embodiments of
the invention have been described 1n detail herein, 1t 1s to be
understood that the inventive concepts may be otherwise vari-
ously embodied and employed, and that the appended claims
are mntended to be construed to include such varnations, except

as limited by the prior art.
What 1s claimed 1s:

1. A method for performing static analysis of one or more
query expressions embedded in programming language
source code, the method comprising:

extracting the one or more query expressions from the

programming language source code, wherein extracting
the one or more query expressions and performing the
static analysis comprises reading the source code in
which the one or more query expressions are embedded,
parsing the source code 1n which the one or more query
expressions are embedded, extracting query expression
code for the one or more query expressions from the
parsed source code, creating a procedure from the
extracted query expression code, and compiling the cre-
ated procedure;

performing the static analysis on the extracted one or more

query expressions, wherein performing the static analy-
s1s Turther comprises detecting a collision between trig-
gers 1n the extracted one or more query expressions
based on said analyzing and applying one or more user
defined rules to the created procedure, the one or more
user defined rules defining guidelines and conventions
for the query expressions and 1n response to any of the
extracted one or more query expressions violating the
one or more user defined rules, generating an error or
warning; and

reporting results of performing the static analysis on the

one or more query expressions, wherein the results relate
errors and warning generated by performing the static
analysis to the source code from which the one or more
query expressions are extracted.

2. The method of claim 1, wherein reporting the results of
performing the static analysis on the one or more query
EXpPressions Comprises:

receving one or more errors or warnings from compiling

the created procedure;

categorizing the recetved one or more errors or warnings;

mapping the categorized errors or warnings to the source

code from which the one or more query expressions
were extracted; and

generating a report of the categorized and mapped one or

more errors or warnings.

3. The method of claim 1, wherein performing the static
analysis Turther comprises:

analyzing use of one or more database tables by the

extracted one or more query expressions;

and

generating an error or warning based on detecting the col-

lis10n.




US 9,244,982 B2

11

4. The method of claim 2, wherein generating the report of
the categorized and mapped one or more errors or warnings
turther comprises:

categorizing the one or more errors or warnings based on a

content of each error or warning; and

assigning an additional message to errors and warnings

considered to be difficult to understand based on said
categorizing.

5. The method of claim 2, wherein generating the report of
the categorized and mapped one or more errors or warnings
turther comprises assigning to one or more of the errors or
warnings a help snippet from a repository of help information
and based on the error or warning.

6. The method of claim 3, further comprising receiving one
or more user defined validation criteria and wherein generat-
ing an error or warming 1s further based on applying the one or
more user defined validation criteria.

7. A system comprising:

a processor; and

a memory coupled with and readable by the processor and

storing a set of instructions which, when executed by the
processor, causes the processor to perform static analy-
s1s of one or more query expressions embedded 1n pro-
gramming language source code by:

extracting the one or more query expressions irom the

programming language source code, wherein extracting
the one or more query expressions and performing the
static analysis comprises reading the source code in
which the one or more query expressions are embedded,
parsing the source code 1n which the one or more query
expressions are embedded, extracting query expression
code for the one or more query expressions from the
parsed source code, creating a procedure from the
extracted query expression code, and compiling the cre-
ated procedure;

performing the static analysis on the extracted one or more

query expressions, wherein performing the static analy-
s1s Turther comprises detecting a collision between trig-
gers 1n the extracted one or more query expressions
based on said analyzing and applying one or more user
defined rules to the created procedure, the one or more
user defined rules defining guidelines and conventions
for the query expressions and in response to any of the
extracted one or more query expressions violating the
one or more user defined rules, generating an error or
warning; and

reporting results of performing the static analysis on the

one or more query expressions, wherein the results relate
errors and warning generated by performing the static
analysis to the source code from which the one or more
query expressions are extracted.

8. The system of claim 7, wherein reporting the results of
performing the static analysis on the one or more query
CXPressions COmprises:

receiving one or more errors or warnings from compiling

the created procedure;

categorizing the recerved one or more errors or warnings;

mapping the categorized errors or warnings to the source

code from which the one or more query expressions
were extracted; and

generating a report of the categorized and mapped one or

more errors or warnings.

9. The system of claim 7, wherein performing the static
analysis Turther comprises:

analyzing use of one or more database tables by the

extracted one or more query expressions;

12

generating an error or warning based on detecting the col-
lis10n.

10. The system of claim 8, wherein generating the report of
the categorized and mapped one or more errors or warnings

5 :
further comprises:
categorizing the one or more errors or warnings based on a
content of each error or warning; and
assigning an additional message to errors and warnings
10 considered to be difficult to understand based on said

categorizing.

11. The system of claim 8, wherein generating the report of

the categorized and mapped one or more errors or warnings

5 Turther comprises assigning to one or more of the errors or

warnings a help snippet from a repository of help information
and based on the error or warning.

12. The system of claim 9, further comprising recerving
one or more user defined validation criteria and wherein
generating an error or warning 1s further based on applying
the one or more user defined validation criteria.

20

13. A computer-readable memory storing a set of mnstruc-

tions which, when executed by a processor, causes the pro-

»5 cessor to perform static analysis of one or more query expres-
sions embedded 1n programming language source code by:

extracting the one or more query expressions from the
programming language source code, wherein extracting
the one or more query expressions and performing the
static analysis comprises reading the source code 1n
which the one or more query expressions are embedded,
parsing the source code 1n which the one or more query
expressions are embedded, extracting query expression
code for the one or more query expressions from the
parsed source code, creating a procedure from the
extracted query expression code, and compiling the cre-
ated procedure;

30

35

performing the static analysis on the extracted one or more
query expressions, wherein performing the static analy-

s1s Turther comprises detecting a collision between trig-
gers 1n the extracted one or more query expressions
based on said analyzing and applying one or more user
defined rules to the created procedure, the one or more
user defined rules defining guidelines and conventions
for the query expressions and 1n response to any of the
extracted one or more query expressions violating the
one or more user defined rules, generating an error or
warning; and

40

45

50 : : : :
reporting results of performing the static analysis on the

one or more query expressions, wherein the results relate
errors and warning generated by performing the static
analysis to the source code from which the one or more

<5 query expressions are extracted.

14. The computer-readable memory of claim 13, wherein
reporting the results of performing the static analysis on the
one or more query expressions Comprises:

receving one or more errors or warnings from compiling

60 the created procedure;

categorizing the received one or more errors or warnings;

mapping the categorized errors or warnings to the source
code from which the one or more query expressions

65 were extracted; and

generating a report of the categorized and mapped one or
more errors or warnings.



US 9,244,982 B2

13

15. The computer-readable memory of claim 13, wherein
performing the static analysis further comprises:

analyzing use of one or more database tables by the
extracted one or more query expressions;

and

generating an error or warning based on detecting the col-
lision, wherein generating the report further comprises
assigning to one or more of the errors or warnings a help
snippet from a repository of help information and based
on the error or warning.

¥ o # ¥ ¥

10

14



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 0 9,244,982 B2 Page 1 of 1
APPLICATION NO. . 13/721490

DATED . January 26, 2016

INVENTOR(S) . Narayanan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On The Title Page

Column 2, under Other Publications, line 1, delete “top1” and insert -- topic --, therefor.
Column 2, under Other Publications, line 2, delete “.htm.” and insert -- .html. --, therefor.
In The Specification

In column 5, line 18, delete “servers)” and insert -- server(s) --, therefor.

In column 3, line 26, delete “servers)” and insert -- server(s) --, therefor.

In The Claims

In column 11, line 67, 1n claim 9, after “expressions;” insert -- and --.

Signed and Sealed this
Eighth Day of November, 2016

e cbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

