12 United States Patent

Kegel et al.

US009239804B2

US 9.239.804 B2
Jan. 19, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

BACK-OFF MECHANISM FOR A
PERIPHERAL PAGE REQUEST LOG

Applicants: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US); ATI Technologies

ULC, Markham (CA)

Andrew Kegel, Redmond, WA (US);
Jimshed Mirza, Markham (CA); Paul

Blinzer, Bellevue, WA (US); Philip Ng,
Markham (CA)

Inventors:

ADVANCED MICRO DEVICES,
INC., Sunnyvale, CA (US)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 28 days.

Notice:

Appl. No.: 14/045,701

Filed: Oct. 3, 2013

Prior Publication Data

US 2015/0100818 Al Apr. 9, 2015

Int. CI.

GO6F 11/07
GO6F 13/00
GO6F 12/10
GO6F 12/00
GO6F 13/38

U.S. CL
CPC

(2006.01
(2006.01
(2006.01
(2006.01
(2006.01

L N e

.............. GO6F 13/00 (2013.01); GO6F 11/073
(2013.01); GOGF 11/0745 (2013.01); GO6F
11/0793 (2013.01); GOGF 12/00 (2013.01);

GO6F 12/10 (2013.01); GO6F 12/1009
(2013.01); GOG6F 12/1081 (2013.01); GO6F
13/385 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,206,857 B1* 4/2007 Mammen etal. 709/238
7,594,047 B2* 9/2009 Lukoooeiiiiinnniinnn, 710/52
7,636,800 B2* 12/2009 Ben-Yehudaetal. ... 710/28
2003/0074531 Al1* 4/2003 Forrer, Jr. ..., 711/118
2007/0038840 Al1* 2/2007 Hummel etal. 711/207
2008/0209130 Al1* 8/2008 Kegeletal. 711/135
2011/0022818 Al1* 1/2011 Kegeletal. 711/206
2011/0131366 Al1* 6/2011 Nakaretal. 711/103
2012/0017063 Al* 1/2012 Hummel etal. 711/200
2012/0246381 Al* 9/2012 Kegeletal. 711/6
2013/0145055 Al1* 6/2013 Kegelvvvenen GO6F 710/26
2014/0164545 Al1* 6/2014 Davisetal. 709/212
OTHER PUBLICATIONS

‘AMD IOMMU Version 2—How KVM will use 1it” by Jorg Rodel,

Aug. 16, 2011.*

Michael Krause et al., “Address Translation Services”, 2006, 42
pages, PCI-SIG Developers Conference.

David Mayhew, “Address Translation Services (ATS) Overview”,
2008, 29 pages, PCI-SIG Developers Conference.

Steven W. Smuth, “The Scientist and Engineer’s Guide to Digital
Signal Processing”, 1997, 2 pages, Chapter 28-Digital Signal Pro-
cessors, Circular Buffering.

(Continued)

Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP

(57) ABSTRACT

A system and method of managing requests from peripherals
1in a computer system are provided. In the system and method,
an 1nput/output memory management unit (IOMMU)
receives a peripheral page request (PPR) from a peripheral. In
response to a determination that a criterion regarding an avail-
able capacity of a PPR log 1s satisfied, a completion message
1s sent to the peripheral indicating that the PPR 1s complete
and the PPR 1s discarded without queuing the PPR 1n the PPR

log.

18 Claims, 11 Drawing Sheets

418

IOMMU 400

' PRI Response Delay |

420

Id—l-: Address Translation 414 |

420

US 9,239,804 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Advanced Micro Devices, “AMD I/O Virtualization Technology
(IOMMU) Specification Revision 2.00”, Mar. 24, 2011, 167 pages.

TW Burger, “Intel® Virtualization Technology for Directed I/O (V'I-

d): Enhancing Intel Platforms for E.

ficient Virtualization of I/O

Devices”, Mar. 5, 2012, 8 pages, hti
articles.

* cited by examiner

p://software.intel.com/en-us/

U.S. Patent Jan. 19, 2016 Sheet 1 of 11 US 9,239,804 B2

Computer System ’IOOA\‘

N

CPU(s) 10

Memory Controller 104 I\/It?lrggry

Peripheral ® 0 e Peripheral

114 114

FIG. 1A

US 9,239,804 B2

Sheet 2 of 11

Jan. 19, 2016

U.S. Patent

01
AJOWB N

dl ©ld

vl vl il vl

eioydueg| @ @ @ | eioydusg esoyduad| @ @ @ | ieisydisg

¥0O | 19||0)JU0) AICWIS|A

01 (s)NdD

N

/moo_. Wa)sAg Jajnduwion

U.S. Patent Jan. 19, 2016 Sheet 3 of 11 US 9,239,804 B2

/ Software Variables 206

FIG. 2

Circular Buffer 200 \‘

(in IOMMU 108) \‘
] | Poi

Register Fields 202

U.S. Patent Jan. 19, 2016 Sheet 4 of 11 US 9,239,804 B2

CPU 102 IOMMU 108 Peripheral 114

ATS Request 302

ATS Response 304

PRI Request 306

PPR
PPR 308 Log
110
CMD
Allocation Log PRI Response 312
112
310
ATS Request 314
ATS Response 316
\/

time

FIG. 3A

U.S. Patent Jan. 19, 2016 Sheet 5 of 11 US 9,239,804 B2

CPU 102 IOMMU 108 Peripheral 114

ATS Request 302

ATS Response 304

PRI Request 306

PRI Response 330

ATS Request 314

ATS Response 332

PRI Request 334

PRI Response 336

time

FIG. 3B

U.S. Patent Jan. 19, 2016 Sheet 6 of 11 US 9,239,804 B2

CPU 102 |IOMMU 108 Peripheral 114

ATS Request 302

ATS Response 304

PRI Request 306

Delay
Period< | Queue
352 320

PRI Response 330

ATS Request 314

ATS Response 332

time

FIG. 3C

U.S. Patent Jan. 19, 2016 Sheet 7 of 11 US 9,239,804 B2

CPU 102 IOMMU 108 Peripheral 114

ATS Request 302

Delay
Period< | Queue
372 370

ATS Response 304

PRI Request 306

FIG. 3D

time

U.S. Patent Jan. 19, 2016 Sheet 8 of 11 US 9,239,804 B2

418

|IOMMU 400
r— r—— "7~ 1
Response Generation Logic | | |
402 — PPR Log 110 |
o | |

. 404 i Fm———————————— 1
___________________________ |

| | |
. PRI Response Delay } | | “Mb Log 11z :
E Timer 406 : : e]
__________________________ | Fm————————————;

' PRI Response Delay i |
: Queue 350 |

. |<—>| Address Translation 414 |
o ;
i ATS Response Delay | :
i Timer 410 'y Tt T |
R > DMA 416 |
, ATS Response Delay | |
i Queue 370 | T ;
--------------------------- |

e e e e e e - — — — — — d

U.S. Patent Jan. 19, 2016 Sheet 9 of 11 US 9,239,804 B2

500\‘

In an IOMMU: (502)

Receive an address translation service (ATS) request for a page from a
peripheral. (504)

|s a criterion
regarding the available
capacity of a PPR log
satisfied?

(506)

NG Send an ATS response to the
peripheral denying access to
the page. (203)

Yes

Delay sending an ATS response to the peripheral in accordance with a

> specified delay period. (510)
Yes .~ |s the criterion still ™~ No _Hasthe
— . > specified delay period
~ o satisfied? - .
~o e expired?
Sso_(514) o7 (512)
No\{ Yes

N

Send the ATS response to the peripheral denying access to the page.
(516)

FIG. 5A

U.S. Patent Jan. 19, 2016 Sheet 10 of 11 US 9,239,804 B2

520 \‘

(In an IOMMU: (522))
v

Recelve a peripheral page request (PPR) from a penpheral. (524)

| Receive a page request interface (PRI) request message from the
. peripheral. (526) |

|s a criterion
regarding an available
capacity of a PPR log
satisfied?

(928)

No_ | Store the PPR in the PPR log.
(230)

 Delay sending of a completion message to the peripheral indicating that
' the PPR Is complete. (532)

»! | :
| 1 Store information regarding the PPR in a queue distinct from the PPR |

| log. (534)

-~
H.ff """‘\\ H#,.. \'\.\
- ~ P ~
- ™~ -~ ~
,"", : : .x\'\ ,..""', Has a x\x
Yes -~ s the criterion still >~ No . - .S
——< . ~4——< specified delay penod >
~ o satisfied? - ~ o o -
~~ - . expired?
~ (538) ,#_-*' ~o (536) #..-"F
. - ™ - e
No Yes

Send the completion message to the peripheral indicating that the PPR 1s
complete. (540)

U.S. Patent Jan. 19, 2016 Sheet 11 of 11 US 9,239,804 B2

560 \‘

< In a peripheral coupled to an IOMMU: (562))

'

Send a PPR to the IOMMU. (364)

In response to the PPR, receive a completion message that includes a
code indicating that a PPR log in the [OMMU is unavailable. (566)

'

In response to the code, delay sending a subsequent request to the
IOMMU. (568)

FIG. 5C

580 \‘

In a peripheral coupled to an IOMMU: (532)

Send a PPR to the IOMMU. The PPR is associated with a first
computational thread. (584)

In response to the PPR, receive a completion message that includes a
code indicating that a PPR log in the [OMMU is unavailable. (566)

'

In response to the code, switch to performance of a task associated with

a second computational thread distinct from the first computational
thread. (586)

FIG. 5D

US 9,239,804 B2

1

BACK-OFF MECHANISM FOR A
PERIPHERAL PAGE REQUEST LOG

TECHNICAL FIELD

The present embodiments relate generally to management
of peripherals 1n computing systems, and more specifically to
managing address translation service requests and/or periph-
eral page requests.

BACKGROUND

An /O memory management unit (IOMMU) stores
peripheral page requests (PPRs) from peripherals in a PPR
log. When a large number of peripherals generates PPRs,
overflow of the PPR log becomes a risk. Overtlow of the PPR
log causes PPRs to be dropped, resulting in a loss of system
state that can make the system unstable. Also, pausing 1/O
activity to avoid overtlow will degrade system performance
and may cause system failure.

SUMMARY OF ONE OR MORE EMBODIMENTS

In some embodiments, a method of managing requests
from peripherals 1n a computer system 1s performed 1n an
IOMMU 1n the computer system. In the method, a PPR 1s
received from a peripheral. In response to a determination that
a criterion regarding an available capacity of a PPR log is
satisiied, a completion message 1s sent to the peripheral indi-
cating that the PPR 1s complete and the PPR 1s discarded
without queuing the PPR 1n the PPR log.

In some embodiments, an IOMMU includes a PPR log to
store PPRs recerved from peripherals. The IOMMU also
includes response generation logic to generate a completion
message directed to a respective peripheral, 1in response to a
determination that a criterion regarding an available capacity
of the PPR log 1s satisfied. The completion message indicates
that a PPR from the respective peripheral that has not been
stored 1n the PPR log 1s complete.

BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments are illustrated by way of
example and are not intended to be limited by the figures of
the accompanying drawings.

FIGS. 1A and 1B are block diagrams of computer systems
in accordance with some embodiments.

FIG. 2 1s a block diagram of a circular buifer used to
implement a log 1n an IOMMU 1n accordance with some
embodiments.

FIG. 3A 1s a timeline showing a sequence of requests and
responses between an IOMMU and a peripheral.

FIGS. 3B-3D are timelines showing sequences of requests
and responses between an IOMMU and a peripheral for situ-
ations in which a PPR log does not have enough space to store
an incoming PPR, 1n accordance with some embodiments.

FIG. 4 1s a block diagram of a portion of an IOMMU 1n
accordance with some embodiments.

FIGS. SA and 5B are flowcharts showing methods of man-
aging requests from peripherals 1mn accordance with some
embodiments.

FIGS. 5C and 5D are flowcharts showing methods of oper-
ating a peripheral coupled to an IOMMU 1n accordance with
some embodiments

Like reference numerals refer to corresponding parts
throughout the figures and specification.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Retference will now be made 1n detail to various embodi-
ments, examples of which are illustrated 1n the accompanying,
drawings. In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough
understanding of the disclosure. However, some embodi-
ments may be practiced without these specific details. In other
instances, well-known methods, procedures, components,
and circuits have not been described 1n detail so as not to
unnecessarily obscure aspects of the embodiments.

FIG. 1A 1s a block diagram of a computer system 100A 1n
accordance with some embodiments. The computer system
100A 1includes one or more CPUs 102, memory 106, and
peripherals 114. The one ormore CPUs 102 may each include
one or more processor cores, each of which executes one or
more threads. The memory 106 includes main memory and
may include one or more levels of cache memory. (The one or
more CPUs 102 may also include one or more levels of cache
memory.) In some embodiments, the main memory 1s imple-
mented 1n dynamic random access memory (DRAM) and the
one or more levels of cache memory are implemented 1n static
random access memory (SRAM). Examples of peripherals
114 include, but are not limited to, network interface cards
(NICs), other input/output (1/0) devices, and storage devices
(e.g., hard-disk drives, solid-state drives such as tlash drives,
etc.).

A memory controller 104 couples the one or more CPUs
102 to the memory 106, thereby providing the one or more
CPUs 102 with access to the memory 106.

The peripherals 114 are coupled to an input/output
memory management unit (IOMMU) 108, which 1s coupled
to the memory controller 104. The IOMMU 108 and memory
controller 104 thus couple the peripherals 114 to the one or
more CPUs 102 and to the memory 106. The IOMMU 108
may also be referred to, for example, as a peripheral MMU, a
system MMU, a translation agent system, or virtualization
technology for directed I/O (Vt-d). In some embodiments, the
IOMMU 108 communicates with the peripherals 114 1n
accordance with the Peripheral Component Interconnect
Express (PCle) protocol, through respective PCle links.

The IOMMU 108 performs address translation for the
perlp herals 114: 1t translates virtual addresses provided by the
peripherals 114 into physical addresses in the memory 106.
The peripherals 114 may use these physical addresses to
perform direct memory access (DMA) 1n the memory 106,
through the IOMMU 108. IT a peripheral 114 requests address
translation for a page of memory that 1s not available 1n the
memory 106, the result 1s a page fault. The peripheral 114
responds to the page fault by 1ssuing a peripheral page request
(PPR) requesting allocation of the page. PPRs are stored in a
PPR log 110 in the IOMMU 108 before being provided to the
one or more CPUs 102 (e.g., as interrupts). Software running
on the one or more CPUs 102 then processes the PPRs. The
soltware allocates a requested page by bringing 1t into the
memory 106 from a peripheral storage device (e.g., a hard-

disk drive or solid-state drive). A command (CMD) log 112 1n
the IOMMU 108 stores responses to PPRs; the IOMMU 108
provides these responses to respective peripherals 114. The
PPR log 110 and command log 112 may also be referred to as
a PPR queue and command queue, respectively.

While the PPR log 110 and command log 112 are shown as
being situated 1n the IOMMU 108, entries in the PPR log 110
and/or command log 112 may be stored 1n the memory 106
(e.g., iIn main memory). The IOMMU 108 includes registers
that store pointers to the entries along with other information

that defines the PPR log 110 and/or command log 112. For

US 9,239,804 B2

3

example, the PPR log 110 and command log 112 may each be
implemented as a circular bufler 200 (FIG. 2) defined by
values stored 1n registers in the IOMMU 108 and having
entries stored in the memory 106 (e.g., iIn main memory).
Because of the presence of these registers in the IOMMU 108,
the PPR log 110 and command log 112 are considered to be
part of the IOMMU 108, even with the entries being stored in
the memory 106.

In some embodiments, the memory controller 104 1s inte-
grated with the one or more CPU(s) 102, such that 1t 1s
situated on the same semiconductor die (and thus the same
chip) as the one or more CPU(s) 102. Alternatively, the
memory controller 104 may be situated on a separate chip
from the one or more CPU(s) 102. The IOMMU 108 may be
situated on the same chip as the memory controller 104 and/or
the one or more CPU(s) 102, or on a different chip.

FIG. 1B 1s a block diagram of another computer system
100B 1n accordance with some embodiments. In the computer
system 100B, a first group of peripherals 114 1s coupled to a
first IOMMU 108 (e.g., through respective PCle links) and a
second group of peripherals 114 1s coupled to a second
IOMMU 108 (e.g., through respective PCle links). The first
and second IOMMUSs 108 are coupled to the memory con-
troller 104 and thereby to the one or more CPUs 102 and the
memory 106. The first and second IOMMUSs 108 each include
a PPR log 110 and a command log 112.

The computer systems 100A and 100B are merely
examples of computer systems that use IOMMUSs 108; other
examples are possible. For example, a computer system may
include more than two IOMMUSs 108, each coupled to a
respective group of peripherals 114 and including a PPR log
110 and a command log 112. Each IOMMU 108 may be
coupled to respective peripherals 114 through an 1/O hub,
which may include integrated peripherals 114.

The peripherals 114 coupled to an IOMMU 108 1n a system
such as the system 100A or 100B may number 1n the thou-
sands or tens of thousands, 1n accordance with some embodi-
ments. For example, PCle theoretically allows for 65,536
peripherals 114. With so many peripherals 114 potentially
generating PPRs, overtlow of the PPR log 110 becomes a risk.

FIG. 2 1s a block diagram of a circular buffer 200 used to
implement a PPR log 110 or a command log 112 (FIGS.
1A-1B) in accordance with some embodiments. Register
fields 202 for the circular buifer 200 include a tail pointer
register field 202-1 to store a tail pointer for the circular butier
200, a base address register field 202-2 to store a base address
of the circular butfer 200, a size register field 202-3 to store a
s1ze of the circular butfer 200, and a head pointer register field
202-4 to store a head pointer for the circular buifer 200. A
plurality of entries 204 (e.g., entries 204-0 through 204-7) in
the circular buifer 200 are stored 1n the memory 106 (e.g., in
main memory). The base address 1s the address of a first entry
204-0 or portion thereot. The entries 204-0 through 204-7 are
indexed by offsets from the first entry 204-0, such that the
base address plus the size 1s the address of the last entry 204-7.
In one example, each entry 1s 128 bits (1.e., 16 bytes) and the
olfsets are multiples of 16 (e.g., the index for entry 204-0 1s
+00, the index for entry 204-1 1s +16, and the index for entry
204-7 1s +112). In this example, the circular buffer 1s a 128-
byte buller. In general, however, the size and number of
entries 204, and thus the overall size of the circular butter 200,
various for different implementations.

In some embodiments, the head pointer points to the first
valid entry 204 and the tail pointer points to the first invalid
(1.e., empty) entry 204. The head pointer register field 202-4
thus stores the index for the first valid entry 204 and the tail
pointer register field 202-1 thus stores the index for the first

10

15

20

25

30

35

40

45

50

55

60

65

4

invalid entry 204. In the example of FIG. 2, the circular butfer
200 currently has three valid entries: entries 204-2,204-3, and
204-4. The head pointer points to entry 204-2, which 1s the
first valid entry 204. The tail pointer points to entry 204-5,
which 1s the first invalid entry. (FIG. 2 merely illustrates one
example of a pointer convention for a circular buifer; other
examples are possible.)

The register fields 202 are included in one or more registers
in an IOMMU 108. Two or more of the register fields 202 may
be 1n the same register. Alternatively, each of the register
ficlds 202 may be 1n a separate register.

When the IOMMU 108 creates a new entry in the PPR log
110 or command log 112, it writes to the entry 204 to which
the tail pointer points and then increments the tail pointer
(wrapping around as necessary). I incrementing the tail
pointer would cause the tail pointer to equal the head pointer
(1.e., would cause the value in the tail pointer register field
202-1 to equal the value in the head pointer register field
202-4), then the circular buifer 200 1s full. Adding another
entry 204 when the circular buffer 200 1s full would result 1in
overtlow.

Software running on the one or more CPUs 102 (FIGS. 1A
and 1B) tracks variables 206 associated with the circular
butter 200. The variables 206 correspond to the register fields
202 and include, for example, a tail pointer variable 206-1,
base address variable 206-2, size variable 206-3, and head
pointer variable 206-4. In some embodiments, when the soft-
ware reads, and thus consumes, an entry 204, it consumes the
entry at the head of the circular bufter 204 (1.¢., the first valid
entry 204), as 1dentified by the head pointer variable 206-4.
For example, 1t consumes entry 204-2. The software then
increments the head pointer variable 206-4 and writes the
incremented value of the head pointer variable 206-4 to the
head pointer register field 202-4. In the example of FI1G. 2, the
head pointer register field 202-4 would then store a pointer to
the entry 204-3, as would the head pointer variable 206-4. IT
the circular buftter 200 overflows, however, then entries will
be lost and the software will not be able to process the lost
entries. For example, 11 the circular butler 200 1s a PPR log
110, overtlow results 1n loss of PPRs from respective periph-
crals 114, and thus loss of system state.

FIG. 3A 1s a timeline showing a sequence of request and
response messages between an IOMMU 108 and a peripheral
114. The peripheral 114 sends an address translation service
(ATS) request 302 to the IOMMU 108, requesting translation
of a virtual address for a page (or other unit of space 1n
memory) to a physical address. The IOMMU 108 responds
with an ATS response 304 denying access to the virtual
address and thus indicating that the virtual address 1s unavail-
able (e.g., because there 1s no corresponding physical address
in the memory 106, FIG. 1). For example, the ATS response
304 specifies that a write-access variable IW equals zero and
that a read-access variable IR equals zero. The unavailability
of the virtual address results 1n a page fault.

To recover from the page fault, the peripheral 114 then
sends a page request imterface (PRI) request 306 to the
IOMMU 108. The PRI request 306 conveys a PPR 308 to the
IOMMU 108 requesting allocation of the page in the memory
106 (FI1G. 1). The IOMMU 108 stores the PPR 308 in the PPR
log 110 and subsequently provides the PPR 308 to the CPU
102. Software running on the CPU 102 allocates the
requested page 1n the memory 106 and sends an allocation
message 310 to the IOMMU 108 indicating that the requested
page has been allocated. The allocation message 310 1s stored
in the command log 112 and then sent on to the peripheral 114
in a PRI response 312. The PRI response 312 indicates that
the PRI request 306 was successtul.

US 9,239,804 B2

S

The PRI response 312 prompts the peripheral 114 to send
an ATS request 314 to the IOMMU 108. The ATS request 314
1s arepeat of the AT'S request 302 and requests attributes of the
newly allocated page. The IOMMU 108 responds with an
ATS response 316 that provides the requested attributes. For
example, the ATS response 316 provides the requested
address translation (e.g., the physical address of the page) and
allowed degree of access to the page. For example, the ATS
response may provide full access (e.g., IW=IR=1) or read-
only access (e.g., IW=0, IR=1).

The example of FIG. 3A assumes that space 1s available in
the PPR log 110 to store the PPR 308.

FIG. 3B 1s a timeline showing a sequence of request and
response messages between an IOMMU 108 and a peripheral
114 for a situation 1n which the PPR log 110 does not have
enough space to store an incoming PPR from the peripheral
114, 1n accordance with some embodiments. For example, the
PPR log 110 1s full. In another example, the PPR log 110 1s not
tull, but all remaining entries in the PPR log 110 are reserved
tor other requests (e.g., for stop marker messages). In FIG.
3B, the ATS request 302, ATS response 304, and PRI request
306 are communicated between the peripheral 114 and
IOMMU 108 1n the manner described for FIG. 3A. The PPR
in the PRI request 306, however, 1s not stored 1n the PPR log
110. Instead, the IOMMU 108 sends a PRI response 330 to
the peripheral 114. The PRI response 330 indicates that the
PRI request 306 1s complete and that the PPR in the PRI
request 306 therefore has been processed, even though the
PPR actually has not been processed.

In response to the PRI response 330, the peripheral 114
sends an ATS request 314 to the IOMMU 108. The ATS
request 314 1s arepeat of the ATS request 302, as described for
FIG. 3A. The IOMMU 108 responds with an ATS response
332 denying access to the requested page. The AT'S response
332 1s a repeat of the ATS response 304 and prompts the
peripheral 114 to send another PRI request 334. In response,
the IOMMU 108 sends a PRI response 336 to the peripheral
114. The PRI response 336, like the PRI response 330, indi-
cates that the PPR in the PRI request 334 has been processed.,
even though the PPR actually has not been processed, since 1t
was never stored in the PPR log 110. ATS requests, ATS
responses, PRI requests, and PRI responses continue to be
sent back and forth 1n this sequence until an entry for the PPR
becomes available 1n the PPR log 110.

The sequence of FIG. 3B allows systems such as the system
100A or 100B to keep functioning without loss of system
state when the PPR log 110 lacks capacity for storing received
PPRs. However, the back-and-forth traflic in the sequence of
FIG. 3B contends with other traffic (e.g., DMA trailic) and
CONSumes power.

FI1G. 3C 1s a timeline showing another sequence of request
and response messages between an IOMMU 108 and a
peripheral 114 for a situation 1n which the PPR log 110 does
not have enough space to store an incoming PPR from the
peripheral 114, 1n accordance with some embodiments. The
sequence of FIG. 3C reduces the back-and-forth traffic of
FIG. 3B by introducing a delay between the PRI request 306
and PRI response 330. (Subsequent PRI responses in the
sequence are similarly delayed with respect to their corre-
sponding PRI requests.) Sending of the PRI response 330 1s
delayed by a delay period 352. In some embodiments, the
delay period 352 1s software programmable. During the delay
period 352, information regarding the PPR 1n the PRI request
306 1s stored 1in a PRI response delay queue 350, which 1s
distinct from the PPR log 110. This information 1s used to
generate the PRI response 330 and includes, for example, a
device identifier for the peripheral 114 that sent the PRI

10

15

20

25

30

35

40

45

50

55

60

65

6

request 306 and an index associated with the PRI request 306
(e.g., a page request group index). The PRI response 330 1s
followed by the ATS request 314, the ATS response 332, and
subsequent requests and responses.

The delay period 352 thus results in reduced power and
increased bandwidth for other traffic, such as DMA traffic.

The back-and-forth tratfic of FIG. 3B may also be reduced
by mntroducing a delay between the ATS request 302 and ATS
response 304, as shown in FIG. 3D 1n accordance with some
embodiments. Sending of the AT'S response 304 1s delayed by
a delay period 372 when the PPR log 110 does not have
enough space to store an mcoming PPR. In some embodi-
ments, the delay period 372 1s software programmable. Dur-
ing the delay period 372, information regarding the ATS
request 302 1s stored 1 an ATS response delay queue 370,
which 1s distinct from the PPR log 110 and/or the queue 350
(FIG. 3C). This mformation 1s used to generate the ATS
response 304. The ATS response 304 1s followed by subse-
quent requests and responses, by analogy to FIG. 3B or 3C.

In some embodiments, both the delay period 352 (FIG. 3C)
and the delay period 372 (FIG. 3D) are used to reduce back-
and-forth traffic. Alternatively, only one of the delay periods
352 and 372 1s used.

FIG. 4 1s a block diagram of a portion of an IOMMU 400 1n
accordance with some embodiments. The IOMMU 400 1s an
example ol an IOMMU 108 (FIGS.1A-1B). Inaddition to the
PPR log 110 and command log 112, the IOMMU 400
includes an address translation module 414 for translating
virtual addresses to physical addresses (e.g., by walking page
tables and/or using a translation look-aside buffer) and a
DMA module 416 for performing direct memory accesses.

The IOMMU 400 also includes response generation logic
402 for generating ATS responses and/or PRI responses (e.g.,
as shown i FIGS. 3A-3D). The response generation logic
402 includes a PPR log status monitor 404 to determine
whether the available capacity of the PPR log 110 has become
limited to a point that the response generation logic should
generate the PRI responses 330 and 336 (FIGS. 3B-3C),
implement the delay period 352 (FIG. 3C), and/or implement
the delay period 372 (FIG. 3D). In some embodiments, the
response generation logic 402 also includes a PRI response
delay timer 406 for implementing the delay period 352 (FIG.
3C) and a PRI response delay queue 3350, as described with
respect to FIG. 3C. In some embodiments, the response gen-
eration logic 402 also includes an ATS response delay timer
410 for implementing the delay period 372 (FI1G. 3D) and an
ATS response delay queue 370, as described with respect to
FIG. 3D. In some embodiments, the delay periods 352 and/or
372 may be cut short in response to a determination by the
PPR log status monitor 404 that the available capacity of the
PPR log 110 1s sufficient to store an incoming PPR (e.g., as
conveyed by a PRI message). The PRI response delay queue
350 and/or the ATS response delay queue 370 may be imple-
mented as circular butfers 200 (FIG. 2).

The PRI response delay queue 350 stores information
regarding multiple PPRs that are not queued 1n the PPR log
110 and for which corresponding PRI responses 330 and 336
are being delayed. If the PRI response delay queue 350
becomes full or nearly full, one or more entries may be
drained from the PRI response delay queue 350 and the cor-
responding PRI responses 330 or 336 sent before expiration
of their respective delay periods 352 (FI1G. 3C). For example,
it 1s determined that an available capacity of the PRI response
delay queue 350 is less than, or less than or equal to, a
threshold. In response, one or more PRI responses 330 car-
rying completion messages for respective PPRs are sent to
respective peripherals 114 that 1ssued the respective PPRs,

US 9,239,804 B2

7

without waiting for expiration of the respective delay periods
352, and the information regarding the respective PPRs 1s
deleted from the PRI response delay queue 350. The ATS

response delay queue 370 may be drained 1n a similar manner
when 1t becomes full or nearly full.

The IOMMU 400 1ncludes an interface 418 for coupling
the IOMMU 400 to the memory controller 104 (FIGS.
1A-1B) and interfaces 420 (e.g., PCle interfaces) for coupling
the IOMMU 400 to respective peripherals 114 (FIGS.
1A-1B).

FIG. 5A 1s a flowchart showing a method 500 of managing
requests from peripherals 114 1n accordance with some
embodiments. The method 500 1s performed (502) 1n an
IOMMU 108 (FIGS. 1A-1B). For example, the method 500
may be performed 1n an IOMMU 400 (FIG. 4).

In the method 500, an ATS request 302 (FIGS. 3A-3D) for
a page 1s recerved (504) from a peripheral 114. The requested

page 1s not accessible (e.g., 1s not available in the memory

106, FIG. 1).

It 1s determined (506) whether a criterion regarding the
available capacity of a PPR log 110 1s satisfied. For example,
it 1s determined whether the available capacity of the PPR log
110 1s less than, or less than or equal to, a threshold. In some
embodiments, this determination 1nvolves determining
whether the number of valid entries (e.g., valid entries 204,
FIG. 2) in the PPR log 110 1s greater than, or greater than or
equal to, a threshold. In some embodiments, this determina-
tion mmvolves determining whether the number of nvalid
entries (e.g., invalid entries 204, FIG. 2) in the PPR log 110 1s
less than, or less than or equal to, a threshold. In some
embodiments, this determination 1nvolves determining
whether the PPR log 110 1s full or whether all remaiming,
entries 1n the PPR log 110 are reserved (e.g., for a specified
type of message, such as stop-marker messages).

If the criterion 1s not satisfied (506-No), an AT'S response
304 (FIG. 3A) 1s sent (508) to the peripheral 114 denying
access 1o the page.

If the criterion 1s satisfied (506-Yes), sending of the ATS
response 304 to the peripheral 114 1s delayed (510) (e.g., in
accordance with a specified delay period 372, FIG. 3D).
Information regarding the ATS request 302 may be stored
during the delay 1n a queue (e.g., the ATS response delay
queue 370, FIGS. 3D and 4) that 1s distinct from the PPR log
110. In some embodiments, sending of the AT'S response 304
1s delayed until the specified delay period 372 has expired
(512-Yes) (e.g., as shown 1n FIG. 3D) or until a determination
1s made (514-No) that the criterion regarding the available
capacity of the PPR log 110 1s no longer satisfied. The deter-
mination 514 may include determining that the available
capacity of the PPR log 110 has become greater than, or
greater than or equal to, a threshold. The ATS response 304 1s
then sent (516) to the peripheral 114, denying access to the
page. The duration of the delay therefore may be less than the
specified delay period 372, as a result of the determination
514. Alternatively, the determination 514 1s omitted from the
method 500, and sending of the ATS response 1s delayed until
the specified delay period 372 expires (512-Yes).

FIG. 5B 1s a flowchart showing a method 520 of managing
requests from peripherals 114 1n accordance with some
embodiments. The method 520 1s performed (522) 1n an
IOMMU 108 (FIGS. 1A-1B), such as the IOMMU 400 (FIG.
4). The method 520 may be performed 1n conjunction with the
method 500 (FIG. 5A). For example, the method 520 may
tollow on from the method 500.

In the method 520, a PPR 1s recerved (524) from a periph-
cral 114 (e.g., the peripheral 114 of the method 500). In some

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments, recerving the PPR includes receiving (526) a
PRI request 306 (FIGS. 3A-3D) from the peripheral 114.

It 1s determined (528) whether a criterion regarding the
available capacity of a PPR log 110 1s satisfied. This deter-
mination may be made as described for the determination 506

of the method 500 (FIG. 5A).

If the criterion 1s not satisfied (528-No), the PPR 1s stored
(530) 1n the PPR log 110.

I1 the criterion 1s satisfied (528-Yes), acompletion message
1s sent (540) to the peripheral 114 indicating that the PPR 1s
complete and the PPR 1s discarded (544) without queuing the
PPR 1n the PPR log 110. In some embodiments, sending the
completion message includes sending (542) a PRI response
message 330 (FIGS. 3B and 3C) to the peripheral 114.

In some embodiments, sending of the completion message
1s delayed (332) (e.g., 1n accordance with a specified delay
period 352, FIG. 3C). Information regarding the PPR may be
stored (534) during the delay in a queue (e.g., the PRI
response delay queue 350, FIGS. 3C and 4) that 1s distinct
from the PPR log 110. In some embodiments, sending of the
completion message 1s delayed until the specified delay
period 352 has expired (336-Yes) (e.g., as shown in FIG. 3C)
or until a determination 1s made (538-No) that the criterion
regarding the available capacity of the PPR log 110 1s no
longer satisfied. The determination 538 may include deter-
mining that the available capacity of the PPR log 110 has
become greater than, or greater than or equal to, a threshold.
The duration of the delay therefore may be less than the
specified delay period 352, as a result of the determination
538. Alternatively, the determination 538 1s omitted from the
method 520, and sending of the completion message 1s
delayed until the specified delay period 352 expires (536-
Yes).

In some embodiments, the completion message imncludes a
code to 1indicate to the peripheral 114 that the PPR log 110 1s
unavailable, as determined by satisfaction of the criterion of
the operation 528. FIGS. 5C and 5D are flowcharts showing
respective methods 560 and 380 that 1llustrate examples of
responses to this code, 1n accordance with some embodi-
ments.

In the method 560 (FIG. 5C), as performed (562) 1n the
peripheral 114 of the method 520 (FIG. 5B), the PPR that the
IOMMU 108 receives in the operation 524 (FIG. 5B) 1s 1ni1-
tially sent (564) to the IOMMU 108. In response, the periph-
cral 114 receives (566) the completion message sent 1n the
operation 540 (FIG. 5B). The completion message includes
the code indicating that the PPR log 110 1s unavailable. In
response to the code, the peripheral delays (568) sending a
subsequent request (e.g., an ATS request 314, FIGS. 3B-3C)
to the IOMMU 108. This delay provides the same benefits as
the delay periods 352 (FI1G. 3C) and 372 (FIG. 3D).

In the method 580 (FIG. 5C), as performed (582) in the
peripheral 114 of the method 520 (FI1G. 3B), the PPR that the
IOMMU 108 receives in the operation 524 (FIG. 5B) 1s 1ni1-
tially sent (384) to the IOMMU 108. The PPR 1s associated
with a first computational thread. In response, the peripheral
114 receives (566) the completion message, as described 1n
the method 560 (F1G. 5C). The peripheral 114 responds to the
code by switching (586) to performance of a task associated
with a second computational thread distinct from the first
computational thread. The method 580 avoids sending
repeated requests and responses and allows forward progress
to be made on the second computational thread.

The methods 500, 520, 560 and 580 avoid overflow of the
PPR log 110 and preserve system state when the PPR log 110
becomes unavailable. Furthermore, the methods 500, 520,
560 and 580 achieve these results in hardware, and thus allow

US 9,239,804 B2

9

this functionality to be offloaded from the one or more CPUs
102 (FIGS. 1A-1B). While the methods 500, 520, 560 and
580 1nclude a number of operations that appear to occur in a
specific order, 1t should be apparent that the methods 500,
520, 560 and/or 580 can include more or fewer operations,
some of which can be executed serially or in parallel. An order
of two or more operations may be changed, performance of
two or more operations may overlap, and two or more opera-
tions may be combined 1nto a single operation.

Embodiments described herein may be implemented in
computer hardware. For example, the methods 500 and 520
may be performed 1n hardware 1n an IOMMU 108, and the
methods 560 and 580 may be performed in hardware 1n a
peripheral 114. Alternatively, embodiments described herein
may be implemented 1n firmware or software. For example, a
non-transitory computer-readable storage medium (e.g., 1n a
peripheral 114, FIGS. 1A-1B) may store imstructions, config-
ured for execution by a processor, for performing all or a
portion of the methods 500, 520, 560, and/or 580.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the 1llustrative discussions above are not intended to be
exhaustive or to limit all embodiments to the precise forms
disclosed. Many modifications and variations are possible 1n
view of the above teachings. The disclosed embodiments
were chosen and described to best explain the underlying
principles and their practical applications, to thereby enable
others skilled in the art to best implement various embodi-
ments with various modifications as are suited to the particu-
lar use contemplated.

What 1s claimed 1s:

1. A method of managing requests from peripherals 1n a
computer system, comprising:

in an mput/output memory management unit (IOMMU):

receiving a peripheral page request (PPR) from a periph-
eral; and
in response to a determination that a criterion regarding
an available capacity of a PPR log 1s satisfied:
sending a completion message to the peripheral indi-
cating that the PPR 1s complete, the sending com-
prising sending the completion message without
causing a central processing unit (CPU) to process
the PPR, wherein sending the completion message
comprises delaying the sending based on a speci-
fied delay period, wherein the specified delay
period 1s a programmable delay period and the
delaying comprises waiting for expiration of the
programmable delay period before sending the
completion message, and
discarding the PPR without queuing the PPR in the
PPR log.

2. The method of claim 1, wherein the determination com-
prises a determination that the available capacity of the PPR
log 1s less than, or less than or equal to, a threshold.

3. The method of claim 1, wherein:

receiving the PPR comprises receiving a page request

interface (PRI) request message from the peripheral; and
sending the completion message comprises sending a PRI
response message to the peripheral.

4. The method of claim 1, further comprising, before expi-
ration of the specified delay period, ceasing the delaying and
proceeding to send the completion message 1n response to a
determination that the criterion regarding the available capac-
ity of the PPR log 1s no longer satisfied.

5. The method of claim 4, wherein the determination that
the criterion regarding the available capacity ol the PPR log 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

10

no longer satisfied comprises a determination that the avail-
able capacity of the PPR has become greater than, or greater
than or equal to, a threshold.

6. The method of claim 1, further comprising, while delay-
ing sending the completion message to the peripheral, storing
information regarding the PPR in a queue distinct from the
PPR log;

wherein the information regarding the PPR comprises a

device 1dentifier for the peripheral and an index associ-
ated with the PPR.

7. The method of claim 6, wherein:

the PPR 1s a first PPR;

the queue stores information regarding multiple PPRs that

are not queued 1 the PPR log and for which correspond-

ing completion messages are being delayed, the multiple

PPRs including the first PPR; and

the method further comprises, 1n the IOMMU, 1n response

to a determination that an available capacity ol the queue

1s less than, or less than or equal to, a threshold:

sending a completion message for a respective PPR to a
respective peripheral that 1ssued the respective PPR,
without waiting for expiration of a respective delay
period; and

deleting information regarding the respective PPR from
the queue.

8. The method of claim 1, wherein the PPR requests allo-
cation of a page, the method further comprising, in the
IOMMU:

belfore receiving the PPR from the peripheral, recetving an

address translation service (ATS) request for the page
from the peripheral;

delaying sending an AT'S response to the peripheral for a

specified delay period, 1n response to the criterion
regarding the available capacity of the PPR log being
satisfied; and

sending the ATS response to the peripheral after expiration

of the specified delay period;

wherein the ATS response denies access to the page.

9. The method of claim 1, wherein the completion message
comprises a code to indicate to the peripheral that the PPR log
1s unavailable.

10. The method of claim 9, further comprising, in the
peripheral:

recerving the completion message; and

in response to the code 1n the completion message, delay-

ing sending a subsequent request to the IOMMU.

11. The method of claim 9, wherein the PPR 1s associated
with a first computational thread, the method further com-
prising, in the peripheral:

recerving the completion message; and

in response to the code in the completion message, switch-

ing to performance of a task associated with a second
computational thread distinct from the first computa-
tional thread.

12. An input/output memory management unit (IOMMU),
comprising:

a peripheral page request (PPR) log to store PPRs received

from peripherals; and

response generation logic to generate a completion mes-

sage directed to a respective peripheral indicating that a
PPR from the respective peripheral that has not been
stored 1in the PPR log nor used to cause a central pro-
cessing unit (CPU) to process the PPR 1s complete 1n
response to a determination that a criterion regarding an
available capacity of the PPR log 1s satisfied;

the response generation logic further to delay sending the

completion message to the respective peripheral based

US 9,239,804 B2

11

on a specified delay period, wherein the specified delay
period 1s a programmable delay period and the delaying
comprises waiting for expiration of the programmable

delay period before sending the completion message.
13. The IOMMU of claim 12, wherein the response gen-
eration logic comprises a timer to delay sending of the

completion message for the specified delay period.
14. The IOMMU of claim 13, wherein the response gen-

eration logic comprises a queue to store iformation regard-
ing respective PPRs for which corresponding completion
messages are being delayed;
wherein the queue 1s distinct from the PPR log and the
respective PPRs are not stored 1in the PPR log inresponse

to the criterion regarding the available capacity of the
PPR log being satisfied.

15. The IOMMU of claim 13, wherein the response gen-
eration logic 1s to send the completion message before expi-
ration of the timer in response to a determination that the
criterion regarding the available capacity of the PPR log 1s no
longer satistied.

16. The IOMMU of claim 12, wherein the response gen-
eration logic comprises a timer to delay sending to a respec-
tive peripheral a response to an AT'S request from the respec-

10

15

20

12

tive peripheral, the timer being responsive to satisfaction of
the criterion regarding the available capacity of the PPR log.
17. The IOMMU of claim 12, wherein the response gen-
eration logic 1s to provide a code 1n the completion message to
indicate to the peripheral that the PPR log 1s unavailable.
18. An input/output memory management unit (JOMMU),
comprising;
means for recerving a peripheral page request (PPR) from
a peripheral;
means for generating a completion message directed to a
respective peripheral indicating that a PPR from the
respective peripheral that has not been stored 1n a PPR
log nor used to cause a central processing unit (CPU) to
process the PPR 1s complete in response to a determina-
tion that a criterion regarding an available capacity of the
PPR log 1s satisfied; and
means for delaying sending the completion message to the
respective peripheral based on a specified delay period,
wherein the specified delay period 1s a programmable
delay period and the delaying comprises waiting for
expiration of the programmable delay period before
sending the completion message.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

