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File System Configuration File

PARAMETER DESCRIPTION

a variable set in File System Configuration File to specify at
what # of ECC bits level, a D3 block is consider high risk
and restart of D1 to D3 folding to a new D3 block is
required

a variable is needed In File System Configuration File for
maintaining SLC threshold to compare against in order to
make a decision to continue with EPWR or not

ECC threshold
SLC

controlled in File System Configuration File.
0 = not set (Default);
1 = set when EPWR is enabled

EPWR_enable
flag

Hot count 0 = not enabled;
enable_flag 1 = enabled

a variable set In File System Configuration File to specity at
Hot _count_ what hot count level, EPWR is needed. If hot count of all
threshold EPWR | D3 blocks Is < hot count threshold, even EPWR enable flag
IS on, EPWR process is not triggered

EPWR_verify | a variable set in File System Configuration File to specify
page budget |how many pages can be read during 1 phase of EPWR

a variable in File System Configuration File to limit number

EPWR_retries of retry attempts

D3 Block _max |a variable in File System Configuration File to limit the total
_retries number of retry attempts on a D3 block over lifetime
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ADAPTIVE DATA RE-COMPACTION AFTER
POST-WRITE READ VERIFICATION
OPERATIONS

BACKGROUND OF THE INVENTION

This application relates to the operation of re-program-
mable non-volatile memory systems such as semiconductor
flash memory, and, more specifically, to handling and effi-
cient managing of errors 1n memory operations.

Solid-state memory capable of nonvolatile storage of
charge, particularly in the form of EEPROM and flash
EEPROM packaged as a small form factor card, has recently
become the storage of choice 1n a variety of mobile and
handheld devices, notably information appliances and con-
sumer electronics products. Unlike RAM (random access
memory) that 1s also solid-state memory, flash memory 1s
non-volatile, and retaining 1ts stored data even after power 1s
turned off. Also, unlike ROM (read only memory), flash
memory 1s rewritable similar to a disk storage device. In spite
of the higher cost, flash memory 1s increasingly being used 1n
mass storage applications. Conventional mass storage, based
on rotating magnetic medium such as hard drives and floppy
disks, 1s unsuitable for the mobile and handheld environment.
This 1s because disk drives tend to be bulky, are prone to
mechanical failure and have high latency and high power
requirements. These undesirable attributes make disk-based
storage impractical 1n most mobile and portable applications.
On the other hand, flash memory, both embedded and in the
form of a removable card are 1deally suited in the mobile and
handheld environment because of its small size, low power
consumption, high speed and high reliability features.

Flash EEPROM 1s similar to EEPROM (electrically eras-
able and programmable read-only memory) in that 1t 1s a
non-volatile memory that can be erased and have new data
written or “programmed” 1nto their memory cells. Both uti-
lize a floating (unconnected) conductive gate, 1n a field etl

ect
transistor structure, positioned over a channel region 1n a
semiconductor substrate, between source and drain regions.
A control gate 1s then provided over the floating gate. The
threshold voltage characteristic of the transistor 1s controlled
by the amount of charge that 1s retained on the tloating gate.
That 1s, for a given level of charge on the floating gate, there
1s a corresponding voltage (threshold) that must be applied to
the control gate before the transistor 1s turned “on” to permit
conduction between 1ts source and drain regions. In particu-
lar, flash memory such as Flash EEPROM allows entire
blocks of memory cells to be erased at the same time.

The floating gate can hold a range of charges and therefore
can be programmed to any threshold voltage level within a
threshold voltage window. The size of the threshold voltage
window 1s delimited by the minimum and maximum thresh-
old levels of the device, which in turn correspond to the range
of the charges that can be programmed onto the floating gate.
The threshold window generally depends on the memory
device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within
the window may, 1n principle, be used to designate a definite
memory state of the cell.

It 1s common 1n current commercial products for each
storage element of a flash EEPROM array to store a single bit
of data by operating in a binary mode, where two ranges of
threshold levels of the storage element transistors are defined
as storage levels. The threshold levels of transistors corre-
spond to ranges of charge levels stored on their storage ele-
ments. In addition to shrinking the size of the memory arrays,
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such memory arrays by storing more than one bit of data 1n
cach storage element transistor. This 1s accomplished by
defining more than two threshold levels as storage states for
cach storage element transistor, four such states (2 bits of data
per storage element) now being included in commercial prod-
ucts. More storage states, such as 16 states per storage ele-
ment, are also being implemented. Each storage element
memory transistor has a certain total range (window) of
threshold voltages 1n which 1t may practically be operated,
and that range 1s divided into the number of states defined for
it plus margins between the states to allow for them to be
clearly differentiated from one another. Obviously, the more
bits a memory cell 1s configured to store, the smaller 1s the
margin of error 1t has to operate 1n.

The transistor serving as a memory cell 1s typically pro-
grammed to a “programmed” state by one of two mecha-
nisms. In “hot electron mjection,” a high voltage applied to
the drain accelerates electrons across the substrate channel
region. At the same time a high voltage applied to the control
gate pulls the hot electrons through a thin gate dielectric onto
the tloating gate. In “tunneling injection,” a high voltage 1s
applied to the control gate relative to the substrate. In this way,
clectrons are pulled from the substrate to the intervening
floating gate. While the term “program™ has been used his-
torically to describe writing to a memory by injecting elec-
trons to an 1imtially erased charge storage unit of the memory
cell so as to alter the memory state, 1t has now been used
interchangeable with more common terms such as “write” or
“record.”

The memory device may be erased by a number of mecha-
nisms. For EEPROM, a memory cell 1s electrically erasable,
by applying a high voltage to the substrate relative to the
control gate so as to induce electrons 1n the floating gate to
tunnel through a thin oxide to the substrate channel region
(1.e., Fowler-Nordheim tunneling.) Typically, the EEPROM
1s erasable byte by byte. For tlash EEPROM, the memory 1s
clectrically erasable either all at once or one or more mini-
mum erasable blocks at a time, where a minimum erasable
block may consist of one or more sectors and each sector may
store 512 bytes or more of data.

The memory device typically comprises one or more
memory chips that may be mounted on a card. Each memory
chip comprises an array of memory cells supported by periph-
eral circuits such as decoders and erase, write and read cir-
cuits. The more sophisticated memory devices also come
with a controller that performs intelligent and higher level
memory operations and interfacing.

There are many commercially successtul non-volatile
solid-state memory devices being used today. These memory
devices may be tlash EEPROM or may employ other types of
nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in U.S.
Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, and
5,661,053, 5,313,421 and 6,222,762. In particular, tlash
memory devices with NAND string structures are described
in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also non-
volatile memory devices are also manufactured from memory
cells with a dielectric layer for storing charge. Instead of the
conductive floating gate elements described earlier, a dielec-
tric layer 1s used. Such memory devices utilizing dielectric
storage element have been described by Eitan et al., “NROM:
A Novel Localized Trapping, 2-Bit Nonvolatile Memory
Cell,” IEEE Electron Device Letters, vol. 21, no. 11, Novem-
ber 2000, pp. 343-545. An ONO dielectric layer extends
across the channel between source and drain diffusions. The
charge for one data bit 1s localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit 1s
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localized 1n the dielectric layer adjacent to the source. For
example, U.S. Pat. Nos. 5,768,192 and 6,011,725 disclose a

nonvolatile memory cell having a trapping dielectric sand-
wiched between two silicon dioxide layers. Multi-state data
storage 1s 1mplemented by separately reading the binary
states of the spatially separated charge storage regions within
the dielectric.

In order to improve read and program performance, mul-
tiple charge storage elements or memory transistors in an
array are read or programmed 1n parallel. Thus, a “page” of
memory elements are read or programmed together. In exist-
ing memory architectures, a row typically contains several
interleaved pages or 1t may constitute one page. All memory
clements of a page will be read or programmed together.
Errors in Written Data

Inthe types of memory systems described herein, as well as
in others, including magnetic disc storage systems, the integ-
rity of the data being stored 1s maintained by use of an error
correction technique. Most commonly, an error correction
code (ECC) 1s calculated for each sector or other unmit of data
that 1s being stored at one time, and that ECC 1s stored along,
with the data. The ECC 1s most commonly stored together
with a unit group of user data from which the ECC has been
calculated. The unit group of user data may be a sector or a
multi-sector page. When this data 1s read from the memory,
the ECC 1s used to determine the integrity of the user data
being read. Erroneous bits of data within the unit group of
data can oiten be corrected by use of the ECC.

The trend 1s to reduce the size of the memory systems in
order to be able to put more memory cells 1n the system and to
make the system as small as possible to fit in smaller host
devices. Memory capacity 1s increased by a combination of
higher integration of circuits and configuring each memory
cell to store more bits of data. Both techniques require the
memory to operate with increasing tighter margin of error.
This 1n turn places more demand on the ECC to correct errors.

The ECC can be designed to correct a predetermined num-
ber of error bits. The more bits 1t has to correct, the more
complex and computationally intensive will the ECC be. For
quality assurance, conventional ECC 1s designed based on the
expected worst-case cell error rate at the end of life of the
memory device. Thus, they have to correct a maximum num-
ber of error bits up to the far tail end of a statistical population
ol error rate.

As the tflash memory ages, 1ts error rate increases rapidly
near the end of life of the device. Thus a powerful ECC
designed for the worst-case will only be called to apply 1ts full
capacity at the end of life of the memory device.

Using ECCto correct a worst-case number of error bits will
consume a great amount processing time. The more bits 1t has
to correct, the more computational time 1s required. The
memory performance will be degraded. Additional dedicated
hardware may be mmplemented to perform the ECC 1 a
reasonable amount of time. Such dedicated hardware can take
up a considerable amount of space on the controller ASIC
chip. Moreover, for most of the life time of the device, the
ECC 1s only marginally utilized, resulting in 1ts large over-
heads being wasted and realizing no real benefits.

Thus, there 1s a need to provide a nonvolatile memory of
high storage capacity without the need for a resource-inten-
stve ECC over designed for the worse-case.

SUMMARY OF THE INVENTION

A method of operating a non-volatile memory system 1s
presented, where the memory system includes one or more
non-volatile memory circuits each having one or more arrays

15

20

25

30

35

40

45

50

55

60

65

4

ol non-volatile memory cells formed along word lines as a
plurality of erase blocks, each erase block corresponding to a
plurality of word lines. A first plurality of pages of data 1s
stored 1n a {irst section of the non-volatile memory system.
The first plurality of pages 1s subsequently programmed from
the first section mto a first plurality of word lines of a first
block of the memory system. The first plurality of word lines
1s less than all of the word lines of the first block. It 1s
determined whether the first plurality of data pages were
programmed suiliciently correctly into the first plurality of
word lines. One or more pages of parity data are generated
from the first plurality of data pages, where the parity data 1s
generated only from those of the first plurality of data pages
that were determined to be programmed suificiently correctly
into the first plurality of word lines. The generated pages of
parity data are written 1nto one or more second word lines of
the first block other than those of the first plurality of word
lines.

Various aspects, advantages, features and embodiments of
the present invention are included 1n the following description
of exemplary examples thereof, which description should be
taken 1n conjunction with the accompanying drawings. All
patents, patent applications, articles, other publications,
documents and things referenced herein are hereby 1incorpo-
rated herein by this reference in their entirety for all purposes.
To the extent of any inconsistency or contlict 1n the definition
or use of terms between any of the incorporated publications,
documents or things and the present application, those of the
present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a host in communication with a memory
device 1n which the features of the present mvention are
embodied.

FIG. 2 illustrates schematically a non-volatile memory
cell.

FIG. 3 1llustrates an example of an NOR array of memory
cells.

FIG. 4 1llustrates a page of memory cells, organized for
example 1 the NAND configuration, being sensed or pro-
grammed 1n parallel.

FIG. 5A illustrates 1n more detail the sense modules shown
in FIG. 1 to contain a bank of p sense modules across an array
of memory cells.

FIG. 5B illustrates a sense module including a sense ampli-
fier.

FIG. 6 illustrates schematically an example of a memory
array organized 1n erasable blocks.

FIG. 7 1llustrates a binary memory having a population of
cells with each cell being 1n one of two possible states.

FIG. 8 1llustrates a multi-state memory having a population
of cells with each cell being 1n one of eight possible states.

FIG. 9 1llustrates schematically a data page containing an
ECC field.

FI1G. 10A shows a normal distribution of error rate, with the
percentage of the population in various ranges of standard
deviations a.

FIG. 10B 1illustrate the distribution of FIG. 10A 1n a table
format.

FIG. 11 1s a table listing the main sources of errors for a
flash memory.

FIG. 12 1s a table showing estimated total errors for an
example memory device at the beginning and end of 1ts life.

FIG. 13 1s atable illustrating that a conventional ECC must
be designed to correct the worst-case total error E
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FIG. 14 A 1llustrates a memory array being partitioned into
two portions according to a preferred embodiment of the
invention.

FIG. 14B illustrates a rewrite of a second copy of the data
page to the first portion of the memory array of FIG. 14A.

FIG. 15 1s a tlow diagram 1llustrating the process of post-

write read and adaptive rewrite according to the embodiment
described in FIG. 14A and FIG. 14B.

FIG. 16 A 1llustrates a memory array being partitioned nto
two portions and the first portion further provided with a
cache section and rewrite section, according to a preferred
embodiment of the invention.

FI1G. 16B 1llustrates a page compare technmique according a
preferred embodiment of the post-write read. FIG. 16C illus-
trates a rewrite to the first portion after a post-write read has
determined an excessive amount of error in the data page 1n
the second portion.

FI1G. 17 1s a flow diagram 1llustrating the process of post-

write read and adaptive rewrite according to the embodiment
described in FIG. 16 A to FIG. 16C.

FI1G. 18 1llustrates a memory organized 1nto erase blocks.

FI1G. 19 1s a flow diagram 1llustrating the error management
being enabled when the memory device has aged to a prede-
termined degree as determined by a hot count.

FIG. 20A 1llustrates a memory array being partitioned into
two portions according to a preferred embodiment of the
invention.

FIG. 20B 1illustrates another example 1n which the D3
block of FI1G. 20A fails a post-write-read test.

FI1G. 20C illustrates another example in which the new D3
block of FI1G. 20B fails the post-write read test again.

FIG. 21 1s a table illustrating example parameters associ-
ated with the enhanced post-write-read error management.
The table 1s preferably maintained 1n the file system configu-
ration file stored 1n memory.

FI1G. 22A 1s a flow diagram 1llustrating a preferred imple-
mentation of the EPWR error management as applied to a
memory having D1 to D3 folding.

FIG. 22B illustrates 1n more detail the device-age-depen-
dent enablement feature of the enhanced post-write-read
error management.

FIG. 22C 1llustrates 1n more detail a preterred implemen-
tation of the enhanced post-write-read error management.

FIGS. 23(0)-23(3) illustrate a logical page by page pro-
gramming ol a 4-state memory encoded with a preferred 2-bit
logical code (“LLM” code).

FIG. 24 A 1llustrates the read operation that 1s required to
discern the lower bit of the 4-state memory encoded with the
2-bit LM code.

FI1G. 24B illustrates the read operation that 1s required to
discern the upper bit of the 4-state memory encoded with the
2-bit LM code.

FIGS. 25(0)-25(4) 1llustrate the programming of an 8-state
memory encoded with a preterred 3-bit logical code (“LM™
code).

FIG. 26 A illustrates schematically an ECC page contain-
ing an ECC field similar to that shown 1n FIG. 9.

FI1G. 26B illustrates a plurality of ECC pages constituting
a data page.

FI1G. 27 1s a flow chart illustrating the general embodiment
ol accelerated PWR.

FI1G. 28 1s a flow chart 1llustrating a preferred embodiment
of accelerated PWR 1illustrated i FI1G. 27.

FIG. 29 illustrates a sample selected for post-write read
after a group of 3-bit memory cells on a word line has been
written.
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FIG. 30 1s a schematic representation of a way of handling,
the pages or word lines that fa1l EPWR on an individual basis
and hence avoids the need to do a block level re-folding of the
data.

FIG. 31 1s a tflow to 1llustrate some of the features of the
exemplary embodiment.

DETAILED DESCRIPTION

Memory System

FIG. 1 illustrates a host in communication with a memory
device 1n which the features of the present imnvention are
embodied. The host 80 typically sends data to be stored at the
memory device 90 or retrieves data by reading the memory
device 90. The memory device 90 includes one or more
memory chip 100 managed by a controller 102. The memory
chip 100 includes a memory array 200 of memory cells with
cach cell capable of being configured as a multi-level cell
(“MLC”) for storing multiple bits of data. The memory chip
also includes peripheral circuits such as sense modules 480,
data latches 430 and I/O circuits 440. An on-chip control
circuitry 110 controls low-level memory operations of each
chip. The control circuitry 110 1s an on-chip controller that
cooperates with the peripheral circuits to perform memory
operations on the memory array 200. The control circuitry
110 typically includes a state machine 112 to provide chip
level control of memory operations.

In many implementations, the host 80 communicates and
interacts with the memory chip 100 via the controller 102.
The controller 102 co-operates with the memory chip and
controls and manages higher level memory operations. For
example, 1n a host write, the host 10 sends data to be written
to the memory array 100 in logical sectors allocated from a
file system of the host’s operating system. A memory block
management system implemented in the controller stages the
sectors and maps and stores them to the physical structure of
the memory array.

A preferred block management system 1s disclosed 1n
United States Patent Application Publication No. 2010/
0172180 Al, published on Jul. 8, 2010, the entire disclosure
of which 1s incorporated herein by reference.

A firmware 60 provides codes to implement the functions
of the controller 102. An error correction code (“ECC”) pro-
cessor 62 processes ECC during operations of the memory
device. In another embodiment, the controller 102 1s 1mple-
mented within the host.

Physical Memory Structure

FIG. 2 illustrates schematically a non-volatile memory
cell. The memory cell 10 can be implemented by a field-effect
transistor having a charge storage unit 20, such as a floating
gate or a dielectric layer. The memory cell 10 also includes a
source 14, a drain 16, and a control gate 30.

There are many commercially successtul non-volatile
solid-state memory devices being used today. These memory
devices may employ different types ol memory cells, each
type having one or more charge storage element. Typical
non-volatile memory cells include EEPROM and flash
EEPROM. Examples of EEPROM cells and methods of
manufacturing them are given i U.S. Pat. No. 5,595,924,
Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in U.S.
Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,
053, 5,313,421 and 6,222.,762. In particular, examples of
memory devices with NAND cell structures are described in
U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also,
examples of memory devices utilizing dielectric storage ele-
ment have been described by Eitan et al., “NROM: A Novel
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Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEE.
Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545, and in U.S. Pat. Nos. 5,768,192 and 6,011,725.

In practice, the memory state of a cell 1s usually read by
sensing the conduction current across the source and drain
clectrodes of the cell when a reference voltage 1s applied to
the control gate. Thus, for each given charge on the floating,
gate of a cell, a corresponding conduction current with
respect to a fixed reference control gate voltage may be
detected. Conversely, a threshold voltage 1s defined as the
voltage on the control gate that will just turn on the cell with
the given charge. Similarly, the range of charge program-
mable onto the floating gate defines a corresponding thresh-
old voltage window or a corresponding conduction current
window.

Alternatively, instead of detecting the conduction current
among a partitioned current window, 1t 1s possible to set the
threshold voltage for a given memory state under test at the
control gate and detect if the conduction current 1s lower or
higher than a threshold current. In one implementation the
detection of the conduction current relative to a threshold
current 1s accomplished by examining the rate the conduction
current 1s discharging through the capacitance of the bit line
or a known capacitor.

As can be seen from the description above, the more states
a memory cell 1s made to store, the more finely divided 1s 1ts
threshold window. For example, a memory device may have
memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the
memory cell 1s to store 16 states, each state may occupy from
200 mV to 300 mV 1n the threshold window. This will require
higher precision 1n programming and reading operations in
order to be able to achieve the required resolution.

The memory array 200 1s typically organized as a two-
dimensional array ol memory cells arranged in rows and
columns and addressable by word lines and bit lines. The
array can be formed according to an NOR type or an NAND
type architecture.

FI1G. 3 illustrates an example of an NOR array of memory
cells. In the memory array 200, each row of memory cells are
connected by their sources 14 and drains 16 1n a daisy-chain
manner. This design 1s sometimes referred to as a virtual
ground design. The cells 10 1n a row have their control gates
30 connected to a word line, such as word line 42. The cells in
a column have their sources and drains respectively con-
nected to selected bit lines, such as bit lines 34 and 36.

FIG. 4 illustrates a page of memory cells, organized for
example 1n the NAND configuration, being sensed or pro-
grammed 1n parallel. FIG. 4 essentially shows a bank of
NAND strings 50 1n the memory array 200. A NAND string,
50 comprises of a series of memory transistors (e.g., 4, 8, 16
or higher) daisy-chained by their sources and drains. A pair of
select transistors S1, S2 controls the memory transistors
chain’s connection to the external via the NAND string’s
source terminal and drain terminal respectively. In a memory
array, when the source select transistor S1 1s turned on, the
source terminal 1s coupled to a source line 34. Similarly, when
the drain select transistor S2 1s turned on, the drain terminal of
the NAND string 1s coupled to a bit line 36 of the memory
array. Each memory transistor 10 1n the chain acts as a
memory cell. It has a charge storage element 20 to store a
given amount of charge so as to represent an intended
memory state. A control gate of each memory transistor
allows control over read and write operations. The control
gates of corresponding memory transistors ol a row of NAND
string are all connected to the same word line (such as WLO,
WL1, . . . ) Similarly, a control gate of each of the select
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transistors S1, S2 (accessed via select lines SGS and SGD
respectively) provides control access to the NAND string via
its source terminal and drain terminal respectively.

When an addressed memory transistor 10 within an NAND
string 1s read or 1s verified during programming, its control
gate 1s supplied with an appropriate voltage via a common
word line. At the same time, the rest of the non-addressed
memory transistors in the NAND string 50 are fully turned on
by application of suilicient voltage on their control gates. In
this way, a conductive path 1s eflective created from the
source of the mndividual memory transistor to the source ter-
minal of the NAND string and likewise for the drain of the
individual memory transistor to the drain terminal of the cell.
Memory devices with such NAND string structures are
described in U.S. Pat. Nos. 5,570,315, 5,903,493, 6,046,935.

A “page” such as the page 70, 1s a group of memory cells
ecnabled to be sensed or programmed 1n parallel. This 1s
accomplished by a corresponding page of sense amplifiers.
For example, the page 70 1s along a row and 1s sensed by a
sensing voltage applied to the control gates of the cells of the
page connected 1n common to the word line WL3. Along each
column, each cell such as cell 10 1s accessible by a sense
amplifier via a bit line 36. The page referred to above 1s a
physical page memory cells or sense amplifiers. Depending
on context, in the case where each cell 1s storing.

Sensing Circuits and Techniques

FIG. 5A illustrates in more detail the sense modules shown
in FIG. 1 to contain a bank of p sense modules across an array
of memory cells. The entire bank of p sense modules 480
operating in parallel allows a group (or physical page) of p
cells 10 along a row to be read or programmed in parallel.
Essentially, sense module 1 will sense a current I, 1 cell 1,
sense module 2 will sense a current I, in cell 2, . . ., sense
module p will sense a current 1, in cell p, etc. The total cell
current 1., for the page flowing out of the source line 34 into
an aggregate node CLSRC and from there to ground will be a
summation of all the currents in the p cells.

In conventional memory architecture, a row of memory
cells with a common word line forms two or more pages,
where the memory cells 1n a page are read and programmed 1n
parallel. In the case of a row with two pages, one page 1s
accessed by even bit lines and the other page 1s accessed by
odd bit lines. A physical page of sensing circuits 1s coupled to
either the even bit lines or to the odd bit lines at any one time.

In currently produced chips, the physical page may be 64 k
or larger. In the preferred embodiment, the group 1s a run of
the entire row of cells. This 1s the so-called *“all bit-line”
architecture 1n which the page 1s constituted from a row of
contiguous memory cells coupled respectively to contiguous
bit lines.

FIG. 5B illustrates a sense module including a sense ampli-
fier. The sense amplifier 490 detects the conduction current of
a cell 1s above or below a reference level. The sensed results
are latches 1n a corresponding set of latches 430 (see FIG. 1).
Erase Blocks

One important difference between tlash memory and other
type of memory 1s that a cell must be programmed from the
crased state. That 1s the floating gate must first be emptied of
charge. Programming then adds a desired amount of charge
back to the floating gate. It does not support removing a
portion of the charge from the floating to go from a more
programmed state to a lesser one. This means that update data
cannot overwrite existing one and must be written to a previ-
ous unwritten location.

Furthermore erasing 1s to empty all the charges from the
floating gate and generally takes appreciably time. For that
reason, it will be cumbersome and very slow to erase cell by
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cell or even page by page. In practice, the array of memory
cells 1s divided 1nto a large number of blocks of memory cells.
As 1s common for flash EEPROM systems, the block 1s the
unit of erase. That 15, each block contains the minimum num-
ber of memory cells that are erased together.

FIG. 6 1llustrates schematically an example of a memory
array organized in erasable blocks, Programming of charge
storage memory devices can only result in adding more
charge to its charge storage elements. Therefore, prior to a
program operation, existing charge 1n charge storage element
of amemory cell must be removed (or erased). A non-volatile
memory such as EEPROM 1s referred to as a “Flash”
EEPROM when an entire array of cells 200, or significant
groups of cells of the array, 1s electrically erased together (i.¢.,
in a tlash). Once erased, the group of cells can then be repro-
grammed. The group of cells erasable together may consist of
one or more addressable erase unit 300. The erase unit or
block 300 typically stores one or more pages of data, the page
being a mimimum unit of programming and reading, although
more than one page may be programmed or read 1n a single
operation. Each page typically stores one or more sectors of
data, the size of the sector being defined by the host system.
An example 1s a sector of 512 bytes of user data, following a
standard established with magnetic disk drives, plus some
number of bytes of overhead information about the user data
and/or the block 1n with 1t 1s stored.

In the example shown 1n FI1G. 6, individual memory cells in
the memory array 200 are accessible by word lines 42 such as
WLO0-WLy and bit lines 36 such as BL0-BLx. The memory 1s
organized into erase blocks, such as erase blocks 0.1, . . . m.
Referring also to FIGS. 5A and 5B, if the NAND strmg 50
contains 16 memory cells, then the first bank of NAND
strings 1n the array will be accessible by select lines 44 and
word lines 42 such as WL0 to WL 15. The erase block 0 1s
organized to have all the memory cells of the first bank of
NAND strings erased together. In another memory architec-
ture, more than one bank of NAND strings may be erased
together.

Examples of Binary (SLC) and Multi-state (MI
Partitioning

As described earlier, an example of nonvolatile memory 1s
formed from an array of field-effect transistors, each having a
charge storage layer between 1ts channel region and its con-
trol gate. The charge storage layer or unit can store a range of
charges, giving rise to a range of threshold voltages for each
ficld-etlect transistor. The range of possible threshold volt-
ages spans a threshold window. When the threshold window
1s partitioned into multiple sub-ranges or zones of threshold
voltages, each resolvable zone 1s used to represent a different
memory states for amemory cell. The multiple memory states
can be coded by one or more binary bits.

FI1G. 7 illustrates a binary memory having a population of
cells with each cell being 1n one of two possible states. Each
memory cell has its threshold window partitioned by a single
demarcation level into two distinct zones. As shown 1n FIG.
7(0), during read, a read demarcation level rV,, between a
lower zone and an upper zone, 1s used to determine to which
zone the threshold level of the cell lies. The cell 1s 1n an
“erased” state 11 1ts threshold 1s located in the lower zone and
1s 1n a “programmed” state 1f 1ts threshold 1s located 1n the
upper zone.

FI1G. 7(1) illustrates the memory initially has all 1ts cells in
the “erased” state. FIG. 7(2) illustrates some of cells being,
programmed to the “programmed” state. A 1-bit or binary
code 1s used to code the memory states. For example, the bit
value “1” represents the “erased” state and “0” represents the
“programmed” state. Typically programming 1s performed by
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application of one or more programming voltage pulse. After
cach pulse, the cell 1s sensed to verily if the threshold has
moved beyond a verily demarcation level vV,. A memory
with such memory cell partitioning 1s referred to as “binary™
memory or Single-level Cell (“SLC”) memory. It will be seen
that a binary or SLC memory operates with a wide margin of
error as the entire threshold window 1s only occupied by two
ZONEs.

FI1G. 8 1llustrates a multi-state memory having a population
of cells with each cell being in one of eight possible states.
Each memory cell has its threshold window partitioned by at
least seven demarcation levels mto eight distinct zones. As
shown 1n FIG. 8(0), during read, read demarcation levels rV,
to rV, are used to determine to which zone the threshold level
of the cell lies. The cell 1s 1n an “erased” state if 1ts threshold
1s located 1n the lowest zone and 1s 1n one of multiple “pro-
grammed’” states 11 1ts threshold 1s located 1n the upper zones.
FIG. 8(1) illustrates the memory initially has all 1ts cells in the
“erased” state. FIG. 8(2) illustrates some of cells being pro-
grammed to the “programmed” state. A 3-bit code having
lower, middle and upper bits can be used to represent each of
the eight memory states. For example, the “07, “17, “27, <37,
“47 57, “6” and ““7” states are respectively represented by
“1117, %0117, <0017, =101, *“1007, “0007, “010” and *110”.
Typically programming 1s performed by application of one or
more programming voltage pulses. After each pulse, the cell
1s sensed to verily 1f the threshold has moved beyond a ret-
erence which 1s one of verity demarcation levels vV, to vV,.
A memory with such memory cell partitioning 1s referred to
as “multi-state” memory or Multi-level Cell (“MLC”)
memory.

Similarly, a memory storing 4-bit code will have lower,
first middle, second middle and upper bits, representing each
ol the sixteen states. The threshold window will be demar-
cated by at least 15 demarcation levels mto sixteen distinct
ZOnes.

As the memory’s finite threshold window 1s partitioned
into more regions, the resolution for programming and read-
ing will necessarily become finer. Thus, a multi-state or MLC
memory necessarily operates with a narrower margin of error
compared to that ol a memory with less partitioned zones. In
other words, the error rate increases with the number of bits
stored 1n each cell. In general, error rate increases with the
number of partitioned zones 1n the threshold window.
Correction by Error Correction Code (“ECC™)

Flash memory 1s prone to errors. To ensure error-iree data,
an error correction code (“ECC”) 1s implemented to correct
CITOrS.

FIG. 9 illustrates schematically a data page containing an
ECC field. As described in connection with FIG. 4 and FIG.
6A, a physical page of memory cells 1s programmed and read
in parallel by virtue of a corresponding page of sense modules
operating 1n parallel. When each memory cell stores multiple
bits of data, there will be multiple data pages associated with
cach physical page. The data page 70' comprises a user por-
tion 72' and a system portion 74'. The user portion 72' 1s for
storage of user data. The system portion 74' 1s generally used
by the memory system for storage of system data. Included in
the system data 1s an ECC. The ECC 1s computed for the data
page. Typically, the ECC 1s computed by the ECC processor
62 1n the controller 102 (see FIG. 1.)

As data 1s received from a host, a page of data 1s staged 1n
the controller 102 and 1ts ECC 76' 1s computed by the ECC
processor 62. The data page incorporating the ECC 1s then
written to the memory array 200. Typically, when the data
page 1s read, the data page 1s latched 1n the data latches 430
and shifted out of the I/0O circuits 440 to the controller 102. At
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the controller 102, the data page’s existing ECC 1s compared
to a second version of the ECC computed on the read data.
The ECC typically includes an error detection code (“EDC”)
for rapid detection of any error 1n the data page. If the EDC
indicates the existence of any error 1n the read data page, the
ECC 1s invoked to correct erroneous bits 1n the read data page.

As described above, an ECC 1s typically designed to cor-
rect for any errors expected during the useful life of the
memory. The errors come from a number of sources.

The ECC can be designed to correct any number of error
bits. The more bits it has to correct, the more complex and
computationally intensive will the ECC be. For quality assur-
ance, conventional ECC 1s designed based on the expected
worst case cell error rate (“CER”) at the end of life (“EOL”)
of the memory device. Thus, they have to correct a maximum
number of error bits up to the far tail end of a statistical error
population.

FIG. 10A shows a normal distribution of error rate with the
percentage of the population in various ranges of standard
deviations o. For example, only 2.1% of the population lies
within the range from 20 to 30. Only 0.1% of the population
lies within the range from 30 to 40.

FIG. 10B 1illustrate the distribution of FIG. 10A 1n a table
format. It can be seen that only E-09 or one 1n one billion of
the population lies beyond 60. The last column 1n the table
shows the estimated error rates for an example memory
device 1n the worst case. For example, 5% of the population
will have 1 error bit, 0.135% of the population will have 4
error bits and 1 i 1 billion of the population will have 42 error
bits.

Consider a sample of 125 memory cards. Fach card has a
capacity ol 16 GB with data pages of 2 KB each. This
amounts to a population of one billion pages of 2 KB each. To
ensure not a single page of the sample of 125 memory cards
will have an error at the end of life of the card, an ECC capable
of correcting up to 42 bits will be needed.

Errors During the Life Time of Memory

As described above, an ECC 1s typically designed to cor-
rect for any errors expected during the usetul life expectancy
of the memory. The errors come from a number of sources.

FIG. 11 1s a table listing the main sources of errors for a
flash memory. FIG. 11(A) shows a first source of error from
post write E » -{N ~;.~) which 1s bit errors that are present after
the page 1s written. In flash memory, “programming” refers to
the process of increasing the threshold of a cell from an erased
state. The term will be used interchangeable with “writing”.
The error rate increases with N ..~ the number of program-
erase cycling. After data has been written to a cell, 1n spite of
passing the verily operation, the data could still be erroneous
for two causes.

The first cause of post write error 1s due to over-program-
ming not detected by the verily operation. Over-program-
ming that can happen when a number of the memory cells are
to be programmed at the same time. This 1s because the
characteristics of each memory cell are different due to minor
variations 1n the structure and operation of the semi-conduc-
tor devices which comprise the memory cells; therefore,
variations 1n the programming speed of different cells waill
typically occur. This results 1n memory cells that become
programmed faster than others and the possibility that some
memory cells will be programmed to a different state than
intended. Faster programming ol multiple memory cells can
result in over-shooting desired threshold voltage level ranges,
producing errors in the data being stored.

Typically, when data 1s being programmed, the program-
verily process for the device will check 11 the programmed
threshold voltage of the memory cell 1s above than a reference
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level demarcating the current state from the adjacent less
programmed state. However, the program-verity does not
know how much above the reference level 1s the programmed
threshold voltage. Thus, devices typically do not guarantee an
upper limit on the threshold voltage. Some devices do check
to see 1f a soft programming process (described below ) raised
the threshold voltage too high; however, these devices do not
check to see 1l a regular programming process raised the
threshold voltage too high. Thus, over programming which
raises the threshold voltage beyond the range for the desired
state can occur without being noticed. Over programming can
cause the memory cell to overshoot to the next programmed
state and thus storing incorrect data. This error will be
detected during subsequent read operations, in which the
programmed threshold of a cell 1s typically checked relative
to both a lower and an upper limit demarcating a threshold
range for a given memory state. More information about over

programming can be found in U.S. Pat. Nos. 5,321,699;
5,386,422; 5,469,444, 5,602,789; 6,134,140, 6,914,823; and
6,917,542.

The second cause of post write error 1s 1n the apparent shiits
in the stored charge levels due to field coupling between
storage elements. The degree of this coupling i1s necessarily
increasing as the sizes of memory cell arrays are being
decreased, which 1s occurring as the result of improvements
of integrated circuit manufacturing techniques. The problem
occurs most pronouncedly between two groups of adjacent
cells that have been programmed at different times. One
group of cells 1s programmed to add a level of charge to their
storage elements that corresponds to one set of data. After the
second group of cells 1s programmed with a second set of
data, the charge levels read from the storage elements of the
first group of cells often appear to be different than pro-
grammed because of the effect of the charge on the second
group of storage elements being capacitively coupled with the
first. In particular, when sensed the memory cell will appear
to have a higher threshold level (or more programmed) than
when 1t 1s less perturbed. This 1s also known as the Yupin
effect, and 1s described 1n U.S. Pat. No. 5,867,429, which
patent 1s incorporated herein in their entirety by this refer-
ence. This patent describes either physically 1solating the two
groups of storage elements from each other, or taking into
account the effect of the charge on the second group of storage
clements when reading that of the first group.

FIG. 11(B) shows a second source of error E,,»(1, Ny}
which 1s bit errors due to data retention at EOL. The error rate
increases with temperature T and N 4.~ the number of pro-
gram-erase cycling. The data error 1s due to the history of the
device. It typically 1s related to a data retention problem,
which depends on the memory device exposure to the envi-
ronment, e.g., temperature. Over time, the actual stored
charge levels may leak away slowly, causing the programmed
thresholds to decrease.

As the number of states stored in each memory cell
increases, the tolerance of any shifts 1n the programmed
charge level on the storage elements decreases. Since the
ranges of charge designated for each storage stat necessarily
be made narrower and placed closer together as the number of
states stored on each memory cell storage element increases,
the programming must be performed with an increased
degree of precision and the extent of any post-programming
shifts in the stored charge levels that can be tolerated, either
actual or apparent shifts, 1s reduced. Actual disturbs to the
charge stored 1n one cell can be created when programming
and reading that cell, and when reading, programming and
erasing other cells that have some degree of electrical cou-
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pling with the that cell, such as those 1n the same column or
row, and those sharing a line or node.

FIG. 11(C) shows a third source of error E,(Ng, Ny~
which are bit errors due to read disturb. The error rate
increases with the number of reads and N .y~ the number of
program-erase cycling.

An important consideration for flash memory is that 1t has
an endurance problem as it ages with use. When a cell 1s
repeatedly programmed and erased, charges are shuttled in
and out of the floating gate 20 (see FIG. 2) by tunneling across
a dielectric. Each time some charges may become trapped 1n
the dielectric and will modity the threshold of the cell. The
number of program-erase cycles a cell has experienced 1s
measured by a cycle count N .~ (also known as “hot count”).
Though repeated cycling, the value of N4~ increases for a
given erase block, causing the threshold window for the cells
in the block to narrow progressively. Thus, the effect pro-
gram-erase cycling will significantly impact all the sources of
error listed in FIG. 11.

FIG. 12 1s a table showing estimated total errors for an
example memory device at the beginning and end of 1ts life.
FIG. 12( A) shows the total errors from the three sources listed
in FIG. 11(A) to FIG. 11(C) to be E_, AN ~ys Bz AN ~5.-)+
Epg(l, Neyo)+Egp(Ngs Neye)-

FIG. 12(B) shows an estimated E -, when the memory 1s

relatively fresh (low N .y.~) but has been baked at 85° C. for 5
years and has been read 10° times. The estimates for the
various component errors are: E . (1)~3, E.(85° C., 1)~2,
and E,~(1M, 1)~0. These vield a total estimated error E {1,
1M)=3+2+0=3 bits.

FI1G. 12(C) shows an estimated E ., when the memory 1s
near the end of life of the device (“EOL”). It 1s characterized
by a high program-erase cycling (N_.,,-=10K) with other
parameters similar to that of FI1G. 12(B). The estimates for the
various component errors are: E,(10K)~10, E,,.(85° C.,
10K)~10, and E, (1M, 10K)~1. These yield a total estimated
error E,{10K, IM)=10+10+1=21 bits.

Of the three sources of error described 1n FI1G. 11 and FIG.
12, generally the error due to read disturb E,,, 1s not as
significant as error due to write E,,;, and error due to data
retention E,,,. Data retention errors can be alleviated by
periodically refreshing the threshold levels of the cells 1n a
“read scrub” operation.

To correct for the various errors that may arise in the
memory, especially the error arising after write, an EEC (de-
scribed earlier in connection FI1G. 9) 1s employed. However,
using ECC to correct errors will consume processing time
and, the more bits 1t has to correct, the more computational
time 1s required. The memory performance will be degraded
by employing a strong ECC able to correct a large number of
error bit. Additional dedicated hardware may be implemented
to perform the ECC 1n a reasonable amount of time. Such
dedicated hardware can take up a considerable amount of
space on the controller ASIC chip.

FIG. 13 1s a table 1llustrating that a conventional ECC must
be designed to correct the worst-case total error E ... That
will be a device at the end of life with high program-erase
cycle count and data retention specification. For the example
given 1n FI1G. 12(C), the ECC must be capable of correcting at
least 21 error bits.

Adaptively Rewrite Data from a Higher Density Memory
Portion to a Lower Error Rate Memory Portion to Control
Error Rate

According to a general aspect of the invention, a flash
memory having an array of memory cells 1s configured with a
first portion and a second portion. The second portion stores
data at higher density but operates with a smaller margin of
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errors compared to the first portion. Data 1s written to the
second portion for efficient storage. Afterwards, the data 1s
read back to check for excessive error bits. If the error bits
exceeded a predetermined amount, the data 1s rewritten to the
less error-prone first portion. This places a limit on the maxi-
mum number of error bits arising from writing data to the
memory. In a statistical distribution of error rates, the limit
represents a limit on the number standard derivations of the
distribution so that the far tail-end of the distribution (with
higher error rates) can be 1gnored. This allows a smaller and
more eificient error correction code (“ECC”) to be designed
for correcting a smaller number of errors bits, thereby
improving the performance and reducing the cost of the
memory.

FIG. 14 A illustrates a memory array being partitioned into
two portions according to a preferred embodiment of the
ivention. The array of memory cells 200 1s partitioned into a
first portion 410 and a second portion 420. The second portion
420 has the memory cells configured as high density storage
with each cell storing multiple bits of data. The first portion
410 has the memory cells configured as lower density storage
with each cell storing less number of bits than that of the
second portion. For example, a memory cell 1n the first por-
tion 1s configured to store 1 bit of data as compared to 3 bits
of data 1n the second portion. In view of the discussion earlier,
the first portion will operate with a much wider margin of
error compared to that of the second portion. Thus, memory
operations in the first portion will have less error than that 1n
the second portion.

U.S. Pat. No. 6,456,528, entitled “Selective Operation of a
Multi-state Non-volatile Memory System 1n a Binary Mode”,
discloses a flash non-volatile memory having memory cells
normally operating in more than two states but with selected
memory cells operating in only two-states 1n order to provide
an increased margin during two-state operation. This allows
faster programming and a longer operational life of the
memory cells being operated 1n two states when 1t 1s more
desirable to have these advantages than the increased density
of data storage that multi-state operation provides. The entire
disclosure of U.S. Pat. No. 6,456,528 1s incorporated herein
by reference.

When a page of mncoming data 1s to be written to the
memory array 200, it 1s preferably stored 1n the high density
second portion for the sake of efficiency and high capacity.
Thus a first copy of the data page 1s written to the second
portion.

Later, the first copy of the data page 1s read back 1n a “post
write read” to determine 1f there are any errors. This 1s accom-
plished either by comparison with the original copy which
may be cached or by checking the EDC portion of the ECC.

Determination 1s made whether the number of error bits 1n
the read copy exceeded a predetermined amount. I the num-
ber of error bits does not exceed the predetermined amount,
the first copy 1s regarded stored in the second portion 1s
deemed valid. Subsequent read of the data page will be from
the first copy 1n second portion and any errors will be cor-
rected by ECC at the controller.

As explained earlier in connection with FIG. 11, the verity
process during programming only checks for under-program-
ming and not over-programming. Thus, error may still exist
alter the data page has been program-verified. It will take a
read operation relative to all the demarcation levels (see FIG.
7 and FIG. 8) to detect any error 1n the data page. Further-
more, the Yupin effect of subsequent programming of neigh-
boring cells could perturb the data page in question and shift
the apparent sensed results. Thus, the read back should at least
be after the programming of all neighboring cells that could
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have sigmificant Yupin effect on the current data page. In
another embodiment, the read back is after all the cells in the
block containing the data page 1n question are done program-
ming.

“Post write read” 1s also disclosed 1n U.S. Pat. Nos. 6,914,
823, 6,917,542 and 7,009,889, their entire disclosures are

incorporated herein by reference.
FIG. 14B illustrates a rewrite of a second copy of the data

page into the first portion of the memory array of FIG. 14A.
After the post-write read detects the number of error bits in
the data page has exceeded the predetermined amount, a
second copy of the data page 1s rewritten to the first portion.
The second copy 1s of the original data which may be cached
or 1n another embodiment, by retrieving the first copy and
correcting the error bits with the ECC.

After the second copy has been written to the first portion,
it will replace the first copy 1n the second portion as the valid
copy. The first copy will become obsolete and a directory 1n a
block management system embodied in the firmware of the
controller (see FIG. 1) will be updated to direct subsequent
access to the second copy.

In one preferred embodiment, the first portion has each
memory cell storing one bit of data and the second portion has
cach memory cell storing more than one bit of data.

FIG. 15 1s a flow diagram 1llustrating the process of post-
write read and adaptive rewrite according to the embodiment
described 1in FIG. 14A and FI1G. 14B.

STEP 500: Configuring the memory into first and second
portions, the first portion having memory cells operating
with a margin of error larger than that of the second
portion.

STEP 510: Programming a first copy of a group of 1mnput
data in the second portion.

STEP 520: Reading the first copy from the second portion
to check for error after a predefined time.

STEP 530: Does the error exceed a predetermined number
of error bits? If so, proceed to STEP 540. Otherwise

proceed to STEP 550.

STEP 540: Programming a second copy of the group of

input data in the first portion.

STEP 550: Identilying the last written copy as valid data

for subsequent read.

STEP 560: The group of mput data 1s done storing in the

nonvolatile memory.

In an alternative embodiment, the first portion serves as a
cache for incoming data, so a cache copy of the input data 1s
programmed into the cache. Then a first copy of data 1s
programmed 1nto the second portion.

If the post-write read has not detected an excessive amount
of error 1n the first copy, the first copy will be deemed valid
and subsequent read will be directed to access the first copy.

On the other hand, 1f the post-write read has detected an
excessive amount of error 1n the first copy, the cached copy 1n
the first portion will replace the first copy in the second
portion as valid data. The first copy will become obsolete and
a directory 1n a block management system embodied 1n the
firmware of the controller (see FIG. 1) will be update to direct
subsequent access to the cached copy.

U.S. Pat. No. 5,930,167, entitled “Multi-state Non-volatile
Flash Memory Capable of Being its Own Two State Write
Cache”, discloses a flash memory array having two portions.
A first portion 1s configured to store one bit per cell and a
second portion 1s configured to store more than one bit per
cell. The first portion acts as a low-density write cache.
Incoming data 1s imitially cached 1n the first portion. At a later
time, 1n the background, the cached data 1s transterred to the
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second portion with higher storage density. The entire disclo-
sure of U.S. Pat. No. 5,930,167 1s incorporated herein by
reference.

In the preferred embodiment, the first portion 1s further
provided with a first section and a second section. The 1ncom-
ing data 1s cached 1n the first section of the first portion and a
first copy of the data 1s written to the second portion. After-
wards, the first copy 1n the second portion 1s read back to
check for excessive error bits. If the error bits exceeded a
predetermined amount, a second copy of the incoming data 1s
written to the second section of the first portion.

FIG. 16 A 1llustrates a memory array being partitioned into
two portions and the first portion turther provided with a
cache section and rewrite section, according to a preferred
embodiment of the mvention. As 1n FIG. 14A, the array of
memory cells 200 1s partitioned nto a first portion 410 and a
second portion 420. The second portion 420 has the memory
cells configured as high density storage with each cell storing
multiple bits of data. The first portion 410 has the memory
cells configured as lower density storage with each cell stor-
ing less number of bits than that of the second portion. The
first portion therefore operates with a wider margin of error
than that of the second portion.

The first portion 410 1s further provided with a first section
411 for caching incoming data and a second section 412 for
storing rewrites from the second portion.

When a page of mncoming data 1s to be written to the
memory array 200, a cached copy 1s cached 1n the first section
411 of the first portion 410. A first copy 1s pretferably stored 1n
the high density second portion for the sake of efficiency and
high capacity. Thus a first copy of the data page 1s written to
the second portion.

According to another preferred embodiment, the memory
array 1s provided with a set of data latches on an 1ntegrated
circuit chup, the checking of the error bits in the first copy 1s
accomplished by loading the first copy and the cached copy
into the set of data latches and making a comparison at the set
of data latches.

By not making the comparison at the controller, the data
does not have to be toggled out to the controller, much time
can be saved. FIG. 1 shows the data latches 430, which 1s
on-chip, for the data comparison to take place.

FIG. 16B illustrates a page compare technique according a
preferred embodiment of the post-write read. The first copy of
the data page 1n the second portion 1s read back 1n a “post
write read” to determine 1f there are any errors. This 1s accom-
plished by comparison with the cached copy.

If the number of error bits does not exceed the predeter-
mined amount, the first copy stored in the second portion 1s
deemed to be valid. The cached copy will become obsolete
and a directory 1n a block management system embodied 1n
the firmware of the controller (see FIG. 1) will be updated to
direct subsequent access to the first copy. Subsequent read of
the data page will be from the first copy in the second portion
and any errors will be corrected by ECC at the controller.

FIG. 16C 1illustrates a rewrite to the first portion after a
post-write read has determined an excessive amount of error
in the data page 1n the second portion. After the post-write
read detects the number of error bits in the data page of the
first copy has exceeded the predetermined amount, a second
copy of the data page 1s rewritten to the second section 412 of
the first portion 410. The second copy 1s taken from the
cached copy.

After the second copy has been written to the second sec-
tion 412 of the first portion, it will replace the first copy 1n the
second portion. The first copy and the cached copy will
become obsolete and a directory 1 a block management
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system embodied 1n the firmware of the controller (see FIG.
1) will be updated to direct subsequent access to the second
Copy.

FIG. 17 1s a flow diagram 1llustrating the process of post-
write read and adaptive rewrite according to the embodiment
described 1n FIG. 16A to FIG. 16C.

STEP 600: Configuring the memory 1nto first and second
portions, the first portion having memory cells operating
with a margin of error larger than that of the second
portion.

STEP 602: Programming a cached copy of a group of input
data 1n a first section of the first portion.

STEP 610: Programming a first copy of the group of input
data in the second portion.

STEP 620: Reading the first copy from the second portion
to check for error after a predefined time.

STEP 630: Does the error exceed a predetermined number
of error bits? If so, proceed to STEP 632. Otherwise
proceed to STEP 650.

STEP 632: Reading the cached copy of the group of input
data from the first section of the first portion.

STEP 642: Programming the cached copy as a second copy
of the group of input data 1n a second section of the first
portion.

STEP 650: Identifying the last written copy as valid data
for subsequent read.

STEP 660: The group of mput data 1s done storing in the
nonvolatile memory.

Enhanced Post-Write-Read Error Management

In another aspect of the invention, an enhanced post-write
read error management 1s implemented. The post-write read
1s not enabled at the beginming of life of amemory device. The
error rate of the memory device at the beginning of life 1s very
low and there 1s no need to operate the post-write read. This
avolds wasting time to do post-write read. As the memory
device ages through use, the enhanced post-write read and
error management ol the mvention 1s enabled at a predeter-
mined age of the device.

In a preferred embodiment, the age of the memory device
1s determined by a hot count maintained with each erase block
of memory cells. The hot count tracks the endurance or the
number of times the erase block has been cycled through
erase and program operations. Whenever a hot count of an
erase block passes a predetermined hot count threshold, the
enhanced post-write-read error management will commence
and operate until the end of life of the memory device.

FIG. 18 illustrates a memory organized into erase blocks.
As described 1n connection with FIG. 6 earlier, each erase
block is a group of memory cells that are erased together. Also
described earlier 1s when a cell 1s repeatedly programmed and
erased, charges are shuttled in and out of the floating gate 20
(see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modity
the threshold of the cell. The number of program-erase cycles
a cell has experienced 1s measured by a cycle count Ny~
(also known as “hot count’). Though repeated cycling, the
value of Ny increases for a given erase block, and the
threshold window for the cells in the block narrows progres-
stvely. FIG. 18 illustrates a preferred embodiment in which a
hot count N ~5.-(m) 302 1s maintained 1n each erase block (m).
Since the programmable unit 1s a page, the hot count for each
block can be store 1n the system data area of the data page 70’
illustrated 1n FIG. 9. Alternatively, the hot counts may be
stored 1n a master list in the memory. Every time a block 1s
erased, 1ts hot count 1s mncremented by one.
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FIG. 19 1s a flow diagram 1llustrating the error management
being enabled when the memory device has aged to a prede-
termined degree as determined by a hot count.

STEP 700: Providing a non-volatile memory organized
into erase blocks of memory cells, wherein the memory
cells of each erase block are erased together and age with
the number of erase/program cycling of each block.

STEP 710: Providing an error management for correcting
errors associated with an aging memory device. In the
preferred embodiment, the error management 1s the
post-write-read error management described earlier.

STEP 720: Tracking the age of each block by maintaining
a hot count that records the number of erase/program
cycling each block has undergone.

STEP 730: Is the Hot Count of a memory block>a prede-
termined hot count threshold? In the preferred embodi-
ment, the predetermined hot count threshold 1s given by
a parameter Hot_count_threshold_ EPWR 1n a file sys-
tem configuration file stored in the memory (see FIG.
21.) If greater than, go to STEP 740, otherwise go to
STEP 750.

STEP 740: Enable the error management for the rest of the
life of the memory.

STEP 750: Do not enable the error management yet.

In a preferred embodiment of yet another aspect of the
invention, the high density storage portion of the memory
(D3) has each memory storing 3 bits of data. The less error-
prone, low density storage portion of the memory (D1) has
cach memory cell storing 1 bit of data. Input data 1s first
staged 1n D1 and subsequently folded into D3. When the
enhanced post-write-read error management 1s enabled, a
current, filled block 1n D3 1s read back; and 1f the error rate
exceeds a predetermined threshold, the current D3 block 1s
rejected and a retry takes place with data being refolded into
a new D3 block. The new D3 block 1s again read back and
checked for excessive error rate. If the new D3 block passes,
then 1t has good data and the original data 1n D1 1s made
obsolete. If the new D3 block again shows excessive error
rate, the new D3 block 1s again discarded. If the excessive
error rate persists after a predetermined number of retries, no
turther retry 1s attempted and the D1 to D3 folding operation
1s abandoned with the original data kept at D1. At this point
the memory device 1s deemed too old for further program-
ming operations and 1s made read-only to preserve the integ-
rity of the existing data stored 1n the memory device.

FIGS. 20A-20C illustrate various examples of implement-
ing the post-write-read error management in a memory con-
figured with D1 and D3 portions. A memory configured with
D1 and D3 portion 1s also disclosed in U.S. application Ser.

No. 12/642,584, entitled “MAINTAINING UPDATES OF
MULTI-LEVEL NON-VOLATILE MEMORY IN BINARY
NON-VOLATILE MEMORY” by Gorobets et al, filed on
Dec. 18, 2009; the entire disclosure of which 1s incorporated
herein by reference

FIG. 20A illustrates a memory array being partitioned 1into
two portions according to a preferred embodiment of the
invention. The array of memory cells 200 (see FIG. 1) 1s
partitioned 1nto a first portion 410 and a second portion 420.
The second portion 420 has the memory cells configured as
high density storage with each cell storing multiple bits of
data. The first portion 410 has the memory cells configured as
lower density storage with each cell storing less number of
bits than that of the second portion. For example, a memory
cell 1n the first portion 1s configured to store 1 bit of data as
compared to 3 bits of data 1n the second portion. The first
portion storing 1 bit of data per cell will also be referred as D1
and the second portion storing 3 bit of data per cell as D3. In
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view of the discussion earlier, the first portion will operate
with a much wider margin of error compared to that of the
second portion. Thus, memory operations 1n the first portion
will have less error than that 1n the second portion.

In one embodiment, the first portion 410 or D1 1s further
partitioned into a first section 411 and a second section 412.

In Step (1), during a host write, mput data 1s either first
cached 1n the first section 411 or written directly to the second
section 412. If the input data 1s fragmented, 1t 1s first cached 1n
the first section. If the input data 1s a substantial run of sequen-
tial data, 1t 1s written page by page directly 1nto the second
section 412.

In Step (2), 1n any case, the input data eventually ends up in
the second section 412 where the written pages are staged into
virtual D1 blocks, such as blocks m.1, m.2 and m.3. In a
scheme where each block contains data from a well-defined
group of logical addresses, a virtual block may not corre-
spond to a physical block but still have the group of logical
addresses distributed over several physical D1 blocks.

In Step (3), as data 1s being written page by page into D1,
when a triplet of binary pages 1s 1n D1, it can be copied to a
single 3-bit page 1n D3 1n what 1s also referred to as folding
from D1 to D3.

By implementing the enhanced post-write-read error man-
agement (“EPWR”™), at some point which the lifetime of the
memory the post-write-read error management will com-
mence.

In Step (4), a D3 block m 1s complete after the entire pages
of the virtual D1 blocks m.1, m.2 and m.3 have been folded
into 1t. Thereatter 1t can be processed by the EPWR where the
data in the D3 block 1s read back and checked for ECC errors.
If the number of ECC errors 1s less than a predetermined
threshold as such given by a parameter E_pw_check set in the
File system configuration file, then the data in the D3 block 1s
deemed valid. The corresponding D1 pages can then be sately
replaced and retired.

FIG. 20B illustrates another example 1n which the D3
block of FIG. 20A fails a post-write-read test. Step (1) to Step
(3) are the same as that of FIG. 20A.

In Step (4"), when the data in the D3 block 1s read back, the
number of ECC error 1s found to be greater than E_pw_check.
This means the data in D3 1s marginal at best and cannot be
used.

In Step (35), 1n the event of the existing D3 block failing the
post-write-read test, the EPWR prescribes a retry by folding
the data into a new D3 block.

In Step (6), the data 1n the new D3 block 1s subjected to
another post-write-read test. If 1t passes the test, the data 1n the
new D3 block 1s deemed valid. The corresponding D1 pages
can then be safely replaced and retired.

FI1G. 20C illustrates another example in which the new D3
block of FIG. 20B fails the post-write read test again. Step (1)

to Step (5) are the same as that of FIG. 20B.

In Step (6'), when the data 1n the new D3 block 1s read back,
the number of ECC errors 1s found to be greater than
E_pw_check. This means the data in the retried D3 block 1s
still not good and cannot be used.

The EPWR process can prescribe further retry to another
D3 block. The number of retries 1s set by a parameter, EPWR _
retries 1n the file system configuration file. For example, 1
EPWR_retries 1s 1, then the process will end after the new
block fails the test.

In that event, 1n Step (7), the new D3 block cannot be used
and the file system will direct access to corresponding data

that reside 1n D1 1nstead.
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FIG. 21 1s a table illustrating example parameters associ-
ated with the enhanced post-write-read error management.
The table 1s preferably maintained 1n the file system configu-
ration file stored 1n memory.

E_pw_check—a vanable set in File System Configuration
File to specily at what # of ECC bits level, a D3 block 1s
consider high risk and restart of D1 to D3 folding to a
new D3 block 1s required.

ECC_threshold_SILC—a variable 1s needed 1n File System

Configuration File for maintaining SLC threshold to

compare against 1n order to make a decision to continue

with EPWR or not.

EPWR_enable_tlag——controlled in File System Configu-
ration File. O=not set (Default); 1=set when EPWR 1s
enabled.

Hot_count_enable_tlag—0=not enabled; 1=enabled.

Hot_count_threshold EPWR-—a variable set 1n File Sys-
tem Conﬁguration File to specily at what hot count level,

EPWR 1s needed. If hot count of all D3 blocks is <Ih0t

count threshold, even EPWR enable flag 1s on, EPWR
process 1s not triggered.

EPWR_venly_page budget—a varniable set in File Sys-
tem Configuration File to specily how many pages can
be read during 1 phase of EPWR.

EPWR_retries—a variable 1 File System Configuration
File to limit number of retry attempts.

D3_Block _max_retries—a variable in File System Con-
figuration File to limit the total number of retry attempts
on a D3 block over lifetime.

FIG. 22A 1s a flow diagram 1illustrating a preferred imple-

mentation of the EPWR error management as applied to a

memory having D1 to D3 folding.
STEP 800: Start.

STEP 810: D1 to D3 Foldmg in which data from three
binary data pages of D1 1s programmed 1nto one tertiary
page of D3 as described in connection with FIG. 20A.

STEP 812: Is a D3 block completely filled? If completely
filled, proceed to STEP 820, otherwise return to STEP
810.

STEP 820: Is enhanced post-write-read error management
(“EPWR”) enabled? More details of a device-age-de-
pendent enablement 1s given 1n FIG. 22B. If EPWR 1s
enabled, process EPWR 1 STEP 830. If not, the integ-
rity of the D3 block written 1s unknown, but optimisti-
cally assumed to be good. Proceed to STEP 850.

STEP 830: Process EPWR. A more detailed implementa-
tion of EPWR 1s given 1n FI1G. 22C.

STEP 840: At a higher level, essentially, the EPWR per-

forms a post-write-read of the D3 block and test of the

rate of ECC errors. If the errors does not exceed

E_pw_check (see FIG. 21), the D3 block 1s good. Pro-
ceed to STEP 850. Otherwise, the data 1n the D3 block
cannot be used and a retry of folding the D1 data to a new
D3 block 1s considered. Proceed to STEP 860.

STEP 850: The D3 block 1s deemed good so the original
copy of data in D1 can be made obsolete and retired.
STEP 860: Decide whether to retry on a new D3 block
based on a number considerations detailed 1n FIG. 22C.
If not permitted to retry, proceed to STEP 870. Other-

wise proceed to STEP 862 (shown 1 FIG. 22C).

STEP 862: The D1 to D3 folding 1s repeated on a new D3

block. Return to process another block.
STEP 870: The data in the D3 block 1s deemed bad, so data

must be accessed from original copy 1n D1.

STEP 872: Since this step 1s reached after a number of
unsuccessiul retries 1 attempting to rewrite the D3
block, the memory 1s deemed near end of 1t 1ts life. It 1s
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put into a read-only state to prevent any data corruption
due to programming operations. Proceed to STEP 890.
STEP 890: Done.

FIG. 22B illustrates 1n more detail the device-age-depen-
dent enablement feature of the enhanced post-write-read

error management. The STEP 820 1n FIG. 22A 1s shown 1n

FIG. 22B to further include the following:
STEP 822: Check 1f the EPWR_enable_flag (see FIG. 21)

1s enabled. If not enabled, EPWR 1s not been imple-
mented at all. Proceed by default to STEP 850 where the
D3 block 1s deemed good. I enabled, proceed to STEP

824 to control 1if EPWR should commence after some

aging of the memory device.
STEP 824: Check 1f the Hot_count_enable_tlag (see FIG.

21) 1s enabled. If not enabled, EPWR 1s implemented

from the beginming of life of the memory device. Pro-
ceed directly to STEP 830 to process EPWR. If the flag

1s enabled, proceed to STEP 826 which controls when

EPWR should commence.
STEP 826: Check 1f any one of the D3 blocks has a hot

count that exceeds the value in Hot count-threshold

EPWR. If not exceeded the memory device 1s still young
and not prone to excessive errors, proceed to STEP 850
and EPWR 1s essentially on hold. If the hot count has
exceeded the threshold, the memory device has attained
an age when errors becomes significant and will benefit
from the EPWR process. Proceed to STEP 830 to pro-
cess EPWR.

FI1G. 22C 1llustrates in more detail a preferred implemen-
tation of the enhanced post-write-read error management.
The STEP 830 1n FIG. 22A 15 shown 1n FIG. 22C to further
include the following:

STEP 832: Check 1f there i1s process time available for
doing post-write-read of the D3 block and possible
retries. The available time 1s preferably taken from
unused time during the execution of a host command 1n
the foreground. If necessary the process can be broken
down to smaller chunks so as to better utilize the spare
time during each host command. If there 1s available
time to start the process, proceed to STEP 834, other-
wise, proceed to STEP 838.

STEP 834: Start the process or 1f the process has already
been started but interrupted 1n the interim, continue the
process.

STEP 836: Read and transfer a page of data from D3 out to
the controller for checking EDC (error detection code).
Proceed to STEP 838.

STEP 840: The EPWR performs a post-write-read of the
D3 block and test of the rate of ECC errors. 11 the errors
does not exceed E_pw_check (see FIG. 21), the page
being tested 1s 1n D3 15 good. Proceed to STEP 842. If a
page 1s tested to be bad, the data 1n the D3 block cannot
be used and a retry of folding the D1 data to a new D3
block 1s considered. Proceed to STEP 864.

STEP 842: Has all the pages in the D3 block been tested?
If not, proceed to STEP 844 to process the next page. I
the whole block 1s tested to be good, proceed to STEP
850.

STEP 844: Select the next page in the D3 block. Return to
STEP 836.

STEP 862: Belore aretry 1s attempted, check if the number
of retries has already exceeded a set limit, EPWR _retries
(see FI1G. 21.) I not, a retry 1s attempted by proceeding
to STEP 866. If the number of retries has exceeded the
set limit, the memory device 1s deemed to be at 1ts end of
life and control proceeds to STEP 870.
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STEP 866: Another consideration before attempting a retry
1s to check 11 the excessive errors are intrinsic to the data
in D1 and not due to programming errors from D1 to D3.
The D1 data 1s first checked for excessive ECC errors. If
the number of error exceeded a predetermined threshold,
such as, ECC_threshold_SLC (see FI1G. 21), there 15 no
point in a retry. Return to STEP 834 to process another
D3 block.

However, 11 an optional feature as described below 1s 1imple-
mented, proceed to an optional STEP 868 instead. On the
other hand 11 the D1 data 1s good, proceed to attempt retry of
another D3 block in STEP 869. In another embodiment,
STEP 866 1s performed before STEP 862.

FIG. 22C also illustrates optional features as indicated by
boxes with broken lines. One option 1s illustrated by STEPs
864 and 865 to check if a block has been subjected too many
retries over 1ts lifetime. If so, the physical itegrity of the
block may be 1n question and it 1s best to retire the block so
that 1t 1s not used again. When this option 1s implemented, the
flow from a NO 1n STEP 862 will be routed to STEP 864.

STEP 864: Has the D3 block experience retries more than
a threshold as defined by the parameter Block _max-
retires (see FIG. 21). If so, proceed to STEP 865 to retire
the block, otherwise proceed to STEP 866 for further
rewrite decision.

STEP 865: The D3 block has be subjected to too many
retries over its lifetime to be deemed robust. It 1s retired
and taken out of circulation. Control then proceed
directly to STEP 869 to rewrite the D3 block.

The other option 1s that 1n the event the D1 data 1s not very
g00d, 1t 1s first corrected by ECC and restaged 1n D1 before

being folded to D3. When this option 1s implemented, the flow
from a YES 1n STEP 866 will be routed to STEP 868 instead

of STEP 834.
STEP 868: The problematic D1 data 1s corrected by
and restaged 1n D1. Proceed to STEP 869.
Accelerated Post-Write Read

Previous sections have described the techniques of actually
reading the data back after they have been written (also
referred to as “‘programmed”). This technmique 1s called
“PWR” (Post Write Read). According to one aspect of the
invention described earlier, the PWR techmique 1s enhanced
and 1s referred to as “EPWR” (Enhanced Post Write Read). In
this case, the PWR operation 1s only turned on when needed.
For example, PWR 1s initiated only after the memory begins
to develop more errors through use. This will alleviate some
ol the overheads associate with PWR.

According to another aspect of the imvention, mstead of
post-write reading every memory cells to check what have
been written, which could consume a lot of time and system
resources, the post-write read 1s only performed on a small
sample of memory cells representing a population of memory
cells with a similar error rate. When the post-write read of the
sample vields an error rate within a predetermined value, the
population 1s assumed to pass the check. Otherwise, the data
previously written on the population of cells are deemed to
have too much error and are either rewritten again to a ditler-
ent location 1n the same area or to another area of the memory
with intrinsic lower error rate.

As explained earlier, post-write read checking 1s different
from the usual program verily that 1s part of programming
operation. In programming a cell, it 1s subjected to pulse by
pulse programming voltages. In between each pulse the cell’s
programmed threshold 1s compared to a reference read
threshold. Once the cell’s threshold 1s detected to be pro-
grammed passed the reference read threshold, the cell 1s
locked out from further programming by a program inhibiting

ECC
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voltage applied to 1ts bit line. Thus, program-verity only
guarantee 11 the cell has been programmed pass a reference
threshold but gives no indication of any over programming,
that may have occurred. A read operation for MLC memory
actually checks 1f the programmed threshold 1s between a pair
of reference thresholds.

In MLC memory each cell stores more than one bit of data.
For example 1n D2 memory, each cell stores two bits of data.
The threshold window supported by the cells 1s partitioned by
a reference threshold 1into two halves. When the programmed
threshold of a cell lies 1n a first half, 1t has one bit value, e.g.,
‘1’ and when 1n a second half, it has the other bit value, e.g.,
‘0’. Similarly, 1n D3 memory, each cell stores three bits of
data and 1n D4 memory, each cell stores four bits of data. In
general, for a Dm memory, each cell stores m bits and the
threshold window 1s partitioned into 2™ voltage bands by
2" -1 reference thresholds. A coding scheme 1s used to assign
cach of the voltage bands with an m-bit code word.
Exemplary Preferred “LM” Coding for a 2-Bit or 4-state
Memory

FIGS. 23(0)-23(3) illustrate a logical page by page pro-
gramming ol a 4-state memory encoded with a preferred 2-bit
logical code (“LM” code). The 2 code bits from each memory
cell of a page form two logical pages with each page formed
from one code bits contributed from every memory cells of
the page. Programming can be performed logical-page by
logical page with the lower page followed by the upper page.
This code provides fault-tolerance and alleviates the BL-BL
floating-gate coupling (Yupin) Effect.

FI1G. 23(0) illustrates the threshold voltage distributions of
a 4-state memory array. The possible threshold voltages of
cach memory cell span a threshold window which 1s parti-
tioned into four regions to demarcate four possible memory
states, “Gr”, “A”, “B” and “C”. “Gr” 1s a ground state, which
1s an erased state within a tightened distribution and “A”, “B”
and “C” are three progressively programmed states. During
read, the four states are demarcated by three demarcation
retference thresholds, D ,, D and D..

FI1G. 23(3) illustrates a preferred, 2-bit LM coding to rep-
resent the four possible memory states. Each of the memory
states (viz., “Gr”, “A”, “B” and “C”) 1s represented by a pair
of “upper, lower” code bits, namely 117, <017, “00” and “10”
respectively. The LM coding differs from the conventional
Gray code 1n that the upper and lower bits are reversed for
states “A” and “C”. The “LM” code has been disclosed 1n U.S.
Pat. No. 6,657,891 and 1s advantageous 1n reducing the field-
elfect coupling between adjacent tloating gates by avoiding
program operations that require a large change in charges. As
will be seen 1n FIGS. 23(2) and 23(3), each programming,
operation results 1n moderate change of the charges in the
charge storage unit as evident from the moderate change 1n
the threshold voltages V .

The coding 1s designed such that the 2 code bits, “lower”
and “upper” bits, may be programmed and read separately.
When programming the lower bit, the threshold level of the
cell either remains 1n the “erased” region or 1s moved to a
“lower middle” region of the threshold window. When pro-
gramming the upper bit, the threshold level of a cell 1n either
of these two regions 1s further advanced to a slightly higher
level 1n a “lower intermediate” region of the threshold win-
dow.

FIGS. 23(1) and 23(2) illustrate the lower page program-
ming using the 2-bit LM code. The fault-tolerant LM code 1s
designed to avoid any subsequent upper page programming to
transit through any intermediate states. Thus, the first round,
lower page programming has a cell remain in the “erased” or
“Gr” state 1f the lower bit 1s “1” or programmed to a “lower
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intermediate” state if the lower bit 1s “0”. Basically, the “Gr”
or “ground” state 1s the “erased” state with a tightened distri-
bution by having the deeply erased states programmed to
within a well-defined range of threshold values. The “lower
intermediate” states may have a broad distribution of thresh-
old voltages that straddle between memory states “A” and
“B”. During programming, the “lower intermediate” state 1s
verified relative to a coarse demarcation such as D .

FIGS. 23(2) and 23(3) illustrate the upper page program-
ming using the 2-bit LM code. The upper page programming
1s performed on the basis of the first round, lower page pro-
gramming. A given upper bit can represent different memory
states depending on the value of the lower bit. In the second
round of programming, if a cell 1s to have the upper bit as “1”
while the lower bit 1s at “1”, 1.e. (1,1), there 1s no program-
ming for that cell and it remains 1n “Gr”. If the upper bit 1s <0
while the lower bitis at “17, 1.e., (0,1), the cell 1s programmed
from the “Gr” state to the “A” state. During programming to
“A”, the veritying 1s relative to the demarcation DV ,. On the
other hand, 11 the cell 1s to have the upper bit as “0” while the
lower bit1s at “0”, 1.e., (0,0), the cell 1s programmed from the
“lower intermediate” state to “B”. The program verifying 1s
relative to a demarcation DV ;. Similarly, 1t the cell 1s to have
the upper bit as “1” while the lower page 1s at <07, 1.e., (1,0),
the cell will be programmed from the “lower intermediate”™
state to “C”. The program verilying 1s relative to a demarca-
tion DV .. Since the upper page programming only mvolves
programming to the next adjacent memory state from either
the “Gr” state or the “lower intermediate” state, no large
amount of charges 1s altered from one round to another. Also,
the lower page programming from “Gr” to a rough “lower
intermediate” state 1s designed to save time.

FIG. 24 A illustrates the read operation that 1s required to
discern the lower bit of the 4-state memory encoded with the
2-bit LM code. The decoding will depend on whether the
upper page has been programmed or not. If the upper page has
been programmed, reading the lower page will require one
read pass of readB relative to the demarcation threshold volt-
age D. On the other hand, 11 the upper page has not yet been
programmed, the lower page would be programmed to the
“intermediate” state (see FIG. 23(2)), and readB would cause
error. Rather, reading the lower page will require one read
pass of readA relative to the demarcation threshold voltage
D ,. In order to distinguish the two cases, a flag (“LM” flag) 1s
written in the upper page (usually 1n an overhead or system
area) when the upper page 1s being programmed. During a
read, 1t will first assume that the upper page has been pro-
grammed and therefore a readB operation will be performed.
If the LM flag 1s read, then the assumption 1s correct and the
read operation 1s done. On the other hand, 11 the first read did
not yield a tlag, 1t will indicate that the upper page has not
been programmed and therefore the lower page would have to
be read by a read A operation.

FIG. 24B 1llustrates the read operation that 1s required to
discern the upper bit of the 4-state memory encoded with the
2-bit LM code. As 1s clear from the figure, the upper page read
will require a 2-pass read of readA and readC, respectively
relative to the demarcation threshold voltages D, and D..
Similarly, the decoding of upper page can also be confused by
the “intermediate” state 1f the upper page 1s not yet pro-
grammed. Once again the LM flag will indicate whether the
upper page has been programmed or not. If the upper page 1s
not programmed, the read data will be reset to *“1”” indicating
the upper page data 1s not programmed.

If the read 1s to scan through all sequence of the demarcated
states as 1n a “full-sequence™ read or “all-bit” read, the read 1s
performed relative to the memory states “Gr”, “A”, “B” and
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“C” demarcated respectively by reference threshold voltages

D ,, D, and D . As all possible states are differentiated by the
tull-sequence read, there 1s no need to check for any LM flag.

In this mode of read, all bits are determined together.
Exemplary Preferred “LM” Coding for a 3-Bit or 8-state 5
Memory

The example for the 2-bit LM code can be similarly
extended to 3-bit or high number of baits.

FIGS. 25(0)-25(4) illustrate the programming of an 8-state
memory encoded with a preferred 3-bit logical code (“LM” 10
code). The 3 bits from each memory cell of a page forms three
logical pages and programming can be performed logical-
page by logical page. This code 1s similar to the 2-bit LM
coding described earlier and 1s an extension i1nto 3 bits to
encode eight possible memory states. FIG. 25(0) 1llustrates 15
the threshold voltage distributions of an 8-state memory
array. The possible threshold voltages of each memory cell
spans a threshold window which 1s partitioned into eight
regions to demarcate eight possible memory states, “Gr”,
“A” “B”, “C”,“D”, “E”, “F” and “G”. “Gr”" 1s a ground state, 20
which 1s an erased state within a tightened distribution and
“A”-“(” are seven progressively programmed states. During
read, the eight states are demarcated by seven demarcation
reference thresholds, D ,-D ..

FI1G. 25(4) illustrates a preterred, 3-bit LM coding to rep- 25
resent the eight possible memory states. Each of the eight

memory states 1s represented by a triplet ot “upper, middle,
lowerﬂ'? bitsj namely Eil 1 13‘3‘5 iiOl 13‘3‘5 EiOOl??j iilOl?ﬂ'j EilOOﬂ'ﬂ'j

“0007,%010” and “110” respectively. As will be seen 1n FIGS.
25(1) and 25(4), each programming operation results in mod- 30
crate change in the charges in the charge storage umt as
evident from the moderate change in the threshold voltages
V..

The coding 1s designed such that the 3 code bits, “lower”,
“middle” and “upper” bits, may be programmed and read 35
separately. Thus, the first round, lower page programming has
a cell remain 1n the “erased” or “Gr” state 1f the lower bit 1s
“1” or programmed to a “lower itermediate™ state 1f the
lower bit 1s “0”. Basically, the “Gr” or “ground” state 1s the
“erased” state with a tightened distribution by having the 40
deeply erased states programmed to within a narrow range of
threshold values. The “lower intermediate” states may have a
broad distribution of threshold wvoltages that straddling
between memory states “B” and “D”. During programming,
the “lower intermediate” state can be verified relative to a 45
coarse demarcation reference threshold level such as Dy.
When programming the middle bit, the threshold level of a
cell will start from one of the two regions resulted from the
lower page programming and move to one of four possible
regions. When programming the upper bit, the threshold level 50
of a cell will start from one of the four possible regions
resulted from the middle page programming and move to one
of eight possible memory states.

In general a page of memory cells 1s being programmed 1n
parallel, with each memory cell having 3 bits. Thus, the page 55
of memory cells may be regarded as having 3 logical data
pages with each logical data page contributed from one code
bit of every cells of the page. Thus, a “lower bit” page 1s
formed from the lower bit of every memory cells of the page,

a “middle bit” page 1s formed from the middle bitof every cell 60
and an “‘upper bit” page 1s formed from the upper bit of every
cell of the page.

FIGS. 25(1) and 25(2) illustrate the lower page program-
ming using the 3-bit LM code. The fault-tolerant LM code 1s
designed to avoid any subsequent higher page programming 65
to transit through any intermediate states. Thus, the first
round, lower page programming has a cell remain 1n the
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“erased” or “Gr” state 1f the lower bit 1s “17, 1.e. (X,X,1) or
programmed to a “lower intermediate” state 1f the lower bit 1s
“07, 1.e., (X,X%,0). Basically, the “Gr” or “ground” state 1s the
“erased” state with a tightened distribution by having the
deeply erased states programmed to within a well-defined
range ol threshold values. The “lower intermediate™ states
may have a broad distribution of threshold voltages that strad-
dling between memory states “B” and “D”. During program-
ming, the “lower intermediate”™ state 1s verified relative to a
demarcation such as D.

FIGS. 25(2) and 25(3) illustrate the middle page program-
ming using the 3-bit LM code. The middle page programming
1s performed on the basis of the first round, lower page pro-
gramming. A given middle bit can represent different
memory states depending on the lower bit. In the second
round of programming, 1f a cell 1s to have the middle bitas “1”
while the lower bit1s at 17, 1.e. (x,1,1), there 1s no program-
ming for that cell and 1t remains 1n “Gr”. If the middle bit 1s
“0” while the lower bit 1s at “17, 1.e., (x,0,1), the cell 1s
programmed from the “Gr” state to a first “middle interme-
diate” state straddling between “A” and “B”. During pro-
gramming to the first “middle intermediate’ state, the verity-
ing 1s relative to the demarcation DV . On the other hand, 1f
the cell 1s to have the middle bit as “0” while the lower bit 1s
at “07, 1.e., (x,0,0), the cell 1s programmed from the “lower
intermediate” state to a second middle intermediate™ state
straddling between “C” and “D”. The program verifying 1s
relative to a demarcation DV .. Similarly, 1f the cell 1s to have
the middle bit as “1” while the lower page 1s at “07, 1.¢e.,
(x,1,0), the cell will be programmed from the “lower inter-
mediate” state to a third “middle mtermediate™ state strad-
dling between “E” and “F”. The program verifying 1s relative
to a demarcation DV,..

FIGS. 25(3) and 25(4) illustrate the upper page program-
ming using the 3-bit LM code. The upper page programming
1s performed on the basis of the first and second rounds,
namely the lower and middle page programming. A given
upper bit can represent different memory states depending on
the lower and middle bits. In the third round of programming,
if a cell 1s to have the upper bit as “1” while the lower and
middle bits are at““1”,1.e. (1,1,1), there 1s no programming for
that cell and it remains 1n “Gr””. On the other hand, 1fthe upper
bit 1s “0” while the lower and middle bits are at <17, 1.e.
(0,1,1), the cell 1s programmed from the “Gr’ state to the “A”
state. During programming to “A”, the verifying 1s relative to
the demarcation DV .

Similarly, 1f the cell 1s to have the upper bit as “0” while the
lower bit and middle bits are at “0” and *“1” respectively, 1.e.
(0,0,1), the cell 1s programmed from the first “middle inter-
mediate” state to “B”. The program verifying 1s relative to a
demarcation DV 5. If the cell 1s to have the upper bit as “1”
while the lower bit and middle bits are at “0”” and *“1” respec-
tively, 1.e. (1,0,1), the cell 1s programmed from the first
“middle intermediate” state to “C”. The program verifying 1s
relative to a demarcation DV ..

Similarly, 11 the cell 1s to have the upper bit as “1” while the
lower bit and middle bits are at “0”” and “0” respectively, 1.e.
(1,0,0), the cell 1s programmed from the second “middle
intermediate” state to “D”. The program verifying 1s relative
to a demarcation DV 5. If the cell 1s to have the upper bitas “0”
while the lower bit and middle bits are at “0”” and “0” respec-
tively, 1.e. (0,0,0), the cell 1s programmed from the second
“middle intermediate” state to “E”. The program veritying 1s
relative to a demarcation DV .

Similarly, 1f the cell 1s to have the upper bit as “0” while the
lower bit and middle bits are at *“1”” and “0” respectively, 1.e.
(0,1,0), the cell 1s programmed from the third “middle inter-
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mediate”™ state to “F”. The program verifying 1s relative to a
demarcation DV ... It the cell 1s to have the upper bit as “1”
while the lower bit and middle bats are at “0”” and “0” respec-
tively, 1.e. (1,1,0), the cell 1s programmed from the third
“middle intermediate” state to “G”. The program verifying 1s
relative to a demarcation DV ..

Since the upper page programming only involves program-
ming to the next adjacent memory state from either the “Gr”
state or one of the “middle intermediate” states, no large
amount of charges 1s altered from one round to another. This
helps to alleviates BL-BL Yupin eflect.

Thus, itwill be seen thata Dm (m=1, 2,3, ... ) memory can
be programmed a bit at a time and also read a bit at a time.
When a group of memory cells on a word line WLn are
programmed or read 1n parallel, there will be m data pages
associated with the group, with each data page corresponding
to one bit from each cells of the group. In a progressive
reading mode, the sensing 1s relative to a subset of the refer-
ence thresholds and at each sensing only one of the m data
pages are read Irom WLn and transierred out to the controller.
In a full sequence reading mode, the sensing 1s relative to all
the reference thresholds and all m data pages are read from
WLn before being transierred out page by page.

For example, 1n the case of a memory with the NAND
architecture shown 1n FIG. 4, each NAND string has a daisy
chain of n memory cell. In one embodiment, a row of such
NAND chains faints an erase block 300 shown 1n FIG. 6. In
FIG. 4, a page of memory cells, such as page 70 on WL3, 1s
operated on 1n parallel.

FI1G. 9 shows a data page 70' being one of the m data pages
for an m-bit memory on word line WLn. As described earlier,
in another preferred embodiment, when with higher and
higher device mtegration, there are larger than optimal num-
ber of memory cells 1n a page sharing an ECC field, the page
70 1s partitioned into smaller units, consisting of “ECC
pages’” .

FIG. 26 A 1llustrates schematically an ECC page contain-
ing an ECC field similar to that shown in FIG. 9. The ECC
page 80 comprises a user portion 82 and a system portion 84.
The user portion 82 is for storage of user data. The system
portion 84 1s generally used by the memory system for storage
of system data. Included 1n the system data 1s an ECC. The
ECC 1s computed for the ECC page. Typically, the ECC 1s
computed by the ECC processor 62 in the controller 102 (see
FIG. 1.) The difference between FIG. 26 A and FIG. 9 1s that
instead of the ECC page 80 of occupying the entire data page
70", 1t 1s one of several constituting the data page.

FI1G. 26B illustrates a plurality of ECC pages constituting,
a data page. A data page such as the data page 70' shown 1n
FIG. 4 1s the set of data constituted from a logical bit from
cach cell of a page of cells on a WL. In general there are N
EEC pages making up a data page. For example, N=4, where
there are 4 EEC pages 80 making up one data page 70"

As data 1s received from a host, an ECC page of data 1s
staged 1n the controller 102 and 1ts ECC 86 1s computed by the
ECC processor 62 (see FIG. 1). A number of ECC pages 80
incorporating their own ECC 1s then staged and written to the
memory array 200 as a data page 70'. Typically, when the data
page 70" 1sread, the data page 1s latched in the data latches 430
and shifted out of the I/O circuits 440 to the controller 102. At
the controller 102, each ECC pages of the data page’s has its
ECC 86 compared to a second version of the ECC computed
on the read data. The ECC typically includes an error detec-
tion code (“EDC”) for rapid detection of any error in the data
page. If the EDC indicates the existence of any error in the
read data page, the ECC 1s invoked to correct erroneous bits in

the read data page. The ECC 1s designed to correct up to a
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predetermined maximum number of errors. In practice, at any
given time in the life of a memory, the ECC may have budget
to correct a predetermined number of errors less than the
predetermined maximum.

For a 2-bit memory, each cell stores 2 bits of data and there
will be 2 data pages associated with each WL in the example
in FI1G. 4. If each data page has 4 ECC pages, then there will
be a total of 8 ECC pages programmed 1nto a WL and to be
read out for PWR checking.

Similarly for a 3-bit memory, each cell stores 3 bits of data
and there will be 3 data pages associated with each WL in the
example 1n FIG. 4. If each data page has 4 ECC pages, then
there will be a total o1 12 ECC pages programmed into a WL
and to be read out for PWR (post-write read) checking.

Thus, 1t will be seen for a 3-bit memory that performing a
PWR check after writing every WL can involve sensing the 12
ECC pages and then shipping out to the controller for ECC
checking. If the ECC decoder finds any one of the 12 ECC
pages has exceeded a predetermined error budget, the write to
that WL 1s deemed unacceptable and 1s retried at a different
WL. For example, the write 1s rewritten to another WL 1n the
same block or in a portion of memory, such as with one-bit
cells, having a higher tolerance for errors.

In the 3-bit memory example, there are 3 data page to be
sensed. As seen from the description 1n connection with FIG.
235, this will incur 3 read cycles, one for each data page. Each
read cycle will be sensing relative to one or more reference
thresholds and therefore reading the WL will take time. Fur-
thermore, each data page has 4 ECC pages and a total of 12
ECC pages will need to be serially transferred out to the
controller. The transfer operations will also take time, 11 not
more time than the sensing operations.

PWR Checking on a Sample Instead of the Whole Population

In a general embodiment of the invention, the post-write
read (PWR) checking on what has been written 1s accelerated
by checking only a subset of what has been written. The
post-write read checking 1s performed on only a sample of
what was written.

FIG. 27 1s a flow chart illustrating the general embodiment
of accelerated PWR.

STEP 900: Providing multiple groups of memory cells, the

memory cells 1n each group for operating in parallel.

STEP 902: Programming multiple subsets of data into a
first group of memory cells, each subset of data being
provided with an ECC.

STEP 910: Selecting a sample of the data programmed in
the first group of memory cells, the sample being
selected from a subset of data sald multiple subsets of
data programmed 1nto the first group.

STEP 920: Reading said sample.
STEP 922: Checking said sample for errors.
STEP 930: Reprogramming said multiple subsets of data

into a second group of memory cells whenever the errors
checked from the sample 1s more than a predetermined
number of error bits.

In one embodiment, the sample to be check1s a subset of all
the ECC pages written to a group of cell on a word line. In
particular, the subset 1s one among all the ECC pages that 1s
estimated to have a highest error rate.

FIG. 28 1s a flow chart 1llustrating a preferred embodiment
ol accelerated PWR 1llustrated in FIG. 27. The process 1s
similar to that of FIG. 27, except STEP 910 is replaced by
STEP 910"

STEP 910" Selecting a sample of the data programmed in

the first group of memory cells, the sample being
selected from a subset of data said multiple subsets of

data programmed 1nto the first group and the sample 1s a




US 9,213,601 B2

29

subset of data estimated to have a highest error rate
among said multiple subsets of data programmed into
the first group.

FIG. 29 illustrates a sample selected for post-write read
after a group of 3-bit memory cells on a word line has been
written. In the 3-bit memory, there will be 3 data pages,
namely, lower, middle and upper pages, written to a word line
WL 42. Depending on the designed placement of the refer-
ence thresholds that demarcate the various voltage bands 1n
the threshold window of the memory, one of the data pages
may have a slightly higher error rate than the other. For
example, 11 the upper data page has an estimated highest data
rate among the three data pages, it will be selected. It all the
ECC pages 1n the selected data page are estimated to have the
same error rate, then 1t sutfices to select an ECC page with a
location that 1s the first to be shifted out to the controller. Also,
the choice of coding scheme can also have a bearing on the
error rate. For example, a grey code offers a mimmum bit
error when the programmed threshold 1s shifted. Depending
on the choice of coding, the various data pages being stored 1n
the same group of memory cells can have similar or different
error rates.

In practice, the error on a word line could be due to a
physical defect like a crack resulting 1n an open circuit or one
with an unusually high resistance. If the defect occurs
between the cell in question and the WL decoder, the check
will show an error. I the defect occurs on the other side of the
cell away from the WL decoder, then, the check may not show
an error. Thus, among all the ECC pages along the WL 42, the
sample ECC page 82 at the end of the WL furthest from the
WL decoder 40 1s likely to be impacted by the defect irre-
spective of the defect location on the WL.

Thus, 1n a preferred embodiment where there are multiple
data pages written to a word line (WL), a sample used for
checking the data written to the WL 1s first selected from a
data page with highest estimated error rate. Furthermore, if
there are multiple ECC pages 1n the selected data page, the
ECC page located furthest away from a word line decoder 1s
selected for the sample.

In another embodiment, the sample to be check 1s a subset
of all the ECC pages written to a group of cells in a block. The
block has all cells 1n it erasable together. In particular, the
subset 1s one among all the ECC pages that 1s estimated to
have a highest error rate.

For example, 1n the NAND memory shown in FIG. 4, an
erase block 1s constituted from a row of NAND chains. Each
NAND chain 1s 16 memory cells daisy-chained by their
sources and drains, terminating on one end 1n a source termi-
nal and the other end 1n a drain terminal. It 1s well-known that
the cells 1in closest to the source terminal and the drain termi-
nal are more error prone. Thus, for such a block, the word
lines WL1 or WL16 should be selected. In this case, prefer-
ably, the sample 1s the ECC page at the end of WL1 furthest
from the word line decoder.

In yet another embodiment, where a block of memory cell
having a set of word lines 1s erasable as a erase unit, and there
1s a requirement that data written to each word line of the set
must check out, or else the entire block 1s rewritten, the WL of
the set estimated to have the highest error rate 1s preferentially
checked first. In this way, any error that may occur will be
detected early and the rewriting of the block can begin with-
out delay.

Thus, for the NAND memory shown in FIG. 4, the word
lines WL1 and WL16 should be selected first for checking.

Although an example 1s given for a memory being parti-
tioned into a first portion having memory cells each storing,
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1-bit data and a second portion having memory cells each
storing 3-bit data, the invention 1s not limited by the example.
The forgoing techniques and extensions of these are devel-

oped turther the following US patent, patent publication, and
application numbers: 2011-0096601; Ser. Nos. 13/193,083;

13/280,217; 2013-0028021; and Ser. No. 14/033,727
Adaptive Data Re-Compaction after Post Write Read Verifi-
cation Operations

This section considers some approaches for adaptively re-
compacting data when errors are found during a EPWR.
These techniques can help to improve memory life by reduc-
ing the need to cycle blocks. This approach can be particularly
usetul for multi-state memory blocks.

Considering an exemplary EPWR process as described
above, data 1s first written to three binary (SLC) blocks (S1,
S2, S3), where at the end of each binary block can be a set of
parity bytes formed by XOR-1ng the word lines of each block

(XOR_S1, XOR_S2, XOR_S3). During compaction of the

data 1n a 3 bit per cell folding operation, the three binary
blocks along with their parity get copied to a 3-bit per cell
(X3) block. Although not discussed in the preceding sections,
the parity data can be usetul in recovering data for defective
word lines. The generation and use of parity data based on the
XOR-1ng of the other data 1n the block 1s described in more
detail in US patent publication number 2013-0031429-A1.

A baseline method of freeing up binary blocks 1s by veri-
tying all the word lines 1n an X3 blocks by an enhanced post
write read process as described 1n preceding sections. EPWR
1s performed on the destination X3 block after completely
folding from the source binary blocks orin a “rolling” EPWR
method, where the word line reads are interspersed during the
course of the folding process. If all the pages 1n the X3 block
can be read without any error, then the corresponding sources
in the binary portion are freed up for further writes. If any
page (or ECC page) in the X3 block has a bit error rate (or
syndrome weight) greater than the threshold, then the entire
folding operation 1s restarted to a new block. This section
presents an efficient way of handling the atfected pages 1n an
X3 blocks, including parity data, and hence improve the life
of the system.

FIG. 30 1s a schematic representation of a way of handling,
the pages or word lines that fail the post-write read verifica-
tion (such as 1n the EPWR examples discussed above) on an
individual basis and hence avoids the need to do a block level
re-folding of the data. A number of binary (or X1) memory
blocks are represented at 1001, 1003, 1005, and 1007 and
serve as source blocks for a folding process. For instance, the
shaded page in each of 1003, 1005, and 1007 can be written
into a single physical page as lower, middle, and upper data
pages 1nto a destination word line such as one of the shaded
ones 1n the X3 destination block 1011. During the verity
operation, 11 any word lines inthe X3 block 1011 fails EPWR,
then any such word lines can be mapped out and the remain-
ing, passing word lines can be left intact in the X3 block
chosen as the original destination.

The data on the word lines that failed for EPWR can be
re-constructed by going back to the corresponding binary
data sources and then doing a fold operation to a new X3
block, such as block 1021. Here, the data on word lines 1013
and 1015 are found to be defective and rewritten 1n at 1023
and 1025. This saves time as compared to doing a re-fold of
the entire block where all the sources have to be read back and
an entire new block has to be written to. This helps in reducing
the cycling frequency of blocks and hence decreases the write
amplification for blocks that have a few word line failures 1n
either the source or destination block.
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Although FIG. 30 1s given the context of writing data from
a set of three non-volatile memory blocks storing data 1n a
binary format into a single X3 block as part of a folding
operation, a number generalization or variations are possible.
A first of these 1s just the use of different formats other than
binary and X3 for the storage of data for one or both of the
respective source and destination blocks. As far as how to
treat the data from the word lines that do not pass EPWR, a
number of options are possible, including: just leaving the
data in the binary (in the exemplary embodiment) source
blocks; moving the data to a new binary (or source) block; or
moving the data to a new destination block, such as the block
1021 of the example. In most cases, moving the data (the
second and third cases) are often preferable as these allow the

original source blocks such as 1001, 1003, 1005, and 1007 to
be freed up. Additionally, 1t should be noted that although the
process 1s here mainly presented in the context of an on-chip
folding process, 1s also applicable to direct hosts writes as
well as for on-chip copy. In the direct host writes, the source
1s RAM (such as on the controller) or what is refer to as a “safe
zone” (a non-volatile SLC block of data where data 1s tem-
porarily placed).

With respect to checking whether or not the data was suc-
cessiully written 1nto the source word lines, this determina-
tion can be based on any of the variations describe above or
other sorts of post-write read verification operations. Which-
ever such verification 1s used, 1t preferably has features that
can include: determining (when on-chip copy is used) that
there were no errors 1n the binary sensing operation; deter-
miming whether there programming errors in the destination
block; and determining that the number of bit errors (and/or
state of the data) 1s less than a defined threshold 1n order to
quantily that the data 1s 1n a sufficient state for future reading.

The EPWR (or, more generally, other post-write verily)
can either be a rolling EPWR or a 2 stage batch operation. In
the rolling process, the post-write verifies are interleaved with
the writing of the block’s word lines. In the 2-stage EPWR,
stage 1 1s to check the user data, non-parity word lines (say,
word lines 0-84 for the example here) are checked first. Only
alter these word lines pass EPWR does the EWPR proceed
with folding of parity word lines (word lines 85-86 for this
example). Then the system can do stage 2 EPWR of the parity
word lines (here word lines 85-86). Optionally, data word
lines can be checked for potential write disturbs caused by
writing 1n the block’s parity data. It a failure 1s determined in
stage 1, then the parity that has accumulated would be modi-
fied to exclude any word lines that are re-mapped, whether
these are left 1n the source memory or to a new block. If the
parity 1s calculated after the EPWR 1s performed on the entire
X3 (or, more generally, destination) block, then this can be
achieved by just discarding the corresponding bad word lines.

Considering the parity data further, in an exemplary
embodiment this can be based on the XOR-1ng of the user
data pages such as 1s described 1n more detail 1n US patent
publication number 2013-0031429-A1. For example, parity
can be generated as the host data comes 1n, prior to being
written into non-volatile memory, to avoid accumulating bit
errors in the binary (for the exemplary embodiment) memory.
Also, as data 1s typically stored with ECC protection, 11 the
memory system wanted to calculate the parity after it was
stored 1n non-volatile memory, an ECC decoding would be
needed prior to XOR-1ng or otherwise generating the corre-
sponding parity data. The parity data for the source, X3 block
can then be generated from then be generated from the binary,
source data. (With respect to parity and ECC data and 1ts
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generation for multi-state memory 1n a folding process, see
also US patent publications US-2010-0309719-A1 and

US-2010-0309720-A1.)

When a word line does notpass EPWR and the parity of the
destination block needs to take account of this, the data cor-
responding to the failed word line as stored in the source
memory can be used to modily the parity page for destination
(here, X3) block. For example, the source data 1s read from
the binary memory 1001, goes through an ECC decode, and
can then be XOR-ed with the parity coming from the binary
source memory that can have been temporarily stored in
R AM on the controller, effectively removing the contribution
of data corresponding from the failed word line to the XOR
parity. The data 1n parity 1s ECC-less as, when generating the
parity, all the data participating in the parity 1s XOR-ed prior
to ECC. When the parity data 1s stored to the non-volatile
memory the corresponding ECC can be to the parity. When-
ever data 1s removed from the parity, it would first go through
the parity to remove any bit errors. When the parity 1s read
from the flash, the first operation 1s to do an ECC decode to
remove any bit errors.

As noted, in some configurations the source block 1is
checked before a fold operation. Assuming the source 1s not
checked prior to folding, then after an EPWR failure the
source block/word line 1s checked for potential errors. 11 the
source block had a failure then the entire word line 1s marked
bad and the X3 block/word line can be added to a temporary
l1st until the block gets re-compacted. If the destination block/
word line 1s determined to be the problem source, then the
block/word line 1s added to a progressive word line failure
table. The data can be leit in the block until the next compac-
tion occurs, at which point the block can either be tested with
firmware, or simply used again for compaction. If the WL 1s
deemed problematic then it 1s deemed permanently bad. If the
failure does not appear again, then the block/word line 1s
removed from the progressive word line failure table.

As for maintaining a record of word lines that fail the post
write verification process, two types of records can be made.
A first type 1s a temporary record, which 1s used to determine
whether a failure 1s temporary or more permanent. The sec-
ond type1s a permanent record. The permanent record be used
to determine the word lines that do not participate 1n the XOR
(or, more generally, parity) calculation. The permanent record
can also be used to map out word lines for subsequent copy
operations, so that the corresponding word lines are skipped
at the binary source to avoid repeating the problem.

FIG. 31 1s a tlow to 1illustrate some of the features of the
exemplary embodiment. At 1101 the user data word lines of a
destination X3 block have been written. The post write verity
process then starts at 1103. (The tlow here 1s based on the case
that all of the user data pages of a block have been written, but,
more generally, this could be done for a partial block or
generalized to arolling EPWR operation.) At 1105 1t 1s deter-
mined 1f the word line passes and, 11 so, at 1107 1t 1s checked
whether there are more user data word lines to check. If the
word line 1s not the last one (here, word line (WL) 84) for user
data, the process 1s incremented (1111) to next word line and
process loops back to 1103.

If, instead of passing at 1105, a word line does not pass,
instead of going directly to 1107 the flow 1nstead goes by way
o1 1113, where the failing word line 1s added to record or table
of failing word lines, as described above. As described above,
the failing word lines and their effect on the parity data are
dealt with at 1115, where the broken lines to 1115 are to
represent that the variability of when process at 1113 can be
performed, such as immediately, as soon as a failing WL 1s
found, or at a later point once the EPWR 1s complete for the
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whole block. Returning to 1107, if the word line 1s the last
user data word line, the flow 1nstead goes to 1109, where the
parity pages, modified if needed, are folded into the word
lines set aside for them, after which they can be verified.
Conclusion

The techniques of the preceding sections can provide a
number of advantages, including significantly faster EPWR
operation. They can also require less bandwidth of the bus
between the controller and the memory. They can further
require less bandwidth from the controller hardware. The
various embodiments allow for efficient multi-die EPWR
operation 1n the memory system. Further, the techniques pre-
sented 1n the preceding section can 1 some cases allow
detecting NAND failures in progress at their initial stages,
betore they affect the bit error rate.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
1s not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible 1 light of the above teaching. The described
embodiments were chosen 1n order to best explain the prin-
ciples of the invention and 1ts practical application, to thereby
enable others skilled 1n the art to best utilize the mnvention 1n
various embodiments and with various modifications as are
suited to the particular use contemplated. It 1s intended that
the scope of the invention be defined by the claims appended
hereto.

It 1s claimed:

1. A method of operating a non-volatile memory system
including one or more non-volatile memory circuits each
having one or more arrays ol non-volatile memory cells
tormed along word lines as a plurality of erase blocks, each
erase block corresponding to a plurality of word lines, the
method comprising:

storing a first plurality of pages of data 1n a first section of

the non-volatile memory system;

subsequently programing the first plurality of pages from

the first section into a first plurality of word lines of a first
block of the memory system, wherein the first plurality
of word lines 1s less than all of the word lines of the first
block;

determining whether the first plurality of data pages were

programmed correctly into the first plurality of word
lines;

generating one or more pages of parity data from the first

plurality of data pages, where the parity data 1s generated
only from those of the first plurality of data pages that
were determined to be programmed correctly into the
first plurality of word lines; and

writing the generated pages of parity data into one or more

second word lines of the first block other than those of
the first plurality of word lines.

2. The method of claim 1, further comprising:

in response to determining that one or more of the first

plurality of data pages were not programmed correctly,
re-programming the pages ol data corresponding to
those of the first plurality of word lines on which data
pages were not programmed correctly from the first
section 1nto non-volatile memory on the memory system
other than the first block.

3. The method of claim 2, where the non-volatile memory
on the memory system other than the first block is a block of
non-volatile memory in which data 1s stored 1n binary format
other than the first section.

10

15

20

25

30

35

40

45

50

55

60

34

4. The method of claim 2, where the non-volatile memory
on the memory system other than the first block is a block of
non-volatile memory 1n which data 1s stored in multi-state
format other than the first section.

5. The method of claim 2, wherein the memory system
updates a logical to physical mapping between logical pages
of data and the location 1n which the logical pages are written
to reflect the re-programming the pages of data corresponding
to those of the first plurality of word lines on which data pages
were not programmed correctly.

6. The method of claim 1, wherein the memory system
further includes a controller circuit and the first section 1s

RAM memory on the controller circuit.
7. The method of claim 1, wherein the first section 1s one or

more blocks of non-volatile memory in which the first plu-
rality of pages of data are stored in binary format.

8. The method of claim 7, further comprising receiving the
first plurality of pages from a host to which the memory
system 1s connected and writing the first plurality of pages
into the first section.

9. The method of claim 7, wherein the first plurality of
pages are programmed 1nto the first plurality of word lines in
a multi-state format 1n which data from N word lines 1n the
first section are programmed into each of the word lines of the
first plurality, where N 1s two or larger.

10. The method of claim 9, wherein the programming of
the first plurality of pages 1s performed as an on-chip opera-
tion.

11. The method of claim 1, wherein the first plurality of
word lines and the second word lines correspond to all of the
word lines of the first block.

12. The method of claim 1, wherein the determining of
whether the first plurality of data pages were programmed
correctly 1s performed subsequent to programming all of the
first plurality of data pages into the first plurality of word
lines.

13. The method of claim 1, wherein the determiming of
whether the first plurality of data pages were programmed
correctly 1s performed for one or more of first plurality of data
pages prior to programming all of the first plurality of data
pages.

14. The method of claim 1, wherein the determining of
whether a data page was programmed correctly comprises
determining whether the amount of error of the data page
exceeds limit.

15. The method of claim 1, further comprising:

prior to programing the first plurality of pages from the first

section 1nto a first plurality of word lines of a first block
of the memory system, determining whether the first
plurality of pages of data as stored in the first section
have an amount of error exceeding a limut.

16. The method of clam 1, wherein generating the pages of
parity data includes modifying previously generated pages of
parity data to exclude the contribution thereto of data pages
that were determined to not be programmed correctly.

17. The method of claims 1, wherein the one or more
second word lines 1s a plurality of word lines.

18. The method of claim 1, further comprising:

maintaining a record of the first word lines 1n which data

pages where determined to not be programmed cor-
rectly.

19. The method of claim 18, wherein the first word lines 1n
which data pages where determined to not be programmed
correctly are marked as defective in the record.
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