12 United States Patent

Brochard et al.

US009189273B2

US 9,189,273 B2
Nov. 17, 2015

(10) Patent No.:
45) Date of Patent:

(54) PERFORMANCE-AWARE JOB SCHEDULING
UNDER POWER CONSTRAINTS

(71) Applicant: LENOVO Enterprise Solutions
(Singapore) PTE. LTD., New Tech Park
(5G)

(72) Inventors: Luigi Brochard, Paris (FR); Rajendra
D. Panda, Austin, TX (US); Francois
Thomas, Alencon (FR)

(73) Assignee: Lenovo Enterprise Solutions PTE.
LTD. (SG)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 67 days.

(21) Appl. No.: 14/193,075

(22) Filed: Feb. 28, 2014
(65) Prior Publication Data
US 2015/0248312 Al Sep. 3, 2015
(51) Int.CL
GO6IF 9/455 (2006.01)
GO6F 9/48 (2006.01)
(52) U.S. CL
CPC GO6F 9/4881 (2013.01); GO6F 9/4893

(2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,549,930 B1* 4/2003 Chrysosetal. 718/104
7,958,508 B2 6/2011 Shimizu et al.
8,010,822 B2 8/2011 Marshall et al.

100

N

8,527,997 B2 9/2013 Bell, Jr. et al.

8,612,984 B2 12/2013 Bell, Jr. et al.
2003/0135621 Al* 7/2003 Romagnoli 709/226
2012/0216205 Al* 8/2012 Belletal. 718/102
2013/0139170 Al* 5/2013 Prabhakaretal. 718/104
2013/0305251 Al 11/2013 Yamauchi et al.
2014/0359633 Al* 12/2014 Breternitz etal. 718/104

FOREIGN PATENT DOCUMENTS

CN 101539800 9/2009
OTHER PUBLICATIONS

Anonymous, “Allocation of Partitions to Nodes in a Power-Aware
Computing system,” IP.com No. IPCOMO000201577D, Nov. 15,

2010.
Anonymous, “Power-aware VM scheduling in a cloud data center,”
[P.com No. [IPCOMO000196870D, Jun. 18, 2010.

* cited by examiner

Primary Examiner — Kenneth Tang

(74) Attorney, Agent, or Firm — Kunzler Law Group;
Katherine Brown

(57) ABSTRACT

A method, system, and computer program product for pro-
cessing an application 1 a high performance computing
(HPC) data center are described. The method includes ana-
lyzing and sorting a plurality of nodes 1n a cluster of the HPC
data center into a plurality of frequency bins, each of the
plurality of nodes being sorted into more than one of the
plurality of frequency bins based on performance. The
method also includes analyzing and sorting the application
into an application bin among a plurality of application bins
based on a frequency scaling characteristic of the application.
The method further includes selecting a first set of nodes
among the plurality of nodes to process the application, the
first set of nodes being sorted into a first frequency bin among
the plurality of frequency bins corresponding with the appli-

cation bin of the application.

14 Claims, 4 Drawing Sheets

130 1 110

|| 112 116 i

Voo / i

15 i N 114 e |

g 118 ;

. 160 // \
—— 110 110 110
150 :

US 9,189,273 B2

Sheet 1 of 4

Nov. 17, 2015

U.S. Patent

091

3
L)
1

L)
3
1

ot

001

09¢ | sqol Aluond Jamo| Ajipow ¢ Dl

US 9,189,273 B2

0GZ | 2doueljdwod Jamod pue Alljige|ieae AjlJaA

-

2 Ot | uoneosldde ayl ss220.4d 01 S9POU 109|095 [«—
SJ13s1u93de4eYd Suljeds Aduanbalj uo oea JO ulsiew sui)}20]|249A0 Aduanbaul)

v, paseq LOS pue uoledijdde azAjeue UO paseq 1J0s pue sapou azAjeue

o 0EC

2

z

oW1 1SJ1} 9yl JOJ pajiwuqgns sulag sl uoniedljdde JI aulwlIa1ap

) | 0T

13|Npayas qol 03 paniwgns uoijedljdde

U.S. Patent

¢ DI

sulq AouanbaJl) 01Ul S9POU 1J0S

US 9,189,273 B2

0GE

/\

9pO0U Yyoea Joj Aduanbal) 0gun] 9AI10349 SUIWIBP Ove
2
) uoIdwNsSuOod Jamod pue aJuewJouad piodal Uee
= 9POU Ydea uo syJewydusq uni | Qs
w ~—"
z

SyJewyduaq dojpasp | OT¢€

U.S. Patent

US 9,189,273 B2

Sheet 4 of 4

Nov. 17, 2015

U.S. Patent

7 Ol

S9POU PI1I9|3S J0J Ot
Papaau Joamod 01 Jomod 3|gejieAe aiedwod /\

uolledljdde Jo agesn
JomMmod 3|ge|ieAe aulWIa1ap W4, Jamod a1ewi3sa

191SNJ2 JO 9desn Jomod 1uaJlind aulwlialap 0TV

OtV

US 9,189,273 B2

1

PERFORMANCE-AWARE JOB SCHEDULING
UNDER POWER CONSTRAINTS

BACKGROUND

The present invention relates generally to high perfor-
mance computing, and more specifically, to performance-
aware job scheduling under power constraints.

A high performance computing (HPC) data center includes
a cluster of nodes with high performance interconnects. Each
node includes multiple processors. Typically, the nodes in a
cluster have identical configurations (e.g., dual in-line
memory module (DIMM) types, size of random access
memory (RAM)). Each node has a total design power (TDP)
rating which cannot be exceeded to maintain full functional-
ity. An application (Job) 1s submitted for processing to a job
scheduler of the HPC data center that implements an appli-
cation or algorithm to allocate resources to process the appli-
cation. Each application may be processed by one or more
nodes according to the resources allocated by the job sched-
uler.

SUMMARY

Embodiments include a method, system, and computer
program product for processing an application in a high per-
formance computing (HPC) data center. According to one
embodiment a computer program product for processing an
application 1 a high performance computing (HPC) data
center includes a tangible storage medium readable by a
processing circuit. The tangible storage medium stores
instructions for execution by the processing circuit for per-
forming a method. The method includes analyzing and sort-
ing a plurality of nodes 1n a cluster of the HPC data center into
a plurality of frequency bins, each of the plurality of nodes
being sorted mto more than one of the plurality of frequency
bins based on performance. The method also 1includes ana-
lyzing and sorting the application into an application bin
among a plurality of application bins based on a frequency
scaling characteristic of the application, a number of the
plurality of frequency bins being a same as a number of the
plurality of application bins and each of the plurality of appli-
cation bins corresponding with one of the plurality of fre-
quency bins. The method further includes selecting a first set
of nodes among the plurality of nodes as processing nodes to
process the application, the first set of nodes being sorted into
a first frequency bin among the plurality of frequency bins
corresponding with the application bin of the application.

According to another embodiment, a method of processing
an application 1n a high performance computing (HPC) data
center includes analyzing and sorting, using a processor, a
plurality of nodes 1n a cluster of the HPC data center into a
plurality of frequency bins, each of the plurality of nodes
being sorted into more than one of the plurality of frequency
bins based on performance. The method also includes ana-
lyzing and sorting the application into an application bin
among a plurality of application bins based on a frequency
scaling characteristic of the application, a number of the
plurality of frequency bins being a same as a number of the
plurality of application bins and each of the plurality of appli-
cation bins corresponding with one of the plurality of fre-
quency bins. The method further includes selecting a first set
ol nodes among the plurality of nodes to process the applica-
tion, the first set of nodes being sorted 1nto a first frequency
bin among the plurality of frequency bins corresponding with
the application bin of the application.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to yet another embodiment, a job scheduler 1n a
high performance computing (HPC) data center includes a
memory device. The memory device stores a sorting of a
plurality of nodes 1n a cluster of the HPC data center into a
plurality of frequency bins based on performance, each of the
plurality of nodes being sorted into more than one of the
plurality of frequency bins. The memory device also stores a
sorting of an application submitted for processing into one of
a plurality of application bins based on a frequency scaling
characteristic, a number of the plurality of frequency bins
being a same as a number of the plurality of application bins
and each of the plurality of application bins corresponding
with one of the plurality of frequency bins. The job scheduler
also 1ncludes a processor to select a first set of nodes among
the plurality of nodes as processing nodes to process the
application, the first set of nodes being sorted into a first
frequency bin among the plurality of frequency bins corre-
sponding with the application bin of the application.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which 1s regarded as embodiments 1s
particularly pointed out and distinctly claimed 1n the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken 1n conjunction
with the accompanying drawings in which:

FIG. 1 1s a block diagram of aspects of a high performance
computing (HPC) data center;

FIG. 2 1s a process flow of a method of processing an
application using nodes in a high performance computing
(HPC) data center according to an embodiment of the inven-
tion;

FIG. 3 1s a process tlow of a method of analyzing the nodes
of a cluster according to an embodiment of the invention; and

FIG. 4 1s a process flow of a method of determining
whether selected nodes meet the cluster power constraints
according to an embodiment of the invention.

DETAILED DESCRIPTION

As noted above, one or more nodes 1n a cluster of nodes are
used to process an application submitted to an HPC data
center. A given cluster of the HPC data center must comply
with a cap on power consumption by 1ts nodes. Embodiments
of the invention detailed herein relate to selecting nodes to
process the application by balancing performance increase
with power constraint compliance.

Currently, 1n determining which nodes should be used to
process a particular application, job scheduling algorithms
consider nodal attributes such as total available RAM and
whether a given node 1s 1dle or not. Embodiments described
herein consider performance capability of the nodes and,
additionally, frequency scaling characteristics of the applica-
tions. By using both the node and application characteristics,
embodiments of the invention balance the desired increase 1n
performance with the corresponding increase 1n power con-
sumption.

FIG. 1 1s a block diagram of aspects of a high performance
computing (HPC) data center 100. A cluster 120 1s shown to
include multiple nodes 110. As shown in FIG. 1, each node
includes an interface 112 to receive mputs, provide outputs,
and 1nterconnect with other nodes, two processors 114, and a
memory device 116 (e.g., RAM). Alternate embodiments of
the node 110 may include one or more than two processors
114 and one or more memory devices 116. Interconnect 118

US 9,189,273 B2

3

1s a high performance network that connects all the nodes 110
in the cluster 120. Interconnect 118 1s used for internode
communication among nodes 110 when an application 130 1s
run on a set of nodes 110 as specified by the job scheduler 140.
An application 130 1s input to the HPC data center 100 for
processing. The application 130 1s initially handled by a job
scheduler 140 that assigns the appropriate nodes 110 1n the
cluster 120 to process the application 130, as further detailed
below. The job scheduler 140 can be regarded as a controller
and includes an interface (e.g., network interface 160) to
receive iputs and provide outputs. For explanatory purposes,
the job scheduler 140 1s shown as a separate component that
includes a separate processor 145. The processor 145
executes an application (algorithm) and uses data regarding
both the nodes 110 and the application 130 to assign jobs
(application 130 processing tasks) to specified nodes 110. In
alternate embodiments, the job scheduler 140 functionality
described herein may be performed by one of the nodes 110.
The data used by the job scheduler 140, as well as the algo-
rithm executed by the job scheduler 140, may be stored in one
or more storage devices 150.

As noted above, a node 110 cannot exceed its TDP. A node
110 that 1s operated at its rated (nominal) clock frequency
consumes less power than 1ts TDP. As aresult, it 1s possible to
overclock anode 110 (operate the node 110 at a higher clock
speed than nominal), but overclocking results 1n increased
power consumption. Thus, overclocking a node 110 for a
potential increase 1n performance 1s possible, but only up to
the number of levels (multiples) of overclocking that result in
power consumption at or near the node TDP. Although the
nodes 110 of a cluster 120 likely have identical configura-
tions, the margin between power consumption at nominal
operating frequency and TDP (and thus the allowable number
of levels of overclocking) differs for each node 110. Nodes
110 that have a relatively high margin (and thus a greater
allowable number of levels of overclocking) among the nodes
110 1n the cluster 120 are called cold nodes, while nodes 110
that have a relatively low margin (and thus a lower allowable
number of levels of overclocking) among the nodes 110 1n the
cluster 120 are called hot nodes.

From the perspective of an application 130, overclocking
may not necessarily improve performance. The cycles per
instruction (CPI) profile of a given application 130 atfects
whether the performance of the application 130 1s improved
by overclocking the node 110 or nodes 110 executing the
application 130. That is, the performance of an application
130 with relatively lower CPI tracks node 110 clock speed
more closely such that overclocking a node 110 that processes
the application 130 will improve performance, and the per-
formance of an application 130 with relatively higher CPI 1s
less atlected by node 110 clock speed. Thus, as further dis-
cussed below, not only the node 110 power consumption
characteristics (e.g., whetheranode 1101s ahotnodeoracold
node) but also the application frequency scaling characteris-
tics (in addition to the priority assigned to an application 130)
are considered 1n selecting nodes 110 to process a given
application 130.

FIG. 2 1s a process flow of a method of processing an
application 130 using nodes 110 1n a high performance com-
puting (HPC) data center 100 according to an embodiment of
the invention. At block 210, determining 11 an application 130
1s being submitted for the first time 1s performed when an
application 130 1s submitted to the job scheduler 140 and 1s
turther discussed below. An exemplary application 130 1s a
weather forecast application. This application 130 may be
submitted to the job scheduler 140 for processing any number
of times. Each time, the input (weather-related variables) may

10

15

20

25

30

35

40

45

50

55

60

65

4

be different. Other exemplary applications 130 include cli-
mate modeling and molecular modeling simulations, which
may be executed periodically, for example. When the job
(application 130) 1s being submitted for the first time, the
analysis of the application 130 discussed below with refer-
ence to block 230 1s performed. When the job had been
submitted previously (with the same or different input vari-
able values), the process tlow proceeds to block 240, which 1s
also further discussed below. At block 220, analyzing the
nodes 110 and sorting based on frequency overclocking mar-
gin of each may be done when the nodes 110 1n the cluster 120
are deployed and may be repeated when a configuration or
environmental change occurs. The process at block 220 need
not be performed again for each different application 130
submission to the job scheduler 140. The sorting, when com-
pleted, may be stored in the memory device 150 associated
with the job scheduler 140 or 1n a different memory device
that 1s accessible to the job scheduler 140. An exemplary
embodiment of analyzing the nodes 110 and sorting based on
frequency overclocking margin 1s further detailed with refer-
ence to FIG. 3.

FIG. 3 15 a process tlow of a method of analyzing the nodes
110 of a cluster 120 according to an embodiment of the
invention. At block 310, developing benchmarks to run on the
nodes 110 includes varying the CPI profile of each of the
benchmarks. Running the benchmarks on each node 110, at
block 320, includes operating each node 110 at the nominal
frequency as well as at each allowed turbo frequency (over-
clocking level) for each benchmark. At block 330, recording
performance and power consumption includes recording the
information for each node 110 at each frequency for each
benchmark. Determining the effective turbo frequency of
cach node 110, at block 340, 1s based on analyzing the infor-
mation. As noted above, despite i1dentical configurations,
cach of the nodes 110 has a different maximum number of
overclocking levels (etlective turbo frequency) to reach TDP.
In addition, each benchmark CPI profile results 1n different
performance among the nodes 110. Thus, based on the analy-
s1s of the recorded performance and power consumption
information, the maximum allowable number of overclock-
ing levels for each of the different benchmarks (having dii-
terent CPI profiles) may be 1dentified for each of the nodes
110. Once the ettective turbo frequency of each node 110 1s
determined, sorting the nodes 110 into frequency bins, at
block 350, includes creating bins with specified turbo fre-
quency ranges. For example, 11 the nominal frequency (I, .)
for the nodes 110 were 2.7 gigahertz (GHz), each bin may
have a range of 0.1 GHz. Thus, the frequency range of each
node 110 bin, 3, 1s given by:

(Jromt0.1%1.1, +0.1%7+0.1) |EQ.1]

Each node 110 would have an effective turbo frequency for
cach CPI of the benchmark, given by {___(1,k), where 1=CPI
of the benchmark, and k=node. Once the frequency ranges of
the frequency bins are established, each i, (1, k) 1s sorted mnto
the appropriate bin. Thus, a given node 110 1s likely to be
sorted 1into several frequency bins because the £ _associated

FRLCEX

with the same node 110 (%) 1s likely to be different for ditter-
ent benchmark CPIs (1). Once all the nodes 110 at all the
benchmark CPIs are sorted in the bins, the operating fre-
quency values within each bin are reset to the lowest fre-
quency 1n the frequency range of the respective bin. This 1s to
ensure that all the nodes 110 1n a bin operate at the same
frequency 11 selected.

Returning to the process shown at FIG. 2, analyzing an
application 130 and sorting based on frequency scaling char-
acteristics, at block 230, 1s done the first time an application

US 9,189,273 B2

S

130 1s submitted to the job scheduler 140. The process may be
repeated based on user inmitiation or a time period since the
previous submission of the application 130, for example. The
applleatlen 130 may be submitted with an identifier (tag) that
1s used by the job scheduler 140 to determine whether the
application 130 has or has not been submitted previously (at
block 210). The 1dentifier or tag and information obtained for
an application 130 (block 230) may be stored 1n the memory
device 150 of the job scheduler 140 or another storage device
accessible by the job scheduler 140. In additional embodi-
ments, timing information regarding the submission may also
be stored to ascertain whether the process at block 230 should
be repeated, for example.

Analyzing the application 130 at block 230 includes run-
ning the application 130 using a number N of nodes 110 of the
cluster 120 at one or more frequencies. Through the one or
more executions, a profile of performance and power con-
sumption to frequency may be developed for the application
130. This profile 1s used to sort the application 130 into an
application bin. The number of application bins 1s equal to the
number of frequency bins 1nto which nodes 110 were sorted
as described with reference to FIG. 3. This 1s because each
application bin corresponds with a frequency bin. For
example, applications 130 that have nearly linear frequency
scaling (performance of the application 130 processing scales
close to linearly as frequency of the nodes 130 increases) will
be sorted into the application bin corresponding with the
frequency bin associated with the highest effective turbo fre-
quency range, because these applications 130 gain the highest
performance boost based on overclocking. On the other end
of the range, applications 130 that are memory bandwidth
dependent and show no benefit from frequency scaling are
sorted 1nto the application bin corresponding with the fre-
quency bin associated with the lowest effective turbo range
(where nodes 110 operate at or closest to nominal frequency,
t).

Selecting nodes 110 to process the application 130, at
block 240, 1s based on the application bin corresponding with
the application 130 that was submitted to the job scheduler
140. The application bin 1s either determined 1n the current
10b processing cycle (block 230) or determined based on the
stored information. In the frequency bin corresponding with
the application bin into which the application 130 1s sorted, N
nodes 110 are selected to process the application 130. Veri-
tying availability and power compliance at block 250
includes determining if N 1dle nodes 110 are available 1n the
frequency bin corresponding with the application bin of the
application 130 and also determining whether the power con-
straint would be met by the N nodes 110 processing the
application 130. When it 1s determined that N 1dle nodes 110
are not available 1n the frequency bin corresponding with the
application bin of the application 130, N nodes 110 in the
adjacent (lower effective turbo frequency range) frequency
bin are checked for availability. This process of checking
adjacent frequency bins 1s repeated until N 1dle nodes 110 (N
available nodes 110) are found. I the process terminates (the
lowest turbo frequency frequency bin 1s reached before N idle
nodes 110 are found), then the application 130 may be put
back 1n the queue by the job scheduler 140 for later schedul-
ing. The process of determining whether the power constraint
would be met by the N available nodes 110 processing the
application 130 1s performed as discussed with reference to
FIG. 4.

FIG. 4 1s a process flow of a method of determiming
whether selected nodes 110 meet the cluster 120 power con-
straints according to an embodiment of the invention. At
block 410, determining current power usage of the cluster 120

10

15

20

25

30

35

40

45

50

55

60

65

6

1s done when the application 130 1s submitted. The determin-
ing may be done by the processor 145 of the job scheduler
140, for example. The current power usage value (P_, ...)
may be updated not only each time an application 130 1s
submitted for processing but also when an application 130 1s
executed at a different frequency (1.e. an application 130 that
was submitted prior to the newly submitted application 130 1s
processed at a different frequency) or when processing of an
application 130 1s completed. Determining available power
(P_._. ...), atblock 420, 1s based on a known power usage cap
(P_._) on the cluster 120 and 1s found as:

cap

P

available

[EQ. 2]

At block 430, estimating power usage of the application 130
(P,,,)1s based onthe N nodes 110 selected at block 240 (FIG.
2) and verified at block 250. At block 440, comparing avail-
able power to power needed for the selected nodes 110 (the N
nodes 110 selected to process the application 130) includes
determining whether P___<P Itp, __>P then

app available* app availablies
the estimated power required for the N nodes 110 selected for

the application 130 (at block 240) 1s too high. In this case, the
frequency at which nodes 110 selected for processing of one
or more other applications 130 (submaitted before the current
application 130), with lower priority, may be lowered. The
relative priority of each application 130 submitted to the job
scheduler 140 may be indicated on the 1dentifier or tag of the
application 130. This adjustment of frequency for processing
one or more other applications 130 1s referenced above 1n
noting that the P_____may be updated when an application
130 other than the latest application 130 submitted to the job
scheduler 140 1s executed at a different frequency. When such
a frequency adjustment of another application 130 1s not
possible, control 1s returned back to block 240 (FIG. 2) to
repeat the selection of N nodes 110 sorted into a lower Ire-
quency bin and then repeat the verification of power compli-
ance (block 250). When N nodes 110 that comply with the
power constraints for the cluster 120 are not found through
this 1terative process, the application 130 1s put back 1n the job
queue by the job scheduler 140 for later processing. The later
processing may be based on a predetermined period, for
example.

Technical effects and benefits include considering both
performance and power compliance on the basis of whether
an application 130 benefits from overclocking and warrants
overclocking based on its priority.

As will be appreciated by one of average skill 1n the art,
aspects of embodiments may be embodied as a system,
method or computer program product. Accordingly, aspects
of embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as, for example, a “circuit,”
“module” or “system.” Furthermore, aspects of embodiments
may take the form of a computer program product embodied
in one or more computer readable storage device(s) having
computer readable program code embodied thereon.

One or more of the capabilities of embodiments can be
implemented 1n software, firmware, hardware, or some com-
bination thereof. Further, one or more of the capabilities can
be emulated.

An embodiment may be a computer program product for
enabling processor circuits to perform elements of the mnven-
tion, the computer program product comprising a computer
readable storage medium readable by a processing circuit and
storing mstructions for execution by the processing circuit for
performing a method.

CLirrent

=L o=’

US 9,189,273 B2

7

The computer readable storage medium (or media), being
a tangible, non-transitory, storage medium having instruc-
tions recorded thereon for causing a processor circuit to per-
form a method. The “computer readable storage medium”™
being non-transitory at least because once the mnstructions are
recorded on the medium, the recorded instructions can be
subsequently read one or more times by the processor circuit
at times that are independent of the time of recording. The
“computer readable storage media” being non-transitory
including devices that retain recorded information only while
powered (volatile devices) and devices that retain recorded
information independently of being powered (non-volatile
devices). An example, non-exhaustive list of “non-transitory
storage media” includes, but 1s not limited to, for example: a
semi-conductor storage device comprising, for example, a
memory array such as a RAM or a memory circuit such as
latch having instructions recorded thereon; a mechanically
encoded device such as punch-cards or raised structures in a
groove having instructions recorded thereon; an optically
readable device such as a CD or DVD having instructions
recorded thereon; and a magnetic encoded device such as a
magnetic tape or a magnetic disk having instructions
recorded thereon.

A non-exhaustive list of examples of computer readable
storage medium 1nclude the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM). Program code can
be distributed to respective computing/processing devices
from an external computer or external storage device via a
network, for example, the Internet, a local area network, wide
area network and/or wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network 1nterface card 1n each computing/processing
device recerves a program from the network and forwards the
program for storage 1 a computer-readable storage device
within the respective computing/processing device.

Computer program instructions for carrying out operations
for aspects of embodiments may be for example assembler
code, machine code, microcode or either source or object
code written 1n any combination of one or more programming
languages, icluding an object oriented programming lan-
guage such as Java, Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of embodiments are described below with refer-
ence to flowchart 1llustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks 1n the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions.

10

15

20

25

30

35

40

45

50

55

60

65

8

These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored 1n a computer readable stor-
age medium that can direct a computer, other programmable
data processing apparatus, or other devices to function 1n a
particular.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified 1n the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
cach block 1n the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable 1nstructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted 1n the block
may occur out of the order noted 1n the figures. For example,
two blocks shown 1n succession may, 1n fact, be executed
substantially concurrently, or the blocks may sometimes be
executed 1n the reverse order, depending upon the function-
ality mnvolved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks 1n the block diagrams and/or flowchart illus-
tration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

What 1s claimed 1s:

1. A computer program product for processing an applica-
tion 1n a high performance computing (HPC) data center, the
computer program product comprising:

a tangible storage medium readable by a processing circuit
and storing mstructions for execution by the processing
circuit for performing a method comprising;

analyzing and sorting a plurality of nodes in a cluster of the
HPC data center 1nto a plurality of frequency bins, each
of the plurality of nodes being sorted into more than one
of the plurality of frequency bins based on performance;

analyzing and sorting the application into an application
bin among a plurality of application bins based on a
frequency scaling characteristic of the application, a
number of the plurality of frequency bins being a same
as a number of the plurality of application bins and each
of the plurality of application bins corresponding with
one of the plurality of frequency bins;

selecting a first set oTnodes among the plurality of nodes as
processing nodes to process the application, the first set
of nodes being sorted into a first frequency bin among
the plurality of frequency bins corresponding with the
application bin of the application;

verilying an availability of the first set of nodes, wherein
when the first set of nodes 1s not available, a second set

US 9,189,273 B2

9

ol nodes from a second frequency bin adjacent to the first
frequency bin are selected as the processing nodes;
determining whether an estimated power consumption by
the processing nodes 1s less than an available power; and
reducing a frequency of processing a second application
with a lower priority than the application when the esti-
mated power consumption exceeds the available power.

2. The computer program product according to claim 1,
wherein the analyzing and sorting the plurality of nodes
includes running a plurality of benchmark applications on the
plurality of nodes, the plurality of benchmark applications
including varying cycles per istruction (CPI) profiles.

3. The computer program product according to claim 2,
wherein the analyzing and sorting the plurality of nodes
includes determining a maximum allowable frequency of
operation, corresponding with a frequency bin among the
plurality of frequency bins, for each of the plurality of nodes
for each of the CPI profiles of the plurality of benchmark
applications.

4. The computer program product according to claim 1,
turther comprising determining whether the application 1s
being submitted to the HPC data center for the first time based
on an 1dentifier submitted with the application, wherein the
analyzing and sorting the application 1s done when the appli-
cation 1s submitted to the HPC data center for the first time.

5. The computer program product according to claim 1,
wherein the analyzing and sorting the application icludes
processing the application one or more times at respective one
or more Irequencies to determine the frequency scaling char-
acteristic of the application, the frequency scaling character-
1stic of the application corresponding with the application bin
among the plurality of application bins.

6. A method of processing an application 1n a high perfor-
mance computing (HPC) data center, the method comprising;:

analyzing and sorting, using a processor, a plurality of

nodes 1n a cluster of the HPC data center into a plurality
of frequency bins, each of the plurality of nodes being
sorted into more than one of the plurality of frequency
bins based on performance;

analyzing and sorting the application into an application

bin among a plurality of application bins based on a
frequency scaling characteristic of the application, a
number of the plurality of frequency bins being a same
as a number of the plurality of application bins and each
of the plurality of application bins corresponding with
one of the plurality of frequency bins;

selecting a first set of nodes among the plurality ofnodes to

process the application, the first set of nodes being sorted
into a first frequency bin among the plurality of fre-
quency bins corresponding with the application bin of
the application;

verilying an availability of the first set of nodes, wherein

when the first set of nodes 1s not available, a second set
ofnodes from a second frequency bin adjacent to the first
frequency bin are selected as the processing nodes;
determining whether an estimated power consumption by
the processing nodes 1s less than an available power; and
reducing a frequency of processing a second application
with a lower priority than the application when the esti-
mated power consumption exceeds the available power.

7. The method according to claim 6, wherein the analyzing
and sorting the plurality of nodes includes running a plurality
of benchmark applications on the plurality of nodes, the plu-
rality of benchmark applications including varying cycles per
instruction (CPI) profiles.

8. The method according to claim 7, wherein the analyzing
and sorting the plurality of nodes includes determining a

10

15

20

25

30

35

40

45

50

55

60

65

10

maximum allowable frequency of operation, corresponding
with a frequency bin among the plurality of frequency bins,
for each of the plurality of nodes for each of the CPI profiles
of the plurality of benchmark applications.

9. The method according to claim 6, wherein the method
further comprises determining whether the application 1s
being submitted to the HPC data center for the first time based
on an 1dentifier submitted with the application, wherein the
analyzing and sorting the application 1s done when the appli-
cation 1s submitted to the HPC data center for the first time.

10. The method according to claim 6, wherein the analyz-
ing and sorting the application includes processing the appli-
cation one or more times at respective one or more frequen-
cies to determine the frequency scaling characteristic of the
application, the frequency scaling characteristic of the appli-
cation corresponding with the application bin among the plu-
rality of application bins.

11. A job scheduler 1n a high performance computing
(HPC) data center, the job scheduler comprising:

a memory device configured to store a sorting of a plurality
of nodes 1n a cluster of the HPC data center into a
plurality of frequency bins based on performance, each
of the plurality of nodes being sorted into more than one
of the plurality of frequency bins, and further configured
to store a sorting of an application submitted for pro-
cessing into one of a plurality of application bins based
on a frequency scaling characteristic, a number of the
plurality of frequency bins being a same as a number of
the plurality of application bins and each of the plurality
of application bins corresponding with one of the plu-

rality of frequency bins; and

a processor configured to select a first set of nodes among,
the plurality of nodes as processing nodes to process the
application, the first set of nodes being sorted into a first
frequency bin among the plurality of frequency bins
corresponding with the application bin of the applica-
tion,

wherein the processor determines whether an estimated
power consumption by the processing nodes 1s less than
an available power for the cluster and, when the esti-
mated power consumption exceeds the available power,
the processor reduces a frequency of processing a sec-
ond application with a lower priority than the applica-
tion.

12. The job scheduler according to claim 11, wherein the
processor sorts the plurality of nodes into the plurality of
frequency bins based on running a plurality of benchmark
applications using the plurality of nodes, the plurality of
benchmark applications including varying cycles per instruc-
tion (CPI) profiles, and determining a maximum allowable
frequency of operation, corresponding with a frequency bin
among the plurality of frequency bins, for each of the plural-

ity of nodes for each of the CPI profiles of the plurality of
benchmark applications.

13. The job scheduler according to claim 11, wherein the
processor sorts the application into the application bin among
the plurality of application bins based on processing the
application one or more times at respective one or more
frequencies to determine the frequency scaling characteristic
of the application, the frequency scaling characteristic of the
application corresponding with the application bin among the
plurality of application bins.

US 9,189,273 B2
11

14. The job scheduler according to claim 11, wherein the
processor determines whether the first set of nodes 1s 1dle and,
when the first set of nodes 1s not 1dle, the processor selects a
second set of nodes from a second frequency bin adjacent to
the first frequency bin as the processing nodes. 5

G e x Gx ex

12

	Front Page
	Drawings
	Specification
	Claims

