12 United States Patent

Habermann et al.

US009183146B2

US 9,183,146 B2
Nov. 10, 2015

(10) Patent No.:
45) Date of Patent:

(54) HIERARCHICAL CACHE STRUCTURE AND
HANDLING THEREOF
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72)

Inventors: Christian Habermann, Boeblingen

(73)

(%)

(21)

(22)

(63)

(30)

Nowv. 8, 2012

(1)

(52)

(58)

(DE); Christian Jacobi, Poughkeepsie,
NY (US); Martin Recktenwald,
Schonaich (DE); Hans-Werner Tast,
Weil 1m Schoenbuch (DE)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 149 days.

Notice:

Appl. No.: 14/070,692

Filed: Nov. 4, 2013

Prior Publication Data

US 2014/0129774 Al May 8, 2014
Foreign Application Priority Data

................................... 1220121.6

(GB)

Int. CI.
GO6F 13/00
GO6F 12/08

U.S. CL
CPC Go6r 12/0811 (2013.01)

Field of Classification Search
CPC GO6F 2212/00; GO6F 13/00

USPC 711/118-122
See application file for complete search history.

(2006.01)
(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

5,680,571 A 10/1997 Bauman
6,446,168 B1* 9/2002 Normoyleetal. 711/128
7,290,116 B1* 10/2007 Grohoskietal. 711/216
7,680,985 B2* 3/2010 Luick ..o 711/122
7,769,955 B2 8/2010 Ogzer et al.
7,890,699 B2 2/2011 Comparan et al.
7,934,081 B2* 4/2011 Davisetal. 712/239
7,937,530 B2* 5/2011 Luickooovviiinin, 711/122
8,015,362 B2 9/2011 Alexander et al.
8,386,712 B2* 2/2013 Davisetal. 711/118
8,578,103 B2* 11/2013 Kobayashi 711/141
2002/0073280 Al 6/2002 Ng
2002/0083312 Al* 6/2002 Sinharoy 712/240
2007/0156969 Al 7/2007 Tian et al.
(Continued)

Primary Examiner — Christopher Shin

(74) Attorney, Agent, or Firm — Margaret McNamara, Esq.;
Blanche E. Schiller, Esq.; Heslin Rothenberg Farley & Mesiti
P.C.

(57) ABSTRACT

A hierarchical cache structure includes at least one real
indexed higher level cache with a directory and a unified
cache array for data and instructions, and at least two lower
level caches, each split in an instruction cache and a data
cache. An mstruction cache of a split real indexed second
level cache includes a directory and a corresponding cache
array connected to the real indexed third level cache. A data
cache of the split second level cache includes a directory
connected to the third level cache. An mstruction cache of a
split virtually indexed first level cache 1s connected to the
second level 1nstruction cache. A cache array of a data cache
of the first level cache 1s connected to the cache array of the
second level instruction cache and to the cache array of the
third level cache. A directory of the first level data cache 1s
connected to the second level instruction cache directory and
to the third level cache directory.

20 Claims, 7 Drawing Sheets

‘ Main Memory

‘ L1i_dir HL1i_canhE‘

CPU

US 9,183,146 B2

Page 2
(56) References Cited 2009/0006803 Al 1/2009 Luick ..oooooiiiviiniininnnnnn, 711/202
2009/0006812 Al 1/2009 Luick ..o, 712/205
U.S. PATENT DOCUMENTS 2009/0216949 Al 8/2009 Krumm et al.
2014/0082298 Al* 3/2014 Jungwuthetal. 711/140
2008/0086596 Al* 4/2008 Davisetal. 711/125 2014/0115258 Al* 4/2014 Weeketal. 711/133
2008/0086597 Al* 4/2008 Davisetal. 711/125 2014/0129773 Al* 5/2014 Habermann et al. 711/122
2008/0270758 Al 10/2008 Ogzer et al. 2015/0154216 Al* 6/2015 Maybeeetal. 707/692
2009/0006753 Al* 1/2009 Luckoooooiiinninn, 711/122
2009/0006754 Al1* 1/2009 Luickoooooiiiiiiniiinnnn, 711/122 * cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 7 US 9,183,146 B2

1,1
\ 5
300
200

V) —— -
: 9] 30 12d 40,
I !
- :
: |
' |
: ________ o~ |
il e el s il il iy Bl -y
L1, LA |
: :
|]
I I
I |
100, 100
3

CPU

FIG. 1

U.S. Patent Nov. 10, 2015 Sheet 2 of 7 US 9,183,146 B2

1
\K 5
Main Memory
300
40
Z -~ 200

SN N NG . S0 W _

i 200 100
-==of
-
N ‘- 22
L1d dir L1d cache 1 ,
L1i cache g :
S X
|
|
l |
e — -
3

CPU

I
O

FIG. 2

U.S. Patent Nov. 10, 2015 Sheet 3 of 7 US 9,183,146 B2

1 300
LN EE—
L3 cache | Control
h Logic
L_
8Q
=ado o 52
| Request | 90
| Arbiter . ,
______ S o
Request |
(Generator :

I N B ___J

I BN q

|

200 : Response :

: Arbiter !

| Request :

: Arbiter :

U.S. Patent Nov. 10, 2015 Sheet 4 of 7 US 9,183,146 B2

1I

\ O

Main Memory

3 300

200

£

N 22

CPU

FIG. 4

U.S. Patent Nov. 10, 2015

st

First Level Instructions
Cache (L1i) Miss

5110

Sheet 5 of 7 US 9,183,146 B2

Second Level

Instructions Cache
(L2i) Hit?

YES

5150

Send and Install Response
from Second Level
Instructions Cache (L2i)
to/in the First Level
Instructions Cache (L1i)

FIG. 5

NO
5120

Send Request to Third Level
Cache (L3)

5130

Third Level Cache (L3)
nandles Coherency Protocol
with other Caches including
Caches of other Processors

and also First Level Data
Cache (L1d) of this
Processor

S140

Send and Install Response
from Third Level Cache (L3)
to/in the Second Level
Instruction Cache (L2i)

U.S. Patent

FIG. 6

Nov. 10, 2015 Sheet 6 of 7

5220

5230

S24(

First Level Data Cache
(L1d) Miss

5210

Second Level

Instructions
Cache (L2i) Hit?

Second Level Instruction
cache (L2i) enables
Transmission of First Level
Data Cache (L1d) Request
to Third Level Cache (L3)

Third Level Cache (L3)
handles Coherency Protocol
with other Caches including
Caches of other Processors

and also Second Level

Instructions Cache (L2i) of
this Processor

Send and Install Response
from Third Level Cache (L3)
to/in the First Level Data

Cache (L1d) and update
Directory of Second Level

Data Cache (L2d)

US 9,183,146 B2

5200

=y

U.S. Patent Nov. 10, 2015 Sheet 7 of 7 US 9,183,146 B2

5300

First Level Data Cache
Exclusive Request Hit
Second Level
Instructions Cache (L2i)
shared?

NO

5310

YES

Promote the Cache-Line
from “shared” to “exclusive”:
Second Level Instruction
Cache (L2i) sends exclusive
Request to the Third Level
Cache (L3)

5340

339(Third Level Cache (L3)
handles Coherency Protocol
with other Caches including
Caches of other Processors

and also First Level Data
Cache (L1d) of this
Processor

Install Response from
Second Level Instructions
Cache (L2i) in First Level
Data Cache (L1d)

5330

Send and Install Response
from Third Level Cache (L3)
to/in the Second Level
Instruction Cache (L2i)

FIG. 7

US 9,183,146 B2

1

HIERARCHICAL CACHE STRUCTURE AND
HANDLING THEREOFK

PRIOR FOREIGN APPLICATION

This application claims priority from United Kingdom
patent application number 1220121.6, filed Nov. 8, 2012,
which 1s hereby icorporated herein by reference in its
entirety.

BACKGROUND

One or more aspects of the present invention relate in
general to the field of hierarchical cache structures, and 1n
particular to handling hierarchical cache structures.

A cache memory, or cache, 1s a high speed memory posi-
tioned between a processor and main storage, to hold recently
accessed main storage data. Whenever data in storage 1s
accessed, 1t 1s first determined whether or not the data 1s 1n the
cache and, 11 so, 1t 1s accessed from the cache. If the data 1s not
in the cache, the data 1s obtained from the main storage and
the data 1s also stored 1n the cache, usually replacing other
data which had been stored 1n the cache memory. Usually a
cache hierarchy i1s implemented, where multiple levels of
cache exist between the processor and main storage. As one
gets farther away from the processor, each cache gets larger,
slower and cheaper per byte. The cache closest to the proces-
sor 18 called first level cache, the next-closest cache 1s called
second level cache, and the next-closest cache 1s called third
level cache, and so on.

One processor may have multiple first level caches, such as
one first level cache for data and/or operands and one {first
level cache for instructions. That means that the first level
cache 1s split 1n a first level data cache and 1n a first level
instruction cache. A unified second level cache may be con-
nected to multiple first level caches where the first level
caches are either for the same processor or for multiple pro-
cessors 1n a multi-processor system. Additionally the second
level cache 1s the superset of the first level cache, 1.e. all
cache-line data of the first level cache 1s also 1n the second
level cache.

Further the second level cache may also be split 1n a second
level data cache and 1n a second level instruction cache,
wherein the first level instruction cache 1s connected to the
second level instruction cache and the first level data cache 1s
connected to the second level data cache. A unified third level
cache may be connected to multiple second level caches.

In a virtual memory system, a memory access 1ssued by an
instruction 1s usually a virtual address, or logical address, or
elfective address known to the associated program. The real
address, or absolute address, or physical address 1n main
memory associated with a virtual address can be determined
through a translation process. The translation process 1s a
multi-cycle multi-step process that mnvolves table lookups to
get the real address. To speed up the translation, a translation
lookaside buffer 1s used. The translation lookaside buifer
holds the virtual address and corresponding real address for
recent translations. Depending on architectural requirements,
the translation lookaside buliler uses more fields than just the
virtual address and corresponding real address. The portion of
an address that 1s subject to translation 1s known as a page. A
cache has a directory array which holds the addresses of the
data currently 1n the cache. Each address corresponds to a unit
of storage called a cache-line.

In the Patent Application Publication US 2009/0216949
Al, which 1s hereby incorporated herein by reference 1n its
entirety, a method and system for a multi-level virtual/real

10

15

20

25

30

35

40

45

50

55

60

65

2

cache system with synonym resolution are disclosed. A dis-
closed embodiment includes a multi-level cache hierarchy,
including a set of first level caches associated with one or
more processor cores and a set of second level caches,
wherein the set of first level caches are a subset of the set of
second level caches, wherein the set of first level caches
underneath a given second level cache are associated with one
Or MOre Processor cores.

A virtually indexed first level cache and a real indexed
second level cache allow faster access to the first level cache,
without waiting for the translation lookaside bufier access. It
requires that the second level cache sends the synonym to the
first level cache for cross interrogations commands.

BRIEF SUMMARY

In an embodiment of the present invention, a hierarchical
cache structure comprises at least one real indexed higher
level cache with directory and a unified cache array for data
and 1nstructions and at least two lower level caches, each split
in an instruction cache and a data cache; wherein an instruc-
tion cache of a split real indexed second level cache comprises
a directory and a corresponding cache array connected to the
real indexed third level cache; wherein a data cache of the
split second level cache comprises a directory connected to
the third level cache; wherein an instruction cache of a split
virtually indexed first level cache 1s connected to the second
level instruction cache; wherein a cache array of a data cache
of the first level cache 1s connected to the cache array of the
second level 1nstruction cache and to the cache array of the
third level cache; and wherein a directory of the first level data

cache 1s connected to the second level instruction cache direc-
tory and to the third level cache directory.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Embodiments of the present invention, as described 1n
detail below, are shown in the drawings, in which

FIG. 1 1s a schematic block diagram of a hierarchical cache
structure, 1 accordance with an embodiment of the present
imnvention;

FIG. 2 1s a more detailed block diagram of the hierarchical
cache structure of FIG. 1, 1n accordance with a first embodi-
ment of the present invention;

FIG. 3 1s a more detailed block diagram of the hierarchical
cache structure of FIGS. 1 and 2, 1in accordance with a first
embodiment of the present invention;

FIG. 4 1s a more detailed block diagram of the hierarchical
cache structure of FIG. 1, in accordance with a second
embodiment of the present invention;

FIG. 5 15 a schematic flow diagram of a method for cache
handling, 1n case of a first level 1nstruction cache miss, in
accordance with an embodiment of the present invention;

FIGS. 6 and 7 are schematic flow diagrams of a method for
cache handling, in case of a first level data cache miss, 1n
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

One technical problem underlying one or more aspects of
the present invention 1s to provide a hierarchical cache struc-
ture and a techmque for handling a hierarchical cache struc-
ture, which are able to improve efficiency of multi-level cache
hierarchy handling and to solve shortcomings and pain points
of prior art hierarchical cache structures.

US 9,183,146 B2

3

According to aspects of the present invention this problem
1s solved by providing a hierarchical cache structure, a
method for handling a hierarchical cache structure, a data
processing program for handling a hierarchical cache struc-
ture, and a computer program product for handling a hierar-
chical cache structure.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may

10

15

20

25

30

35

40

45

50

55

60

65

4

be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program mstructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the tlowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified 1n the flowchart
and/or block diagram block or blocks.

FIGS. 1 to 3 show a hierarchical cache structure 1, in
accordance with a first embodiment of the present invention.

Referring to FIGS. 1 to 3, the shown first embodiment of
the present invention employs a hierarchical cache structure 1
arranged between a processor 3 and a main memory 5. In the
shown first embodiment the hierarchical cache structure 1
comprises three levels, wherein a real indexed third level
cache (LL.3) 300 comprises a directory (IL3_dir) 54 and a uni-
fied cache array (LL3_cache) 52 for data and instructions, and
two lower level caches (1.1) q100, (1.2) 200 are each split in an
istruction cache (LL11) 10, (I.21) 30 and a data cache (1.1d) 20,
(L2d) 40. An mstruction cache (LL.21) 30 of a split real indexed
second level cache (LL.2) 200 comprises a directory (LL21_dir)
34 and a corresponding cache array (LL21_cache) 32 con-

nected to the real indexed third level cache (1L.3) 300. A data
cache (LL2d) 40 of the split second level cache (LL.2) 200
comprises a directory (L2d_dir) 44 connected to the third
level cache (LL.3) 300. An instruction cache (LL11) 10 of a split
virtually indexed first level cache (L1) 100 1s connected to the
second level instruction cache (LL.21) 30, and a cache array
(L1d_cache) 22 of a data cache (L1d) 20 of the virtually
indexed first level cache (IL1) 100 1s connected to the cache
array (L21_cache) 32 of the second level instruction cache
(L21) 30 and to the cache array (LL3_cache) 52 of the real
indexed third level cache (I.3) 300 via a response arbiter 70.
A directory (L1d_) 24 of the first level data cache (LL1d) 20 1s

connected to the second level instruction cache directory
(L21_dir) 34 and to the third level cache directory (LL3_dir) 34

via a request generator 90.
Referring to FIGS. 2 and 3, the real indexed third level
cache (LL3) 300 comprises a directory (LL3_dir) 34 for the

unified cache array (IL3_cache) 32 and a controllogic 56. Also

US 9,183,146 B2

S

the istruction caches (LL11) 10, (LL21) 30 of the different cache
levels (L1) 100, (L2) 200 each comprise a directory (L11_dir)
14, (L21_dir) 34, a corresponding cache array (IL11_cache) 12,
[.21_cache 32, and a control logic 16, 36. The data caches
(L1d) 20, (I.2d) 40 of the different cache levels (1.1) 100, (L.2)
200 each comprise a directory (LL1d_dir) 24, (LL2d_dir) 44,
and a control logic 26, 46. The first level data cache (I.1d) 20
comprises a corresponding cache array (LL1d_cache) 22 and
the second level data cache (1.2d) 40 1s a directory-only-cache
without a cache array.

The shown cache array (LL1d_cache) 22 of the wvirtual
indexed first level data cache (LL1d) 20 comprises a cache
array (L2d_cache) 42 of the second level data cache (LL.2d) 40
and 1s so big, that the second level data cache (LL2d) 40 1s a
directory-only-cache without a cache array. The first level
data cache (IL1d) 20 requests data directly from the third level
cache (LL3) 300, except if the data 1s already hit 1n the second
level instruction cache (1.21) 30. However, the synonym for
the first level data cache (IL1d) 20 1s recorded 1n the directory
(L2d_dir) 44 of the second level data cache (I.2d) 40 or 1n the
directory (LL21_dir) 34 of the second level instruction cache
(L21) 30. The directory (L2d_dir) 44 of the second level data
cache (L2d) 40 may be a content-addressable memory
(CAM), with one entry per cache-line of the first level cache
(L1d) 22 or 1t 1s to be big enough to avoid contlicts with the
directory (LL1d_dir) 24 of the first level data cache (LL1d) 20.
The shown implementation uses 512*8 entries for the direc-
tory (L1d_dir) 24 of the first level data cache (IL1d) 20 and
512*%10 entries for the directory (L2d_dir) 44 of the second
level data cache (1.2d) 40.

A first request arbiter 60 handles competition of requests
directed to the same cache (1.21) 30 of the second cache level
(L2) 200. A second request arbiter 80 handles competition of
requests directed to the third cache level (LL3) 300.

FIGS. 1 and 4 show a hierarchical cache structure 1', 1n
accordance with a second embodiment of the present mnven-
tion.

Referring to FIGS. 1 and 4, the shown second embodiment
of the present mvention employs, concurrently to the first
embodiment, a hierarchical cache structure 1' arranged
between a processor 3 and a main memory 5. In the shown
second embodiment the hierarchical cache structure 1' com-
prises three levels, wherein a real indexed third level cache
(L3) 300 comprises a directory (L3_dir) 54 and a unified
cache array (LL3_cache) 52 for data and instructions, and two
lower level caches (LL1') 100", (L2) 200 are each split in an
instruction cache (LL11) 10, (LL.21) 30 and a data cache (LL1d")
20", (L2d) 40. An instruction cache (L.21) 30 of a split real
indexed second level cache (LL2) 200 comprises a directory
(L21_dir) 34 and a corresponding cache array (I.21_cache) 32
connected to the real indexed third level cache (LL3) 300. A
data cache (L.2d) 40 of the split second level cache (L.2) 200
comprises a directory (L2d_dir) 44 connected to the third
level cache (LL3) 300. An instruction cache (L11) 10 of a split
virtually indexed first level cache (LL1") 100' 1s connected to
the second level instruction cache (LL.21) 30.

In contrast to the first embodiment, the big first level data
cache (L1d") 20" 1s implemented as a two level structure
comprising a {irst cache array (LL1d_cache') 22' with a first
directory (L1d_dir') 24', and a second cache array
(L1.5d_cache) 23 with a second directory (LL1.5d_dir) 25.
Both levels of the first level data cache (L.1d") 20" are virtually
indexed. The second cache array (I.1.5d_cache) 23 of the first
level data cache (I.1d") 20" really 1s a cache array (LL.2d) 42 of
a second level data cache (LL.2d) 40 with virtual indexing. The
second cache array (LL1.5d_cache) 23 1s connected to the

cache array (LL3_cache) 52 of the third level cache (1L3) 300

10

15

20

25

30

35

40

45

50

55

60

65

6

and to the second level instruction cache (ILL21) 30 via a
response arbiter (not shown). So the second cache array
(L1.5d_cache) of the first level data cache (LL1d') 20" may
receive data from the second level instruction cache (L.21) 30
or from the third level cache (LL3) 300. A second directory
(L1.5d_dir) 25 of the first level data cache (LL1d") 20' 1s con-
nected to the second level instruction cache directory
(L21_dir) 34 and to the third level cache directory (LL3_dir) 34
via a request generator (not shown).

The second embodiment of the present invention allows
fast access to the second cache array (IL1.5d) 23 of the first
level data cache (L.1d') 20' in case of a miss 1n the first cache
array (L1d_cache') 22' of the first level data cache (LL1d") 20'.
It does not have to wait for the translation lookaside butfer
read before the second cache array (LL1.5d_cache) 23 of the
first level data cache (LL1d") 20' can be accessed. Therefore the
access to the second cache array (IL1.5d_cache) 23 of the first
level data cache (LL1d") 20' 1s faster which results 1n a better
performance in case of a miss in the first cache array
(L1d_cache') 22' of the first level data cache (I.1d") 20" and a
hit 1n the second cache array (LL1.5d_cache) 23 of the first
level data cache (IL1d") 20'. The extra directory (L.2d_dir) 44
of the second level data cache (LL.2d) 40 1s used for the syn-
onyms (backward translation of real addresses for cross inter-
rogate commands) to the virtual index of the second cache
array (L1.5d_cache) 23 of the first level data cache (I.1d") 20'.

FIG. 5 shows steps of a method for virtually indexed cache
handling 1n case of a first level instruction cache (I.11) miss, in
accordance with an embodiment of the present invention;
FIGS. 6 and 7 show steps of the method for virtually indexed
cache handling 1n case of a first level data cache (LL1d, L.1d")
miss, in accordance with an embodiment of the present inven-
tion.

Referring to FIGS. 1 to 5, according to a method for han-
dling a hierarchical cache structure 1, 1' comprising at least
one real indexed higher level cache (LL3) 300 with a directory
(L3_dir) 54 and a unified cache array (IL3_cache) 52 for data
and 1nstructions and at least two lower level caches (I.1) 100,
(L2) 200, each split in an mstruction cache (IL.11) 10, (L21) 30
and a data cache (L1d) 20, (L1d") 20", (LL2d) 40, an 1instruction
cache (LL21) 30 of a split real indexed second level cache (LL2)
200 1nitiates requests to a real indexed third level cache (LL3)
300. An nstruction cache (LL11) 10 of a split virtually indexed
first level cache (1) 100 initiates requests to the instruction
cache (L.21) 30 of the split second level cache (1.2) 200, and a
data cache (L1d) 20, (LL1d") 20" of the split virtually indexed
first level cache (LL1) 100, L1' 100" imitiates requests to the
second level mstruction cache (LL21) 30 and to the third level
cache (L3) 300 via the request generator 90.

Generally a search for a requested address i1s sent to a
directory (LL11_dir) 14, (L1d_dir) 24, (IL1d_dir") 24", (L.21_dir)
34, (L3_dir) 54 of corresponding cache level (LL1) 100, (LL1')
100", (L2) 200, (L3) 300, 5. In case of a miss a directory
(L11_dir) 14, (L1d_dir) 24, (L1.5d_dir) 25, (L21_dir) 34,
(L3_dir) 34 of a corresponding cache level (L1) 100, (L1")
100', (L2) 200, (L3) 300 sends the request to a directory
(L21_dir) 34, (L1.5d_dir) 25, (L3_dir) 54 of a higher cache
level (L2) 200, (L3) 300 until the request 1s sent to a main
memory 5. In case of a hit a cache array (LL21_cache) 32,
(L3_cache) 52 of a corresponding cache level (L.2) 200, (LL3)
300, 5 sends a response to the request to a cache array
(L11_cache) 14, (LL1d_cache) 22, (LL1.3d_cache) 23,
(L21_cache) 32, (L3_cache) 52 of a lower cache level (LL1)
100, (L.1") 100", (IL2) 200, (L3) 300 until the response 1s sent
to a processor 3. The response 1nstalls cache-line data of the
cache array (LL21_cache) 32, (LL3_cache) 32 of the higher
cache level (L.2) 200, (L3) 300, 5 in a corresponding cache

US 9,183,146 B2

7

array (L11_cache) 14, (L1d_cache) 24, (L1.5d_cache) 23,
(L21_cache) 32, (LL3_cache) 52 of the lower cache level (LL1)
100, (LL1Y) 100, (L.2) 200, (L.3) 300 and updates a correspond-
ing directory (L1i1_dir) 14, (L1d_dir) 24, (L1.5d_dir) 25,
(L21_dir) 34, (L2d_dir) 44, (L3_dir) 54 of the lower cache
level (LL1) 100, (LL1') 100", (L.2) 200, (LL3) 300 accordingly.
The directory (L2d_dir) 44 of the second level data cache
(L2d) 40 1s updated for reverse translation purposes only.

To avoid needless repetitions, embodiments of the method
tor virtually indexed cache handling are explained 1n detail in
conjunction with the first embodiment of the wvirtually
indexed hierarchical cache structure only.

Referring to FIGS. 3 and 5, the processor 3 requests
instructions from the first level instruction cache (L11) 12.
Therefore the processor 3 sends a corresponding search for
the request address to the directory (LL11_dir) 14 of the first
level instruction cache (IL.11) 10. The directory (L11_dir) 14
detects a miss 1n step S100 and sends the request to the
directory (LL21_dir) 34 of the second level instruction cache
(L21) 30. The request consists of a command and a command
validation and an address of the cache-line. The command 1s
to distinguish between pre-fetch and demand fetch. In the
shown embodiment the size of a cache-line 1s 256 bytes. The
request has to compete with requests from the directory
(L1d_dir) 24, of the first level data cache (LL1d) 20. The first
request arbiter 60 handles the competition of the requests to
the second level instruction cache (L21) 30. The request arbi-
ter 60 makes sure none of the two requestors, 1.¢. directory
(L11_dir) 14 and directory (LL1d_dir) 24 starves.

The directory (LL21_dir) 34 of the second level instruction
cache (L.21) 30 performs a search. In case of a hit, step S110
goes to step S150. In case of a miss, step S110 goes to step
S120. In step S120, the directory (L21_dir) 34 of the second
level 1struction cache (I.21) 30 forwards the request to the
directory (L3_dir) 34 of the third level cache (JB) 300 via the
second request arbiter 80 of the third level cache (1L3) 300. In
step S130, the second request arbiter 80 of the third level
cache (LL.3) 300 handles a coherency protocol and the compe-
tition of the request with other requests to the third level cache
(L3) 300, for example, from other processors or from the first
level data cache (LL1d) 20 of this processor 3. If the directory
(L3_dir) 54 of the third level cache (L3) 300 also has a cache
miss, 1t requests the cache-line from the next level of the cache
hierarchy before 1t sends a response. If 1t has a hit, 1t can
respond immediately. In step S140, the third level cache (1L3)
300 sends the response to the cache array (LL21_cache) 32 of
the second level instruction cache (I.21) 30 with the cache-line
data from the cache array (L3_cache) 52 of the third level
cache (L3) 300. The response installs the cache-line 1n the
cache array (LL21_cache) 32 of the second level instruction
cache (LL.21) 30 and updates also the directory (IL21_dir) 34 of
the second level instruction cache (IL21) 30 accordingly. In
step S1350, the second level instruction cache (L.21) 30 sends a
response to the request to the first level instruction cache array
(L11) 12 with the cache-line data from the cache array
(L21_cache) 32 of the second level instruction cache (L.21) 30.
The response installs the cache-line in the cache array
(L11_cache) 12 of the first level instruction cache (LL11) 10 and
updates also the directory (L11_dir) 14 of the first level
instruction cache (I.11) 10 accordingly.

Referring to FIGS. 3, 6 and 7, the processor 3 requests data
from the first level data cache (IL1d) 20. Therefore the pro-
cessor 3 sends a search for the request address to the directory
(L1d_dir) 24 of the first level data cache (I.1d) 20. The direc-
tory (LL1d_dir) 24 detects a miss 1n step S200 and sends the
request to the request generator 90 and also to the directory
(L21_dir) 34 of the second level instruction cache (L.21) 30 via

10

15

20

25

30

35

40

45

50

55

60

65

8

the first request arbiter 60 of the second level instruction
cache (L.21) 30. The request consists of a command and com-
mand validation and the address of the cache-line. The com-
mand 1s used to distinguish between pre-fetch and demand
fetch, and also to distinguish between exclusive ownership
and shared ownership. In the present embodiment the size of
the cache-line 1s 256 bytes. The cache protocol 1s used to
prevent that the cache-line valid in the directory (LL1d_dir) 24
of the first level data cache (L1d) 20 1s valid 1n both, the
directory (L.2d_dir) 44 of the second level data cache (LL.2d) 40
and 1n the directory (L21_dir) 34 of the second level mstruc-
tion cache (I.21) 30 at the same time. If the cache-line 1s in the
second level mstruction cache (I.21) 30, both, the first level
instruction cache (I.11) 10 and the first level data cache (IL1d)

20 will fetch 1t from there. If the cache-line 1s 1n the directory
(L2d_dir) 44 of the second level data cache (LL.2d) 40 and 1t 1s

requested by the first level mnstruction cache (LL11) 10, the
cache-line 1s mvalidated 1n the directory (L2d_dir) 44 of the
second level data cache (1.2d) 40 and also 1n the first level data
cache (L1d) 20 and installed in the second level 1nstruction
cache (L.21) 30. From there the first level data cache (LL1d) 20
may re-fetch 1t, if necessary.

In case of a hit 1n the directory (LL21_dir) 34 of the second
level instruction cache (I.21) 30 step S210 goes to step S300 of
FIG. 7. In case of a miss 1n the directory (L21_dir) 34 of the
second level istruction cache (1.21) 30 step S210 goes to step
S220. In step S220 the miss 1n the directory (LL21_dir) 34 1s
used to generate a signal to enable the request generator 90 of
the second level data cache (L.2d) 40 to forward the request of
the first level data cache (LL1d) 20, 20' to the third level cache
(L3) 300 via the second request arbiter 80. So, the miss 1n the
second level instruction cache (1.21) 30 or in the first level data
cache (L.1d) 20 1s not forwarded directly to the second request
arbiter 80 of the third level cache (1L3) 300. In step S230, the
second request arbiter 80 of the third level cache (LL3) 300
handles a coherency protocol and the competition of the
request with other requests to the third level cache (1.3) 300,
for example, from other processors or from the second level
instruction cache (L.21) 30 of this processor 3. If the directory
(L3_dir) 54 of the third level cache (LL3) 300 also has a
cache-line miss, 1t requests the cache-line from the next level
of the cache hierarchy 1 before 1t sends a response. 1T 1t has a
hit, 1t can respond 1immediately. In step S240 the cache array
(L3_cache) 52 of the third level cache (LL3) 300 sends the
response via response arbiter 70 of the second level cache
(L2) 200 to the cache array (LL1d_cache) 22 of the first level
data cache (L1d) 20 with the cache-line data from the cache
array (L3_cache) 52 of the third level cache (L3) 300. The
response 1nstalls the cache-line 1 the cache array
(L1d_cache) 22 of the first level data cache (Sid) 20 and
updates also the directory (LL2d_dir) 44 of the second level
data cache (1.2d) 40 and the directory (L1d_dir) 24 of the first
level data cache (LL1d) 10. The response arbiter 70 of the
second level cache (LL2) 200 has two options for collision
handling. The response arbiter 70 can invalidate one response
and re-request 1t, or write one response mmto a bufler and
transter it to the first level data cache (IL.1d) 20 later.

Alternatively 1mn an embodiment, not shown, the request
from the first level data cache (LL1d, L.1d") 20, 20' is sent
directly to the directory (L3_dir) 54 of the third level cache
(L3) 300 via the second request arbiter 80 of the third level
cache (LL3) 300 in step S220. Here the miss in the directory
(L21_dir) 34 1s used to generate a signal to enable the response
arbiter 70 of the second level cache (LL.2) 200 to forward the
response of the third level cache (LL3) 300 to the first level data
cache (L1d, L1d') 20, 20' in step S240.

US 9,183,146 B2

9

In case of a hit 1n the 1nstruction cache directory (L21_dir)
34 of the second level cache (L2) 200, a corresponding
response to the request 1s based on an ownership of the
request and an ownership of a requested cache-line. In case of
an exclusive ownership request hitting a shared ownership
cache-line step S300 goes to step S310, else step S310 goes to
step S340. In step S310, the second level mstruction cache
(L21) 30 sends an exclusive request via the second request
arbiter 80 to the third level cache (LL3) 300 to promote the
cache-line from the shared ownership to an exclusive owner-
ship. In step S320, the second request arbiter 80 of the third
level cache (LL3) 300 handles a coherency protocol and the
competition of the request with other requests to the third
level cache (LL3) 300, for example, from other processors or
from the first level data cache (L.1d) 20 via the directory
(L2d_dir) 44 of the second level data cache (L2d) 40 of this
processor 3. In step S330 the third level cache (1L3) 300 sends
the response to the second level instruction cache (L21) 30.
The response 1nstalls the exclusive cache-line from the cache
array (LL3_cache) 52 of the third level cache (1L3) 300 in the
cache array (L.21_cache) 32 of the second level instruction
cache (L21) 30, also updating the directory (I.21_dir) 34 of the
second level instruction cache (I.21) 30. In step S340, the
second level instruction cache (I.21) 30 forwards the response
via the response arbiter 70 of the second level cache (1L2) 200
to the first level data cache (I.1d) 20. The response installs the
exclusive cache-line of the cache array (IL21_cache) 32 of the
second level instruction cache (L21) 30 in the cache array
(L1d_cache) 22 of the first level data cache (L1d) 20 and
updates also the directory (LL1d_dir) 24 of the first level data
cache (LL1d) 20.

The cache coherency protocol (MESI) allows requests with
a shared ownership or with an exclusive ownership for the
first level data cache (LL1d) 20 misses. The first level istruc-
tion cache (LL11) 10 does not request exclusive rights, so all
requests from the first level instruction cache (I.11) 10 have a
shared ownership. When a cache-line 1s in the shared state, 1t
allows copies to co-exist 1n more than one cache of the same
cache level. These caches may be in different processors, and
also 1n the first level mstruction cache (I.11) 10 and 1n the first
level data cache (I.1d) 20. An exclusive copy of a cache-line
does not allow a second copy 1n any other cache of the same
cache level (e.g.: L1).

Table 1 lists all legal combinations of the states of a cache-
line, 1n one embodiment. In Table 1 “S” represents a shared
ownership, “X” represents an exclusive ownership, and “-”
represent mnvalid.

TABLE 1
State 1.2i L1i L1d
§ S S S
1 S — —
2 X — —
3 — — X
4 — — S
5 S S —
6 S S S
7 S — S
3 X S —
9 X S S
10 X — S
11 X — X

In Table 1, the following exemplary state transitions may
OCCULr:

Any state to 0: Invalidate command from the third level
cache (LL3) or cache replacement 1n the second level mstruc-

tion cache (LL.21) and/or the first level data cache (LL1d, L.1d").

10

15

20

25

30

35

40

45

50

55

60

65

10

Transitions 2to 1,3104,8t05,91t06,10to 7,11 to 7: Third
level cache (L3) request to demote the exclusive line to
shared.

Transition O to 3: First level instruction cache (1.11) miss,
responded with a request for shared.

Transition O to 4: First data cache (LL1d, L1d') muss,
responded with a request for shared.

Transition O to 3: First level data cache (IL1d, L1d") miss,
responded with a request for exclusive.

Transition 1 to 5: First level instruction cache (LL11) miss,
responded with a request for shared.

Transition 1 to 7: First level data cache (IL1d, L.1d") muiss,
responded with a request for shared.

Transition 1 to 11: First level data cache (LL1d, L1d") mass,
responded with a request for exclusive.

Transition 2 to 8: First level instruction cache (I.11) miss,
responded with a request for shared.

Transition 2 to 10: First level data cache (IL1d, LL1d) miss,
responded with a request for shared.

Transition 2 to 11: First level data cache (L1d, LL1d") maiss,
responded with a request for exclusive.

Transition 3 to 5: First level instruction cache (LL11) miss,
responded with a request for shared.

Transition 4 to 3: First level data cache (L1d, L1d") request
exclusive (hits shared in the firstlevel data cache (L1d, L1d")).

Transition 4 to 3: First level instruction cache (ILL11) miss,
responded with a request for shared.

Transition 5 to 1: First level instruction cache (L11)
replacement.

Transition 5 to 6: First level data cache (IL1d, L.1d") muss,
responded with a request for shared.

Transition 5 to 11: First level data cache (LL.1d, L1d'") maiss,
responded with a request for exclusive.

Transition 6 to 7: First level instruction cache (L11)
replacement.

Transition 6 to 5: Firstlevel datacache (IL1d, L.1d") replace-
ment.

Transition 6 to 11: First level data cache (L1d, L1d') miss,
responded with a request for exclusive.

Transition 7 to 1: Firstlevel datacache (L1d, L1d') replace-
ment.

Transition 7 to 6: First level instruction cache (IL.11) miss,
responded with a request for shared.

Transition 7 to 11: First level data cache (LL1d, L1d") mass,
responded with a request for exclusive.

Transition 8 to 2: First level instruction cache (L11)
replacement.

Transition 8 to 9: First level data cache (IL1d, L.1d") miss,
responded with a request for shared.

Transition 8 to 11: First level data cache (L1d, L1d") miss,
responded with a request for exclusive.

Transition 9 to 8: Firstlevel datacache (IL1d, L.1d") replace-
ment.

Transition 9 to 10: First level instruction cache (L11)
replacement.

Transition 9 to 11: First level data cache (LL1d, L1d") mass,
responded with a request for exclusive.

Transition 10 to 9: First level instruction cache (LL11) miss,
responded with a request for shared.

Transition 10 to 2: First level data cache (LL1d, L1d")
replacement.

Transition 10 to 11: First level data cache (LL1d, L1d") hit
shared, responded with a request for exclusive.

Transition 11 to 2: First level data cache (LL1d, L1d")
replacement.

Transition 11 to 9: First level instruction cache (IL11) miss,
responded with a request for shared.

US 9,183,146 B2

11

The directory (L2d_dir) 44 of the second level data cache
(L2d) 40 1s not listed 1n Table 1, as 1t only serves the purpose
to find the index (the synonym based on the virtual address)
into the directory (LL1d_dir) 24, (L1.5d_dir) 25 of the first
level data cache (IL1d) 20, (LL.1d") 20'. It 1s updated when a new
cache-line 1s installed 1n the first level data cache (L 1d, LL 1d").
The directory (LL1d_dir) 24 of the first level data cache (IL1d)
20 or the directory (LL1.5d_dir) 25 of the first level data cache
(L1d') 20'1s a subset of the directories (L2d_dir) 44 and (L.21)
34 of the second level cache (LL2) 200. As the directory
(L2d_dir) 44 of the second level data cache (1.2d) 40 1s limited
in s1ze, areplacement of an entry 1n the directory (L2d_dir) 44
ol the second level data cache (LL.2d) 40 1s to make sure the
victim 1s no longer valid 1n the first level data cache (LL1d) 20,

(L1d") 20'. If the victim of the replacement 1n the directory
(L2d_dir) 44 of the second level data cache (L2d) 40 1s still

valid 1n the first level data cache (1.1d) 20, (LL1d") 20" it 1s to be
invalidated. This 1s handled as ifthe victim was invalidated by
a cross interrogate command.

The above descripted state transitions have been presented
for purposes of illustration only, but are not intended to be
exhaustive or limiting the present invention to the state tran-
sitions disclosed.

In an embodiment of the present invention, a hierarchical
cache structure comprises at least one real indexed higher
level cache with directory and a unified cache array for data
and 1nstructions and at least two lower level caches, each split
1n an 1nstruction cache and a data cache; wherein an instruc-
tion cache of a splitreal indexed second level cache comprises
a directory and a corresponding cache array connected to the
real indexed third level cache; wherein a data cache of the
split second level cache comprises a directory connected to
the third level cache; wherein an instruction cache of a split
virtually indexed first level cache 1s connected to the second
level instruction cache; wherein a cache array of a data cache
of the first level cache 1s connected to the cache array of the
second level instruction cache and to the cache array of the
third level cache; and wherein a directory of the first level data
cache1s connected to the second level instruction cache direc-
tory and to the third level cache directory.

In further embodiments of the present invention, cache-
lines owned exclusive are valid in the cache array of the
second level instruction cache or 1n the cache array of the first
level data cache or in the cache array of the second level
instruction cache and 1n the cache array of the first level data
cache.

In further embodiments of the present invention, the real
indexed second level cache performs reverse translation of a
real address back to a virtual address, wherein the directories
of the real indexed second level cache are indexed with the
real address and keep a synonym based on a corresponding,
virtual address for every entry sent when a cross interrogation
command 1s forwarded to the first level data cache directory
and/or to the first level instruction cache directory.

In further embodiments of the present invention, the sec-
ond level data cache directory 1s a content addressable
memory with one entry per cache-line of the cache array of
the first level data cache.

In further embodiments of the present mvention, the first
level data cache 1s implemented as a multi-level structure
comprising a first cache array and a corresponding first direc-
tory and a larger second cache array and a corresponding
second directory.

In another embodiment of the present invention, 1n a
method for handling a hierarchical cache structure compris-
ing at least one real indexed higher level cache with a direc-
tory and a unified cache array for data and mstructions and at

10

15

20

25

30

35

40

45

50

55

60

65

12

least two lower level caches, each split 1n an instruction cache
and a data cache, an instruction cache of a split real indexed
second level cache initiates requests to a real indexed third
level cache; wherein an instruction cache of a split virtually
indexed first level cache nitiates requests to the instruction
cache of the split real indexed second level cache and a data
cache of the split virtually indexed first level cache initiates
requests to the second level mstruction cache and to the third
level cache.

In further embodiments of the present invention, a request
comprises a command, a command validation and an address
ol a corresponding cache-line.

In further embodiments of the present invention, a search
for a requested address 1s sent to a directory of a correspond-
ing cache level, wherein 1n case of a miss a directory of a
corresponding cache level sends the request to a directory of
a higher cache level until the request 1s sent to a main memory,
and wherein 1n case of a hit a cache array of a corresponding
cache level sends a response to the request to a cache array of
a lower cache level until the response 1s sent to a processor,
wherein the response installs cache-line data of the cache
array of the higher cache level 1n a corresponding cache array
of the lower cache level and updates a corresponding direc-
tory of the lower cache level accordingly.

In further embodiments of the present invention, a search
for a requested 1nstruction address 1s sent from the processor
to an instruction cache directory of the first level cache,
wherein 1n case of a miss the instruction cache directory of the
first level cache sends the request to an instruction cache
directory of the second level cache, wherein in case of a hit a
response to the request 1s sent to a cache array of the first level
instruction cache with cache-line data from a cache array of
the second level instruction cache, and wherein 1n case of a
miss the mstruction cache directory of the second level cache
sends the request to a directory of a third level cache.

In further embodiments of the present invention, a search

for a requested data address 1s sent from the processor to a
data cache directory of the first level cache, wherein 1n case of
a miss the data cache directory of the first level cache sends
the request to the third level cache, and to the instruction
cache directory of the second level cache, wherein 1n case of
a hit 1n the mstruction cache directory of the second level
cache cache-line data of the second level instruction cache are
installed 1n the cache array of the first level data cache, else
cache-line data of the third level cache are installed in the
cache array of the first level data cache.
In further embodiments of the present invention, the
request of the first level data cache 1s sent unconditionally or
via a request generator to the third level cache, wherein the
instruction cache directory of the second level cache enables
the request generator 1n case of a miss 1n the istruction cache
directory of the second level cache to forward the request
from the first level data cache to the third level cache, and
blocks the request generator 1n case of a hit 1n the instruction
cache directory of the second level cache.

In further embodiments of the present vention, the
response of the third level cache 1s sent to the first level data
cache via a response arbiter, wherein the instruction cache
directory of the second level cache enables the response arbi-
ter 1n case ol a miss 1n the mstruction cache directory of the
second level cache to forward the response from the third
level cache to the first level data cache, and blocks the
response arbiter 1n case of a hit in the mstruction cache direc-
tory of the second level cache.

In further embodiments of the present invention, 1n case of
a hit 1in the mnstruction cache directory of the second level
cache a corresponding response to the request 1s based on an

US 9,183,146 B2

13

ownership of the request and an ownership of a requested
cache-line; wherein 1n case of an exclusive ownership request
hitting a shared ownership cache-line an ownership promo-
tion of the cache-line to exclusive 1s 1nitiated by the second
level instruction cache, else a response to the request 1s sent
from the cache array of the second level mstruction cache to
the cache array of the first level data cache with cache-line
data from the cache array of the second level instruction cache
accordingly updating the data cache directory of the first
cache level, wherein the instruction cache directory of the
second level cache sends an exclusive ownership request to
the directory of the third level cache to initiate the ownership
promotion of the cache-line to exclusive, wherein a corre-
sponding response to the request comprises the requested
exclusive cache-line from a higher level cache, wherein the
requested exclusive cache-line is installed in the cache array
of the second level instruction cache and 1n the cache array of
the first level data cache, and wherein corresponding directo-
ries of the second level mstruction cache and the first level
data cache are updated accordingly.

In another embodiment of the present invention, a data
processing program for execution in a data processing system
comprises soltware code portions for performing a method
for handling a virtually indexed hierarchical cache structure
when the program 1s run on the data processing system.

In yet another embodiment of the present invention, a
computer program product stored on a computer-usable
medium, comprises computer-readable program means for
causing a computer to perform a method for handling a hier-
archical cache structure when the program 1s run on the com-
puter.

Embodiments of the present invention improve eificiency
of the multi-level cache hierarchy handling.

In embodiments of the present mvention, a hierarchical
cache structure comprises at least one real indexed higher
level cache comprising a unified cache array for data and
instructions and at least two lower level caches each splitin an
instruction cache and a data cache. An instruction cache and
a data cache of a split real indexed second level cache are
connected to a real indexed third level cache; wherein the
second level data cache 1s a directory-only-cache without a
cache array. An 1nstruction cache of a split virtually indexed
first level cache 1s connected to the instruction cache of the
split real indexed second level cache, and a data cache of the
split virtually indexed first level cache 1s connected to the
instruction cache of the split real indexed second level cache
and to the real indexed third level cache.

Embodiments of the present mvention connect a cache
array ol a lower level cache to a cache array of a higher level
cache by skipping a cache array of a cache level in between.
Embodiments of the present invention eliminate the cache
array of the second level data cache to connect a cache array
of a first level data cache directly with the unified cache array
of the third level cache, and connect a first level data cache
directory to a second level instruction cache directory and to
a third level cache directory. Since the second level data cache
1s a directory-only-cache, the cache-array of the first level
data cache 1s connected directly to the unified cache array of
the third level cache. Because of the “hybrnid” structure of the
second level instruction cache, the cache array of the first
level data cache 1s also connected to a cache array of the
second level instruction cache. A cache array of the first level
instruction cache 1s connected to the cache array of the second
level instruction cache. The cache array of the second level
instruction cache 1s connected to the umified cache array of the
third level cache. For cross interrogate command handling of
cache-lines not 1n the cache array of the second level mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion cache, embodiments of the present invention use the
directory of the second level data cache. Further the cache
array of the first level data cache may be built as a multi-level
cache.

Embodiments of the present invention may use MESI (or
similar) as a cache coherency protocol. Cache-lines owned
exclusive by one cache must not be valid in any other cache of
the same cache level. A cache-line 1n an ownership state
shared may be valid 1n more than one cache. The third level
cache (or the memory/cache hierarchy above) sends cross
interrogate commands to maintain the cache consistency.
Cross interrogate commands are based on real addresses. The
virtually indexed first level caches either have to search all
entries that possibly contain the address, or, as 1n embodi-
ments of the present invention, they use the reverse translation
of the real address back to the virtual address. Only the bits
used as index are used from the virtual address (synonym).
The directories of the second level caches are indexed with
the real address. For every entry, the directory of the second
level mstruction cache and the directory of the second level
data cache keep the synonym and send 1t when they forward
the cross interrogate command to the directory of the first
level instruction cache and/or to the directory L1d_dir of the
first level data cache. In embodiments of the present inven-
tion, the cache array of the first level data cache 1s about as big
as the cache array of the second level instruction cache, and as
any cache array of the second level data cache could probably
be built with the restrictions by chip-size etc. The directory of
the first level data cache 1s a subset of the directory of the
second level data cache and the directory of the second level
instruction cache. Where the cache array of the second level
instruction cache holds the data shared between the cache
array of the first level instruction cache and the cache array of
the first level data cache, with the shared part being rather
small (e.g. 5 to 10%). The directory of the second level data
cache 1s bigger than the directory of the first level data cache
because of address aliasing. An n-way set associative virtu-
ally indexed first level data cache can hold n different entries
with the same virtual index. An n-way set associative real
indexed second level data cache can hold n different entries
with the same real index. Whenever more than n first level
data cache entries have the same real index, the directory of
the second level data cache will not be able to store all of
them. So cross interrogate commands are sent to the first level
data cache to delete the entries that are not kept 1n the direc-
tory of the second level data cache. This problem does not
allow for optimal use of the entire first level data cache—at
performs as 1f the first level data cache was smaller. Perfor-
mance simulations are showing that a directory of the second
level data cache being 20% bigger than the directory of the
first level data cache reduces the address aliasing to an insig-
nificant value.

The above, as well as additional purposes, features, and
advantages of the present invention are apparent in the
detailed written description.

The tflowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the

US 9,183,146 B2

15

blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The descriptions of the various embodiments of the present
invention have been presented for purposes of 1llustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill mn the art to
understand the embodiments disclosed herein.

What 1s claimed 1s:

1. A computer program product for handling a hierarchical
cache structure, said computer program product comprising:

a computer readable storage medium readable by a pro-

cessing circuit and storing nstructions for execution by

the processing circuit for performing a method compris-

ng:

initiating requests by an instruction cache of a split real
indexed second level cache of a hierarchical cache
structure to a real indexed third level cache of the
hierarchical cache structure, the hierarchical cache
structure comprising at least one real indexed higher
level cache with a directory and a unified cache array
for data and instructions and at least two lower level
caches, each split in an instruction cache and a data
cache;

initiating requests by an mstruction cache of a split vir-
tually indexed first level cache to said instruction
cache of said split real indexed second level cache;
and

initiating requests by a data cache of said split virtually
indexed first level cache to said second level instruc-
tion cache and to said third level cache.

2. The computer program product according to claim 1,
wherein a request comprises a command, a command valida-
tion and an address of a corresponding cache-line.

3. The computer program product according to claim 1,
wherein the method further comprises sending a search for a
requested address to a directory of a corresponding cache
level, wherein 1n case of a miss a directory of a corresponding
cache level sends said request to a directory of a higher cache
level until said request 1s sent to a main memory, and wherein
in case of a hit a cache array of a corresponding cache level
sends a response to said request to a cache array of a lower
cache level until said response 1s sent to a processor, wherein
said response 1nstalls cache-line data of said cache array of
said higher cache level in a corresponding cache array of said
lower cache level and updates a corresponding directory of
said lower cache level accordingly.

4. The computer program product according to claim 3,
wherein the method further comprises sending a search for a
requested 1nstruction address from said processor to an
instruction cache directory of said first level cache, wherein 1n
case of a miss said instruction cache directory of said {first
level cache sends said request to an 1nstruction cache direc-
tory of said second level cache, wherein 1n case of a hit a
response to said request 1s sent to a cache array of said first
level instruction cache with cache-line data from a cache

5

10

15

20

25

30

35

40

45

50

55

60

65

16

array of said second level mstruction cache, and wherein 1n
case of a miss said 1nstruction cache directory of said second
level cache sends said request to a directory of a third level
cache.

5. The computer program product according to claim 3,
wherein the method further comprises sending a search for a
requested data address from said processor to a data cache
directory of said first level cache, wherein 1n case of a miss
said data cache directory of said first level cache sends said
request to said third level cache, and to said instruction cache
directory of said second level cache, wherein in case of a hit
in said instruction cache directory of said second level cache
cache-line data of said second level instruction cache are
installed 1n said cache array of said first level data cache, else
cache-line data of said third level cache are installed 1n said
cache array of said first level data cache.

6. The computer program product according to claim 3,
wherein said request of said first level data cache 1s sent
unconditionally or via a request generator to said third level
cache, wherein said instruction cache directory of said second
level cache enables said request generator 1n case of a miss 1n
said 1nstruction cache directory of said second level cache to
torward said request from said first level data cache to said
third level cache, and blocks said request generator in case of
a hit 1n said mnstruction cache directory of said second level
cache.

7. The computer program product according to claim 6,
wherein said response of said third level cache 1s sent to said
first level data cache via a response arbiter, wherein said
instruction cache directory of said second level cache enables
said response arbiter in case of amiss 1n said imnstruction cache
directory of said second level cache to forward said response
from said third level cache to said first level data cache, and
blocks said response arbiter in case of a hit 1n said 1nstruction
cache directory of said second level cache.

8. The computer program product according to claim 5,
wherein 1n case of a hit 1 said 1nstruction cache directory of
said second level cache a corresponding response to said
request 1s based on an ownership of said request and an
ownership of a requested cache-line; wherein 1n case of an
exclusive ownership request hitting a shared ownership
cache-line an ownership promotion of said cache-line to
exclusive 1s imtiated by said second level instruction cache,
clse a response to said request 1s sent from said cache array of
said second level instruction cache to said cache array of said
first level data cache with cache-line data from said cache
array of said second level instruction cache accordingly
updating said data cache directory of said first cache level,
wherein said instruction cache directory of said second level
cache sends an exclusive ownership request to said directory
of said third level cache to initiate said ownership promotion
of said cache-line to exclusive, wherein a corresponding
response to said request comprises said requested exclusive
cache-line from a higher level cache, wherein said requested
exclusive cache-line 1s mstalled 1n said cache array of said
second level 1nstruction cache 1n said cache array of said first
level data cache, and wherein corresponding directories of
said second level instruction cache and said first level data
cache are updated accordingly.

9. A method for handling a lierarchical cache structure,
said method comprising:

initiating requests by an instruction cache of a split real
indexed second level cache of a hierarchical cache struc-
ture to a real indexed third level cache of the hierarchical
cache structure, the hierarchical cache structure com-
prising at least one real indexed higher level cache with
a directory and a unified cache array for data and istruc-

US 9,183,146 B2

17

tions and at least two lower level caches, each split in an
instruction cache and a data cache:;
initiating requests by an mstruction cache of a split virtu-
ally indexed first level cache to said instruction cache of
said split real indexed second level cache; and

initiating requests by a data cache of said split virtually
indexed first level cache to said second level instruction
cache and to said third level cache.

10. The method according to claim 9, wherein a request
comprises a command, a command validation and an address
ol a corresponding cache-line.

11. The method according to claim 9, further comprising
sending a search for a requested address to a directory of a
corresponding cache level, wherein in case of a miss a direc-
tory of a corresponding cache level sends said request to a
directory of a higher cache level until said request 1s sent to a
main memory, and wherein 1n case of a hit a cache array of a
corresponding cache level sends a response to said request to
a cache array of alower cache level until said response 1s sent
to a processor, wherein said response 1nstalls cache-line data
of said cache array of said higher cache level in a correspond-
ing cache array of said lower cache level and updates a cor-
responding directory of said lower cache level accordingly.

12. The method according to claim 11, further comprising
sending a search for a requested instruction address from said
processor to an istruction cache directory of said first level
cache, wherein 1n case of a miss said instruction cache direc-
tory of said first level cache sends said request to an 1nstruc-
tion cache directory of said second level cache, wherein in
case of a hit a response to said request 1s sent to a cache array
of said first level 1nstruction cache with cache-line data from
a cache array of said second level instruction cache, and
wherein 1n case ol a miss said instruction cache directory of
said second level cache sends said request to a directory of a
third level cache.

13. The method according to claim 11, further comprising
sending a search for a requested data address from said pro-
cessor to a data cache directory of said first level cache,
wherein 1n case of a miss said data cache directory of said first
level cache sends said request to said third level cache, and to
said 1nstruction cache directory of said second level cache,
wherein 1n case of a hit i said istruction cache directory of
said second level cache cache-line data of said second level
instruction cache are 1nstalled 1n said cache array of said first
level data cache, else cache-line data of said third level cache
are nstalled 1n said cache array of said first level data cache.

14. The method according to claam 13, wherein said
request of said first level data cache 1s sent unconditionally or
via a request generator to said third level cache, wherein said
instruction cache directory of said second level cache enables
said request generator 1n case of a miss 1n said 1nstruction
cache directory of said second level cache to forward said
request from said first level data cache to said third level
cache, and blocks said request generator 1n case of a hit in said
instruction cache directory of said second level cache.

15. The method according to claim 14, wherein said
response of said third level cache 1s sent to said first level data
cache via a response arbiter, wherein said instruction cache
directory of said second level cache enables said response
arbiter 1n case of a miss 1n said instruction cache directory of
said second level cache to forward said response from said
third level cache to said first level data cache, and blocks said
response arbiter in case of a hit 1n said instruction cache
directory of said second level cache.

16. The method according to claim 13, wherein 1n case of
a hit 1n said mnstruction cache directory of said second level
cache a corresponding response to said request 1s based on an

5

10

15

20

25

30

35

40

45

50

55

60

65

18

ownership of said request and an ownership of a requested
cache-line; wherein in case of an exclusive ownership request
hitting a shared ownership cache-line an ownership promo-
tion of said cache-line to exclusive 1s mitiated by said second
level instruction cache, else a response to said request 1s sent
from said cache array of said second level instruction cache to
said cache array of said first level data cache with cache-line
data from said cache array of said second level instruction
cache accordingly updating said data cache directory of said
first cache level, wherein said instruction cache directory of
said second level cache sends an exclusive ownership request
to said directory of said third level cache to initiate said
ownership promotion of said cache-line to exclusive, wherein
a corresponding response to said request comprises said
requested exclusive cache-line from a higher level cache,
wherein said requested exclusive cache-line 1s installed in
said cache array of said second level 1nstruction cache and 1n
said cache array of said first level data cache, and wherein
corresponding directories of said second level 1nstruction
cache and said first level data cache are updated accordingly.

17. A hierarchical cache structure comprising;:

at least one real indexed higher level cache with a directory
and a unified cache array for data and instructions, and at
least two lower level caches, each split in an instruction
cache and a data cache;

an instruction cache of a split real indexed second level
cache comprising a directory and a corresponding cache
array connected to said real indexed third level cache;

a data cache of said split second level cache comprising a
directory connected to said third level cache;

an 1nstruction cache of a split virtually indexed first level
cache being connected to said second level instruction
cache;

a cache array of a data cache of said first level cache being
connected to said cache array of said second level
instruction cache and to said cache array of said third
level cache; and

a directory of said first level data cache being connected to
said second level instruction cache directory and to said
third level cache directory.

18. The hierarchical cache structure according to claim 17,
wherein cache-lines owned exclusive are valid 1n one or more
of: said cache array of said second level istruction cache, 1n
said cache array of said first level data cache, or 1n said cache
array of said second level mstruction cache; and 1n said cache
array of said first level data cache.

19. The hierarchical cache structure according to claim 17,
wherein said real indexed second level cache performs
reverse translation of a real address back to a virtual address,
wherein said directories of said real mdexed second level
cache are indexed with said real address and keep a synonym
based on a corresponding virtual address for every entry sent

when a cross interrogation command 1s forwarded to said first
level data cache directory and/or to said first level instruction
cache directory.

20. The hierarchical cache structure according to claim 17,
wherein said second level data cache directory 1s a content
addressable memory with one entry per cache-line of said
cache array of said first level data cache; and wherein said first
level data cache 1s implemented as a multi-level structure
comprising a first cache array and a corresponding first direc-
tory and a larger second cache array and a corresponding
second directory.

	Front Page
	Drawings
	Specification
	Claims

