US009183066B2
12 United States Patent (10) Patent No.: US 9,183,066 B2
Arnold et al. 45) Date of Patent: Nov. 10, 2015
(54) DOWNLOADABLE SMART PROXIES FOR (56) References Cited
PERFORMING PROCESSING ASSOCIATED
WITH A REMOTE PROCEDURE CALL IN A U.S. PAIENT DOCUMENTS

DISTRIBUTED SYSTEM

3,449,669 A 6/1969 Carl-Erik Grangvist
4,430,699 A 2/1984 S t al.
(75) Inventors: Kenneth C. R. C. Arnold, Lexington, 4491946 A 1/1985 Ki%ifj; It et al.
MA (US); James H. Waldo, Dracut, MA 4,558,413 A 12/1985 Schmidt et al.
(US); Robert Scheifler, Somerville, MA jag?}%gg i 1 é? igzg g%ckl\ﬁfogd 1
TTQN. : : erlander et al.
E“‘g; Ann M. Wollrath, Groton, MA 4800488 A 1/1989 Agrawal et al.
= 4,809,160 A 2/1989 Mahon et al.
_ _ _ 4,819,233 A 4/1989 Delucia et al.
(73) Assignee: Oracle America Inc., Redwood City, 4,823,122 A 4/1989 Mann et al.
CA (US) (Continued)
(*) Notice: Subject‘ to any disclaimer,i the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 3778 days. EP 0300 516 A2 1/1989
EP 0351 536 A3 1/1990
(21) Appl. No.: 10/138,424 (Continued)
(22) Filed: May 6, 2002 OTHER PUBLICATIONS
(65) Prior Publication Data “Consumers Can.View, Shgre Pic?ure On-Line as Kodak Picture
Network Goes ‘Live’,” Business Wire, Aug. 25, 1997, pp. 18-19.
US 2002/0199036 Al Dec. 26, 2002 (Continued)

Related U.S. Application Data Primary Examiner — Kenneth R Coulter
(63) Continuation of application No. 09/044,930, filed on (74) Attorney, Agent, or Firm — Marsh Fischmann &

Mar. 20, 1998, now Pat. No. 6,393,497, Breyiogle LLP
(51) Int.Cl. (57) ABSTRACT
GO6F 9/54 (2006.01)

Use of a smart proxy as a wrapper around a stub 1n a distrib-

GO6t 9/46 (2006.01) uted system. Instead of recerving a stub as a result of a remote
(52) U.S. Cl. procedure call, a caller receives a smart proxy including the

CPC ..., GO6F 9/547 (2013.01); GO6L 9/465 stub as an embedded object. The smart proxy performs pre-

(2013.01); GO6F 9/548 (2013.01) defined processing associated with a remote procedure call,

(58) Field of Classification Search the processing possibly occurring before, during, or after a

CPC GO6F 9/547, GO6F 9/548; GO6F 9/465 response to the call.

USPC ..o, 719/315, 330-332; 709/201, 203

See application file for complete search history. 16 Claims, 8 Drawing Sheets

-

CLIENT TRANSMITS A CALL OR REQUEST

FOR A PARTICULAR OBJECT 701
—_— — -
SERVER RECEIVES THE CALL {702
v 703

SERVER RETURNS A SMART PROXY WITH AN
EMBEDDED STUB IN RESPONSE TO THE CALL

¥
L CLIENT INVOKES METHOD ON SMART PROXY]

705 ‘704 7086

o
PRE-PROCESSING
REQUIRED?

PERFORM LGOALJ
NO

PRE-PROCESSING
707
METHOD SERVICED A
LOCALLY?

YES 709

708

CALL REMOTE OBJECT)

PERFORM REMG
PROCESSIN

211 PERFORM LOCAL
PROCESSING 710

)= 'll-"l ‘

OF REMOTE
PROCESSSING

PERFORM (LOCAL)
POST-PROCESSING

713

YES

POST-PROCESSING
REQUIRED?

CALL RESULT

US 9,183,066 B2

Page 2
(56) References Cited 5,689,709 A 11/1997 Corbett et al.
5694551 A 12/1997 Doyle et al.
U.S. PATENT DOCUMENTS 5,706,435 A 1/1998 Barbara et al.
5,706,502 A 1/1998 TFoley et al.
4,939,638 A 7/1990 Stephenson et al. 5,710,887 A 1/1998 Chelliah et al.
4,956,773 A 9/1990 Saito et al. 5715314 A 2/1998 Payne et al.
4,992,940 A 7/1991 Dworkin 5,721,825 A 2/1998 Lawson et al.
5,088,036 A 2/1992 Ellisetal.c..c......... 395/425 5,721,832 A 2/1998 Westrope et al.
5,101,346 A 3/1992 Ohtsuki 5,724,540 A 3/1998 Kametani
5,109,486 A 4/1992 Seymour 5,724,588 A 3/1998 Hilletal. ..occovvvenee.... 719/328
5,187,787 A 2/1993 Skeenetal. .ooovvvviivvii., 395/600 5,727,048 A 3/1998 Hiroshima et al.
5,218,699 A 6/1993 Brandle et al. 5,727,145 A 3/1998 Nessett et al.
5,253,165 A 10/1993 Leiseca et al. 5,729,594 A 3/1998 Klingman
5,257,369 A 10/1993 Skeenetal. ..ooovvvveiiil, 395/650 5,734,706 A 3/1998 Windsor et al.
5,293,614 A 3/1994 Fergusonetal. ... 395/600 5,737,607 A 4/1998 Hamilton et al.
5,297,283 A 3/1994 Kelly, Ir. et al. 5,742,768 A 4/1998 Gennaro et al.
5,303,042 A 4/1994 Lewis et al. 5,745,678 A 4/1998 Herzberg et al.
5307.490 A 4/1994 Davidson et al. 5,745,695 A 4/1998 Gilchrist et al.
5311591 A 5/1994 TFischer 5,745,703 A 4/1998 Ceitin et al.
5319,542 A 6/1994 King, Jr. et al. 5,745,755 A 4/1998 Covey
5,327,559 A 7/1994 Priven et al. 5,748,897 A 5/1998 Katiyar
5,339.430 A 8/1994 Lundin et al. 5,754,849 A 5/1998 Dyer et al.
5,339,435 A 8/1994 TLubkin et al. 5,754,977 A 5/1998 Gardner et al.
5341477 A 8/1994 Pitkin et al. 5,757,925 A 5/1998 Faybishenko
5,386,568 A 1/1995 Wold et al. 5,758,077 A 5/1998 Danahy et al.
5,390,328 A 2/1995 Frey et al. 5,758,328 A 5/1998 Giovannoli
5,392,280 A 2/1995 Zheng 5,758,344 A 5/1998 Prasad et al.
5,423,042 A 6/1995 TJalili et al. 5,761,507 A 6/1998 Govett
5,440,744 A 8/1995 Jacobson et al. 5,761,656 A 6/1998 Ben-Shachar
5,446,901 A 8/1995 Owicki et al. 5,764,897 A 6/1998 Khalidi
5,448,740 A 0/1995 Kiri et al. 5,764915 A 6/1998 Heimsoth et al.
5,452,459 A 9/1995 Drury et al. 5,764,982 A 6/1998 Madduri
5,455,952 A 10/1995 Gjovaag 5,768,532 A 6/1998 Megerian
5,459,837 A 10/1995 Caccavale 5,774,551 A 6/1998 Wu et al.
5,471,629 A 11/1995 Risch 5,774,729 A 6/1998 Carney et al.
5475792 A 12/1995 Stanford et al. 3,778,179 A 7/1998 Kanai et al.
5475817 A 12/1995 Waldo et al. 5,778,187 A 7/1998 Monteiro et al.
5475840 A 12/1995 Nelson et al. 5,778,228 A 7/1998 Wer
5,481,721 A 1/1996 Serlet et al. 5,778,368 A 7/1998 Hogan et al.
5,491,791 A 2/1996 Glowny et al. 5,784,560 A 7/1998 Kingdon et al.
5,504,921 A 4/1996 Dev et al. 5,787,425 A 7/1998 Bigus
5,506,984 A 4/1996 Miller 5,787.431 A 7/1998 Shaughnessy
5,511,196 A 4/1996 Shackelford et al. 5,790,548 A 8/1998 Sistanizadeh et al.
5,511,197 A 4/1996 Hill et al. 5,790,677 A 8/1998 Fox et al.
5,524,244 A 6/1996 Robinson et al. 5,794,207 A 8/1998 Walker et al.
5,544,040 A /1996 Gerbaulet 5,799,173 A 8/1998 Gossler et al.
5,548,724 A 8/1996 Akizawa et al. 5,802,367 A 9/1998 Held et al.
5,548,726 A 8/1096 Pettus 5,805,805 A 9/1998 Civanlar et al.
5,553,282 A 9/1996 Parrish et al. 5,806,042 A 9/1998 Kelly et al.
5,555,367 A 9/1996 Premerlani et al. 5,808,911 A 9/1998 Tucker et al.
5555427 A 0/1996 Aoe et al. 5,809,144 A 9/1998 Sirbu et al.
5,557,798 A 9/1996 Skeenetal. ...ocoovivniinn., 395/650) 5,809,507 A 9/1998 Cavan_augh, I11
5,560,003 A 9/1996 Nilsen et al. 395/600 5,812,819 A 9/1998 Rodwin et al.
5,561,785 A 10/1996 Blandy et al. 395/497.01 5,813,013 A 9/1998 Shakib et al.
5,577,231 A 11/1996 Scalzi et al. 5,,&5,149 A 9/1998 Mutschler, III et al.
5,592,375 A 1/1997 Salmon et al. 5,815,709 A 9/1998 Waldo et al.
5594921 A 1/1997 Pettus 5,815,711 A 9/1998 Sakamoto et al.
5,603,031 A 2/1997 White et al. ..ocoocovevi.... 395/683 5,818,448 A 10/1998 Katiyar
5,617,537 A 4/1997 Yamada et al. 5,829,022 A 10/1998 Watanabe et al.
5,628,005 A 5/1997 Hurvig 5,832,219 A 11/1998 Pettus
5,640,564 A 6/1997 Hamilton et al. 5,832,529 A 11/1998 Wollrath et al.
5,644,720 A 7/1997 Boll et al. 5,832,593 A 11/1998 Waurst et al.
5,644,768 A 7/1997 Periwal et al. 5,835,737 A 11/1998 Sand et al.
5,652,888 A 7/1997 Burgess 5,842,018 A 11/1998 Atkinson et al.
5,655,148 A 8/1997 Richmanetal. 305/828 5,844,553 A 12/1998 Hao et al.
5,659,751 A 8/1997 Heningerco....... 395/685 5,845,090 A 12/1998 Collins, III et al.
5,664,110 A 0/1997 Green et al. 5,845,129 A 12/1998 Wendort et al.
5,664,111 A 9/1997 Nahan et al. 5,850,442 A 12/1998 Muttic
5,664,191 A 9/1997 Davidson et al. 5,860,004 A 1/1999 Fowlow et al.
5,666,493 A 9/1997 Wojcik et al. 5,860,153 A 1/1999 Matena et al.
5,671,225 A 9/1997 Hooper et al. 5,864,302 A 1/1999 Kiiens et al.
5,671,279 A 9/1997 Elgamal 5,864,866 A 1/1999 Henckel et al.
5,674,982 A 10/1997 Greve et al. 5,872,928 A 2/1999 Lewis et al.
5,675,796 A 10/1997 Hodges et al. 5,872,973 A 2/1999 Mitchell et al.
5,675,797 A 10/1997 Chung et al. 5,875,335 A 2/1999 Beard
5,680,573 A 10/1997 Rubin et al. 5,878,411 A 3/1999 Burroughs et al.
5.680,617 A 10/1997 Gough et al. 5,884,024 A 3/1999 Lim et al.
5,682,534 A 10/1997 Kapoor et al. 5,884,079 A 3/1999 Furusawa
5684955 A 11/1997 Meyer et al. 5,887,134 A 3/1999 Ebrahim

US 9,183,066 B2

~l

Page 3
(56) References Cited 6,199.068 Bl 3;200; Ca_rpentaelr
6,199,116 B1 3/2001 May et al.
U.S. PATENT DOCUMENTS 6,212,578 Bl 4/2001 Racicot et al.
6,216,138 Bl 4/2001 Wells et al.
5,887.172 A 3/1999 Vasudevan et al. 6,216,158 Bl 4/2001 Luo et al.
5,889,951 A 3/1999 Tombardi 6,219,675 Bl 4/2001 Pal et al.
5,889,988 A 3/1999 Held 6,226,746 Bl 5/2001 Scheifler
5,890,158 A 3/1999 House et al. 6,243,716 Bl 6/2001 Waldo et al.
5,892,904 A 4/1999 Atkinson et al. 6,243,814 Bl 6/2001 Matena
5,905,868 A 5/1999 Baghai et al. 6,247,091 Bl 6/2001 Lovett
5.913.029 A 6/1999 Shostak 6,253,256 Bl 6/2001 Wollrath et al
5915.112 A 6/1999 BRoutcher 6,263,350 Bl 7/2001 Wollrath et al
5,925,108 A 7/1999 Johnson et al. 6,263,379 B1 ~ 7/2001 Atkinson et al.
5,933,497 A 8/1999 Beetcher et al. 6,269,401 Bl 7/2001 Fletcher et al.
5,933,647 A 8/1999 Aronberg et al. 6,272,559 B1 82001 Jones etal.
5,935,249 A 8/1999 Stern et al. 6,282,295 Bl 82001 Young et al.
5.940.827 A 8/1999 Hapner et al. 6,282,568 Bl 82001 Sondur et al.
5,944,793 A 8/1999 Islam et al. 6,282,581 Bl 82001 Moore et al.
5,946,485 A /1999 Weeren et al. 6,292,934 Bl 9/20()? Davidson et al.
5,946,694 A 8/1999 Copeland et al. 6,301,613 Bl ~ 10/2001 Ahlstrom et al.
5,949,998 A 9/1999 Fowlow et al. 6,321,275 Bl 112001 McQuistan et al.
5,951,652 A 9/1999 Ingrassia, Jr. et al. 6,327,677 Bl 12/2001 Garg et al.
5,956,509 A 9/1999 Kevner 6,339,783 Bl 1/2002 Horikiri
5,960,404 A 0/1999 Chaar et al. 6,343,308 Bi‘ 1/2002 Marchesseault
5961,582 A 10/1999 Gaines 6,351,735 Bl 2/2002 Deaton et al
5,963,924 A 10/1999 Williams et al. 6,360,266 Bl 3/2002 Pettus
5,963,947 A 10/1999 Ford et al. 6,363,409 Bl 3/2002 Hart et al.
5966435 A 10/1999 Pino 6,378,001 Bl 4/2002 Aditham et al.
5,966,531 A 10/1999 Skeen et al. 6,385,643 Bl 5/2002 Jacobs et al.
5,969,967 A 10/1999 Aahlad et al. 6,408,342 Bl 6/2002 Moore et al.
5974201 A 10/1999 Chang et al. 6,418,468 Bl 7/2002 Ahlstrom et al.
5978484 A 11/1999 Apperson et al. 6,505,248 Bl 1/2003 Casper et al.
5978,773 A 11/1999 Hudetz et al. 6,564,174 Bl 52003 Ding etal.
5,982,773 A 11/1999 Nishimura et al. 6,578,074 Bl 6/2003 Bahlmann
5,987,506 A 11/1999 Carter et al. 6,603,772 Bl 8/2003 Moussavi et al.
5,991,808 A 11/1999 Broder et al. 6,004,127 B2 8/2003 Murphy et al.
5.996.075 A 11/1999 Matena 6,604,140 Bl 82003 Beck et al.
5999.179 A 12/1999 Kekic et al. 6,654,793 Bl 11/2003 Wollrath et al.
5999988 A 12/1999 Pelegri-Llopart et al. 6,704,803 B2~ 3/2004 Wilson et al.
6,003,050 A 12/1999 Silver et al. 6,757,262 BT 6/2004 Welsshaar et al.
6,003,065 A 12/1999 Yan et al. 6,757,729 BT 6/2004 Devarakonda et al.
6,003,763 A 12/1999 Gallagher et al. 6,801,940 B1 ~ 10/2004 Moran et al.
6,000,103 A 12/1999 Woundy 6,801,949 Bl 10/2004 Bruck et al.
6,000413 A 12/1999 Webber et al. 6,804,711 B1 ~ 10/2004 Duganetal.
6,009,464 A 12/1999 Hamilton et al. 6,804,714 Bl ~ 10/2004 Tummalapalli
6.014.686 A 1/2000 Elnozahy et al. 2001/0003824 Al 6/2001 Schnier
6.016.496 A 1/2000 Roberson 2001/0011350 Al 82001 Zabetian
6.016.516 A 1/2000 Horikiri 2002/0032803 Al* 3/2002 Marcos etal. 709/315
6,018,619 A 1/2000 Allard et al. 2002/0059212 Al 52002 Takagi
6,023,586 A 2/2000 Gaisford et al. 2002/0073019 Al 6/2002 Deaton
6,026,414 A 2/2000 Anglin 2002/0111814 A1 8/2002 Barnett et al.
6,031,977 A 2/2000 Pettus 2003/0005132 A1 1/2003 Nguyen et al.
6,032,151 A 2/2000 Arnold et al. 2003/0084204 Al 5/2003 Wollrath et al.
6,034,925 A 3/2000 Wehmeyer 2003/0191842 Al 10/2003 Murphy et al.
6,041,351 A 3/2000 Kho
6,044,381 A 3/2000 Boothby et al. FOREIGN PATENT DOCUMENTS
6,052,761 A 4/2000 Hornung et al.
6,055,562 A 4/2000 Devarakonda et al. Ep 0384 330 A3 /1990
6,058,381 A 5/2000 Nelson Ep 0470 894 Al 3/1997
6,058,383 A 5/2000 Narasimhalu et al. EP 0 474 340 A 3/1997
6,061,699 A 5/2000 DiCecco et al. Ep 407 007 Al /1007
6,061,713 A 5/2000 Bharadhwaj Ep 0555007 A2 £/1993
6,067,575 A 5/2000 McManis et al. Ep 0565 240 A2 10/1993
6,078,655 A 6/2000 Fahrer et al. Ep 0360 105 A3 11/1003
6,085,030 A 7/2000 Whitehead et al. Ep 0675750 A2 11/1904
6,085,255 A 7/2000 Vincent et al. EP 0 635 707 AD ﬁ"/1995
6,092,194 A 7/2000 Touboul Ep 0651378 Al 5/100%
6,093,216 A 7/2000 Adl-Tabatabai et al. mp 0660 231 AY €/1995
0,101,528 A~ 82000 Butt EP 0697655 A2 2/1996
6,104,716 A 8/2000 Crichton et al. Ep 0718 761 Al 6/1906
6,108,346 A 8/2000 Doucette et al. Ep 0767 437 A 4/1997
6,134,603 A 10/2000 Jones et al. Ep 0778 590 A> 6/1007
6,154,844 A 11/2000 Touboul et al. EP 0 704 493 A7 0/1097
6,157,960 A 12/2000 Kaminsky et al. mp 0803810 A2 10/1997
6,182,083 Bl 1/2001 Schelﬂer_et al. FP 0803 811 A 10/1997
6,185,602 Bl 2/2001 Bayrakeri EP 08053903 A2 11/1997
6,185,611 Bl 2/2001 Waldo et al. EP 0810524 A 12/1997
6,189,046 Bl 2/2001 Moore et al. EP 0817020 A 1/1998
6,192,044 Bl 2/2001 Mack EP 0817022 A2 1/1998

US 9,183,066 B2
Page 4

(56) References Cited
FOREIGN PATENT DOCUMENTS

EP 0817025 A 1/1998
EP 0 836 140 A2 4/1998
GB 2253079 A 8/1992
GB 22062825 A 6/1993
GB 2305087 A 3/1997
JP 11-45187 2/1999
WO WO 92/07335 4/1992
WO WO 92/09948 6/1992
WO WO093/25962 Al 12/1993
WO WO 94/03855 2/1994
WO WO 96/03692 Al 2/1996
WO WO 96/10787 4/1996
WO WO 96/18947 6/1996
WO WO 96/24099 8/1996
WO WO 98/02814 1/1998
WO WO 98/04971 2/1998
WO W099/17194 4/1999
WO WO01/13228 A2 2/2001
WO WO001/86394 A2 11/2001
WO wWO001/90903 Al 11/2001
OTHER PUBLICATTONS

“Eden Project Proposal,” Department of Computer Science, Univer-
sity of Washington, Oct. 1980, Technical Report #80-10-01, cover

and Foreword.

“ISN Dataweb Sells Software, Hardware,” Datamation, Apr. 1, 1996,
p. 40.

“Kodak DC220 and DC260 Digital Cameras Are Shipping to Retail-
ers Across the Country Cameras Are Optimized for USB Interface
Supported in Windows 98.” Business Wire, Jun. 24, 1998, pp. 42-44.
“Kodak demonstrates leadership across entire photographic cat-
egory,” M2 Presswire, Feb. 13, 1998, pp. 31-35.

“Kodak PhotoNet Online Makes It a Snap to Share Summer Photos,”
PR Newswire, Jul. 2, 1998, pp. 63-64.

“Kodak Picture Network Sends Prints Home From the Holidays,”
Business Wire, Dec. 29, 1997, pp. 58-60.

“Photo processing made easy on the Internet; Storm Software and
PictureVision team up with Konica Corp.,” Business Wire, Feb. 22,
1996, pp. 3-4.

“Seeing your photos a whole new way,” Business Wire, Dec. 12,
1996, pp. 9-10.

“Webwatch: MCI Announces Internet Access,” Boardwatch Maga-
zine, Jan. 1995.

Administrator’s Guide, Netscape Enterprise Server, Version 3.0,
Netscape Communications Corp., 1998.

Almes et al., “Edmas: A Locally Distributed Mail System,” Depart-
ment of Computer Science, University of Washington, Technical
Report 83-07-01, Jul. 7, 1983, Abstract & pp. 1-17.

Almes et al., “Research i1n Integrated Distributed Computing,”
Department of Computer Science, University of Washington, Oct.
1979, pp. 1-42.

Almes etal., “The Eden System: A Technical Review,” Department of
Computer Science, University of Washington, Technical Report
83-10-03, Oct. 1983, pp. 1-25.

Almes, “Integration and Distribution in the Eden System,” Depart-
ment of Computer Science, University of Washington, Technical
Report 83-01-02, Jan. 19, 1983, pp. 1-18 & Abstract.

Almes, “The Evolution of the Eden Invocation Mechanism,” Depart-
ment of Computer Science, University of Washington, Technical
Report 83-01-03, Jan. 19, 1983, pp. 1-14 & Abstract.

Arnold, Ken, “The Jin1 Architecture: Dynamic Services 1n a Flexible
Network,” Sun Microsystems, Inc., Proceedings of the 36th ACM
IEEE Design Automation Conference, Jun. 1999, pp. 157-162.
Bandrowski, “Stores Without Doors: Kiosks Generate New Profits,”
Corporate Computing, Oct. 1992, pp. 193-195.

Begole et al., “Transparent Sharing of Java Applets: A Replicated
Approach,” Oct. 1997, pp. 55-65.

Black et al., “A Language for Distributed Programming,” Department
of Computer Science, University of Washington, Technical Report
86-02-03, Feb. 1986, p. 10.

Black et al., “Distribution and Abstract Types in Emerald,” University
of Washington, Technical Report No. 85-08-05, Aug. 1985, pp. 1-10.
Black et al., “Object Structure in the Emerald System,” University of
Washington, Technical Report 86-04-03, Apr. 1986, pp. 1-14.
Black et al., “The Eden Project: A Final Report,” Department of
Computer Science, Unmiversity of Washington, Technical Report
86-11-01, Nov. 1986, pp. 1-28.

Black, “Supporting Distributed Applications: Experience with
Eden,” Department of Computer Science, University of Washington,
Technical Report 85-03-02, Mar. 1985, pp. 1-21.

Black, “The Eden Programming Language,” Department of Com-
puter Science, FR-35, University of Washington, Technical Report
85-09-01, Sep. 1985 (Revised Dec. 1985), pp. 1-19.

Black, “The Eden Project: Overview and Experiences,” Department
of Computer Science, University of Washington, EUUG, Autumn *86
Conference Proceedings, Manchester, UK, Sep. 22-25, 1986, pp.
177-189,

Braine et al., “Object-Flow,” 1997, pp. 418-419.

Bruno, “Working the Web,” Data Communications, Apr. 1997, pp.
50-60.

Ciancarini et al., “Coordinating Distributed Applets with Shade/
Java,” Feb. 1998, pp. 130-138.

Cohen, “Electronic Commerce,” USC/Information Sciences Insti-
tute, Oct. 1989,

Conhaim, “Online shopping: a beginner’s guide; includes related
listing of videotex services,” Link-Up, vol. 5, No. 6, p. 32, Nov. 1988.
Coulouris et al., “Distributed Systems Concepts and Designs,” Sec-
ond Edition, Addison-Wesley, 1994.

Delcambre et al., “Simulation of the Object Flow Model: A Concep-
tual Modeling Language for Object-Driven Applications,” 1993, pp.
216-225.

Design Project #2, Electronic Shopping at MIT, MIT Class 6.033
Handout 23, Massachusetts Institute of Technology, http://web.miut.
edu/6.033/1995/handouts/html/h23 html, Spring 1995, pp. 1-6.
Ellsworth, “Boom Town,” Internet World, Jun. 1995, pp. 33-35.
Estrin, “Inter-Organization Networks: Implications of Access Con-
trol Requirements for Interconnection Protocols,” ACM, 1986, pp.
254-263.

Fleischer, “SkyMall’s ‘Supplier Network’ Takes Flight™, Retailtech,
The Technology Magazine for Retail Executives, Apr. 1997.

Foley, “Managing Campus-Wide Information Systems: Issues and
Problems,” Capitalizing on Communication, ACM SIGUCCS XVII,
1989, pp. 169-174.

Fryxell, “eaasySABRE,” Link-Up, May/Jun. 1996, pp. 10-11.
Gardner, “Kodak Follows Startup Into Online Photo Processing Busi-
ness,” Internet World, Sep. 8, 1997, pp. 5-6.

Gogan et al., “Open Market, Inc.: Managing in a Turbulent Environ-
ment,” Harvard Business School Publishing, Aug. 29, 1996, pp. 1-30.
Goldberg et al., “Smalltalk-80—The Language and its Implementa-
tion,” Xerox Palo Alto Research Center, 1983 (reprinted with correc-
tions, Jul. 1985), pp. 1-720.

Hodges, Douglas, “Managing Object Lifetimes in OLE,” Aug. 25,
1994, pp. 1-41.

Holman et al., ““The Eden Shared Calendar System,” Department of
Computer Science, FR-35, Unmversity of Washington, Technical
Report 85-05-02, Jun. 22, 1985, pp. 1-14.

Hsu, “Reimplementing Remote Procedure Calls,” University of
Washington, Thesis, Mar. 22, 1985, pp. 1-106.

Hutchinson, “Emerald: An Object-Based Language for Distributed
Programming,” a Dissertation, University of Washington, 1987, pp.
1-107.

Israel et al., “Authentication in Office System Internetworks,” ACM
Transactions on Office Information Systems, vol. 1, No. 3, Jul. 1983,
pp. 193-210.

Jacob, “The Use of Distributed Objects and Dynamic Interfaces in a
Wide-Area Transaction Environment,” SIGCOMMn *95 Workshop
on Middleware: Cambridge, Mass., Aug. 1995, pp. 1-3.

Jul et al., “Fine-Grained Mobiulity in the Emerald System,” University
of Washington, ACM Transactions on Computer Systems, vol. 6, No.
1, Feb. 1988, pp. 109-133.

Jul, “Object Mobility in a Distributed Object-Oriented System,” a
Dissertation, University of Washington, 1989, pp. 1-154 (1 page
Vita).

US 9,183,066 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Keller, “Smart Catalogs and Virtual Catalogs,” Proceedings of the
First USENIX Workshop of Electronic Commerce, USENIX Asso-
ciation, Jul. 11-12, 1995, pp. 125-131.

Klein et al., “TRADE’ex: The Stock Exchange of the Computer
Industry,” Harvard Business School Publishing, 1996, pp. 1-14.
Kodak PhotoNet FAQ, PhotoNet Online, Jun. 14, 2002, pp. 1-3.
Kolodner et al., “Atomic Garbage Collection: Managing a Stable
Heap,” ACM, 1989, pp. 15-25.

Koshizuka et al., “Window Real-Objects: A Distributed Shared
Memory for Distributed Implementation of GUI Applications,” Nov.
1993, pp. 237-247.

Kramer, “NETWATCH; The AJC’s Daily Online Guide; Get the
picture: Kodak will send photos to Web,” The Atlanta Journal and
Constitution, Sec. Features, p. 08C, Jun. 5, 1997.

Krasner et al., “Smalltalk-80: Bits of History, Words of Advice,”
1983, Xerox Corporation, pp. 1-344.

Lampson et al., “Authentication in Distributed Systems: Theory and
Practice,” ACM Transactions n Computer Systems, vol. 10, No. 4,
Nov. 1992, pp. 265-310.

Lansky, “Without APS, Photo Life Goes on Via Internet,” Photo-
graphic Trade News, Aug. 1996, pp. 19-23.

Lavana et al., “Executable Workflows: A Paradigm for Collaborative
Design on the Internet,” Jun. 1997, 6 pages.

Lewis, “Pacific Bell, MCI to Expand Internet Service,” The New York
Times, sec. D, col. 1 at 3, Mar. 28, 1995,

LightSurf Instant Imaging—Press Releases, “Kodak and LightSurf
Collaborate on Kodak Picture Center Online,” LifeSurt Technologies
Inc., Jun. 14, 2002, pp. 1-3.

Louwerse et al., “Data Protection Aspects in an Integrated Hospital
Information System,” North-Holland Computers & Security 3, 1984,
pp. 286-294.

McEnaney, “Point-and-Click Memory Sharing; Launches PhotoNet
online digital photography and mmaging services,” Photographic
Trade News, Sec. p. 23, Jan. 1997.

Miller, “Web posting as a photo processing option,” USA Today,
Section: Life, p. 17D, Dec. 13, 1996.

Morris et al., “Andrew: A Distributed Personal Computing Environ-
ment,” Communications of the ACM, vol. 29, No. 3, Mar. 1986, pp.
184-201.

O’Mahony, “Security Considerations in a Network Management
Environment,” IEEE Network, May/Jun. 1994, pp. 12-17.

Oppen et al., “The Clearinghouse: A Decentralized Agent for Locat-
ing Names Objects 1n a Distributed Environment,” ACM Transac-
tions on Office Information Systems, vol. 1, No. 3, Jul. 1983, pp.
230-253,

Osborn, “The Role of Polymorphism in Schema Evolution in an
Object-Oriented Database,” IEEE Transactions on Knowledge and
Data Engineering, vol. 1, No. 3, Sep. 1989, pp. 310-317.

Petersen, “New but Not Improved,” Direct Magazine, Nov. 1995.
Press Release, “Sun Goes Live With the Kodak Picture Network.”
Sun Microsystems, Inc., Jun. 14, 2002, pp. 1-2.

Proceedings of the Eighth Symposium on Operating Systems Prin-
ciples, Dec. 14-16, 1981, ACM, Special Interest Group on Operating
Systems, Assoclation for Computing Machinery, vol. 15, No. 5, Dec.
1981, ACM Order No. 534810.

Proudfoot, “Replects: Data Replication in the Eden System,” Depart-
ment of Computer Science, University of Washington, Technical
Report No. TR-85-12-04, Dec. 1985, pp. 1-156.

Pu, “Replication and Nested Transaction in the Eden Distributed
System,” Doctoral Dissertation, University of Washington, Aug. 6,
1986, pp. 1-179 (1 page Vita).

Raeder, “Is there a Prodigy 1n your future?,” Database Searcher, vol.
5, No. 6, p. 18, Jun. 1989.

Ramm et al., “Exu—A System for Secure Delegation of Authority on
an Insecure Network,” Ninth System Administration Conference,
1995 LISA IX, Sep. 17-22, 1995, pp. 89-93.

Satyanarayanan, “Integrating Security in a Large Distributed Sys-
tem,” ACM Transactions on Computer Systems, vol. 7, No. 3, Aug.
1989, pp. 247-280.

Schroeder et al., “Experience with Grapevine: The Growth of a
Distributed System,” ACM Transactions on Computer Systems, vol.
2, No. 1, Feb. 1984, pp. 3-23.

Senn, “Capitalizing on Electronic Commerce: The Role of the
Internet in Electronic Markets,” Information Systems Management,
Summer 1996, pp. 15-24.

Steinke, “Design Aspects of Access Control 1n a Knowledge Base
System,” Computers & Security, 10, 1991, pp. 612-625.

Stern, “Industry Net,” Link-Up, Mar./Apr. 1995, p. 10.

Tanenbaum et al., “Distributed Operating Systems,” Computing Sur-
veys, vol. 17, No. 4, Dec. 1985, pp. 419-470.

The Wall Street Journal, “Barclays Is Opening an ‘Electronic Mall’
for Internet Shopping,” Tech. & Health Section at B2, Jun. 1, 1995.
The Wall Street Journal, “Prodigy Plans to Announce Internet ‘Elec-
tronic Mail’,” Tech. Section at B5, Nov. 27, 1995.

Trehan et al., “Toolkit for Shared Hypermedia on a Distributed
Object Oriented Architecture,” 1993, pp. 1-8.

Trommer, “Thomas Unvells Online Purchasing Network—FEases
Product Sourcing and Ordering Through EDIL” Electronic Buyers’
News at 60, Dec. 11, 1995.

Van Den Berg et al., “Advanced Topics of a Computer Center Audit,”
North-Holland Computers & Security 3, 1984, pp. 171-185.

Van Der Lans, “Data Security in a Relational Database Environ-
ment,” North-Holland Computers & Security 5, 1986, pp. 128-134.
Welz, “New Deals: A ripening Internet market, secure systems and
digital currency are reshaping global commerce,” Internet World,
Jun. 19935, pp. 36-41.

Wobber et al., “Authentication in the Taos Operating System,” ACM,
1993, pp. 256-269.

Wyatt, “Netscape Enterprise Server,” Prima Publishing, 1996.
Yin et al., “Volume Leases for Consistency 1n Large-Scale Systems,”

IEEE Transactions on Knowledge & Data Engineering, vol. 11, No.
4, pp. 563-576, Jul./Aug. 1999.

“Java (TM) Object Serialization Specification,” Sun Microsystems,
Inc., XP-002242372, <www.del.estg.1ple1.pt/P3/N/material/extra/
serial-spec-JDK1_ 2.pdf>, Nov. 30, 1998 (76 pages).

Chan, P. et al., The Java Class Libraries, 2" Edition, vol. 1, “Java.io
ObjectlnputStream,” XP-002243027, pp. 1230-1232, 1262-1264,
and 1283, Mar. 9, 1998 (7 pages).

Opyrchal et al., “Efficient Object Serialization 1n Java,” Department
of Electrical Engineering and Computer Science, University of
Michigan, XP-002242373, May 31, 1999 (6 pages).

Auto-ID Center, “Auto-ID Savant Specification 1.0,” Version of Oct.
13, 2003 (58 pages).

H.A. Smith and J.D. McKeen, “Object-Oriented Technology: Get-
ting Beyond the Hype,” ACM, Spring 1996, vol. 27, pp. 20-29.
Java Remote Method Invocation Specification, JDK 1.1 FCS, Sun
Microsystems, Inc. Feb. 1997, chapters 5 and 7.

Jennings, N.R. et al., “Using Intelligent Agents to Manage Business
Processes,” Dept. Electronic Engineering, Queen Mary & Westfield
College, Mile End Road, London, E1 4NS, UK., XP-002254546,
1996 16 pages.

Wollrath et al., “JAVA-Centric Distributed Computing,” IEEE Mirco
May/Jun. 1997, pp. 44-53.

Amitabh, D., et al., Proxies, Application Interfaces, and Distributed
Systems, IEEE, pp. 212-220, 1992.

L1, Sing et al., “Professional Jin1”, Chapter 7, Aug. 2000.

Spiteri, M.D., et al., “An architecture to support storage and retrieval
of events”, 1998.

“Dynamic code downloading using RMI”, http://java.sun.com/j2se/
1.4.2/docs/guide/mi/codebase.html, 2003. (9 pages).

“Passing Proxies as Parameters to Methods and Return Values from
Methods,” IBM Technical Disclosure Bulletin, vol. 41, No. 1, Jan.
1998, pp. 89-92.

“Jin1 Distributed Leasing Specification,” Sun Microsystems, Jan.
1999, XP-002209076. (26 pages).

Subramanian, Sakthi et al., “Automatic Verification of Object Code
Against Source Code,” IEEE, 1996, pp. 46-55.

Wollrath, A., et al., “Simple Activation for Distributed Objects,”
USENIX Association, Conference on Object-Oriented Technologies
(COOTS), Jun. 26-29, 1995. (11 pages).

US 9,183,066 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

Stoyenko, A.D. “SUPRA-RPC: SUbprogram PaRAmeters In
Remote Procedure Calls,” Software-Practice and Experience, vol.
24(1), pp. 27-49, 1994,

Black et al., “The Eden Report: A Final Report,” Department of
Computer Science, University of Washington, Technical Report
86-11-01, Nov. 1986, pp. 1-28.

Foley, “Managing Campus-Wide Information Systems: Issues and
Problems,” Capitalizing on Communication, ACM SIGUCCS XVII;
1989, pp. 169-174.

Mullender, Distributed Systems, Second Edition, Addison-Wesley,
1993.

Howard et al., Scale and Performance in a Distributed File System,
ACM Transactions on Computer Systems, vol. 6, No. 1, Feb. 1988,
pp. S1-81.

Cardell, Oblig, A lightweight language for network obiects, Nov. 5,
1993, pp. 1-37.

Diykstra, Self-stabilizing Systems in Spite of Distributed Control,
Communications of the ACM, vol. 17, No. 11, Nov. 1974, pp. 643-
644.

Ousterhout et al., The Sprite Network Operating System, Computer,
IEEE, Feb. 1988, pp. 23-36.

Dourish, 4 Divergence-Based Model of Synchrony and Distribution
in Collaborative Systems, Xerox Technical Report EPC-1194-102,
1994, pp. 1-10.

Sharrott et al., ObjectMap. Integrating High Performance Resources
into a Distributed Obiect-oriented FEnvironment, [CODP, 1995.
Birrell et al., Grapevine: An Exercise in Distributed Computing,
Communications of the ACM, vol. 25, No. 4, Apr. 1982, pp. 260-274.
Transparent Network Computing, Locus Computing Corporation,
Jan. 5, 1995.

Gray ¢t al., Leases: Arn Efficient Fault-Tolerant Mechanism for Dis-
tributed File Cache Consistency, ACM, 1989, pp. 202-210.
Lamport et al., The Byzantine Generals Problem, ACM Transactions
on Programming .anguages and Systems, vol. 4, No. 3, Jul. 1982, pp.
382-401.

Dolev et al., On the Minimal Synchronism Needed for Distributed
Consensus, Journal of the ACM, vol. 34, No. 1, Jan. 1987, pp. 77-97.
Mummert et al., Long Term Distributed File Reference Tracing:
Implementation and Experience, Carnegie Mellon University School
of Computer Science, Nov. 1994, pp. 1-28.

Gelernter et al., Parallel Programming in Linda, Yale University, Jan.
1985, pp. 1-21.

Cannon et al., Adding Fault-Tolerant Transaction Processing to
LINDA, Software-Practice and Experience, vol. 24(5), May 1994, pp.
449-466.

Kambhatla et al., Recovery with Limited Replay.: Fault-1olerant Pro-
cesses in Linda, Oregon Graduate Institute, Technical Report CSIE
90-019, Sep. 1990, pp. 1-16.

Anderson et al., Persistent Linda: Linda + Transactions + Query
Processing, Proceedings of the 13th Symposium on Fault Tolerant
Systems, 1994, pp. 93-109.

Gelernter, Generative Communication in Linda, ACM Transactions
on Programming Languages and Systems, vol. 7, No. 1, Jan. 1985,
pp. 80-112.

Carriero et al., Distributed Data Structures in Linda, Principals of
Programming L.anguage, 1986, pp. 1-16.

Pinakis, Using Linda as the Basis of an Operatfing System
Microkernel, University of Western Australia, Department of Com-
puter Science, Aug. 1993, pp. 1-165.

LINDA Database Search, Jul. 20, 1995, pp. 1-68.

Carriero et al, Distributed Data Structures in Linda, Yale Research
Report YALEU/DCS/RR-438, Nov. 1985.

Agha et al., Actorspaces: An Open Distributed Programming Para-
digm, University of Illinois, Report No. UIUCDCS-R-92-1766,
Open Systems Laboratory TR No. 8, Nov. 1992, pp. 1-12.

Ahmed et al., A Program Building 1ool for Parallel Applications,
Yale University, Dec. 1, 1993, pp. 1-23.

Liskov et al., Distributed Object Management in Thor, International
Workshop on Distributed Object Management, 1992, pp. 12.

Coulouris et al., Distributed Systems Concepts and Designs, Second

Edition, Addison-Wesley, 1994.

Birrell et al., Network Obiects, DEC SRC Research Report 115, Feb.
28, 1994,

Birrell et al., Distributed Garbage Collection for Network Objects,
DEC SRC Research Report 116, Dec. 15, 1993.

Jaworskl, Java 1.1 Developer’s Guide, Sams.net, 1997.

Wollrath et al., A4 Distributed Obiect Model for the JavaJ System,
USENIX Association, Conference on Object-Oriented Technologies
and Systems, Jun. 17-21, 1996.

Harris etal., Proposal for a General Java Proxy Class for Distributed
Systems and Other Uses, Netscape Communications Corp., Jun. 235,
1997.

Hamilton, Java and the Shift to Net-Centric Computing Computer,
Aug. 1996, pp. 31-39.

Chung et al., A ‘Tiny’ Pascal Compiler: Part 1. The P-Code Inter-
preter, BY TE Publications, Inc., Sep. 1978.

Chung et al., A ‘Tiny’ Pascal Compiler: Part 2: The P-Compiler,
BYTE Publications, Inc., Oct. 1978.

Thompson, Regular Expression Search Algorithm, Communications
of the ACM, vol. II, No. 6, p. 149 et seq., Jun. 1968.

Mitchell et al., Mesa Language Manual, Xerox Corporation.
McDaniel, An Analysis of a Mesa Instriuction Set, Xerox Corporation,
May 1982.

Pier, A Retrospective on the Dorado, A High-Performance Personal
Computer, Xerox Corporation, Aug. 1983.

Pier, A Retrospective on the Dorado, A High-Performance Personal
Computer, IEEE Conference Proceedings, The 10th Annual interna-
tional Symposium on Computer Architecture, 1983.

Krasner, The Smalltalk-80 Virtual Machine, BY TE Publications Inc.,
Aug. 1991, pp. 300-320.

Operating Systems Review, ACM Press, vol. 27, No. 5, Dec. 1993, pp.
217-230,

Remote Method Invocation Specification, Sun Microsystems, Inc.,
(1997), http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/
rmiTOC.doc.html.

Birrell et al., Implementing Remote Procedure Calls, ACM Transac-
tions on Computer Systems, vol. 2, No. 1, Feb. 1984, pp. 39-59.
IBM: SOMODbjects Developer Toolkit Users Gude, Version 2.1,
“Chapter 6—Distributed SOM (DSOM),” pp. 6-1-6-90, Oct. 1994,
Orfali R. et al., ““The Essential Distributed Objects Survival Guide,”
Chapter 11: Corba Commercial ORBs, John Wiley & Sons, Inc.,
(1996).

Venners, B., “Jin1 Technology, Out of the Box”, JAVAWORLD,
'Online!, pp. 1-4, Dec. 1998.

Alexander, et al., “Active Bridging”, Proceedings of the ACM/
SIGCOMM’97 Conference, Cannes, France, Sep. 1997,
Anonymous: “Change-Notification Service for Shared Files”, IBM
Technical Disclosure Bulletin, vol. 36, No. 8, pp. 77-82, Aug. 1993,
XP002108713, New York, US,

Anonymous: “Resource Preemption for Priority Scheduling.” Nov.
1973. IBM Technical Disclosure Bulletin, vol. 16, No. 6, p. 1931
XP002109435 New York, US.

Beech et al., “Object Databases as Generalizations of Relational
Databases,” Computer Standards & Interfaces, vol. 13, Nos. 1/3, pp.
221-230, (Jan. 1991) Amsterdam, NL.

Bertino et al.,, “Object-Oriented Database Management Systems:
Concepts and Issues,” Computer, vol. 24, No. 4, pp. 33-47, (Apr.
1991), Los Alamitos, CA.

Betz, Mark; “Interoperable objects: laying the foundation for distrib-
uted object computing”; Dr. Dobb’s Journal, vol. 19, No. 11, p.
18(13); (Oct. 1994).

Bevan, D.I., “An Efficient Reference Counting Solution to the Dis-
tributed Garbage Collection Problem”, Parall Computing, NL,
Elsevier Publishers, Amsterdam, vol. 9, No. 2, pp. 179-192, Jan.
1989.

Birrell et al., “Implementing Remote Procedure Calls™”, ACM Trans-
actions on Computer Systems, vol. 2, No. 1, Feb. 1984, pp. 39-59.
Dave A et al: “Proxies, Application Interface, and Distributed Sys-
tems”, Proceedings International Workshop on Object Orientation in
Operating Systems, Sep. 24, 1992, pp. 212-220.

Deux O et al: “The 02 System” Communications of the Association
for Computing Machinery, vol. 34, No. 10, Oct. 1, 1991, pp. 34-48.

US 9,183,066 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Drexler, K. Eric, et al., “Incentive Engineering for Computational
Resource Management,” The Ecology of Computation, Elsevier Sci-
ence Publishers B.V., 1988, pp. 231-266.

Droms, R., “RFC 1541 Dynamic Host Configuration Protocol”,
http://www.c1s.ohio-state.edu/htbin/rfc/rfc1541 . html, Oct. 1993, pp.
1-33.

Emms J: “A Definition of an Access Control Systems Language”
Computer Standards and Interfaces, vol. 6, No. 4, Jan. 1, 1987, pp.
443-454.

Gosling et al., “The Java (TM) Language Specification”, Addison-
Wesley, 1996.

Gottlob et al., “Extending Object-Oriented Systems with Roles,”
ACM Transactions on information systems, vol. 14, No. 3, pp. 268-
296 (Jul. 1996).

Guth, Rob: “JavaOne: Sun to Expand Java Distributed Computing
Effort”, “http://www.sunworld.com/swol-02-1998/swol-02-sun-
spots.html,” XP-002109935, p. 1, Feb. 20, 1998.

Hamilton et al., “*Subcontract: a flexible base for distributed program-
ming”’; Proceedings of 14th Symposium of Operating System Prin-
ciples; (Dec. 1993).

Hartman, J., Manber, U., et al., Liquid Software: A new paradigm for
networked systems, Technical Report 96-11, Department of Comp.
Sci., Univ. of Arizona, Jun. 1996.

Hunt, N., “IDF: A Graphical Data Flow Programming [Language for
Image Processing and Computer Vision”, Proceedings of the Inter-
national Conference on Systems, Man, and Cybernetics, Los Ange-
les, Nov. 4-7, pp. 351-360, (1990).

IBM (TM) Technical Disclosure Bulletin, “Object Location Algo-
rithm,” vol. 36, No. 09B, pp. 257-258, Sep. 1993.

IBM (TM) Technical Disclosure Bulletin, “Retrieval of Qualified
Variables Using Extendible Hashing,” vol. 36, No. pp. 301-303, Dec.
1993.

Jones, Richard, et al., “Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management,” pp. 165-175, John Wiley &
Sons, 1996.

Kay, Michael H. et al., “An Overview of the Raleigh Object-Oriented
Database System”, ICL Technical Journal, vol. 7, No. 4, pp. 780-798,
(Nov. 1991), Oxford, GB.

Kougiouris et al.; “Support for Space Efficient Object Invocation 1n
Spring”; (Sep. 1994).

Lindholm et al., “The Java (TM) Virtual Machine Specification”,
Addison Wesley, 1996.

Mitchell et al.; “An Overview of the Spring System”; (Feb. 1994).
Riggs Roger et al., “Pickling State in the Java (TM) System,”
USENIX Association Conference on Object-Oriented Technologies
and Systems, Jun. 17-21, 1996, pp. 241-250.

Rosenberry et al., “Understanding DCE”; Chapters 1-3, 6; (1992).
Waldo J et al: “Events in an RPC based distributed system™ Proceed-
ings of the 1995 USENIX Technical Conference, Proceedings
USENIX Winter 1995 Technical Conference, New Orleans, LA.
USA, Jan. 16-20, 1995, pp. 131-142.

Wilson, P.R., etal., “Design of the Opportunistic Garbage Collector,”
Proceedings of the Object Oriented Programming Systems Lan-
guages and Applications Conference, New Orleans, vol. 24, No. 10,
Oct. 1989.

Wu, Xuequn, “A Type system for an Object-Oriented Database Sys-
tem,” Proceedings of the International Computer Software and Appli-
cations Conference (COMPSAC), pp. 333-338, Sep. 11-13, 1991,
Tokyo, Japan.

Yemini, Y. and S. da silva, “Towards Programmable Networks”,
IFIP/IEEE International Workshop on Distributed Systems: Opera-
tions and Management, L.’ Aqula, Italy, Oct. 1996.

Aldrich et al., “Providing Easier Access to Remote Objects in Client-
Server Systems,” System Sciences, 1998, Proceedings of the 31st
Hawaii Internat’l. Conference, Jan. 6-9, 1998, pp. 366-375.
Aldrich et al., “Providing Easier Access to Remote Objects in Dis-
tributed Systems,” Calif. Institute of Technology, www.cs.caltech.
edu/%7Ejedi/paper/jedipaper.html, Nov. 21, 1997.

Burns et al., “An Analytical Study of Opportunistic L.ease Renewal,”
Distributed Computing Systems, 21st International Conference, pp.
146-153, Apr. 2000,

Dollimore et al., “The Design of a System for Distributing Shared
Objects,” The Computer Journal, No. 6, Cambridge, GB, Dec. 1991.
Fleisch et al., “High Performance Distributed Objects Using Distrib-
uted Shared Memory & Remote Method Invocation,” System Sci-
ences, 1998, Proceedings of the 3 1st Hawaii Internat’l. Conference,
Jan. 6-9, 1998, pp. 574-578.

Gray et al., “Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency,” Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pp. 202-210, 1989.
Guyennet et al., “A New Consistency Protocol Implemented in the
CAlF System,” IEEE, 1094-7256/97, pp. 82-87, 1997.

Guyennet et al., “Distributed Shared Memory Layer for Cooperative
Work Applications,” IEEE, 0742-1303/97, pp. 72-78, 1997.

Hoshi et al., *“Allocation of the Cross-Connect Function in Leased

Circuit Networks,” 1992, ICC’92, conference record,
SUPERCOMM/ICC 02, D a New World of Communications, IFEE
International Conference, pp. 1408-1412.

IBM Technical Disclosure Bulletin, “Local Network Monitoring to
Populate Access Agent Directory,” vol. 36, No. 09A, pp. 403-405,
Sep. 1993,

McGrath, “Discovery and Its Discontents: Discovery Protocols for
Ubiquitous Computing,” Presented at Center for Excellence in Space
Data and Information Science, NASA Goddard Space Flight Center,
Apr. 5, 2000.

MUX-Elektronik, Java 1.1 Interactive Course, www.lls.se/~mux/
javaic.html, 1995.

Stevenson, “Token-Based Consistency of Replicated Servers,” IEEE,
CH2686-4/89/0000/0179, pp. 179-183, 1989.

Yin et al., “Using Leases to Support Server Driven Consistency in

Large-Scale Systems,” Computer Services Department, University
of Texas at Austin, p. 285-294, May 26-28, 1998.

* cited by examiner

US 9,183,066 B2

Sl e S
IIIIII
Illillii'l

ONISS3O0Hd LN3IO

-

|
_ _ d |
0 ow MERT
BERCENCEL OdY _ _ — _
= _ | | 3SNOd |
Z ISNOdS3d || SSUSCAS, IAIZ0FH—> YOVANN P> NHNL3H)
= | "ngnL3y xﬂ& t_\,_mu,qE ENC 2R / / c|
Z | 1IISNOJS3Y | _
2 @:w ‘_, vl AN 1 201 901 GOl “

| _ \
— | .W | _ _
S 1S 1L LLL Ot | | 701 €01l 2oL |,
s ((! _ ((C |
2 1 70 TIVO <«—3NF0TH < L — LINSNYH L <— TV Tvo |
< L MOVANN . 13¥0vd MOV _
L2t . Two _
' 601 801 " 401 001 |
| _ _
_ _ | _

_

ONISSTO0Hd H3AHIS

U.S. Patent

U.S. Patent Nov. 10, 2015 Sheet 2 of 8 US 9,183,066 B2

202

q-
O
QN
_
M
O
— L1l
> Z
© - >
= 3
=
~ AN
S)
O
S Q
L
O
QN
O
-
N
=
0
)
O
QN
-
ol
O

MACHINE

US 9,183,066 B2

Sheet 3 of 8

Nov. 10, 2015

U.S. Patent

HOSS3004dd

8LE

WILSAS
ONILVHIdO

NOILVOIlddV

sie! 60€’ AHOWIW
90¢!

momW
G6 SMOANIMINNILNA

61C

00¢

HOSS3004dd

NI LSAS
ONILVYHAdO

LT

NOILVOl'lddVv

prg’ 808’ AHOWIW

GOE B
20€ X1d17N'SdIN
hEOwwmooma_

91
NILSAS ||
ONILYH3dO || |

INH |01 e

NOLLYDITddY] |

ere/ J0g AHOW3W|
y08 -

0L g1V 10S OHVYdSYHLIN

U.S. Patent Nov. 10, 2015 Sheet 4 of 8 US 9,183,066 B2

r
L)
- —
S T
=
O
O
= O
S <
O
-
< L
O
>
LL)
a

402
COMPUTER

US 9,183,066 B2

Sheet 5 of 8

Nov. 10, 2015

U.S. Patent

905 29(1A3d LAdNI AY1dSId O3AIA 015

908 NdD 025~ WAr | 8IS

- NFLSAS
INILNNY VAV 91G
A4 20VAS VAT HIAYIS AHIAODSIA| 1S

FOINH3S dNAOO] clLS

J0IAAd

JOVHOLS AHVANOO4S AHOW3AN

v0S 03
2ot

US 9,183,066 B2

9 "Ild

Sheet 6 of 8

809 £09
110 | |AX0Hd LS

. 80 - JSNOJSIH €09

3 10Wat i cm—

= 1S3N034 HO4 V0 ¢03

-

E INIHOVIN H3AESS INIHOVIN LN3I10

909
109

009

U.S. Patent

119

3d0D

U.S. Patent Nov. 10, 2015 Sheet 7 of 8 US 9,183,066 B2

700

CLIENT TRANSMITS ACALL OR REQUEST
FOR A PARTICULAR OBJECT
SERVER RECEIVES THE CALL 702

703
SERVER RETURNS A SMART PROXY WITH AN
EMBEDDED STUB IN RESPONSE TO THE CALL
CLIENT INVOKES METHOD ON SMART PROXY
705 704 706

PRE-PROCESSING PERFORM LOCAL

REQUIRED? - PRE-PROCESSING

NO

701

707

O
CALL REMOTE OBJECT
PERFORM REMOTE
PROCESSING

709
PERFORM LOCAL RETURN RESULT
PROCESSING 710 OF REMOTE
PROCESSSING

712
PERFORM (LOCAL)
POST-PROCESSING

METHOD SERVICED
LOCALLY?

POST-PROCESSING ™~ &3

REQUIRED?

NO
RETURN METHOD
CALL RESULT

U.S. Patent Nov. 10, 2015 Sheet 8 of 8 US 9,183,066 B2

800

80 PROCESSING
INVOKED

802

803

DOWNLOAD
CODE AND
UPDATE
PROCESSING

UPDATED
PROCESSING
REQUIRED?

04| PERFORM
PROCESSING

FIG. 8

US 9,183,066 B2

1

DOWNLOADABLE SMART PROXIES FOR
PERFORMING PROCESSING ASSOCIATED
WITH A REMOTE PROCEDURE CALL IN A

DISTRIBUTED SYSTEM

REFERENCE TO RELATED APPLICATTONS

The following identified U.S. patent applications are relied
upon and are incorporated by reference 1n this application as
if Tully set forth.

Provisional U.S. Patent Application No. 60/076,048,
entitled “Distributed Computing System,” filed on Feb. 26,
1998.

U.S. Pat. No. 6,263,350, entitled “Method and System for
Leasing Storage.”

U.S. Pat. No. 6,247,026, entitled “Method, Apparatus, and
Product for Leasing of Delegation Certificates 1n a Distrib-
uted System.”

U.S. Pat. No. 6,421,704, entitled “Method, Apparatus and
Product for Leasing of Group Membership 1n a Distributed
System,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,016,500, entitled “Leasing for Failure
Detection.”

U.S. patent application Ser. No. 09/144,933, entitled
“Method for Transporting Behavior in Event Based System,”
filed on Mar. 20, 1998.

U.S. Pat. No. 6,272,559 entitled “Delferred Reconstruction
of Objects and Remote Loading for Event Notification 1n a
Distributed System.”

U.S. Pat. No. 6,487,607, entitled “Methods and Apparatus
for Remote Method Invocation,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,134,603, entitled “Method and System for
Deterministic Hashes to Identity Remote Methods.”

U.S. Pat. No. 6,598,094, entitled “Method and Apparatus
for Determiming Status ol Remote Objects in a Distributed
System,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,237,024, entitled “Suspension and Con-
tinuation of Remote Methods.”

U.S. Pat. No. 6,182,083, entitled “Method and System for
Multi-Entry and Multi-Template Matching in a Database.”
U.S. patent application Ser. No. 09/044,839, entitled
“Method and System for In-Place Modifications 1n a Data-
base,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,578,044, entitled “Method and System for
Typesate Attribute Matching 1n a Database,” filed on Mar. 20,
1998.

U.S. Pat. No. 6,185,611, entitled “Dynamic Lookup Ser-
vice 1 a Distributed System,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,560,656, entitled “Apparatus and Method
tor Providing Downloadable Code for Use in Communicat-

ing with a Device 1n a Distributed System,” filed on Mar. 20,
1998.

U.S. Pat. No. 6,832,223, entitled “Method and System for
Facilitating Access to a Lookup Service,” filed on Mar. 20,
1998.

U.S. Pat. No. 6,466,947, entitled “Apparatus and Method
tor Dynamically Veritying Information 1n a Distributed Sys-
tem,” filed on Mar. 20, 1998.

U.S. patent application Ser. No. 09/044,936, entitled “An
Interactive Design Tool for Persistent Shared Memory
Spaces,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,438,614, enfitled “Polymorphic Token-
Based Control,” filed on Mar. 20, 1998.

U.S. Pat. No. 6,138,238, entitled “Stack-Based Access
Control.”

U.S. Pat. No. 6,226,746, entitled “Stack-Based Security

Requirements.”

10

15

20

25

30

35

40

45

50

55

60

65

2

U.S. Pat. No. 6,282,652, entitled “Per-Method Designation
of Security Requirements.”

FIELD OF THE INVENTION

The present invention relates to a system and method for
transmitting objects between machines in a distributed sys-
tem and more particularly relates to transmission of a repre-
sentation of a remote object including code for local process-
ing.

BACKGROUND OF THE INVENTION

Distributed programs which concentrate on point-to-point
data transmission can oiften be adequately and efficiently
handled using special-purpose protocols for remote terminal
access and file transier. Such protocols are tailored specifi-
cally to the one program and do not provide a foundation on
which to build a variety of distributed programs (e.g., distrib-
uted operating systems, electronic mail systems, computer
coniferencing systems, etc.).

While conventional transport services can be used as the
basis for building distributed programs, these services exhibit
many organizational problems, such as the use of different
data types in different machines, lack of facilities for synchro-
nization, and no provision for a simple programming para-
digm.

Distributed systems usually contain a number of different
types ol machines interconnected by communications net-
works. Fach machine has 1ts own internal data types, its own
address alignment rules, and its own operating system. This
heterogeneity causes problems when building distributed
systems. As a result, program developers must include 1n
programs developed for such heterogeneous distributed sys-
tems the capability of ensuring that information 1s handled
and interpreted consistently in different machines.

However, one simplification i1s afforded by noting that a
large proportion of programs use a request and response
interaction between processes where the mitiator (1.e. pro-
gram 1nitiating a communication) 1s blocked out until the
response 1s returned and 1s thus 1dle during this time. This can
be modeled by a procedure call mechanmism between pro-
cesses. One such mechanism 1s referred to as the remote
procedure call (RPC).

RPC 1s a mechanism for providing synchronized commu-
nication between two processes (e.g., program, applet, etc.)
running on the same machine or different machines. In a
simple case, one process, €.g., a client program, sends a
message to another process, €.g., a server program. In this
case, 1t 1s not necessary for the processes to be synchronized
either when the message 1s sent or recerved. It 1s possible for
the client program to transmit the message and then begin a
new activity, or for the server program’s environment to
butiler the incoming message until the server program 1s ready
to process a new message.

RPC, however, imposes constraints on synchronism
because it closely models the local procedure call, which
requires passing parameters 1 one direction, blocking the
calling process (1.e., the client program) until the called pro-
cedure of the server program 1s complete, and then returning
a response. RPC thus involves two message transiers, and the
synchronization of the two processes for the duration of the
call.

The RPC mechanism 1s usually implemented 1n two pro-
cessing parts using the local procedure call paradigm, one

US 9,183,066 B2

3

part being on the client side and the other part being on the
server side. Both of these parts will be described below with
reference to FIG. 1.

FIG. 1 1s a diagram 1llustrating the flow of call information
using an RPC mechanism. As shown 1n FIG. 1, a client pro-
gram 100 1ssues a call (step 102). The RPC mechanism 101
then packs the call as arguments of a call packet (step 103),
which the RPC mechanism 101 then transmits to a server
program 109 (step 104). The call packet also contains nfor-
mation to identity the client program 100 that first sent the
call. After the call packet 1s transmitted (step 104), the RPC
mechanism 101 enters a wait state during which it waits for a
response from the server program 109.

The RPC mechanism 108 for the server program 109
(which may be the same RPC mechanism as the RPC mecha-
nism 101 when the server program 109 1s on the same plat-
form as the client program 100) receives the call packet (step
110), unpacks the arguments of the call from the call packet
(step 111), identifies, using the call information, the server
program 109 to which the call was addressed, and provides
the call arguments to the server program 109.

The server program recerves the call (step 112), processes
the call by invoking the appropriate procedure (step 115), and
returns a response to the RPC mechanism 108 (step 116). The
RPC mechanism 108 then packs the response 1n a response
packet (step 114) and transmits 1t to the client program 100
(step 113).

Receiving the response packet (step 107) triggers the RPC
mechanism 101 to exat the wait state and unpack the response
from the response packet (step 106). RPC 101 then provides
the response to the client program 100 1n response to the call
(step 105). This 1s the process tlow of the typical RPC mecha-
nism modeled after the local procedure call paradigm. Since
the RPC mechanism uses the local procedure call paradigm,
the client program 100 1s blocked at the call until a response
1s recerved. Thus, the client program 100 does not continue
with 1ts own processing after sending the call; rather, it waits
for a response from the server program 109.

The Java™ programming language 1s an object-oriented
programming language that 1s typically compiled into a plat-
form-independent format, using a bytecode instruction set,
which can be executed on any platform supporting the Java
virtual machine (JVM). This language 1s described, for
example, 1n a text entitled “The Java Language Specification™
by James Gosling, Bill Joy, and Guy Steele, Addison-Wesley,
1996, which 1s incorporated herein by reference. The JVM 1s
described, for example, in a text entitled ““The Java Virtual
Machine Specification,” by Tim Lindholm and Frank Yellin,
Addison Wesley, 1996, which 1s incorporated herein by ref-
erence. Java and Java-based trademarks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Because the JVM may be implemented on, any type of
platiorm, implementing distributed programs using the JVM
significantly reduces the ditficulties associated with develop-
ing programs for heterogenous distributed systems. More-
over, the JVM uses a Java remote method invocation system
(RMI) that enables communication among programs of the
system. RMI 1s explained 1n, for example, the following docu-
ment, which 1s incorporated herein by reference: Remote
Method Invocation Specification, Sun Microsystems, Inc.
(1997), which 1s available via universal resource locator
(URL) http://wwwjavasoit.com/products/jdk/1.1/docs/
guide/rmi/spec/rmi1TOC.doc.html.

FIG. 2 1s a diagram 1illustrating the flow of objects 1n an
object-oriented distributed system 200 including machines
201 and 202 for transmitting and recerving method 1mvoca-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions using the JVM. In system 200, machine 201 uses RMI
203 for responding to a call for object 203 by converting the
objectinto a byte stream 207 including an identification of the
type of object transmitted and data constituting the object.
While machine 201 1s responding, to the call for object 203, a
process running on the same or another machine in system
200 may continue operation without waiting for a response to
its request.

Machine 202 receives the byte stream 207. Using RMI 206,
machine 202 automatically converts it into the corresponding
object 204, which 1s a copy of object 203 and which makes the
object available for use by a program executing on machine
202. Machine 202 may also transmit the object to another
machine by {irst converting the object into a byte stream and
then sending it to the third machine, which also automatically
converts the byte stream into the corresponding object.

The communication between these machines sometimes
involves, for example, repeated calls for the same 1informa-
tion. These calls are made to a local proxy, which acts as a
surrogate for the remote object 1n the address space of the
client. Such a proxy will service the call by making a network
request to the server object. Repeated calls to the same server
object through a proxy can generate considerable network
traffic, increasing the time and expense of obtaining the infor-
mation. Accordingly, a need exists for a technique that
reduces the amount of network communication 1n, for
example, such a case.

SUMMARY OF THE INVENTION

A method consistent with the present invention transmits a
request for a particular object. A response to the request 1s
received, the response including code used to construct a
representation of the requested object, the construction cre-
ating an object for processing calls to the object, local to the
requesting object, using the representation.

Another method consistent with the present mmvention
receives at a machine a request for a particular object. A
response to the request 1s transmitted, the response including
first code for constructing a representation of the object and
including an indication of second code for processing, such
that the construction creates an object for processing calls to
the object, local to the requesting object, using the represen-
tation.

An apparatus consistent with the present invention trans-
mits a request for a particular object. The apparatus receives
a response to the request, the response including code used to
construct a representation of the requested object, the con-
struction creating an object for processing calls to the object,
local to the requesting object, using the representation.

Another apparatus consistent with the present mvention
receives at a machine a request for a particular object. The
apparatus transmits a response to the request, the response
including first code for constructing a representation of the
object and including an indication of second code for pro-
cessing, such that the construction creates an object for pro-
cessing calls to the object, local to the requesting object, using
the representation.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated in and con-
stitute a part of this specification and, together with the
description, explain the advantages and principles of the
invention. In the drawings,

FIG. 1 1s a diagram 1llustrating the flow of call information
using an RPC mechanism;

US 9,183,066 B2

S

FIG. 2 1s a diagram 1llustrating the transmission of objects
in an object-oriented distributed system:;

FI1G. 3 1s a diagram of an exemplary distributed processing
system that can be used in an implementation consistent with
the present invention;

FIG. 4 1s a diagram of an exemplary distributed system
infrastructure;

FIG. 5 1s a diagram of a computer 1n a distributed system
infrastructure shown 1n FIG. 4;

FIG. 6 1s a block diagram of a distributed network for use
in downloading smart proxies;

FI1G. 7 1s a tlow chart of a process for downloading smart
proxies within, for example, the distributed network shown in
FIG. 6; and

FIG. 8 1s a flow chart of a process for changing the pro-
cessing performed by a smart proxy.

DETAILED DESCRIPTION

Overview

Instead of receiving a proxy that only makes network
requests to the object for which it 1s a surrogate, a machine in
a distributed system receives a smart proxy. Such a proxy can
respond to calls on the object for which 1t 1s a surrogate
without making any network calls to increase program effi-
ciency, or perform processing before making a network call or
alter the completion of the network call to increase program
tfunctionality. The term proxy generally refers to code or other
mechanism used to act as a surrogate for a remote object in the
address space ol a machine,

Systems transierring stubs and associated smart proxies
may use a variant of an RPC or RMI, passing arguments and
return values from one process to another process each of
which may be on different machines. The term “machine™ 1s
used 1n this context to refer to a physical machine or a virtual
machine. Multiple virtual machines may exist on the same
physical machine. Examples of RPC systems include distrib-
uted computed environment (DCE) RPC and Microsoit dis-
tributed common object model (DCOM) RPC. A memory
stores the stub and associated smart proxy, and this memory
may include secondary sources such as a disk or recerving
objects from the Internet.

Distributed Processing System

FI1G. 3 1llustrates an exemplary distributed processing sys-
tem 300 which can be used in an implementation consistent
with the present invention. In FIG. 3, distributed processing,
system 300 contains three independent and heterogeneous
platforms 301, 302, and 303 connected 1n a network configu-
ration represented by network cloud 319. The composition
and protocol of the network configuration represented by
cloud 319 1s not important as long as it allows for communi-
cation of the information between platforms 301, 302 and
303. In addition, the use of just three platforms 1s merely for
illustration and does not limit an implementation consistent
with the present invention to the use of a particular number of
platforms. Further, the specific network architecture i1s not
crucial to embodiments consistent with this imvention. For
example, another network architecture that could be used 1n
an 1mplementation consistent with this invention would
employ one platform as a network controller to which all the
other platforms would be connected.

In the implementation of distributed processing system
300, platforms 301, 302 and 303 each include a processor
316, 317, and 318 respectively, and a memory, 304, 305, and

10

15

20

25

30

35

40

45

50

55

60

65

6

306, respectively. Included within each memory 304, 305,
and 306, are applications 307, 308, and 309, respectively,

operating systems 310, 311, and 312, respectively, and RMI
components 313, 314, and 315, respectively.

Applications 307, 308, and 309 can be applications or
programs that are either previously written and modified to
work with, or that are specially written to take advantage of,
the services offered by an implementation consistent with the
present invention. Applications 307, 308, and 309 invoke
operations to be performed 1n accordance with an implemen-
tation consistent with this invention.

Operating systems 310,311, and 312 are typically standard
operating systems tied to the corresponding processors 316,
317, and 318, respectively. The platforms 301, 302, and 303
can be heterogenous. For example, platform 301 has an
UltraSparc® microprocessor manufactured by Sun Micro-
systems, Inc. as processor 316 and uses a Solaris® operating,
system 310. Platform 302 has a MIPS microprocessor manu-
factured by Silicon Graphics Corp. as processor 317 and uses
a Unix operating system 311. Finally, platform 303 has a
Pentium microprocessor manufactured by Intel Corp. as pro-
cessor 318 and uses a Microsolt Windows 95 operating sys-
tem 312. An implementation consistent with the present
invention 1s not so limited and could accommodate homog-
enous platiorms as well.

Sun, Sun Microsystems, Solaris, Java, and the Sun Logo
are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the United States and other countries. UltraSparc
and all other SPARC trademarks are used under license and
are trademarks of SPARC International Inc. in the United
States and other countries. Products bearing SPARC trade-
marks are based upon an architecture developed by Sun
Microsystems, Inc.

Memories 304, 305, and 306 serve several functions, such
as general storage for the associated platform. Another func-
tion 1s to store applications 307, 308, and 309, RMI compo-
nents 313, 314, and 315, and operating systems 310, 311, and
312 during execution by the respective processor 316, 317,
and 318. In addition, portions of memories 304, 305, and 306
may constitute shared memory available to all of the plat-
forms 301, 302, and 303 in network 319. Note that RMI
components 313, 314, and 315 operate 1n conjunction with a
IVM, which 1s not shown for the purpose of simplifying the
figure.

Distributed System Infrastructure

Systems and methods consistent with the present invention
may also operate within a particular distributed system 400,
which will be described with reference to FIGS. 4 and 5. This
distributed system 400 1s comprised of various components,
including hardware and software, to (1) allow users of the
system to share services and resources over a network of
many devices; (2) provide programmers with tools and pro-
gramming patterns that allow development of robust, secured
distributed systems; and (3) simplify the task of administer-
ing the distributed system. To accomplish these goals, distrib-
uted system 400 utilizes the Java programming environment
to allow both code and data to be moved from device to device
in a seamless manner. Accordingly, distributed system 400 1s
layered on top of the Java programming environment and
exploits the characteristics of this environment, including the
security offered by 1t and the strong typing provided by 1it.

In distributed system 400 of FIGS. 4 and 5, different com-
puters and devices are federated into what appears to the user
to be a single system. By appearing as a single system, dis-
tributed system 400 provides the simplicity of access and the

US 9,183,066 B2

7

power of sharing that can be provided by a single system
without giving up the flexibility and personalized response of
a personal computer or workstation. Distributed system 400
may contain thousands of devices operated by users who are
geographically disperse, but who agree on basic notions of
trust, administration, and policy.

Within an exemplary distributed system are various logical
groupings of services provided by one or more devices, and
cach such logical grouping i1s known as a Djinn. A “service”
refers to a resource, data, or functionality that can be accessed
by a user, program, device, or another service and that can be
computational, storage related, communication related, or
related to providing access to another user. Examples of ser-
vices provided as part of a Djinn include devices, such as
printers, displays, and disks; software, such as programs or
utilities; information, such as databases and files; and users of
the system.

Both users and devices may join a Djinn. When joining a
Djinn, the user or device adds zero or more services to the
Djinn and may access, subjectto security constraints, any one
of the services it contains. Thus, devices and users federate
into a Djinn to share access to 1ts services. The services of the
Djinn appear programmatically as objects of the Java pro-
gramming environment, which may include other objects,
soltware components written 1n different programming lan-
guages, or hardware devices. A service has an mterface defin-
ing the operations that can be requested of that service, and
the type of the service determines the interfaces that make up
that service.

Distributed system 400 1s comprised of computer 402, a
computer 404, and a device 406 interconnected by a network
408. Device 406 may be any of a number of devices, such as
a printer, fax machine, storage device, computer, or other
devices. Network 408 may be a local area network, wide area
network, or the Internet. Although only two computers and
one device are depicted as comprising distributed system 400,
one skilled 1n the art will appreciate that distributed system
400 may include additional computers or devices.

FIG. § depicts computer 402 in greater detail to show a
number of the software components of distributed system
400. One skilled 1n the art will appreciate that computer 404
or device 406 may be similarly configured. Computer 402
includes a memory 502, a secondary storage device 504, a
central processing unit (CPU) 506, an input device 508, and a
video display 510. Memory 502 includes a lookup service
512, a discovery server 514, and a Java runtime system 516.
The Java runtime system 516 includes the Java RMI system
518 and a JVM 520. Secondary storage device 504 includes a
Java space 322.

As mentioned above, distributed system 400 1s based on the
Java programming environment and thus makes use of the
Java runtime system 516. The Java runtime system 516
includes the Java API libraries, allowing programs running on
top of the Java runtime system to access, in a platiform-
independent manner, various system functions, including
windowing capabilities and networking capabilities of the
host operating system. Since the Java API libraries provide a
single common API across all operating systems to which the
Java runtime system 1s ported, the programs running on top of
a Java runtime system run in a platform-independent manner,
regardless of the operating system or hardware configuration
of the host platform. The Java runtime system 516 1s provided
as part of the Java software development kit available from
Sun Microsystems, Inc. of Mountain View, Calif.

IVM 520 also facilitates plattorm independence. JVM 520
acts like an abstract computing machine, receiving instruc-
tions from programs in the form of bytecodes and interpreting,

5

10

15

20

25

30

35

40

45

50

55

60

65

8

these bytecodes by dynamically converting them 1nto a form
for execution such as object code, and executing them. RMI

518 facilitates remote method invocation by allowing objects
executing on one computer or device to invoke methods of an
object on another computer or device. Both RMI and the IVM
are also provided as part of the Java software development kat.

Lookup service 512 defines the services that are available
for a particular Djinn. That 1s, there may be more than one
Dijinn and, consequently, more than one lookup service
within distributed system 400. Lookup service 512 contains
one object for each service within the Djinn, and each object
contains various methods that facilitate access to the corre-
sponding service. Lookup service 512 1s described 1n U.S.
patent application entitled “Method and System for Facilitat-
ing Access to a Lookup Service,” which was previously incor-
porated herein by reference.

Discovery server 514 detects when anew device 1s added to
distributed system 400, during a process known as boot and
jo1n (or discovery), and when such a new device 1s detected,
the discovery server passes a reference to lookup service 512
to the new device so that the new device may register its
services with the lookup service and become a member of the
Dijinn. After registration, the new device becomes a member
of the Djinn, and as a result, 1t may access all the services
contained in lookup service 512. The process of boot and join
1s described 1 U.S. patent application entitled “Apparatus
and Method for providing Downloadable Code for Use 1n
Communicating with a Device 1mn a Distributed System,”
which was previously incorporated herein by reference.

A Java space 522 1s an object repository used by programs
within distributed system 400 to store objects. Programs use
a Java space 522 to store objects persistently as well as to
make them accessible to other devices within distributed sys-
tem 400. Java spaces are described in U.S. patent application
Ser. No. 08/971,529, entitled “Database System Employing
Polymorphic Entry and Entry Matching,” assigned to a com-
mon assignee, and filed on Nov. 17, 1997, which 1s incorpo-
rated herein by reference. One skilled 1n the art will appreci-
ate that an exemplary distributed system 400 may contain
many lookup services, discovery servers, and Java spaces.

Data Flow 1n a Distributed Processing System

FIG. 6 1s a block diagram of an object-oriented distributed
network 600 connecting machines 601 and 606, such as com-
puters or virtual machines executing on one or more comput-
ers, or the machines described with reference to FIGS. 3, 4,
and 5. Network 600 transmits proxies, some of which may be
smart proxies. A smart proxy includes code for performing
processing associated with a call. For example, a smart proxy
may perform a caching operation for read-only data for later
reference. When a call 1s made for that data, the smart proxy
may obtain 1t locally and provide it to a user without making
another call for the data, which may occur transparent to the
user. An example of such read-only data 1s a particular instal-
lation time. The first time a call 1s made for the installation
time, for example, a smart proxy locally caches that value,
and when a subsequent call 1s made for the installation time,
the smart proxy locally retrieves the value.

Another example of smart proxy processing involves use of
a serialized object for transmitting data to a data bank storing
information. In this example, a call 1s made to a smart proxy,
which recerves an object, serializes the object on the client
machine into an array of bytes, and transmits the array of
bytes to a server. The server only stores the serialized object,
avoiding the requirement to download code, and 1t provides a
key for the object to the client machine. When the client

US 9,183,066 B2

9

machine wants to retrieve the data, the smart proxy transmits
the key to the server, receives in response the serialized
object, reconstructs the object, and provides 1t to the user.

Other examples of uses of smart proxies include process-
ing for debugging, call logging, and monitoring system per-
formance. Another example involves the use of a smart proxy
tor local data verification, as explained in U.S. patent appli-
cation Ser. No. 09/044,932, filed on Mar. 20, 1998, assigned
to a common assignee, and entitled “Apparatus and Method
tor Dynamically Verifying Information in a Distributed Sys-
tem,” which 1s incorporated herein by reference. Many other
uses for smart proxies are possible for performing processing,
associated with a call.

Network 600 includes a client machine 601 containing
RMI 602 and associated code 603. A server machine 606
includes RMI 607 and remote object 608. In operation, RMI
602 transmuits a call or request 609 to RMI 607, requesting a
particular stub object. RMI 607 returns a response 610 includ-
ing requested stub 605 embedded within a smart proxy 604.
The response may be transmitted as a stream. Streams used 1n
the Java programming language, including input and output
streams, are known 1n the art and an explanation, which 1s
incorporated herein by reference, appears 1n, for example, a
text entitled ““The Java Tutorial: Object-Oriented Program-
ming for the Internet,” pp. 3235-53, by Mary Campione and
Kathy Walrath, Addison-Wesley, 1996.

The response may include information so that client
machine 601 can reconstruct the stub object in smart proxy
604. When a set of object types 1s limited and 1s the same on
machines 601 and 606, a recerving machine typically requires
the object’s state and a description of 1ts type because the
object’s code 1s already present on all network machines.
Alternatively, machine 606 uses RMI 607 to provide more
flexibility, allowing code to be moved when necessary along
with information or the object’s state and type. Additionally,
a transmitting machine may include in the object an 1dentifi-
cation of the type of object transmitted, the data constituting
the state of the object, and a network-accessible location in
the form of a URL for code that 1s associated with the object
URLs are known 1n the art and an explanatlon which 1s
incorporated herein by reference, appears 1n, for example, a
text entitled “The Java Tutornial: Object-Oriented Program-
ming for the Internet,” pp. 494-507, by Mary Campione and
Kathy Walrath, Addison-Wesley, 1996.

When client machine 601 recerves response 610, 1t identi-
fies the type of transmitted object. Machine 601 contains 1ts
own RMI 602 and code 603 for processing ol objects, and 1t
may create stub object 603 using the object type, the state
information, and code for the object. I code for the object 1s
not resident or available on machine 601 and the stub object
does not contain the code, RMI 602 may use a URL from the
object to locate the code and transier a copy of the code to
client machine 601. Because the code 1s bytecodes and 1s
therefore portable, client machine 601 can load the code into
RMI 602 to reconstruct the object. Thus, client machine 601
can reconstruct an object of the appropriate type even 1i that
kind of object has not been present on the machine before.

When creating stub object 605, RMI 602 does not neces-
sarily know that the stub 1s itsell a smart proxy 604. Smart
proxy 604 may perform processing at client machine 601
betfore or after response 610 and may supply all processing,
without resorting to call 609 to the object for which the proxy
acts. Therefore, smart proxy 604 may perform all processing
locally when client machine 601 makes a call or request 611
to mvoke a method on smart proxy 604. These proxies are
downloadable by the same methods as disclosed i U.S.

patent application Ser. No. 08/950,756, filed on Oct. 15, 1997,

10

15

20

25

30

35

40

45

50

55

60

65

10

and entitled “Deterred Reconstruction of Objects and Remote
Loading 1n a Distributed System,” which 1s incorporated
herein by reference.

Transmission of Smart Proxies

FIG. 7 1s a flow chart of a process 700 for downloading and
using smart proxies within, for example, the distributed net-
work shown 1n FIG. 6. A client machine transmits a call or
request for a particular object (step 701), and a server machine
receives the call (step 702). In response, the server machine
returns a smart proxy with an embedded stub (step 703), and
the proxy acts as a representation of the requested object.
After recerving the smart proxy, the client machine invokes a
method on 1t (step 704). According to the code within the
smart proxy, the client machine containing the smart proxy
determines 11 preprocessing 1s required (step 705). It so, the
processing 1s performed locally by the client machine using
the smart proxy (step 706).

The client machine then determines 11 the method called on
the smart proxy may be serviced locally (step 707). 11 so, the
client machine performs the local processing for the call (step
711). If not, the client machine calls the remote object (step
708). The remote processing 1s performed (step 709), and the
result of the remote processing 1s returned to the client
machine (step 710).

The client machine determines, according to code 1n the
smart proxy, if post-processing as a result of the call 1s
required (step 712). If so, 1t locally performs the post-pro-
cessing using code 1n the smart proxy (step 713). The smart
proxy then returns the method call result (step 714) in
response to the call on the smart proxy 1n step 704.

FIG. 8 1s a flow chart of a process 800 for changing the
processing performed by a smart proxy. When processing 1s
invoked (step 801), a client machine determines 11 updated
processing 1s required (step 802). Such mformation may be
contained within the smart proxy itself in that it may deter-
mine when or under what particular circumstances 1t requires
updated processing code. If updated processing 1s required,
the code for that processing 1s downloaded and the smart
proxy 1s updated at the client machine to perform that pro-
cessing (step 803). The smart proxy then performs at the
client machine the processing according to the updated code
(step 804).

Machines implementing the steps shown in FIGS. 7 and 8
may include computer processors for performing the func-
tions, as shown in FIGS. 3, 4, 5, and 6. They may include
modules or programs configured to cause the processors to
perform the above functions. They may also include com-
puter program products stored in a memory. The computer
program products may include a computer-readable medium
or media having computer-readable code embodied therein
for causing the machines to perform functions described
above. The computer readable media may include sequences
ol instructions which, when executed by a processor, cause
the processor to securely address a peripheral device at an
absolute address by performing the method described 1n this
specification. The media may also include a data structure for
use 1n performing the method described 1n this specification.

Although the 1llustrative embodiments of the systems con-
sistent with the present invention are described with reference
to a computer system implementing the Java programming
language on the JVM specification, the invention 1s equally
applicable to other computer systems processing code from
different programming languages. Specifically, the invention
may be implemented with both object-oriented and nonob-
ject-oriented programming systems. In addition, although an

US 9,183,066 B2

11

embodiment consistent with the present invention has been
described as operating in the Java programming environment,
one skilled in the art will appreciate that the present invention
can be used 1n other programming environments as well.

While the present invention has been described in connec-
tion with an exemplary embodiment, 1t will be understood
that many modifications will be readily apparent to those
skilled 1n the art, and this application 1s intended to cover any
adaptations or variations thereof. For example, different
labels or definitions for the smart proxies may be used without
departing from the scope of the mvention. This invention
should be limited only by the claims and equivalents thereof.

What 1s claimed 1s:

1. A method for processing calls to a server object locally
by a processor at a smart proxy residing in a memory at a
client machine, the method comprising:

obtaining the smart proxy at the client machine, the smart

proxy including stub code corresponding to a stub object
for the server object that 1s used to construct a represen-
tation of the stub object for the server object in the smart
proxy in the memory at the client machine and the smart
proxy including processing code executable by a pro-
cessor at the client machine for processing calls to the
server object locally at the stub object 1n the smart proxy
as a representation of the server object at the client
machine;

constructing the representation of the stub object for the

server object i the smart proxy in the memory at the
client machine using the stub code; and

processing one or more calls to the server object locally at

the stub object in the smart proxy using the processor at
the client machine using the processing code of the
smart proxy at the client machine to generate a response
to the one or more calls without communicating the one
or more calls to a server machine having the server
object.

2. The method of claim 1, further including: processing
additional calls to the server object at a server machine when
processing said additional calls cannot be completed locally
using the processor at the client machine using the stub object
in the smart proxy as a representation of the server object at
the client machine.

3. The method of claim 1, turther including: downloading,
to the client machine, update code to update the processing
code.

4. A method for sharing objects between a client machine
and a server machine 1n a distributed system for processing
calls to the server machine locally at the client machine,
comprising;

sending a request for a server object from the client

machine to the server machine; and

responsive to the request, sending a smart proxy from the

server machine to the client machine, the smart proxy

including:

stub code used to construct a stub object corresponding,
to the server object 1n the smart proxy in a memory at
the client machine, and

an mdication of processing code for processing calls to
the server object 1n the smart proxy using a processor
at the client machine;:

wherein when the stub object 1n the memory at the client

machine 1s constructed and the processing code 1s
executed 1n the smart proxy by the processor on the
client machine, the stub object in the smart proxy at the
client machine intercepts at least one call to the server
object without transmitting the at least one call to the
server object residing on the server and processes the at

10

15

20

25

30

35

40

45

50

55

60

65

12

least one call locally in the smart proxy using the pro-

cessor at the client machine to generate a response to the

at least one call using the stub object 1n the memory at
the client machine and the processing code.

5. The method of claim 4, further including:

using the stub code by the smart proxy at the client machine
to construct the stub object 1n the smart proxy at the
client machine.

6. The method of claim 4, further including:

downloading processing code to the client machine using
the indication to update the processing code executed 1n
the smart proxy at the client machine for processing the
at least one call to the server object locally 1n the smart
proxy at the client machine using the stub object at the
client machine.

7. The method of claim 4, further including:

sending additional calls to the server object at the server
machine when processing of the additional calls cannot
be completed locally in the smart proxy at the client
machine; and

processing the additional calls to the server object at the
server machine when processing of the additional calls
cannot be completed locally at the client machine using,
the stub object at the client machine.

8. The method of claim 4, further including:

receving the request for the server object at the server
machine; and

recerving the response from the server machine at the client
machine after processing the request to the server object
at the server machine.

9. A system for processing calls to a server object locally at

a smart proxy residing at a client machine, comprising:

a server machine having the server object 1n a server
memory of the server machine for processing calls at a
server processor at the server machine and generating a
response;

wherein the client machine:

(1) obtains a smart proxy from the server machine, the
smart proxy including stub code for constructing a
stub object 1n the smart proxy for storage 1n a client
memory at the client machine that 1s a representation
ol the server object and processing code for configu-
ration of a client processor at the client machine for
processing calls to the server object locally 1n the
smart proxy using the client processor at the client
machine,

(11) constructs the stub object 1n the smart proxy 1n the
client memory at the client machine using the stub
code, and

(1) processes at least one call to the server objectlocally
in the smart proxy using the client processor at the
client machine using the processing code to generate
a response to the at least one call locally at the client
machine without communicating the at least one call
to the server machine; and

a network connecting the client machine and the server
machine.

10. The system of claim 9, wherein the server machine 1s
configured to process additional calls to the server object
when processing of the additional calls cannot be completed
locally 1n the smart proxy at the client machine using the stub
object 1n the smart proxy at the client machine.

11. The system of claim 9, wherein the client machine 1s
further configured to download update code to update the
processing code.

US 9,183,066 B2

13

12. A system for sharing objects 1n a distributed system for
processing calls to a server machine locally at a client
machine, comprising:

the client machine configured to send a request for a server

object to the server machine;

the server machine configured to send, responsive to the

request, a smart proxy to the client machine, the smart

proxy including:

stub code for constructing a stub object corresponding to
the server objectin the smart proxy in a memory at the
client machine, and

an mdication of processing code for configuration of a
processor at the client machine for processing calls to
the server object 1n the smart proxy using the stub
object at the processor at the client machine such that
the stub object 1in the smart proxy at the client machine
processes one or more calls to the server objectlocally
in the smart proxy using the processor at the client
machine to generate a response to the one or more
calls without sending the one or more calls to the
server machine, and

10

15

14

a network connecting the client machine and the server
machine.

13. The system of claim 12, wherein the client machine 1s
turther configured to construct the stub object from the stub
code.

14. The system of claim 12, wherein the client machine 1s
turther configured to download code to update the processing
code.

15. The system of claim 12, wherein the server machine 1s
turther configured to process additional calls to the server
object at the server machine when processing the additional
calls cannot be completed locally 1n the smart proxy at the
client machine using the stub object.

16. The system of claim 12, wherein the client machine 1s
turther configured to send the request from the client machine
to the server machine, and to recerve the smart proxy from the
server machine; and wherein, the server machine 1s further
configured to receive the request for the server object.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 9,183,066 B2 Page 1 of 2
APPLICATION NO. : 10/138424

DATED : November 10, 2015

INVENTOR(S) . Arnold et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On page 5, column 2, under other publications, line 53, delete “Mirco” and insert -- Micro --, therefor.

On page 6, column 1, under other publications, line 1, delete “SUbprogram PaRAmeters” and insert
-- Subprogram Parameters --, therefor.

On page 6, column 1, under other publications, line 15, delete “obiects,” and insert -- objects, --,
theretor.

On page 6, column 1, under other publications, line 26, delete “Obiect-oriented” and insert
-- Object-oriented --, therefor.

On page 6, column 2, under other publications, line 3, delete “obiects,” and insert -- objects, --,
theretor.

On page 6, column 2, under other publications, line 8§, delete “Obiect Model for the JavalJ” and msert
-- Object Model for the JavaTM --, therefor.

On page 6, column 2, under other publications, line 64, delete “Parall” and msert -- Parallel --,
therefor.

In column 2, line 37, delete “of” and insert -- of dealing with --, therefor.
In column 2, line 41, delete “(1.e” and 1nsert -- (1.e., --, therefor.
In column 3, line 53, delete “on.” and msert -- on --, therefor.

In column 3, line 56, delete “heterogenous” and insert -- heterogeneous --, theretor.

Signed and Sealed this
Twentieth Day of September, 2016

e cbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 9,183,066 B2

In column 3, line 63, delete “http://wwwjavasoft.com™ and insert -- http://www.javasoft.com --,
therefor.

In column 4, line 5, delete “responding,” and insert -- responding --, therefor.

In column 5, line 31, delete “machine,” and insert -- machine. --, therefor.

In column 6, line 15, delete “heterogenous.” and insert -- heterogeneous. --, therefor.
In column 6, line 30, delete “International” and insert -- International, --, therefor.

In column 7, line 57, delete “provide™ and insert -- provides --, therefor.

In column 8, line 2, delete “execution’ and 1nsert -- execution, --, therefor.

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

