US009172670B1
a2y United States Patent (10) Patent No.: US 9,172,670 B1
Gupta et al. 45) Date of Patent: Oct. 27, 2015
(54) DISASTER-PROOF EVENT DATA (56) References Cited
PROCESSING
U.S. PATENT DOCUMENTS
(71) Appllcant Google Inc'ﬂ Mountaln Vlew? CA ([JS) 654635532 B K 10/2002 Reuter et Ell. “““““““““ 709/224
_ 7.376,867 B1* 5/2008 Aguileraetal. 714/21
(72) Inventors: Ashish Gupta, Sunnyvale, CA (US); 2001/0025351 Al* 9/2001 Kursaweetal. 714/4
Haifeng Jiangj Sunnyva]e’ CA (US):‘ 2005/0256824 Al* 11/2005 Vingralek 707/1
: _ 2006/0069942 A1* 3/2006 Brasilerio etal. 714/4
Manpreet Singh, San Jose, CA (US); 2006/0136781 AL* 6/2006 LAMPOIt ..ovvvvoooosree. 714/25
Monica Chawathe, Mountain View, CA 2006/0156312 AL* 7/2006 SUPALOV veoovveevrrerreerrnn. 719/3 14
(US) 2006/0168011 Al* 7/2006 Lamportccoo.... 709/206
2007/0214355 Al* 9/2007 Lamportcccocveee.... 713/156
(73) Assignee: Google In(;_:J Mountain Vlewj CA ([JS) 2009/0260012 Al o 10/2009 Borghettl et Ell 718/102
2010/0017644 A1* 1/2010 Butterworthco....... 714/4
N - . L . 2010/0082728 Al* 4/2010 COOPET .oovveverrcerernen., 709/202
(*) Notice: Subject to any disclaimer, the term of this 2014/0189270 Al* 7/2014 Iwanickietal. 711/162
patent 1s extended or adjusted under 35 | |
U.S.C. 154(b) by 362 days. * cited by examiner
(21) Appl. No.: 13/754,103 Primary Examiner — Backhean Tiv

(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(22) Filed: Jan. 30, 2013
(37) ABSTRACT

Systems and methods are disclosed herein for providing fault

Related U.S. Application Data tolerant processing of events. The system includes multiple

. L consensus computers configured to communicate with one

(60) Provisional application No. 61/552,762, filed on Jan. another and muli’tiple event Ig)rocessors configured to process
31, 2012. data such as events. Each consensus computer 1s further con-
figured to receive a request to process a unit of data from an
event processor. A consensus computer communicates with at

(51) Int.Cl.

HO4L 12/58 (2006-0:) least one other consensus computer to reach consensus as to
GO6r 11/16 (2006-0:~) whether the unit of data has previously been assigned to an
GO6E 11/20 (2006.01) event processor for processing. Then, a consensus computer
(52) U.S. Cl. sends a message to the event processor that sent the inquiry
CPC ... HO4L 51/30 (2013.01); GO6F 11/182 including instructions to either process the unit of data or not

(2013.01); GO61" 117187 (2013.01); GOG6I process the unit of data. Because the consensus computers
117202 (2013.01) determine whether a unit of data has previously been assigned

(58) Field of Classification Search to an event processor, the system ensures that an event 1s not
USPC 709/206, 201-203, 208, 209, 211, processed more than once.
709/217-219, 232, 233, 248, 249, 719/314
See application file for complete search history. 20 Claims, 6 Drawing Sheets
400
436 —
CONSENSUS COMPUTER RECEIVES
REQUEST TO COMMIT
PROCESSING OF AN EVENT FROM AN
EVENT PROCESSOR
438

CONSENSUS COMPUTER FORWARDS
REQUEST TO OTHER CONSENSUS |
COMPUTERS

440

CONSENSUS COMPUTERS REACH
CONSENSUS ON WHETHER EVENT HAS
ALREADY BEEN COMMITTED

446

444
COMPUTER
GRANTS REQUEST COMPUTER
HAS EVENT BEEN DENIES
FROM EVENT N Y
COMMITTED? - REQUEST
PROCESSOR P
P FROM EVENT
UPDATES PROCESSOR
METADATA

ii
r

US 9,172,670 B1

daauas | P90 1 oymayzs (9O] wmpaums | AU
A3M I gam
HIADOO
° INELE
T ;
0 :
y— B . S
@
Qs
e
9
- 2 20SST00ud | eV
= INTAT .
o
gl
g 1SINDIY
X . . 3SNOJSH : w
s [} wossgooud|
LNEAT

111

U.S. Patent

U.S. Patent Oct. 27, 2015 Sheet 2 of 6 US 9,172,670 B1

210 -

| CLICK RECORDED AS |
g EVENT g

iii

|EVENT SENT TO EVENT]

PROCESSORS

EVENT PROCESSOR REQUESTS
| PERMISSION FROM CONSENSUS
| COMPUTERS TO COMMIT TO PROCESS
? EVENT

aa

- EVENT PROCESSOR |

| RECEIVES RESPONSE |

. FROM CONSENSUS |
COMPUTERS

- a
iii

£20

EVENT |
PROCESSOR |
PROCESSES |

EVENT
PROCESSO

7 REQUEST ™
“~_ GRANTED? _~

IHSCARDS
EVENT

EVENT

;;;

FIG. 2

U.S. Patent Oct. 27, 2015 Sheet 3 of 6 US 9,172,670 B1

210 =

21

JEVENT SENT TO EVENT]|
‘ PROCESSORS |

324

EVENT PROCESSOR DOES |
L SOME PROCESSING OF |
CVENT

iii

-
-
-

.
.
L

ZVENT PROCESSOR
REQUESTS PERMISSION FROM
GONSENSUS COMPUTERS TO
COMMIT PROGESSBING

328
. EVENT PROCESSOR |
| RECEIVES RESPONSE |

FROM CONSENSUS
COMPUTERS

CVENT | 590

PROCESSOR
PHSCARDS

COMMIT IS
SUCCESSFUL,

" REQUEST ™
e GRANTED? - COMPLETE
PROCESSING

. PROCESSING |

Fi, 3

U.S. Patent Oct. 27, 2015 Sheet 4 of 6 US 9,172,670 B1

‘ - IVES

CONSENSUS COMPUTER REC
REQUEST TO COMMIT

—————* SROCESSING OF AN EVENT FROM AN |

5 EVENT PROCESSOR 1

aaa

438
| CONSENSUS COMPUTER FORWARDS |
L REQUEST TO OTHER CONSENSUS
COMPUTERS

- CONOSENDUSD COMPUTERS REACH |
 CONSENSUS ON WHE THER EVENT HAD|
5 ALKEADY BiEEN CONIMIT TED ‘

LY. Y -

CONSENDUS
. COMPUTER
 GRANTD REQUEST

444

COMPUTER
LENIES

" HAS EVENT BEEN ™
"~ COMMITTED?

FROM EVENT ag=N

PROCESSOR,
UPDATES
METADATA

REQUEST |
. FROM EVENT |
. PROCESSOR |

Fi. 4

S DA

1201

HANHGS

Bt
g 4M

11111111111111111111111111111111111111

b B FA Y B

g [340%

o 4 H4M

US 9,172,670 B1

ii

9131308
- ENTIAT
I~ .
&
\f,
k>
P
i
P,

M v MQNQF
— € HOSSA00Hd |
~ INTAT
-~ i
e :
>
- m
e

N HOSSI0OOMN]
LNIAZ

UG

SNSNISNOD | 1SIN0T LININGD 7
—

U.S. Patent

U.S. Patent

 NONE e

FI(G. 6

EVENT

. PROCESSOR
COMPLETES TS
. PROCESSING |

Oct. 27, 2015 Sheet 6 of 6

ZGS

CL?LKS (‘)(;C;UR

EAGH CLICK |

EVENTS SNTO BU NUDLES

ENT PROCESSOR R

SUNDLE TO PROLESS

US 9,172,670 B1

EVENT

ELUES TR A

T CONSENSUS COMPUTERS ASSIGN A
BUNDLE TO AN EVENT PROCESSOR
FOR PROCESSING

| EVENT PROCESSOR REQUESTS TO |
| COMMIT TO COMPLETE PROCESSING |
- FOR EACH EVENT IN THE BUNDLE TO |
THE CONSENSUS COMPUTERS ~

1
=
4
1
a
=
L
-
Iy
]
o
1
-
L
i N
3
.
]
-

EVENT PROGESSOR COMPL

TCONSENSUS COMPUT
 WHICH EVENT IN THE BUNDLE HAVE |
TED

ALREADY BEEN COMMI

fE—-iECi"E EVENTS HAVE .
N COMMITTELY o

E

ERS DETERMINE |

s PROG

ENT |
PROCESSOR |
DISCARDS (TS|

WORK |

AL~

on NG FOR

| EVENTS NOT ALREADY COMMITTED AND DISCARDS |
5 WORK FOR EVENTD ALREADY COMMITTED

US 9,172,670 B

1

DISASTER-PROOF EVENT DATA
PROCESSING

CROSS REFERENCE TO RELATED
APPLICATION

This application claims benefit under 35 U.S.C. §119(e) of
U.S. Provisional Application No. 61/592,762, filed on Jan.

31, 2012, which 1s incorporated herein by reference 1n 1ts
entirety.

TECHNICAL FIELD

In general, the systems and methods disclosed herein
describe reliable and fault tolerant processing of event data.

BACKGROUND

Hosts of websites sometimes sell or lease space on their
websites to content providers. Often, 1t 1s usetul for the hosts
to provide content relevant to the content providers, such as
data related to tratfic on the website. In particular, the content
providers often pay for space on a website based on the
number of 1nteractions (mouse clicks or mouseovers) users
have with such websites. The data may be related to user
clicks, queries, views, or any other type of user interaction
with the website. Sometimes, systems that process this data
fail or need to be temporarily disabled for maintenance, and
data 1s lost. This can lead to inaccuracies in the reported
statistics and can also lead content providers to underpay or
overpay the website host. Thus, robust mechanisms are
desired for providing reliable aggregate data 1n a useful form.

SUMMARY

Accordingly, systems and methods disclosed herein pro-
vide reliable, fault tolerant processing of online user events.
According to one aspect, the disclosure relates to a system for
processing event data. The system comprises multiple con-
sensus computers configured to communicate with one
another. Each consensus computer 1s further configured to
receive an nquiry from an event processor. The inquiry
includes a request to process a unit of data. A consensus
computer communicates with at least one other consensus
computer to reach consensus as to whether the consensus
computers previously assigned the unit of data to be pro-
cessed by an event processor. Based on the consensus
reached, a consensus computer sends a message to the event
processor that sent the inquiry including instructions to either
process the unit of data or not process the unit of data.

According to another aspect, the disclosure relates to a
method for providing reliable, fault tolerant processing of
online user events. The method comprises recerving by a
consensus computer an inquiry from an event processor. The
inquiry includes a request to process a unit of data. The
consensus computer communicates with at least one other
consensus computer to reach consensus as to whether the
consensus computers previously assigned the unit of data to
be processed by an event processor. Based on the consensus
reached, a consensus computer sends a message to the event
processor that sent the inquiry including instructions to either
process the unit of data or not process the unit of data.

BRIEF DESCRIPTION

The above and other features of the present disclosure,
including 1ts nature and 1ts various advantages, will be more

10

15

20

25

30

35

40

45

50

55

60

65

2

apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying

drawings 1n which:

FIG. 1 shows a block diagram of a system that processes
events, according to an illustrative embodiment of the disclo-
sure.

FIG. 2 shows a flowchart of a method used by an event
processor to process an event, according to an 1illustrative
embodiment of the disclosure.

FIG. 3 shows a flowchart of a method used by an event
processor to process an event, according to an 1illustrative
embodiment of the disclosure.

FIG. 4 shows a tlowchart of a method used by a set of
consensus computers to reach consensus regarding whether
an event processor has already been commutted to process an
event, according to an 1llustrative embodiment of the disclo-
sure.

FIG. 5 shows a block diagram of a system that processes
bundles of multiple events, according to an illustrative
embodiment of the disclosure.

FIG. 6 shows a flowchart of a method used by a set of event
processors and a set of consensus computers for processing
bundles of multiple events, according to an 1illustrative
embodiment of the disclosure.

DETAILED DESCRIPTION

To provide an overall understanding of the disclosure, cer-
tain 1llustrative embodiments will now be described, includ-
ing a system for processing data, in which metadata associ-
ated with what data has already been processed 1s stored 1n
persistent data storage. However, 1t will be understood by one
of ordinary skill in the art that the systems and methods
described herein may be adapted and modified as 1s appro-
priate for the application being addressed and that the systems
and methods described herein may be employed 1n other
suitable applications, and that such other additions and modi-
fications will not depart from the scope thereof.

FIG. 1 1s a block diagram of a system 100 for processing
data, according to an illustrative embodiment of the disclo-
sure. System 100 includes three web servers 107a-107 ¢ (gen-
crally web servers 107), an event logger 106, event processors
102a-102» (generally event processors 102), and a set of
multiple consensus computers 104. Generally, action events
occur on the websites hosted by web servers 107, and event
logger 106 records these events and sends the events to event
processors 102 for processing. Each event processor 102
sends an inquiry to the set of consensus computers 104 for
permission to commit to process a unit of data (an event).
Then consensus computers 104 together decide whether to
grant or deny the request and send a message including areply
to the event processor 102. Each of the components of system
100 15 described further below.

In situations 1n which the systems discussed here collect
personal information about users, or may make use of per-
sonal information, the users may be provided with an oppor-
tunity to control whether programs or features collect user
information (e.g., information about a user’s social network,
social actions or activities, profession, a user’s preferences, or
auser’s current location), or to control whether and/or how to
receive content that may be more relevant to the user. In
addition, certain data may be treated 1n one or more ways
betfore 1t 1s stored or used, so that personally i1dentifiable
information 1s removed. For example, a user’s identity may
be treated so that no personally 1dentifiable information can
be determined for the user, or a user’s geographic location
may be generalized where location information 1s obtained

US 9,172,670 B

3

(such as to a city, ZIP code, or state level), so that a particular
location of a user cannot be determined. Thus, the user may
have control over how information about the user 1s collected
and used. Furthermore, data may not be tethered to the 1den-
tity of individual users.

Web servers 107 are configured to host websites and
receive data regarding user interactions with the websites. In
particular, 1n the mstance where a user consents to the use of
such data, the data may include information such as user
clicks, mouseovers, user queries, user views, or any other user
interaction with a website. In addition to receiving data
related to the type of user traffic that occurs on a website, web
servers 107 may also determine, without limitation, the times
at which these events occur, the applications the website runs,
the user’s geographic location, and the user’s IP address. This
data 1s of general 1nterest to those who create and host web-
sites and 1s especially useful for content providers. Knowl-
edge of the data received by web servers 107 can help content
providers to analyze user populations based on the history of
their interactions with websites. Rather than paying large fees
for a broad audience, the content providers may save money
by using their analysis to serve an appropriate audience with
relevant content. Thus, 1t 1s important for this data to be
aggregated and processed into a useful form for website hosts
and content providers.

In addition, 1t 1s undesirable to overestimate these numbers.
Typically, content providers pay a fee to the website host for
allowing the content provider to place content on the website.
This fee may be a variable amount dependent on how many
times users clicked on or otherwise interacted with the con-
tent. For example, the fee may be $0.01 per click, such that for
100 clicks, the content provider pays the website host $1.
Thus, 1t 1s important to avoid overestimating the number of
clicks such that the content provider 1s not overcharged,
which would increase a risk of bad relations.

Event logger 106 1s configured to record data related to an
event. In the instance where a user consents to the use of such
data, examples of events are action events, including user
clicks, mouseovers, queries, views, or any other type of user
interaction with a website. For example, 1f the event 1s a user
click on some content, the data recorded by event logger 106
may include information indicative of the specific content,
the user, the user’s location, and the time the click occurred.
In some embodiments, each event 1s uniquely identified by an
event 1d, which 1s a triplet of data that contains the time the
event occurred, the IP address of the web server serving the
website, and the process 1dentifier.

Event processors 102 are configured to recerve units of data
(such as events) from event logger 106, process data associ-
ated with each event, and possibly produce an output based on
the event. Event processors 102 are typically server comput-
ers but generally could be any device capable of processing
data. In some embodiments, event processors 102 operate
independently of one another. Furthermore, each event pro-
cessor 102 may recerve the same events from event logger 106
and process the same events as other event processors. The
consensus computers described further below interact with
the event processors to prevent double counting of events. In
this case, when there are many event processors, disconnec-
tion from system 100 of any one event processor for any
reason has no significant effect on the overall operation of
system 100.

In some embodiments, event processors 102 may require
regular maintenance checks. During these times, event pro-
cessors 102 need to be disconnected from system 100 without
interrupting the overall operation of system 100. Because
event processors 102 operate independently of one another

10

15

20

25

30

35

40

45

50

55

60

65

4

and process the same events as one another, disconnection of
a subset of event processors 102 would not atfect the process-
ing of other event processors 102, so long as such disconnec-
tions are staggered 1n time.

In some embodiments, event processors 102 are located 1n
the same geographic location. In other embodiments, event
processors 102 are located in separate geographic locations.
Sometimes emergency situations such as power outages,
natural disasters, or network failures that are localized to
specific geographic locations may occur. When a localized
emergency occurs that affects a subset of the event processors
102, the event processors 1n unaffected locations continue
processing, allowing for un-interrupted operation of system
100.

In one embodiment, processing the data involves counting,
the total number of times a certain event occurs 1in a given time
frame. For example, content providers who pay a company to
run content on that company’s website may be interested to
know how many users interact with the content within a
certain time interval. In this case, the processing by event
processors 102 would include aggregating these statistics.
Content providers can use this sort of information to serve
their audiences by selectively displaying relevant content that
may be of most interest to a user. When the company provides
these statistics to content providers, 1t 1s less desirable to
overestimate these numbers than to underestimate them.
Overestimated statistics may suggest that the company pur-
posely inflated the numbers to generate more business from
the content providers, reflecting poorly on the company. In
addition, the fee that the content providers pay the company
may depend on these statistics. For example, the fee may be a
fixed amount for each click, and the company may mistakenly
overcharge the content providers by providing overestimates.
Therefore, 1t 1s 1mportant to avoid double counting a single
event. When multiple event processors are independently
processing the same events, a mechamsm 1s required to
ensure this does not occur. In some embodiments, consensus
computers 104 provide this mechanism.

Consensus computers 104 are configured to agree on
whether an event has already been processed by storing meta-
data regarding which events have been processed. Each con-
sensus computer 104 stores, maintains, and updates this
metadata 1n a database. In some embodiments, the metadata 1s
stored 1n each consensus computer 104 based on the event ids,
cach event 1d corresponding to a unique identifier of an event.
In some embodiments, a consensus computer 104 1s config-
ured to vote on whether an event has already been processed.
The votes are based on the metadata stored in each consensus
computer 104. If the individual event processors 102 stored
the metadata, system 100 would risk losing the metadata i1 an
event processor 102 fails or 1s disconnected from the system.
Thus, 1t 1s desirable to store and update the metadata 1n a
central location such as 1n consensus computers 104.

Consensus computers 104 are typically a set of multiple
(for example, 5) server computers but could be any set of
devices that can store metadata, communicate with event
processors 102, and communicate with one another to reach
consensus. When an event processor 102 recetves an event to
process from event logger 106, the event processor 102 sends
an mquiry to the consensus computers 104 to request for
permission to commit to process the event. As will be
described 1n more detail later, in some embodiments, this
request to commit to process the event may be sent by an event
processor 102 before the processing occurs. In other embodi-
ments, the request to commit to process the event may occur
alter some processing has occurred but has not yet been
completed. In erther scenario, the event processor 102 sends

US 9,172,670 B

S

a request for permission to commit to process the event before
finalization of the processing occurs.

Upon recerving a request from an event processor 102 to
commit to process an event, consensus computers 104 check
their metadata databases to determine whether an event pro-
cessor 102 has previously been committed to process the
event. IT the consensus computers 104 determine that an event
processor 102 has already committed to process the event, a
message denying the request 1s sent to the event processor
102, which discards the event. Otherwise, the consensus com-
puters 104 send a message to the event processor 102 approv-
ing the request, and the metadata databases are updated to
reflect that an event processor 102 has committed to process
the event. By ensuring that two event processors 102 are not
committed to process the same event, consensus computers
104 avoids overestimation of statistics by prohibiting double
processing of any data.

In some embodiments, consensus computers 104 use
known methods for reaching consensus known as consensus
algorithms, such as the Paxos algorithm. Some consensus
algorithms, such as the Paxos algorithm, are fault tolerant,
1.€., they are robust to the failure of a participant (in this case,
a consensus computer 104). This means that the overall
operation of system 100 1s not interrupted when one of the
consensus computers 104 fails, 1s disconnected for mainte-
nance, or 1s otherwise unable to participate in the consensus
algorithm. Consensus algorithms can typically continue to
operate as long as more than half the consensus computers
104 are participating. For example, a group of five consensus
computers 104 can still reach consensus 1f one or two con-
sensus computers 104 do not participate.

In some embodiments, consensus computers 104 are
located 1n the same geographic location. In other embodi-
ments, consensus computers 104 are located 1n separate geo-
graphic locations. Having consensus computers 104 located
separately in different geographic locations allows system
100 to continue operation when one or more (but less than
half) of the consensus computers 104 fail due to geographi-
cally localized incidents that impact consensus computer
uptime.

The logic corresponding to methods described herein can
be implemented 1n hardware, software, firmware, or a com-
bination thereof. When the logic 1s implemented in software,
the logic can be stored 1n a computer readable medium, and
the program 1instructions can be executed by one or more
processors mcorporated into the various computing devices
described above.

FIG. 2 shows a flowchart of a method 200 for processing
events (such as clicks) from the perspective of an event pro-
cessor 102, according to an illustrative embodiment of the
disclosure. The method includes the steps of a click occurring
(step 208) and being recorded as an event (step 210). The
event 1s then sent to an event processor (step 212), which
requests permission to commit to process the event (step 214).
The event processor then receives a response (step 216)
regarding whether its request was granted (decision 218).
Depending on the response, the event 1s erther discarded (step
222) or 1s processed (step 220). In method 200, the request to
commit to process the event 1s sent to the consensus comput-
ers before any processing occurs.

First, an event occurs, such as a user click on content 1n a
web page application (step 208), and 1s recorded as an event
(step 210) by the event logger 106. The event logger 106
records these action events by storing them as events and
sends these events to the event processors 102 for processing
(step 212). Alternatively, the event processors 102 may pro-
actively retrieve events from the event logger 106. In some

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiments, all event processors 102 receive the same set of
events. This minimizes the probability that an event would not
get processed due to the failure of an event processor. The
event logger 106 may send the same event to all event pro-
cessors 102 at the same time, or the event logger 106 may
stagger the times an event 1s sent to different event processors
102.

After an event processor 102 receives an event from the
event logger 106 for processing (step 212), the event proces-
sor 102 sends an mquiry to the set of consensus computers
104 (step 214). The inquiry includes a request for permission
to commit to process the event. When each event 1s uniquely
identified by an event 1d, the inquiry includes the event 1d as
a label for the event. In some embodiments, the event proces-
sor 102 sends the inquiry to just one consensus computer 104,
which forwards the request to all four other consensus com-
puters 104 (when there are five total consensus computers). In
other embodiments, the event processor 102 may send the
inquiry to multiple consensus computers 104 simultaneously.

After receiving a response from the consensus computers
104 (step 216), the event processor 102 determines whether
its request for permission to commit to process the event has
been granted (decision 218). If the event processor 102 deter-
mines that its request was not granted by the consensus com-
puters 104, the event processor 102 discards the event (step
222) and considers the next event in 1ts queue or waits to
receive another event from the event logger 106 (step 212).
Alternatively, if the request was granted by the consensus
computers 104, the event processor 102 processes the event
(step 220) before returning to step 212 to consider the next
event 1n 1ts queue or to wait to recerve another event from the
event logger 106. In some embodiments, events are user
clicks, and the processing performed by the event processors
involves incrementing values in counters that keep a record of
how many user clicks of a certain type have occurred.

In some embodiments, many events occur within a short
time 1interval, such that more events are sent to an event
processor 102 (step 212) before the event processor 102 has
completed processing a previous event. For example, an event
processor 102 may receive a new event before receiving a
response from the consensus computers 104 (216) regarding
a previous event. In this case, event processor 102 can send
another imnquiry to the set of consensus computers 104 regard-
ing the new event before recerving a response regarding a
previous inquiry. This i1dea can be extended to multiple
events, such that an event processor 102 may have a pipeline
of events. At any given time, processing of different events 1n
the pipeline may be 1n different stages of method 200.

FIG. 3 shows a flowchart of a method 300 for processing,
events from the perspective of an event processor 102,
according to an illustrative embodiment of the disclosure. The
method 300 1s similar to method 200, with some key difier-
ences. Steps 208, 210, and 212 1n method 300 are 1dentical to
those 1n method 200. These steps involve the occurrence of a
click (step 208), the recordation of the click as an event (step
210), and the event being sent to event processors 102 (step
212). Once an event processor 102 recerves an event, it per-
forms some of the processing of the event (step 324) belore
requesting permission to commit 1ts processing (step 326).
Then depending on the recerved response (step 328 and deci-
sion 330), the event processor either discards 1ts work (step
334) or successiully commits and completes 1ts processing
(step 332). In method 300, the request to commut the process-
ing occurs after some processing has been done but has not
yet been completed.

In method 300, the event processor 102 first accomplishes
some processing of the event belore requesting permission

US 9,172,670 B

7

from the consensus computers 104 to commit its processing.
This 1s 1n contrast to method 200, in which the event processor
first requests permission from the consensus computers to
process the data before processing the data. In the case when
the processing involves incrementing values in counters,
according to method 300, the mitial stage of processing the
event means that the event processor 102 does all the work
necessary to prepare incrementing the counter prior to
requesting permission from the consensus computers 104.
For example, necessary work 1n preparation for incrementing
a counter may include classitying an event imnto one or more
categories based on data related to the user who 1nitiated the
action, the type of action involved, or the time the action
occurred. The request for permission to commit 1ts processing
1s then a request to actually increment the counter.

Depending on the nature of the events and the processing to
be done, 1t may be preferable to use method 200 over method
300, or vice versa. For example, method 200 may be prefer-
able 11 a system 1s confident that the event processors 102 will
tollow through with processing the data. In method 200, the
event processor 102 processes an event aiter the last interac-
tion with the consensus computers 104 regarding the event. In
this case, an event processor 102 might recerve permission to
process an event, but then fail or become otherwise discon-
nected before the processing 1s done. Because the consensus
computers 104 never receive confirmation that processing has
occurred, 1t 1s possible that a system using method 200 will
fail to process some events. When processing involves incre-
menting counters, this means that a system using method 200
may underestimate overall counts, but 1s unlikely to overes-
timate counts.

Alternatively, method 300 may be preferable over method
200. For example, 11 the likelihood of failure 1mn an event
processor 102 1s high, 1t would be preferable for some pro-
cessing to be done before the request 1s sent to the consensus
computers 104. In this case, consensus computers 104 essen-
tially recerve confirmation that the processing has been nearly
completed, and there 1s less uncertainty regarding whether
processing will take place compared to method 200. In other
words, when event processors are likely to fail or become
otherwise disconnected, a system using method 300 can
maintain more accurate counts than a system using method
200.

However, a system using method 300 has a risk of redun-
dant processing across different event processors. For
example, multiple event processors 102 can process the same
event (step 324), but only one will be able to successtully
commiut 1ts processing (step 332). The other redundant event
processors 102 discard their work (step 334). Therelore,
method 200 may be preferred when there are a large number
of events that require processing and redundant processing
would lead to an 1ntolerable amount of 1netficiency. In con-
trast, when there are a small number of events such that some
redundancy 1s tolerable and 1t 1s preferred to maintain more
accurate counts, method 300 may be preferred over method
200.

In some embodiments, the system 1s configured to auto-
matically transition between methods 200 and 300 depending
on the current event tlow.

In some embodiments, the system combines methods 200
and 300. In this case, event processor 102 first requests per-
mission from consensus computers 104 to commit to process
an event (step 214). Upon recerving permission, the event
processor 102 performs some processing ol the event and
sends another message to the consensus computers 104 to
confirm that some processing has occurred and to request
permission to complete the final stages of processing (step

10

15

20

25

30

35

40

45

50

55

60

65

8

326). In this case, the consensus computers 104 may still give
permission to a second event processor to process an event
that has already been assigned to a first event processor 11 the
confirmation message from the first event processor has not
yet arrtved. For example, the consensus computers 104 may
set an expiration time limit for how long to wait after granting
permission to one event processor to process an event before
granting the same permission to another event processor.
While this system ensures that the consensus computers 104
contain accurate information, the number of interactions
between the event processors 102 and the consensus comput-
ers 104 has effectively doubled, which 1s likely to signifi-
cantly slow down the overall system.

FIG. 4 shows a tlowchart of a method 400 for processing
data from the perspective of a consensus computer 104,
according to an 1llustrative embodiment of the disclosure. The
method 400 describes the steps taken by the consensus com-
puters 104 to reach agreement on whether an event processor
102 has already committed to process or has already pro-
cessed an event, and 1s applicable to either method 200 or
method 300. The method 400 includes the steps of a consen-
sus computer 104 receiving a request from an event processor
102 to commit processing for an event (step 436), the con-
sensus computer 104 forwarding the request to other consen-
sus computers (step 438), and all the consensus computers
104 agreeing on whether the processing of the event has
already been committed by an event processor 102 (step 440
and decision 442). If the consensus computers 104 reach
consensus that the event has already been commuitted, a con-
sensus computer 104 grants the request and updates the data-
base of metadata to reflect that an event processor 102 has
committed to process the event (step 446). Otherwise, the
request 1s denied (step 444).

First, a consensus computer 104 recerves a request from an
event processor 102 to commit its processing of an event (step
436). This step 1s 1dentical to step 214 from method 200 and
step 326 from method 300, but from the perspective of the
consensus computer 104. In method 200, the request involves
permission to process the event in the future, while 1n method
300, the request mvolves permission to commit the process-
ing of an event for which some processing has already been
done. The consensus computer 104 then forwards the request
to all other consensus computers 104 (step 438). When all
consensus computers 104 have received the request, they
reach consensus on whether an event processor 102 has
already committed to processing the event (step 440).

In some embodiments, consensus 1s reached by well
known consensus algorithms such as the Paxos algorithm. In
this case, the consensus computer 104 that imitially receives
the request from the event processor 102 1s called the “pro-
poser.” The proposer sends the request to at least one other
consensus computer 104 (called the “acceptor”). The accep-
tors then vote on whether an event processor 102 has already
been commuitted to process the event, and the number of votes
indicating that the event has not already been commuitted 1s
counted. If the number of votes exceeds a threshold, consen-
sus computers 104 have reached consensus that the event has
not yet been committed. Otherwise, consensus has been
reached that the event has already been commutted.

Obtaining consensus through multiple consensus comput-
ers 1s useful, because like the event processors, the consensus
computers also need, from time to time, to be taken off-line
for maintenance. Thus there 1s a benefit to having multiple
computers available to respond to commit requests. I there
are multiple consensus computers, due to varying network
latencies and the possibilities of dropped or delayed packets,
or other network errors, not all consensus computers will

US 9,172,670 B

9

necessarily respond to each commit request. As a result, their
individual databases of processed events may come out of
synchronization. To account for such differences, the com-
puters collaborate to reach consensus with respect to each
request, providing a fault tolerant system for evaluating event
processor requests.

Once consensus has been reached (decision 442), a con-
sensus computer 104 sends a message to the event processor
102 that sent the original request. In some embodiments, the
consensus computer 104 that sends the reply to the event
processor 1s the same as the consensus computer 104 that
received the initial request (for example, the proposer 1n the
Paxos algorithm). In other embodiments, two different con-
sensus computers 104 may receive the request and send the
reply.

If the consensus computers 104 agreed that an event pro-
cessor 102 has already commuitted to processing the event, the
message includes a denial of the request (step 444). Other-
wise, the message includes a grant of the request, and the
database of metadata 1s updated to retlect that an event pro-
cessor 102 has commuitted to process the event (step 446).
After the message has been sent from the consensus comput-
ers 104 to the event processor 102, consensus computers 104
wait for the next request (step 436). In some embodiments,
event processors 102 always send requests to a single con-
sensus computer 104, which forwards the requests to the
other consensus computers 104. In the case when the Paxos
algorithm 1s used to reach consensus, this means that the same
consensus computer 104 1s always the proposer for every
event. In other embodiments, multiple consensus computers
104 are configured to recerve requests from event processors,
meaning that different consensus computers 104 are propos-
ers for different events.

In some embodiments, one or more consensus computers
104 may receive a new request before consensus has been
reached regarding a previous request. In this case, consensus
computers 104 can begin the process of reaching consensus
(e.g., voting) regarding the new request before the response
for the previous request has been sent. This 1dea can be
extended to multiple events, such that consensus computers
104 have a pipeline of events to consider. At any given time,
the method of reaching consensus for different events in the
pipeline may be 1n different stages of method 400.

When there are many events that require processing, it
would be usetul to lower the number of interactions between
the event processors 102 and the consensus computers 104.
One way to accomplish this 1s to create bundles of multiple
events such that event processors 102 can request to commiut
to process all the events 1n a bundle. In some embodiments,
event processors 102 create the bundles themselves. In this
case, there 1s potential for overlap between two bundles cre-
ated by two different event processors 102 because the event
processors 102 operate essentially independently. In addition,
there 1s a risk of losing a bundle due to failure of an event
processor 102.

FIG. 5 1s a block diagram of a system 500 for processing,
data, according to an illustrative embodiment of the disclo-
sure. The elements of system 500 (event processors 102,
consensus computers 104, web servers 107, and event logger
106) are 1dentical to the elements of system 100 as shown 1n
FIG. 1. However, 1n system 100, the umts of data to be
processed are single events, while 1 system 500, the units of
data to be processed are bundles of multiple events.

In system 300, the bundles are created and stored in the
consensus computers 104. An event processor 102 can com-
mit to process not only one event at a time, but a bundle of
multiple events. The processing 1s still done on at the event

10

15

20

25

30

35

40

45

50

55

60

65

10

level, meaning each event in the bundle still gets processed
individually, but the event processor 102 1s committed to
process all the events 1n a bundle.

First, an event processor 102 retrieves a bundle of multiple
events from the consensus computers 104. Then, as described
in relation to FI1G. 2, the event processor 102 sends an inquiry
to the consensus computers 104 requesting to commit to
process all the events 1n the bundle and waits for a response.
Alternatively, as described in relation to FIG. 3, the event
processor 102 may first accomplish some of the processing of
cach event in the bundle before sending an mquiry to the
consensus computers 104 requesting to commuit to finalize the
processing for all the events in the bundle. In either scenario,
performance 1n system 500 1s improved from system 100 in
that event processor 102 only needs to query the consensus
computers 104 once regarding a bundle of multiple events,
rather than sending multiple inquiries (one inquiry for each
event) to the consensus computers 104. Once the consensus
computers 104 reach consensus on each event in the bundle,
the event processor 102 receives the proper response for each
event 1n the bundle.

FIG. 6 shows a flowchart of a method 600 for processing,
data when multiple events are stored 1n bundles, according to
an 1llustrative embodiment of the disclosure. The method 600
includes the steps of clicks occurring (step 208) and being
stored as events (210). Consensus computers 104 segment the
set of events into bundles (step 660), and an event processor
requests a bundle to process (step 662) and receives and does
some processing of the bundle (steps 664 and 666). Then the
event processor 102 requests to commit the processing of
cach event 1n the bundle (step 668), and the consensus com-
puters 104 reach consensus as to whether each event in the
bundle has already been committed (step 670). Based on the
results from the consensus computers 104 (decision 672), the
event processor either discards all of 1ts work (step 674),
commits processing for a subset of bundle (step 676), or
commits the whole bundle (step 678).

First, clicks occur (step 208), and the event logger 106
records each click as an event (step 210). Then event logger
106 cither directly or indirectly sends information to the
consensus computers 104 indicative of the events. In some
embodiments, the event logger 106 sends the actual events to
consensus computers 104. In other embodiments, the event
logger 106 may send the address locations that store the
events.

Consensus computers 104 then segment the set of events
into smaller subsets of events, creating bundles (step 660). In
order to perform this segmentation, consensus computers 104
use a consensus algorithm to reach agreement regarding
which events are contained 1n each bundle. In the embodi-
ments shown in FIGS. 5-6, by creating and storing the
bundles globally in the consensus computers 104, no overlap
between bundles 1s allowed to increase efficiency. In addition,
storage of the bundles 1s fault-tolerant in the event of failure of
one or more event processors 102 or one or more consensus
computers 104.

In some embodiments, overlap between two or more
bundles may be desirable as a back-up system to ensure
processing of each event occurs. For example, the processing
of anumber of events may be critical such that 1t 1s intolerable
to allow one to go unprocessed. In this case, consensus coms-
puters 104 can create bundles with the desired amount of
redundancy.

In some embodiments, the size of the bundles may depend
on the complexity expected from the required processing. For
example, 1t may be preferable to have large bundles 11 pro-

US 9,172,670 B

11

cessing 1s expected to be relatively simple. On the other hand,
smaller bundles may be preterable for more complex process-
ng.

After bundles have been created, an event processor 102
sends an mquiry to the consensus computers 104 (step 662).
The inquiry 1includes a request for a bundle to process (step
662). In some embodiments, the event processor 102 sends
the inquiry to just one consensus computer 104, which then
torwards the request to all other consensus computers 104. In
other embodiments, the event processor 102 may send the
inquiry to more than one consensus computer 104. Consensus
computers 104 then reach consensus regarding which bundle
to assign to the event processor 102 that made the request.
Such agreement may be met using known consensus algo-
rithms such as Paxos as described earlier.

Then, a consensus computer 104 sends a message to the
event processor 102 with information indicative of which
bundle of events to process (step 664). In some embodiments,
the message includes the bundle itself, or the message
includes an address pointing to where the bundle 1s stored. For
example, when events 1 a bundle are stored 1in adjacent
address locations, the message may include pointers indicat-
ing the beginning (onset) and end (offset) of address locations
of the events in a bundle. As described 1n relation to FIG. 4, in
some embodiments, the same consensus computer 104 that
received the 1mitial request sends the reply. In other embodi-
ments, two different consensus computers 104 may receive
the request and send the reply.

In some embodiments, the consensus computers 104 can
mark a bundle as “owned” 11 the bundle has been assigned to
an event processor 102 for processing but has not yet been
finalized. This 1s similar to the concept of expiration of a
granted permission as described in relation to the combina-
tion of methods 200 and 300 as described 1n FIG. 3. In this
case, 1 order to reduce redundant processing, consensus
computers 104 would not assign a bundle that is owned by one
event processor to another event processor. Reduced redun-
dancy 1s beneficial for bundle-level processing, where signifi-
cant productivity could be lost i multiple event processors
102 were processing the same bundle. In this case, for an
event processor 102, getting permission to process the events
in a bundle (e.g., ownership of a bundle) before doing the
processing 1s cheaper than processing the events first before
attempting to commit. However, with event-level processing
as 1llustrated i FIGS. 1-4, multiple event processors 102
processing the same event usually does not lead to a signifi-
cant loss 1n productivity. This 1s because the cost of getting
permission to process an event 1s not substantially smaller
than the cost of processing the event and committing aiter-
wards with the possibility of demal.

Once an event processor 102 receives a bundle of events
from consensus computers 104, the event processor 102 per-
forms some processing of all the events in the bundle (step
666). In the case when events correspond to user clicks and
counters need to be incremented, this may involve doing the
work necessary to prepare for incrementing the counters, as
described 1n relation to FIG. 3.

Then the event processor 102 sends a request to the con-
sensus computers 104 for permission to commit to complete
the processing for each event 1n the bundle (step 668). In the
case when events correspond to user clicks and counters need
to be mncremented, the event processor 102 requests permis-
s1on to increment the counters in step 668.

In some embodiments, event processors 102 generate out-
put results after having performed some processing. For
example, an event processor 102 may create an output file that
records the results of the processing. It 1s possible that loss of

10

15

20

25

30

35

40

45

50

55

60

65

12

the output file due to the failure of an event processor 102 1s
intolerable. In this case, the event processor 102 can send the
output results to the consensus computers in the same trans-
action when requesting to commit to complete processing for
the bundle 1n step 668. For example, the event processor 102
may create a message including the name of an output file or
an address indicating where the output file 1s located and send
this message with the request to commit the bundle.

After receiving the request to commit the processing of the
bundle from an event processor 102, consensus computers
104 reach consensus on whether each event in the bundle has
already been committed by an event processor 102 (step 670).
In some embodiments, the consensus computers 104 globally
store information indicative of which events in which bundles
have already been committed for processing 1in a database of
metadata.

In some embodiments, the consensus computers 104 con-
sider each event 1n the current bundle to check if any are listed
in the database. The consensus computers 104 then generate
a message including information indicative of whether each
event has already been committed, and send the message to
the event processor 102 that sent the request. Thus, even
though the number of interactions between the event proces-
sors 102 and the consensus computers 104 has decreased,
thereby improving performance, consensus computers 104
are still required to reach consensus for each event in a bundle.

In other embodiments, consensus computers 104 may
grant only approval of the whole bundle or none of the bundle
at all. In this case, consensus computers 104 have created
bundles such that no overlap 1s allowed (no event belongs to
more than one bundle). Therefore, when considering a
request by an event processor to check whether the events in
a bundle have already been committed, consensus computers
104 only need to check a single event to determine whether all
the events in the bundle have been committed. This embodi-
ment could be very ellicient because not only has the number
ol interactions between the event processors 102 and the
consensus computers 104 been reduced, but also the number
of times the consensus computers 104 need to reach consen-
sus has decreased.

In some embodiments, the consensus computers 104 also
store address locations corresponding to which events have
been processed. In addition to determiming which events 1n a
bundle have already been committed (step 670), consensus
computers 104 may also update these address locations. For
example, events may be stored mn segments of adjacent
events, and the beginning (onset) to the end (oflset) of a
segment may indicate the address locations of processed
events. Updating these address locations may involve merg-
ing neighboring segments or creating new segments. Further-
more, consensus computers 104 may delete a bundle (or
delete 1ts address location) once processing of the bundle 1s
complete and the address locations of processed events have
been updated.

Depending on the response from the consensus computers
104 (decision 672), the event processor 102 takes one of three
actions before requesting another bundle to process (step
662). First, if each event in the bundle has already been
committed, the event processor 102 discards all of the work
associated with the bundle (step 674). Second, 11 none of the
events 1n the bundle have been committed, the event proces-
sor 102 completes the processing of the whole bundle (step
678). In some embodiments, this involves incrementing val-
ues in counters and/or generating an output file. Third, if some
of the events have been committed and some have not yet
been committed, the event processor 102 completes the pro-
cessing for those events that have not yet been committed and

US 9,172,670 B

13

discards the rest of 1ts work associated with the bundle (step
676). When no bundles overlap, step 676 1s not performed,
and an event processor will either discard all of its work
associated with the bundle (step 674) or complete processing
of the whole bundle (step 678). 5

While various embodiments of the present disclosure have
been shown and described herein, 1t will be obvious to those
skilled 1n the art that such embodiments are provided by way
of example only. Numerous variations, changes, and substi-
tutions will now occur to those skilled in the art without 10
departing from the disclosure. It should be understood that
various alternatives to the embodiments of the disclosure
described herein may be employed 1n practicing the disclo-
sure. It 1s intended that the following claims define the scope
of the disclosure and that methods and structures within the 15
scope of these claims and their equivalents be covered
thereby.

The mvention claimed 1s:

1. A fault tolerant system for processing event data, com- 20
prising:

a plurality of consensus computers in communication with

one another; and

a plurality of event processors,

wherein at least one of the event processors 1s configured 25
to:
receive a unit of data; and
send an 1nquiry to a consensus computer of the plu-
rality of consensus computers, wherein the inquiry
comprises a request to process a unit of data; and 30
wherein at least one of the consensus computers of the
plurality of consensus computers 1s configured to:
vote on whether the plurality of consensus computers
previously assigned the unit of data to be processed
by an event processor, wherein each consensus 35
computer of the plurality of consensus computers
stores metadata in a database regarding which units
of data have been processed and votes based on the
metadata;
communicate with at least one other consensus com- 40
puter of the plurality of consensus computers to
reach consensus as to whether the plurality of con-
sensus computers previously assigned the unit of
data to be processed by an event processor, based at
least 1n part on the vote; and 45
send a reply message, to the event processor that sent
the imnquiry including instructions to one of process
the unit of data or not process the unit of data based
on a consensus that has been reached among the
plurality of consensus computers as to whether the 50
unit of data has previously been assigned to an
event processor for processing.

2. The system of claim 1, wherein the units of data to be
processed are bundles of one or more action events.

3. The system of claim 2, wherein the plurality of consen- 55
sus computers stores mformation indicative of the one or
more action events included 1n a bundle.

4. The system of claim 2, wherein a consensus computer of
the plurality of consensus computers 1s configured to:

vote on whether the plurality of consensus computers pre- 60

viously assigned each event included in a bundle to be
processed by an event processor; and

send a message to the event processor that sent the inquiry

including instructions to one of process the entire
bundle, process a portion of the bundle, or not process 65
the bundle based on a consensus reached among the
plurality of consensus computers as to whether each

14

event included in the bundle has previously been
assigned to an event processor for processing.

5. The system of claim 1, wherein the plurality of consen-
sus computers reaches consensus using the Paxos consensus
algorithm.

6. The system of claim 1, wherein a consensus computer of
the plurality of consensus computers 1s configured to:

count votes from at least one other consensus computer of

the plurality of consensus computers; and

determine whether the number of votes indicating that the

plurality of consensus computers have previously
assigned the unit of data to be processed by an event
processor exceeds a threshold, wherein the instructions
are based on the determination.

7. The system of claim 1, wherein at least one event pro-
cessor of the plurality of event processors 1s configured to:

receive a message from a consensus computer of the plu-

rality of consensus computers including instructions to

one of process the unit of data or not process the unit of
data; and

in response to the instructions, do one of process the unit of

data or not process the unit of data.

8. The system of claim 1, wherein the plurality of consen-
sus computers reaches consensus using a fault tolerant con-
sensus algorithm that tolerates the failure of a consensus
computer of the plurality of consensus computers or the fail-
ure of an event processor of the plurality of event processors.

9. The system of claim 1, wherein a consensus computer of
the plurality of consensus computers 1s further configured to:

determine whether any event processor of the plurality of

event processors 1s currently processing a unit of data;
and

in determining that an event processor of the plurality of

event processors 1s currently processing a umt of data,
refuse to mstruct a second event processor of the plural-
ity of event processors to process said unit of data.

10. The system of claim 1, wherein at least one of the
plurality of event processors and the plurality of consensus
computers are located 1n separate geographic locations.

11. A method of providing fault tolerant event processing,
comprising:

receving, by an event processor of a plurality of event

processors, a unit of data;

sending, by the event processor, an inquiry to a consensus

computer of a plurality of consensus computers,
wherein the inquiry comprises a request to process a unit
of data;

voting, by a consensus computer, on whether the plurality

of consensus computers previously assigned the unit of
datato be processed by an event processor, wherein each
consensus computer of the plurality of consensus com-
puters stores metadata 1n a database regarding which
units of data have been processed and votes based on the
metadata;

communicating, by the consensus computer, with at least

one other consensus computer to reach consensus as to
whether the plurality of consensus computers previously
assigned the unit of data to be processed by an event
processor, based on the voting; and

sending, by a consensus computer, a reply message to the

event processor that sent the inquiry including nstruc-
tions to one of process the unit of data or not process the
unit of data based on a consensus that has been reached
among the plurality of consensus computers as to
whether the unit of data has previously been assigned to
an event processor for processing.

US 9,172,670 B

15

12. The method of claim 11, wherein the units of data to be
processed are bundles of one or more action events.

13. The method of claim 12, further comprising storing, by
the plurality of consensus computers, information indicative
of the one or more action events included 1n a bundle.

14. The method of claim 12, turther comprising;:

voting, by a consensus computer, on whether the plurality

ol consensus computers previously assigned each event

included 1n a bundle to be processed by an event proces-
sor; and

sending, by the consensus computer, a message to the event

processor that sent the inquiry including instructions to
one ol process the entire bundle, process a portion of the
bundle, or not process the bundle based on a consensus
reached among the plurality of consensus computers as
to whether each event included 1n the bundle has previ-
ously been assigned to an event processor for process-
ng.

15. The method of claim 11, wherein the plurality of con-
sensus computers reaches consensus using the Paxos consen-
sus algorithm.

16. The method of claim 11, further comprising;:

counting, by a consensus computer, votes from at least one

other consensus computer of the plurality of consensus
computers; and

determining, by the consensus computer, whether the num-

ber of votes indicating that the plurality of consensus

10

15

20

25

16

computers have previously assigned the unit of data to
be processed by an event processor exceeds a threshold,
wherein the mstructions are based on the determination.

17. The method of claim 11, further comprising;:

receving, by an event processor, a message from a consen-

sus computer ol the plurality of consensus computers
including instructions to one of process the unit of data
or not process the unit of data; and

in response to the istructions, doing one of process the

unit of data or not process the unit of data.

18. The method of claim 11, wherein the plurality of con-
sensus computers reaches consensus using a fault tolerant
consensus algorithm that tolerates the failure of a consensus
computer of the plurality of consensus computers or the fail-
ure of an event processor of the plurality of event processors.

19. The method of claim 11, further comprising;:

determining, by a consensus computer, whether any event

processor of the plurality of event processors 1s currently
processing a unit of data; and

in determining that an event processor of the plurality of
event processors 1s currently processing a umt of data,
refusing to mnstruct a second event processor of the plu-
rality of event processors to process said unit of data.
20. The method of claim 11, wherein at least one of the
plurality of event processors and the plurality of consensus
computers are located 1n separate geographic locations.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

