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SMART 3D PACS WORKFLOW BY
LEARNING

RELATED APPLICATIONS

This patent claims the benefit of priority as a continuation-
m-part to U.S. patent application Ser. No. 13/303,714,
entitled “Smart PACS Workflow Systems and Methods
Driven by Explicit Learning from Users,” which was filed on
Nov. 23, 2011, and 1s hereby incorporated herein by reference
in its entirety.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[Not Applicable]

MICROFICHE/COPYRIGHT REFERENC.

(Ll

[Not Applicable]

BACKGROUND

The present invention generally relates to hanging protocol
conflguration in a picture archiving and communication sys-
tem. In particular, certain embodiments of the present mnven-
tion relate to machine learning based hanging protocol con-
figuration 1n a picture archiving and communication system.

Healthcare environments, such as hospitals or clinics,
include clinical information systems, such as hospital infor-
mation systems (“HIS”) and radiology information systems
(“RIS”), and storage systems, such as picture archiving and
communication systems (“PACS”). Information stored may
include patient medical histories, 1maging data, test results,
diagnosis 1nformation, management information, and/or
scheduling information, for example. The information may
be centrally stored or divided at a plurality of locations.
Healthcare practitioners may desire to access patient infor-
mation or other mformation at various points in a healthcare
workilow. For example, during surgery, medical personnel
may access patient information, such as images of a patient’s
anatomy, that are stored in a medical information system.
Alternatively, medical personnel may enter new information,
such as history, diagnostic, or treatment information, into a
medical information system during an ongoing medical pro-
cedure.

A reading, such as a radiology or cardiology procedure
reading, 1s a process of a healthcare practitioner, such as a
radiologist or a cardiologist, viewing digital images of a
patient. The practitioner performs a diagnosis based on a
content of the diagnostic 1images and reports on results elec-
tronically (e.g., using dictation or otherwise) or on paper. The
practitioner, such as a radiologist or cardiologist, typically
uses other tools to perform diagnosis. Some examples of
other tools are prior and related prior (historical) exams and
their results, laboratory exams (such as blood work), aller-
gies, pathology results, medication, alerts, document images,
and other tools.

Picture archiving and communication systems (“PACS™)
connect to medical diagnostic imaging devices and employ an
acquisition gateway (between the acquisition device and the
PACS), storage and archiving units, display workstations,
databases, and sophisticated data processors. These compo-
nents are integrated together by a communication network
and data management system. A PACS has, 1n general, the
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2

overall goals of streamlining health-care operations, facilitat-
ing distributed remote examination and diagnosis, and

improving patient care.

A typical application of a PACS system 1s to provide one or
more medical images for examination by a medical profes-
sional. For example, a PACS system can provide a series of
x-ray images to a display workstation where the 1images are
displayed for a radiologist to perform a diagnostic examina-
tion. Based on the presentation of these images, the radiolo-
g1st can provide a diagnosis. For example, the radiologist can
diagnose a tumor or lesion 1n X-ray 1mages ol a patient’s
lungs.

Current PACS systems use general techniques known as
“hanging protocols™ to format display or layout of images.
Hanging protocols allow a user to display images based on
modality, anatomy, and procedure. Hanging protocols
present a perspective or view to a user, such as a radiologist.
Images may be grouped according to characteristics such as
DICOM series or series number.

Additionally, PACS systems attempt to prepare images for
viewing by users by applying a series of processing steps or
functions included 1n a hanging protocol referred to as a
Default Display Protocol (“DDP”). A DDP 1s a default work-
flow that applies a series of 1image processing functions to
image data to prepare the image data for presentation to a user
on a particular monitor configuration. DDPs typically include
processing steps or functions that are applied before any
diagnostic examination of the images. A DDP may be based
on a type of imaging modality used to obtain the 1image data,
for example. In general, a DDP attempts to present image data
in a manner most useful to many users.

Currently, a hanging or display protocol in PACS applica-
tions uses mdividual data elements of an 1mage’s DICOM
header and HL-7 order information to classity a study type
and determine how the study should be displayed.

BRIEF SUMMARY

Certain embodiments of the present mmvention provide
methods and systems for providing a hanging protocol
including three-dimensional manipulation for display of
clinical images 1n an exam.

Certain examples provide a method to automatically apply
advanced three-dimensional manipulation to an 1mage exam
via a hanging protocol for clinical image display. The
example method includes detecting selection of a new 1mage
exam for display by a user. The example method 1ncludes
automatically i1dentifying at least one of a) a previously
learned hanging protocol saved for the user and b) a saved
hanging protocol associated with a prior image exam corre-
sponding to the new i1mage exam. The example method
includes applying the saved hanging protocol to the new
image exam, the saved hanging protocol including three-
dimensional manipulation to be automatically applied to the
new 1mage exam as part of the hanging protocol configuration
for display. The example method includes facilitating display
of the new 1mage exam based on the saved hanging protocol.

Certain examples provide a tangible computer-readable
storage medium 1ncluding a set of istructions for execution
by a processor, the instructions, when executed, to implement
a method to automatically apply advanced three-dimensional
mampulation to an 1mage exam via a hanging protocol for
clinical image display. The example method includes detect-
ing selection of a new 1mage exam for display by a user. The
example method includes automatically identifying at least
one of a) a previously learned hanging protocol saved for the
user and b) a saved hanging protocol associated with a prior
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image exam corresponding to the new 1mage exam. The
example method includes applying the saved hanging proto-
col to the new i1mage exam, the saved hanging protocol
including three-dimensional manipulation to be automati-
cally applied to the new 1mage exam as part of the hanging
protocol configuration for display. The example method
includes facilitating display of the new 1mage exam based on
the saved hanging protocol.

Certain examples provide a machine learning hanging pro-
tocol analysis system. The example system includes an image
processor to process image data to provide three-dimensional
image manipulation 1n conjunction with a hanging protocol.
The example system includes a learning engine to capture and
store the hanging protocol including three-dimensional
image mampulation configured by a monitored user. The
example 1mage processor 1s to automatically apply three-
dimensional manipulation to an image exam via the hanging
protocol for clinical image display at least in part by: detect-
ing selection of a new 1mage exam for display by a user;
automatically identifying at least one of a) a previously
learned hanging protocol saved for the user and b) a saved
hanging protocol associated with a prior image exam corre-
sponding to the new 1mage exam; applying the saved hanging
protocol to the new 1mage exam, the saved hanging protocol
including three-dimensional manipulation to be automati-
cally applied to the new 1image exam as part of the hanging
protocol configuration for display; and facilitating display of
the new 1mage exam based on the saved hanging protocol.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 1llustrates an example picture archiving and com-
munication system.

FI1G. 2 1llustrates an example radiology worktlow.

FI1G. 3 depicts an example of a system for determination of
an appropriate hanging or display protocol 1n accordance
with an embodiment of the present invention.

FIG. 4 provides an example visualization of a mapping
obtained through machine learning.

FIG. 5§ depicts a high level data flow for an example
machine learning algorithm.

FIG. 6 depicts a flow diagram of an example case-based
reasoning system.

FIG. 7 illustrates an example hanging protocol learning
system 1ncluding an 1mage processing module.

FIGS. 8-12 provide example hanging or display protocol
layouts and application of a learning algorithm for hanging
protocol configuration and application.

FI1G. 13 presents an example screen layout showing a pre-
vious exam projection and a dynamically generated corre-
sponding projection from a new exam.

FIG. 14 shows an example workiflow and components of
registration.

FI1G. 15 illustrates a flow diagram for an example method
of smart hanging protocol configuration.

FI1G. 16 1s a block diagram of an example processor system
that may be used to implement the systems, apparatus and
methods described herein.

The foregoing summary, as well as the following detailed
description of certain embodiments of the present invention,
will be better understood when read 1n conjunction with the
appended drawings. For the purpose of illustrating the imnven-
tion, certain embodiments are shown in the drawings. It
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should be understood, however, that the present invention 1s
not limited to the arrangements and instrumentality shown in

the attached drawings.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

Certain embodiments provide systems and methods for
automatic creation of hanging protocols based on information
gathered from users. Certain embodiments provide hanging
or display protocols that can continue to adapt to a user’s
needs or wants as image acquisition changes.

Certain examples provide hanging protocols that under-
stand patient anatomy and disease, radiologist tasks and pred-
erences, etc. Certain examples generate hanging protocols
while accounting for user preference, data variability and
complexity, inconsistent or missing meta data, multiple tasks
in one reading, etc.

In certain examples, a log of user interactions 1s recorded.
Related imaging studies are obtained. A mapping is learned
from example templates, and that mapping 1s improved from
recorded and analyzed usage data.

Certain examples support advanced three dimensional
(3D) visualization methods, such as maximum intensity pro-
jection/multi-planar reconstruction (MIP/MPR) and/or vol-
ume rendering, as a part of a smart hanging protocol, which 1s
taught by a user through a learming system 1n real time (or
substantially real time). Certain examples provide a system
that allows a user to teach preferred MPR and/or 3D views
from previous exams of possibly different patients and apply
the projection/view to a current exam. Certain examples
increase a user’s productivity and allow a user to focus on
diagnostic aspects of the review, thereby improving health-
care quality and reliability. Certain examples {facilitate
machine learning of MPR and/or 3D views from previous
exams of possibly different patient(s) to apply to exams of a
current patient.

Although the following discloses example methods, sys-
tems, articles of manufacture, and apparatus including,
among other components, software executed on hardware, 1t
should be noted that such methods and apparatus are merely
illustrative and should not be considered as limiting. For
example, 1t 1s contemplated that any or all of these hardware
and software components could be embodied exclusively 1n
hardware, exclusively in software, exclusively in firmware, or
in any combination of hardware, software, and/or firmware.
Accordingly, while the following describes example meth-
ods, systems, articles ol manufacture, and apparatus, the
examples provided are not the only way to implement such
methods, systems, articles of manufacture, and apparatus.

When any of the appended claims are read to cover a purely
software and/or firmware implementation, at least one of the
clements 1n an at least one example 1s hereby expressly
defined to include a tangible medium such as a memory,
DVD, CD, Blu-ray, etc. storing the software and/or firmware.

Hanging/display protocol rules are configured for variable
such as modality, body part(s), exam procedure(s), historical
count, momtor count, and the like. Accounting for many
variables involves many permutations for hanging protocols.
Additionally, typical studies now include several series rather
than individual images. Instead of examining DICOM header
information for a particular image, at least some relationship
information for an 1image series and/or study can be captured
and used to determine an appropriate hanging protocol. Using
high level characteristics as guidelines for hanging/display
protocols can help eliminate explicit rules for all of the 1ndi-
vidual variables listed above.




US 9,152,760 B2

S

FIG. 1 1illustrates an exemplary Picture Archiving and
Communication System (PACS) 100 used 1n accordance with
an embodiment of the present invention. The PACS system
100 includes an imaging modality 110, an acquisition work-
station 120, a PACS server 130, and one or more PACS
workstations 140. The system 100 may include any number of
imaging modalities 110, acquisition workstations 120, PACS
server 130 and PACS workstations 140 and 1s not 1n any way
limited to the embodiment of system 100 illustrated in FI1G. 1.
The components of the system 100 may communicate via
wired and/or wireless communication, for example, and may
be separate systems and/or integrated to varying degrees, for
example.

In operation, the imaging modality 110 obtains one or more
images of a patient anatomy. The imaging modality 110 may
include any device capable of capturing an image of a patient
anatomy such as a medical diagnostic imaging device. For
example, the imaging modality 110 may include an X-ray
imager, ultrasound scanner, magnetic resonance 1mager, or
the like. Image data representative of the image(s) 1s commu-
nicated between the 1imaging modality 110 and the acquisi-
tion workstation 120. The image data may be communicated
clectronically over a wired or wireless connection, for
example.

In an embodiment, the acquisition workstation 120 may
apply one or more preprocessing functions, for example, to
the image data in order to prepare the 1mage for viewing on a
PACS workstation 140. For example, the acquisition work-
station 120 may convert raw 1mage data into a DICOM stan-
dard format or attach a DICOM header. Preprocessing func-
tions may be characterized as modality-specific
enhancements, for example (e.g., contrast or frequency com-
pensation functions specific to a particular X-ray imaging,
device), applied at the beginning of an 1imaging and display
workilow. The preprocessing functions differ from process-
ing functions applied to image data in that the processing
functions are not modality specific and are instead applied at
the end of the imaging and display worktlow ({or example, at
a display workstation 140).

The image data may then be communicated between the
acquisition workstation 120 and the PACS server 130. The
image data may be communicated electronically over a wired
or wireless connection, for example.

The PACS server 130 may include computer-readable stor-
age media suitable for storing the image data for later retrieval
and viewing at a PACS workstation 140. The PACS server 130
may also include one or more software applications for addi-
tional processing and/or preprocessing of the image data by
one or more PACS workstations 140.

One or more PACS workstations 140 are capable of or
configured to communicate with the server 130. The PACS
workstations 140 may include a general purpose processing,
circuit, a PACS server 130 interface, a soltware memory,
and/or an 1mage display monitor, for example. The PACS
server 130 1nterface may be implemented as a network card
connecting to a TCP/IP based network, but may also be
implemented as a parallel port interface, for example.

The PACS workstations 140 may retrieve or receive image
data from the server 130 for display to one or more users. For
example, a PACS workstation 140 may retrieve or receive
image data representative of a computed radiography (“CR”)
image ol a patient’s chest. A radiologist or user may then
examine the image for any objects of interest, such as tumors,
lesions, etc., for example.

The PACS workstations 140 may also be capable of or
configured to apply processing functions to image data. For
example, a user may desire to apply processing functions to
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enhance features within an 1mage representative of the image
data. Processing functions may therefore adjust an image of a
patient anatomy 1n order to ease a user’s diagnosis of the
image. Such processing functions may include any software-
based application that may alter a visual appearance or rep-
resentation of 1image data. For example, a processing function
can include any one or more of flipping an 1mage, zooming 1n
an 1mage, panning across an image, altering a window and/or
level 1n a grayscale representation of the image data, and
altering a contrast and/or brightness an 1mage.

In an embodiment, the PACS system 100 may provide one
or more perspectives for viewing images and/or accessing
applications at a PACS workstation 140. Perspectives may be
provided locally at the PACS workstation 140 and/or
remotely from the PACS server 130. In an embodiment, the
PACS system 100 includes a perspectives manager capable of
being used for reviewing 1mages via a plurality of perspec-
tives. The PACS server 130 and/or a PACS workstation 140
may include the perspectives manager, or the perspectives
manager may be implemented 1n a separate system. In an
embodiment, each PACS workstation 140 may include a per-
spectives manager.

In operation, for example, a user, such as a radiologist,
selects a set of 1mages, such as screening mammogram
images, chest screening images and/or other computed radi-
ography (“CR”), digital radiography (“DR”), and/or digital
x-ray (“DX”) screening 1mages, to review at a PACS work-
station 140. The 1mages may be displayed 1n a default per-
spective and/or a customized perspective, for example.

As described above, a user may wish to apply additional
processing to one or more 1mages to further enhance features
in the 1mage. For example, a user may desire to apply addi-
tional processing functions, steps, and/or elements, etc., to an
image in order to alter the presentation of an 1mage in con-
formance with the user’s confidence level for making an
accurate diagnosis. In other words, different users may desire
to apply different or additional processing than that included
in a default image processing worktlow.

The additional 1mage processing may include any image
processing uselul to prepare an 1image for a diagnostic exami-
nation. For example, as described above, an image processing
(also referred to as default 1image processing or additional
image processing) can include flipping an 1mage, zooming in
an 1mage, panning across an image, and altering one or more
of a window, a level, a brightness and a contrast setting of an
image. Image data may be displayed on a PACS workstation
140 using the same and/or different processing, display pro-
tocol, and/or perspective as other image(s), for example.

PACS workstations 140 may retrieve or recerve image data
from server 130 for display to one or more users. For example,
a PACS workstation 140 may retrieve or recerve image data
representative of a computed radiography image of a patient’s
chest. A radiologist may then examine the image as displayed
on a display device for any objects of interest such as, for
example, tumors, lesions, etc.

PACS workstations 140 are also capable of or configured to
retrieve and/or recerve one or more hanging protocols from
server 130. For example, a default hanging protocol may be
communicated to PACS workstation 140 from server 130. A
hanging protocol may be communicated between server 130
and a PACS workstation 140 over a wired or wireless con-
nection, for example.

In general, PACS workstations 140 may present images
representative of 1image data retrieved and/or received from
server 130. PACS workstations 140 may present the images
according to a hanging protocol. As described above, a hang-
ing protocol 1s a set of display rules for presenting, formatting
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and otherwise organizing images on a display device of a
PACS workstation 140. A display rule 1s a convention for
presenting one or more 1mages in a particular temporal and/or
spatial layout or sequence. For example, a hanging protocol
may include a set of computer-readable nstructions (or dis-
play rules, for example) that direct a computer to display a
plurality of images 1n certain locations on a display device
and/or display the plurality of images in a certain sequence or
order. In another example, a hanging protocol may include a
set of computer-readable 1nstructions that direct a computer
to place a plurality of images in multiple screens and/or
viewports on a display device. In general, a hanging protocol
may be employed to present a plurality of images for a diag-
nostic examination of a patient anatomy featured in the
1mages.

A hanging protocol may direct, for example, a PACS work-
station 140 to display an anterior-posterior (“AP”) image
adjacent to a lateral image of the same anatomy. In another
example, a hanging protocol may direct PACS workstation
140 to display the AP image before displaying the lateral
image. In general, a hanging protocol dictates the spatial
and/or temporal presentation of a plurality of images at PACS
workstation 140.

A hanging protocol may differ from a default display pro-
tocol (“DDP”’). However, the terms may also be used inter-
changeably and/or 1n overlapping circumstances. In general,
a DDP 1s a default workflow that applies a series of 1mage
processing functions to 1mage data. The image processing
functions are applied to the 1mage data in order to present an
image (based on the image data) to a user. The 1mage pro-
cessing functions alter the appearance of 1mage data. For
example, an 1mage processing function may alter the contrast
level of an 1mage.

DDPs typically include processing steps, functions,
blocks, and/or elements, etc., that are applied before any
diagnostic examination of the images. For example, process-
ing functions may be applied to image data in order to
enhance features within an 1mage (based on the image data).
Such processing functions can include any soiftware-based
application that may alter a visual appearance or representa-
tion of 1image data. For example, a processing function can
include any one or more of flipping an 1mage, zooming in an
image, panning across an image, altering a window and/or
level setting 1n a representation of the image data, and altering
a contrast and/or brightness setting 1n a representation of the
image data.

DDPs are usually based on a type ol imaging modality used
to obtain the image data. For example, image data obtained
with a CT or MR 1maging device 1n general or a particular CT
or MR imaging device may have a same or similar DDP
applied to the image data. In general, a DDP attempts to
present 1mage data in a manner most useful to many users.

Conversely, applying a hanging protocol to image data may
or may not alter the appearance of an 1image (based on the
image data), but may instead dictate how the image(s) 1s (are)
presented, as described above.

Server 130 may store a plurality of hanging protocols and/
or DDPs. The hanging protocols and/or DDPs that are stored
at server 130 and have not yet been modified or customized
are default hanging protocols/DDPs. A default hanging pro-
tocol and/or DDP may be selected from a plurality of default
hanging protocols and/or DDPs based on any number of
relevant factors such as, for example, a manual selection, a
user 1dentity, and/or pre-processing of the image data.

Specifically, a default hanging protocol and/or DDP may
be selected based on a manual selection simply by commu-
nicating the default protocol once a user has selected that
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particular protocol. The user may make the selection, for
example, at a PACS workstation 140.

In another example, a default protocol may be selected
based on a user identity. For example, a user may have a
preferred DDP. The DDP may have been customized to meet
the user’s preferences for a particular temporal and/or spatial
layout of 1images. Once a user gains access to a PACS work-
station 140 (for example, by entering a correct login and
password combination or some other type of user identifica-
tion procedure), the preferred DDP may be communicated to
the PACS workstation 140, for example.

In another example, a default protocol may be selected
based on pre-processing of 1image data. Pre-processing of
image data may include any 1mage processing known to those
of ordinary skill in the art that prepares an image for review by
a user. Pre-processing may also include, for example, a com-
puter-aided diagnosis (“CAD”) of image data. CAD of image
data may include a computer (or similar operating unit) auto-
matically analyzing image data for objects of interest. For
example, a CAD may include a software application that
analyzes 1image data for nodules 1n 1images of lungs, lesions,
tumors, etc. However, a CAD application can include any
automatic analysis of image data known to those of ordinary
skill 1n the art.

For example, a default hanging protocol that corresponds
to CAD findings of lung tumors may provide for the presen-
tation of the posterior-anterior (“PA”) and lateral lung images
adjacent to each other followed by the presentation of the
computed tomography (“CT”) lung images, followed by the
magnetic resonance (“MR”) lung 1images, for example. In
general, a default hanging protocol that corresponds to CAD
findings 1s designed to present images 1n a spatial and/or
temporal layout that 1s useful to a radiologist. For example, a
radiologist may be greatly assisted in his or her review of the
CAD findings by viewing the PA and lateral lung images
adjacent to each other, followed by previously acquired
multi-slice CT and MR 1mages of the lungs.

Therefore, based on CAD findings, a default protocol may
be selected from a plurality of default protocols and applied at
a workstation 140 1n order to present images to a user.

PACS users often wish to run multiple applications on a
PACS workstation 140. In addition to a primary PACS work-
flow or mterface application, a user may wish to access other
applications such as surgical planning tools, scheduling tools,
clectronic mail viewers, image processing tools, and/or other
tools. For example, PACS users often like to use a PACS
workilow engine while viewing electronic mail and accessing
information on the Internet. Users of an integrated RIS/PACS
system may wish to access both RIS and PACS applications
simultaneously. Typically, however, the PACS application
occupies all active display area and hides other applications
running on the workstation 140. For example, in a PACS
workstation 140 having three monitors, the PACS worktlow
application occupies all three monitors. When an application
1s 1itiated, another application may be displaced, or the
application may be launched in a sub-optimal display area.
For example, a user may launch a data management or diag-
nostic processing software at a three-momitor PACS worksta-
tion 140, and the application may launch on a color monitor,
displacing images displayed on the color momitor. Typically,
a user would have to manually reorgamize applications to
display the management application on a grayscale monitor
and the 1images on the higher resolution color monitor.

Certain embodiments provide an adaptable PACS system
100 accommodating a plurality of displays such that each
display operates with a separate display window. All display
windows are controlled imnternally by a primary window that
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1s transparent to users. The primary, transparent window
tracks which window or windows have the PACS application
and which window(s) have other applications and/or data.
Thus, the PACS application and other applications may be
simultaneously displayed on a plurality of displays.

Certain embodiments provide dynamic configuration of
displays associated with PACS workstation 140. The primary
window allows interaction or application(s) and data across
multiple windows. The PACS workstation 140 operates a
transparent, primary window including a plurality of win-
dows across a plurality of displays.

Selection of a hanging/display protocol on a PACS work-
station may be based on a plurality of criteria, such as a
number of connected displays, a modality, an anatomy, and a
procedure, for example. Based on these criteria, a user may
create multiple protocols with one default protocol used to
display an 1image study. For example, a hanging protocol may
be created for a particular display configuration. A user cre-
ates different hanging protocols to properly display a study on
different display configurations.

However, certain embodiments allow creation of a protocol
including a plurality of perspectives or views, for example.
Using one protocol with multiple perspectives/views, a user
may associate different perspectives/views for different dis-
play configurations with the protocol. For example, a hanging,
protocol may include multiple perspectives with one detault
perspective. The default perspective may be used to display a
study unless otherwise specified and/or determined manually
or automatically, for example.

In certain embodiments, hanging protocols with perspec-
tives/views may use one or more criteria to select a protocol
tor display. For example, amodality, an anatomy or body part,
a procedure, and/or a default view for a display configuration,
may be used to select an appropriate display protocol. For
example, a display protocol includes a perspective/view with
multiple options depending upon monitor configuration. A
user may create a hanging protocol with different view for
different display configurations, for example. A user does not
have to create different hanging protocols for different moni-
tor configurations but may instead create additional views
with the existing hanging protocol. In certain embodiments, a
user may switch between different perspectives/views after
opening a study.

In certain embodiments, perspectives are views or layouts
indicating visual component positioning and interactions
between 1images and/or applications based on worktlow, for
example. Medical perspectives may be used to create a plu-
rality of benefits. For example, perspectives may provide
patient context sharing between different image(s) and/or
application(s) that a user views. Additionally, for example,
perspectives provide an ability to easily switch between dii-
ferent configurations or perspectives based on which images
and/or applications a user wishes to view at any given point.
Furthermore, for example, perspectives provide an ability to
store or “remember” specific worktlow steps. Perspectives
provide amechanism to save and display information relevant
to a particular user, group, and/or function, for example.
Perspectives may be used to display images and other data for
a particular resolution, display type, and/or other configura-
tion, for example.

Perspectives may be used to logically group different
images and/or other data or applications. For example, per-
spectives may be defined for 1mages, examination results,
laboratory data, patient history data, structured report data,
DICOM data, and/or other data or applications, for example.
Rules, configuration options, and/or other criteria may be
defined 1n order to define perspectives. In certain embodi-
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ments, perspectives do not eliminate or change information
but rather order information 1n a certain way. For example,
information important to a user may be displayed first, with
additional information available via different perspectives. In
certain embodiments, perspectives may be created automati-
cally based on user selection or other configuration informa-
tion, for example. In certain embodiments, a perspective may
work together with a rules-based context manager to filter and
display information.

Additionally, a display protocol, such as a Default Display
Protocol (“DDP”’), may be adjusted for one or more displays
based on content and/or a number of connected display(s).
For example, 1 the PACS workstation 140 1s reconfigured
from a three monitor configuration to a one monitor configu-
ration, the DDP may be modified accordingly. Certain
embodiments adapt a DDP based on application(s) closed
and/or opened as well as window(s) activated and/or deacti-
vated. For example, a DDP may determine what information
1s displayed to a user. A DDP may adapt based on a number of
available monitors and a number of 1images to be displayed,
for example (e.g., four images are shown on one available
display; eight images are shown on two available displays,
etc). PACS workstation 140 may configure a DDP for any
multi-monitor full screen and/or partial screen applications.
Additionally, one or more applications may be resized on a
single screen (e.g., minimize, maximize, and/or resize).

Healthcare information systems, such as a Hospital Infor-
mation System (HIS), Radiology Information System (RIS),
Cardio-Vascular Information System (CVIS) and/or Picture
Archiving and Communication System (PACS), are the criti-
cal infrastructure for efficient patient care. The PACS system
may store 1mages from different modalities, such as Com-
puted Tomography (CT), Magnetic Resonance (MR), etc.,
while a RIS, CIS or HIS may contain non-image information,
such as physician reports, disease history, and/or other patient
associated data. In order to make a conclusion regarding a
reviewed case, a clinician organizes relevant data 1n a certain
order on a set of monitors, for example. This order may
depend on a plurality of parameters, such as an 1maging
modality of the exam under review, existence of historical
images and number of historical images, previous reports, list
ol prescribed medications, etc.

FIG. 2 illustrates an example radiology worktlow. A radi-
ologist logs into a system, such as a PACS (block 210),
reviews his/her worklist (block 220), and selects a study to
review (block 230). A PACS system may provide predefined
and/or user configurable Hanging Protocols (HP), {for
example. In PACS systems, the HP 1s to open imaging data in
an mitial setup (block 240) that 1s optimal or otherwise desir-
able for a reviewing physician, depending on a type of case
he/she 1s reviewing (block 250). During or after image read-
ing (250), the user can dictate regarding findings, notes,
instructions, etc. (block 260), and then exit the study (block
270).

However, a number of parameters and variability of param-
eters 1n input data can be so great that, in some cases, manual
pre-configurations of HP completely fail. Furthermore, the
existing tools for HP configurations are very complex. Typi-
cally, the actual configuration i1s done by product specialists,
support engineers or information technology (I'T) administra-
tors based on guidance from physicians. The complexity of
the HP configuration tools and the dependence on experts to
operate them does not allow users to apply modifications or
improvements on their own.

Different methods have been proposed to automatically
create HPs. In U.S. Patent Application Publication Number

20100080427, entitled “Systems and Methods for Machine
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Learning Based Hanging Protocols,” and assigned to the
assignee of the present application, one or more high level
characteristics are captured for an 1image study based on rela-
tionship of the 1mages in the study. An 1image 1s classified
based on the low level characteristics of the images. Combin-
ing low and high level characteristics, the machine learning
engine classifies the study and determines an appropriate
hanging protocol, based on this classification. In U.S. Patent
Application Publication Number 20080166070, entitled
“Method for Providing Adaptive Hanging Protocols for
Image Reading”, and assigned to the assignee of the present
application, a productivity factor of each HP 1s monitored and
calculated based on efficiency of the user during a reading of
the study. The system may then advise the user to switch to
another hanging protocol, defined by another user, 11 its efli-
ciency factor 1s larger.

System and methods 1 U.S. Pat. No. 7,525,534, enfitled
“Content Based Hanging Protocols Facilitated by Rules
Based System™, and assigned to the same assignee as the
present application, a user 1s allowed to edit a default hanging
protocol, create and apply additional display rules, and track
a number of times the user selects different display rules for
different 1mage modalities. Then, based on one or more
thresholds, the system automatically decides whether the
default hanging protocol should be modified, and, after user
confirmation, applies the changes.

In some clinical workflow cases, a physician review pro-
cess 1s divided 1nto several well defined and specific steps. For
example, 1n a certain workflow, the radiologist might always
start by reviewing the x-ray images and then proceed to the
CT scans. In another worktlow, the radiologist might decide
to first review the current study and only later bring up prior
studies for comparisons. These well-defined step-by-step
workilows may change from user to use and site to site, but are
very fixed and predictable for a certain user or users and a
grven workilow. In certain examples, users can ‘teach’ ele-
ments or components of a workilow (e.g., what data and in
which manner should be set up at the beginning of each
clement, step, etc.). Certain examples provide such a teaching
or learning workflow.

Certain examples enable creation of smart hanging proto-
col(s) and associated workflow(s), driven by learming from
user iput. Certain examples learn user preferences as he or
she works so that when the user opens a new study/exam, the
system sets up the data in a way that 1s preferred by the user
(e.g., layout, viewports, automatic post-processing, etc.). A
“smart workilow” feature mvolves on a machine learning
algorithm that tracks the way a user or a group of users creates
image setups in particular workflows and reproduces these
layouts for new studies of this type, overcoming variability 1in
the data, for example. Even 1f the algorithm makes a mistake
and does not produce optimal 1mage setups initially, the algo-
rithm accepts corrections from the user, adapts and converges
to ‘optimal’ 1mage setups after user(s) ‘teach’ 1t, possibly a
few times. In certain examples, an HP setting 1s defined by
learning physical parameters of a user preferred setup, such as
study 1dentifier, window level, zoom, pan, procedure name,
and so on, along with one or more advanced setups to be
performed on the exam to generate a final report. Such
advanced manipulations can include, but are not limaited to,
calculation of Multi-Planar Reconstruction (MPR) or Maxi-
mum Intensity Projection (MIP) views of an exam study
sequence, generation and manipulation on volume rendering
of the study, and so on.

In certain examples, advanced visualization involves a sig-
nificant amount of set up time. In fact, technicians may set up
and save views for radiologists. In certain examples, radiolo-
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g1sts are able to ‘teach’ the system favorable MPR views for
specific worktlows, thereby saving a tremendous amount of
set up time. In some cases, where a previous exam 1s available
in a PACS {for reference, a viewing workstation can generate
the same MPR projection from the newly arrived data and
provide a physician with a view of both of these MPR views
side-by-side on a screen for comparison. In another example,
the user wants an MPR view that 1s climically similar to a
previously taught view to be generated automatically by the
system. For example, a user may want to see an MPR section
ol amain projection of an aorta to see 1f there 1s some anomaly
in 1t. In this example, automatic detection of these projection
(s) that were seen 1n other exams for the specific disease in the
newly acquired study and automatically applying the MPR
calculation of that specific view helps the radiologist to focus
on the relevant places from the new exam. As a result, these
projection calculations can lead to a significant increase 1n the
productivity of new exam reading, for example.

In certain examples, a user can create a HP that incorpo-
rates advanced automatic manipulation on 1mages, such as
MPR calculation of a particular projection or three-dimen-
sional (3D) volume rendering with direct and explicit ‘teach-
ing’ of the system how to setup HP for such worktlow. Certain
examples provide a system that allows the user to teach pre-
terred MPR and/or 3D views from previous exams ol possibly
different patients and apply 1t to the current exam.

FIG. 3 depicts an example of a system 300 for determina-
tion of an appropriate hanging or display protocol. The
example system 300 includes an 1mage study 310 including
study information, one or more individual images 320 includ-
ing 1image DICOM header information, a machine learning
engine 330, a hanging or display protocol 340, and a user
interface 350. The components of the system 300 can be
implemented in soiftware, hardware, and/or firmware, for
example.

In operation, the study 310 information and individual
image 320 information are extracted from an 1mage study and
provided or otherwise made accessible to the machine learn-
ing engine 330. Based on 1n1tial user input and stored infor-
mation gathered from past layouts, the engine 330 generates/
selects a hanging/display protocol 340 for displaying images
and/or other data via the user intertace 350. For example, an
artificial neural network and/or other adaptive processing
model can be used by the machine learning engine 330 to
select an appropriate hanging protocol 340 based on available
image header information, inter-image study information,
and saved prior information.

In certain embodiments, a type of machine learming tech-
nique used 1s an artificial neural network. Hanging/display
protocol algorithms can use DICOM header elements to
determine high level characteristics for a study. Then, ini-
tially, a user lays out one or more 1image/series. Correlations
between the high level characteristics and the user layout are
stored 1n nodes of the artificial neural network. As the user
makes changes to the layout over time, the artificial neural
network nodes are updated, and the nodes continue to evolve.
When the user displays a new study, the algorithms determine
the high level characteristics of the study and classily them
according to different layouts. In certain embodiments, arti-
ficial neural networks are used 1n systems wherein an algo-
rithmic solution cannot be formulated; many examples of
desired behavior can be obtained; and/or structure 1s selected
from existing data, for example. Although artificial neural
networks are discussed above, other forms of artificial intel-
ligence, such as fuzzy logic, Boltzmann machine, Bayesian
network, etc., can be used as machine learning techniques to
determine an applicable hanging or display protocol.
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For example, the engine 330 can account for one or more
high level study characteristics including detection method
used, number of relevant images for the detection method,
and 1mage resolution compared to monitor resolution based
on relationships between image DICOM header elements.
Based on a patient’s different series in current and previous
studies, for example, a hanging protocol algorithm used by
the engine 330 can determine a methodology used to detect
abnormalities. That methodology can help rank or select a
hanging protocol for use 1 display of image(s) and/or other
information on a user display. Different methodologies may
involve different image layouts and thus different hanging
protocols or DDPs, for example.

For example, if a patient has current and prior CT 1images,
display priority and position may be given to the current and
most recent prior image(s) as space and display quality allow.
As another example, 1f 1mages for a patient were obtained
with and without contrast injection, a current study’s pre and
post contrast images may be displayed next to each other
while previously study’s pre and post contrast 1mage series
are displayed next to each other. Extra contextual information
gathered from examining relationships between different
series of images provides improved accuracy in modeling and
display of a study.

Certain examples provide a “smart” worktlow feature to
improve a radiologist workilow. Rather than manual pre-
configurations of layouts and a large number of parameters,
example systems and methods learns users’ preferences as
they work so that when they open a new study/exam, data 1s
set up 1n a way that 1s preferred by the user (e.g., with respect
to layout, viewports, automatic post-processing, etc.). For
example, the “smart workflow” feature relies on a machine
learning algorithm that tracks a way a user or a group of users
create 1mage setups in particular workilows and reproduces
these layouts for new studies of this type, overcoming vari-
ability in the data. Thus, even 11 the algorithm makes mistakes
and does not produce optimal 1mage setups initially, the algo-
rithm accepts corrections from the user, adapts, and con-
verges to the ‘optimal’ 1mage setups aiter the users ‘teaches’
it, possibly a few times.

Certain examples speed up and/or increase efficiency 1n a
user’s worktlow according to user preferences.

Certain examples provide a “smart” HP to automatically

overcome different labeling of a same study type (e.g., out-
come of modalities from different vendors, different techni-
cians, etc.). For example, a user ‘teaches’ one or more
machine learning algorithms to take into account certain
combination(s) of other parameters.

Certain examples provide a “smart” HP to automatically
overcome a different sequence order in a study. In certain
prior solutions, with no further input from a system or user, a
HP simply hangs an 1image series based on an order or images
in the series, 1n the hope that a technician operating the
modality created the series 1n a predictable and deterministic
order. However, this logic breaks down as soon as modalities
from different vendors are used or technicians are replaced. In
certain examples of the presently disclosed technology, users
“teach” a machine learning engine, through simple interac-
tion, which parameters actually control logic relating to
which 1mages of an 1image series are to be mitially displayed
on which viewport 1n a viewing application or display.

Certain examples provide advanced automatic loading of
relevant priors. For example, a “smart workilow™ system
learns from a user regarding hanging of historical study(-1es)
along with a current study (e.g., of the same patient). For
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example, 1n Oncology, users track lesion growth over time
and, therefore, wish to hang prior and current images for
review together.

In certain examples, a user can teach a “smart workflow”
system to automatically load relevant priors, but not of same
patient, as a “teaching file”” and/or for comparison with a
previously diagnosed case, for example.

In certain examples, a machine learning engine of a “smart
workflow” 1dentifies keywords 1 documentation such as
exam order, procedure codes, prior reports, etc., and, 11 key-
word(s) are found 1n the documentation, uses the keyword(s)
as parameters for learning.

In certain examples, a “smart worktlow™ learns and applies
appropriate computer vision tools to reproduce clinically
accurate window leveling, zoom, pan, rotation, and/or other
mamipulation(s) of 1mages.

In certain examples, a machine learning engine learns to
approprately set up or position documentation that 1s relevant
to displayed imaging data, including auto-rotation of scanned
documentation so that the documents “hang™ or are displayed
correctly for immediate reading, for example.

In certain examples, once a user opens an 1maging €xam, a
HP system automatically “hangs’ or positions various images
and data from the imaging dataset(s) on one or more monitors
that are being used on a designated workstation for review of
the imaging exam. If the setup 1s 1n accordance with the user’s
preference, then the user can proceed with the review with no
further delay. However, in the case where the user 1s not
pleased with the 1nitial hanging and needs or wants to further
interact with the data before the actual case review begins,
then the user may further refine (e.g., use a “learn this setup”
button) the HP before proceeding with the review, so that the
system may learn by example from his/her preferred setup,
for example. Once the “learn this setup” 1s used, the system
creates a snapshot of the setup and associated parameter(s). In
certain examples, parameter(s) captured by the system
include one or more of:

1. User (e.g., physician) identifier
2. Time stamp
3. Unique 1dentifiers (IDs) of a study along with prior studies
that are associated by database relationship with a current
study
. Study body part
. Number of monitors being used
. Layout of viewports on the monitors
. Rendering parameters such as show/not show overlays,
image group rules, efc.
. For each viewport 1n the layout
a. Viewport location 1n the layout
b. Viewport size
c. Single slice or stack viewing mode
d. Study 1dentifier
¢. Historic level
f. Series 1dentifier
g. Window-level
h. Which image(s) 1in series are rendered 1n setup
1. Zoom
1. Pan
k. Rotation
1. Measurement (if applied)
9. Information on linked viewports
10. Screen capture (of all monitors)
11. Keywords for understanding of the case, extracted from
the following:

a. Procedure name

b. Keywords from exam order

c. Prior reports (if exist)

~] N Lh
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In certain examples, a user wishes to teach the system
additional workflow steps, beyond just the 1nitial hanging.
Then, the user may set up the imaging data 1n a preferred way
and select “learn this worktlow step™ (e.g., via a button press,
item selection, mouse click, etc.).

Each time the user chooses to teach the system, a current

step’s number 1s displayed via a graphical user interface, and
the interface allows the user to edit a current or entire set of
workilow step snapshots, for example. The user may go back
to a certain step or element of a workflow or interface con-
figuration, obtain an immediate setup of that element and be
allowed to re-name and or modily the element, for example.

In certain examples, a machine learning module 1nvolves a
training set of examples of hanging protocols of previous
exams. As described above, these exams can have metadata
associated with them, including user and site information.
The examples are characterized by features that have been
deemed relevant to hanging protocols, for example. The fea-
tures can be computed based on numerical variables (e.g.,
number of monitors, etc.), categorical variables (e.g., body
part, etc.) and/or free-form text (e.g., series description, etc.).
An output of the learning engine 1s a “hanging protocol” that
1s characterized by parameters that allow the system to gen-
crate the final layouts. FIG. 4 provides an example visualiza-
tion of a mapping obtained through machine learning.

As shown 1 the example mapping 400 of FIG. 4, one or
more reports 410, one or more 1mages 420 (e.g., 1mage(s)
associated with the report(s), etc.), and/or one or more meta-
data 430 (e.g., meta data associated with image(s) and/or
report(s), etc.) are combined or mapped via a mapper 440 to
generate alayout450. The layout 450 provides a visualization
of the mapping between image(s), report(s), and metadata, for
example.

FIG. 5 depicts a high level data flow for an example
machine learnming algorithm. As shown 1n the example data
flow 500 of FIG. 5, a learning engine 570 1s provided with a
variety of information in the form of features from which to
learn preference(s), priority(-ies), requirement(s), etc., for
one or more hanging protocols and/or one or more user(s).
Information, such as DICOM data 510, user selection 520,
medical report(s) 530, knowledge base 340, etc., 1s provided
for feature extraction 3350. DICOM data 510 can include
patient information, scanning information, etc., for one or
more studies, image series, patient exams, etc. User selection
520 can include viewport(s) information, prior(s) displayed,
contrast selected, etc. Medical reports 530 can include pro-
cedure, history, etc. The knowledge base 540 can include
information such as ontologies, atlas 1mages, prior studies,
related studies, best practices, etc.

Following feature extraction 5350 from the provided infor-
mation 510-540, extracted features are provided for feature
modification 560. For example, one or more algorithms can
be applied to the extracted features to enable the learning
engine 570 to process the features and develop a hanging
protocol recommendation.

In certain embodiments, the learning engine uses “lazy
learners™ algorithms with respect to hanging protocol(s). In
artificial intelligence, lazy learning 1s a learning method 1n
which generalization beyond the training data 1s delayed until
a query 1s made to the system, as opposed to 1n eager learning,
where the system tries to generalize the training data before
receiving queries. Employing a lazy learning method, such as
case based reasoning, provides an approximately local target
function, such as in the k-nearest neighbor algorithm.
Because the target function i1s approximated locally for each
query to the system, lazy learning systems can simulta-

10

15

20

25

30

35

40

45

50

55

60

65

16

neously solve multiple problems and deal successtully with
changes 1n the problem domain, for example.

Lazy learners are parameter-free learning algorithms, 1n
which learning 1s delayed until a test case or query 1s posed to
the system. Lazy learners are useful, for example, when the
output 1s high-dimensional, since the target output 1s approxi-
mated locally. Case-Based Learning 1s a well-suited candi-
date for lazy learming and works as follows. Given a training
setot (X,, H,), (X,, H,)...(X ,H ), where X, 1s a vector of
features of an 1-th exam and represents parameter(s) of a
handing protocol, a query point X, H_ 1s approximated as
tollows. First, k-nearest number(s) of X trom the training set
are calculated. A number of neighbors calculated 1s a design
parameter. A distance between two cases 1s also a design
parameter, and various metrics such as L.-norm, Mahalano-
bis, Scaled Euclidean, etc., can be used.

For example, a Mahalanobis distance of a multivariate
vector
X=(X,, X», X3, . . . , X»y) Irom a group of values with mean
u=(L;, W, . . ., L)’ and covariance matrix S is defined as:

Dy =) 5 ().
A Euclidean distance, for example, may be defined as

tollows. If p=(p,, P>, ..., p,) and §=(q,, 9, . . . , q,,) are two
points 1n n-dimensional space, then the Fuclidean distance

from p to g, or from g to p 1s given by:

d(p, q) =

d(g, p) = \/(ql — P+ (g — )+ (g — ) =\/il (gi — pi)* .

An L1 norm may be defined as follows. It p=(p,, p5,.--,D,,)
and 9=(q,, 9>, - - - » q,,) are two points in n-dimensional space,
then a L, norm distance between from p to g, or from q to p 1s
grven by:

di(p, q) =Ilp —4ll, = Z |pi = gil;
i=1

Once k nearest neighbors are found, final output param-
cters are generated by adapting by the solutions of the neigh-
bors. A distance metric, weighting functions for various fea-
tures, number of nearest neighbors considered and functions
for solution adapting are chosen either by trial and error or
automatically learned so as to optimize or improve pertor-
mance of the case-based reasoning (CBR) system using sta-
tistical techniques such as cross-validation, for example.

In certain example, users can provide feedback regarding a
generated hanging protocol using a visual interface. For
example, the feedback 1s used to adjust weight(s) used for
different features to calculate a similarity metric using one or
more evolutionary algorithms to reduce or minimize an error
in performance of the learning algorithm. Principles of an
evolutionary algorithm (EA) define a general paradigm that 1s
based on a simulation of natural evolution, for example. EAs
perform searches by maintaining at any time t a population
P(t)={P,(t), P,(1), . . ., Pp()} of individuals. “Genetic*”
operators that model simplified rules of biological evolution
are applied to create a new and more superior population
P(t+l). This process continues until a suificiently good popu-
lation 1s achieved, or some other termination condition 1s
satisfied. “Suiliciently” can be defined according to one or
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more user and/or system specified constraints, for example.
Each P (t)e P(t) represents, via an internal data structure, a
potential solution to an original problem. Closely linked to
the representation of solutions 1s a fitness function y: P(t)—*R,
that assigns credit to candidate solutions. Individuals 1n a
population are assigned fitness values according to some
evaluation criterion(-1a). Highly fit individuals are more
likely to create oifspring by recombination or mutation opera-
tions, whereas weak individuals are less likely to be picked
tor reproduction and eventually die out. A mutation operator
introduces genetic variations in a population by randomly
moditying some of the building blocks of individuals.

Evolutionary algorithms are essentially parallel by design,
and at each evolutionary step a breadth search of increasingly
optimal sub-regions of the search space 1s performed. Evolu-
tionary search 1s a powertul technique of solving problems
and 1s applicable to a wide variety of practical problems that
are nearly intractable with other conventional optimization
techniques. Though practical evolutionary search schemes do
not guarantee convergence to a global optimum in a prede-
termined finite time, they are often capable of finding very
good and consistent approximate solutions.

In certain examples, a learning engine uses eager learning,
algorithms such as neural nets or support vector machines
where the system learns a general, input independent target
function during training of the system. For eager learning, one
of several approaches can be selected for use. In a first
approach, target functions can be traimned to map an input
feature vector to a set of hanging protocols. The easy learners,
therefore, implement a classification algorithm that maps the
input vector to a categorical label that determines the hanging
protocol(s) to be used. Another approach 1s to train learners to
regress for each individual parameter of a final hanging pro-
tocol.

In certain examples, features based on free-text fields are
analyzed using text-mining algorithms. Open-source text
mimng software, such as Apache Lucene®, 1s used to remove
stop words, stem words to base form, and 1dentify relevant
concepts (e.g., imaging modalities, body parts, etc.). In cer-
tain examples, machine learming algorithm(s) are integrated
with ontologies such as Foundational Model of Anatomy,
Neuronames, Brinlex, etc. These ontologies are augmented
with smart hanging protocol (SHP)-related information
including 1maging properties, abbreviations of body parts,
ctc. The ontologies allow the machine-learning algorithms to
compute similarity metrics between two Iree-form text
strings, for example.

FIG. 6 depicts a flow diagram of an example case-based
reasoning system. The example system 600 includes a case
base 610 of one or more learned (e.g., captured, observed,
taught, etc.) hanging protocol layouts/configurations. For a
new study 620, candidate selection 630 provides one or more
layout candidates 640 for layout synthesis 650 according to
one or more algorithms, guidelines, rules, preferences, etc.
Layout synthesis 650 provides one or more choices 660, 670
for automatic and/or user selection to apply to display images,
reports, tools, etc., on a user display. For example, 1n FIG. 6,
candidate selection 630 and layout synthesis 650 provide a
two layouts: choice 1 with an associated confidence score of
0.8 and choice 2 with an associated confidence score of 0.6.
Theuser and/or a program can select one of the layout choices
660, 670 to be applied as a hanging protocol to a user display.

As 1llustrated in the example of FIG. 6, an available case
base 615 can continue to expand due to continuous learning,
and monitoring of display layout activity, user feedback, etc.,
to provide more and/or better candidates for selection. A
subsequent candidate selection 633 provides additional lay-
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out candidates 645 for layout synthesis 655. In the example of
FIG. 6, layout synthesis 655 provides two choices 665, 675:
choice 1 with an associated confidence value of 0.95 and
choice 2 with an associated confidence value computed to be
0.2.

In certain examples, the system also applies image process-
ing as part of the learning mechanism. For example, 1n a case
where a user reviews scanned documentation, the system
automatically centers and rotates the document so as to avoid
additional mampulation and setup time. For each worktlow,
relevant documents used for review are learned. A default
preference and a user-specific preference list are learned for
cach review and are used 1n later reviews.

In certain examples, at a certain point of an image reading,
workilow, when a user wishes to review an 1image series such
as C'T or MR, the user requests or desires a certain view of the
image series. The view may include information such as view
position, orientation, contrast, etc., for areview. For example,
a user may like an 1mitial rendered 1mage to be at a “start
position” of a region of interest (ROI). For example, for an
MR brainimage, 1t 1s eificient to have ahanging protocol open
the series at a frame where the brain starts, which occupies
valuable seconds. This 1s even more significant 1n an example
of a full body CT scan, when, based on the exam order or prior
reports, a radiologist needs or wants, at some point in the
workfilow, to begin a review of a certain organ, such as the
liver. While the radiologist 1s able to scroll through the series
and find any organ, the manual process takes valuable time. In
certain examples, the user “teaches’ the system by scrolling
to an organ in question and then choosing a “learn this™
button, 1con, tab, etc. A learning module combines machine
learning algorithm(s) with 1mage processing algorithm(s).
For example, 1n a liver lesion case, 1f the user taught the
system to start or jump to a review of the liver at some point
in the worktlow, then the system reacts accordingly.

In certain examples, the user may wish to “teach” the
system to load images with certain post-processing applied to
them, such as automatic measurements, annotation, compari-
sons with previous studies, etc. Thus, if a user first applies a
measurement and then selects “learn this”, under the same
conditions, the system attempts to automatically apply the
measurement and save the interaction time.

FIG. 7 illustrates an example hanging protocol learning
system 700 including an 1image processing module 720. In the
hanging protocol learning system 700, image data 710, image
meta data 712, and non-image data 714 can be provided to a
learning module 750. In the example 1mage processing mod-
ule 720, images 710 are pre-labeled with 1mage content
description using image analysis algorithm(s). The labels
include mformation such as an occupying body region 730,
organtype 732, contrast 734, zoom 736, orientation used 738,
etc. Other features 740 can be used for series matching as well
or instead. The learning module 750 uses labels 1n the images
and associated information, such as patient history, exam
procedure, etc., to learn user preference(s). When the user
opens a new study, the smart workflow automatically displays
image region(s) ol interest in preferred monitor, viewport,
orientation, and/or contrast, etc.

In certain examples, scanned body part(s) are labeled using
image processing algorithm(s) based on both image and
ontology mformation. Each image slice 1s given a label that
identifies to which body part the image belongs. Identification
and labeling can be performed using machine learning based
approaches, histogram based approaches, methods based on
image features, and so on. On a lower level, individual organs
in the 1mages are labeled manually, semi-automatically, or
automatically using image processing algorithm(s). The
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organs can be labeled by location(s), bounding box(es), pose
(s) that include locations, orientations, and sizes. The organ
shapes can be represented using simple models (e.g., rect-
angles, ellipsoids, circles, etc.) or sophisticated models (e.g.,
a statistical atlas, etc.). Organ labeling can also be performed
by assigning labels to image locations through manual, semi-
automatic, or automatic segmentation. The organ labels help
enable quick and accurate 1imitial display and navigation of the
images, as well as assist auto zoom and contrast adjustment
on the focused organs for better visualization, for example.

When displaying a new study, the smart workilow com-
pares each image series to the learned examples and deter-
mines which series 1s displayed on every viewport. The image
series are compared based on imaging modalities, 1imaging
protocols, parameters, image features including orientation,
s1ze, intensity profile, etc. These features are obtained or
derived from 1mage metadata, from 1mage processing, and/or
from abstraction of 1maging information, for example. The
image series can also be compared through 1image registra-
tion, for example.

In certain examples, the workflow learns preferred image
slices or planes that the user wants to view and automatically
determines the slices or planes to be displayed when loading
a new study based on 1image labels.

In certain examples, when comparing to historical data for
the same patient or a different patient with similar pathology,
the worktlow can automatically display the images at same
body locations from different studies based on 1mage regis-
tration and/or labeling.

Thus, 1n certain examples, users set up data in a manner
preferred by the users and teach alearning system in real-time
(or substantially real-time). Furthermore, certain examples
provide a system designed with a goal of fast convergence to
what users perceive as optimal “hanging’” and overcome vari-
ability in mput data and user preference. Certain examples
increase a user’s productivity and allow users to focus on the
diagnostic aspects of the review, thereby improving health-
care quality. Certain examples provide methods and systems
to teach, guide, and/or facilitate an entire worktlow. Certain
examples provide a user interface allowing a user to provide
input including an 1image system, and the 1mage review sys-
tem learns from the user 1nput.

FIGS. 8-12 provide example hanging or display protocol
layouts and application of a learning algorithm for hanging
protocol configuration and application.

FIG. 8 illustrates example display protocols 800 for a
trauma case 810 which 1s positioned ahead of a routine case
820 for radiologist review. As shown 1n the example of FIG.
8, auser may want a different layout for each different type of
case to be reviewed, depending upon priority, circumstances,
time constraints, what they are looking for, etc. In this
example, for the trauma case 810, the user wants to display
two horizontal axial (AX) images T1 and T2 in the left view-
port or display and two sagittal (SAG) images 11 and T2 in
the right viewport/display. However, for the routine case 820,
the user would like a four panel view of two sagittal images T2
and T1 1n an upper portion of the first view and two axial
images 12 and T1 1n a lower portion of the first view along
with one vertical sagittal image STIR 1n an upper portion of a
second view along with a scanned document 1n a lower por-
tion of the second view. If the user modifies the arrangement,
a learning or configuration option (e.g., menu item, button,
etc.) can be provided for the user to instruct the machine to
remember this configuration (e.g., continue the machine’s
learning process based on user, type, layout, etc.).

For example, as shown in FIG. 9, rather than requiring a
user to navigate a cumbersome menu 910 to save a default
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display protocol, certain examples provide a simplified inter-
face including a learning button 920 and apply button 930.

Thus, 1n certain examples, a viewer or user interface can
include a user-selectable option (e.g., a “learn™ button) to
trigger the system to capture, record, and/or otherwise
remember a particular layout and/or portion of a layout for a
hanging protocol.

FIGS. 10 and 11 provide example views of desired display
protocols for routine and trauma cases, respectively. The sys-
tem can provide a default display protocol based on what 1t
has learned, which can be confirmed by the user and/or modi-
fied by the user, for example. If the user wishes for the system
to modily or expand 1ts hanging protocol behavior based on a
user modification of the hanging or display protocol, the user
can select the learn button 1010, 1110 to add this modification
and/or layout configuration to the system’s universe of hang-
ing protocol options for candidate selection and processing
based on one or more criterion including user, role, case type,
urgency, available exam data, etc. Rather than having to navi-
gate multiple menus with multiple options to save a display
protocol configuration, the user can click one button or select
one option to save a configuration for later use. Thus, the
system can provide a suggestion for a hanging protocol and
the user can apply or modity (and cause the system to learn)
that suggested layout.

Asshownin FI1G. 12, differences between series names and
order can be learned by the system 1n response to machine
learning and user triggering. For example, STIR SAG 1s num-
ber 5 1n a first series 1210 but number 6 with a slightly
different name 1n a second series 1220 while AXIAL T2 1s
number 7 1n the first series but number 4 and named AX T2 in
the second series.

Certain examples provide a “smart” hanging protocol to
facilitate a workflow based on a machine learning algorithm
that tracks how a user or a group of users creates image setups.
Certain examples provide machine learning of 1mage setup
workflows and reproduce these layouts for new studies of the
same type. In certain examples, reproduction via the auto-
mated hanging protocol automatically applies advanced 3D
mamipulation on the study, such as but not limited to, MIP/
MPR of a 3D volume rendering with particular manipulation
on the 1image 1n order to create the same layout, and the same
worktlow, chosen by the user for that specific type of data
under investigation.

In certain examples, once a radiologist opens a new exam
for review on a workstation, and, for that specific exam type
and/or for that specific reason of examination, he/she would
prefer to observe some specific MPR projection placed in the
specific part of the screen layout that was chosen during
previous learning sessions of the system, automatic calcula-
tion of that MPR projection is performed and displayed on the
workstation screen. In another embodiment, such MPR cal-
culation may be triggered by existence of a previous exam of
the same patient in the system, for which a specific MPR
projection was calculated. The MPR projection may include
some 1mportant information present in the previous exam.
This important information can be an observation or measure-
ment of lesions or tumors, or other visual information, sig-
nificant for case understanding and/or patient treatment, for
example.

In an embodiment, a user may like to observe a view from
a historical exam on a current study. Application of the his-
torical view can automatically via a hanging protocol applied
to see the view both for the historical study and the new study
that 1s currently under review. In this case, 1f the desired
layout was not generated by the learning system before, the
radiologist would have to manually construct the desired
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MPR projection, arrange the screen layout, and finally tell the
learning system to “learn” this preferred setting. The next
time, when the same case arrives, the 1mage viewing system
automatically generates the desired MPR projection and dis-
play the desired screen layout, for example.

In another type of exam and/or another reason for the exam,
a user may prefer to “teach” the system to display a 3D
volume rendering of exam data. The 3D volume rendering
may include performing a manipulation on the rendered vol-
ume, such as organ cutting or view from particular direction.

In certain examples, the machine learning process of the
image viewing system, including advanced 3D manipula-
tions, can be executed and subsequently stored with a pre-
terred view 1n the learning system. For example, the system
can store a calculated sample MPR view 1n its storage. Then,
while opening a new study with the preferred HP that contains
this specific MPR view, calculating the corresponding MPR
projection from the newly arrived data can be implemented by
applying slice-to-volume registration, for example.

FIG. 13 presents an example screen layout showing a pre-
vious exam MPR projection and an on-the-1ly generated cor-
responding projection from a new exam as a result of slice-
to-volume registration. The example screen layout 1300 of
FIG. 13 provides a previous exam view 1310 and a current
exam view 1320. In the example of FIG. 13, the left side 1s an
MPR view 1310 from a previous exam. On the right side, a
registered MPR projection 1320 from a current exam, calcu-
lated by slice-to-volume registration, 1s displayed.

In an embodiment, a processing module 1s provided based
on a National Library of Medicine Insight Segmentation and
Registration Toolkit (ITK) library—an open source cross-
platform registration and segmentation toolkit. F1G. 14 shows
an example workilow 1400 and components of ITK registra-
tion.

Input data to the registration process includes two 1mages
that may have arbitrary dimensions (for example, two dimen-
sions for 2D 1mages or three dimensions for 3D image vol-
umes). One 1mage 1s referred to as a Fixed Image (FI) 1405 1
(X) and another 1s referred to as a Moving Image (MI) 1410
m(X), where X 1s a position 1n N-dimensional space. Pixels
from the FI 1405 and MI 1410 are provided 1402, 1404 to
form a Metric (M) 1420. Pixels from MI 1410, however, are
first processed by an Interpolator 1415 to provide 1406 inter-
polated pixels for the Metric 1420.

A registration task is treated as an optimization task that 1s
solved by an Optimizer (O) 1425, which brings the images to
their alignment by optimizing a fitness value 1408 generated
by the Metric 1420 between the FI 1405 and the transformed
and interpolated M1 1406 to provide transform parameters
1412. Datlerent Optimizers 1425 can be used depending on
dimensionality of the optimization problem. For example, a
Regular Step Gradient Decent Optimizer can be chosen. In
another example, a Conjuate Gradient Optimizer can be
selected. Other supported optimizers can be found 1n Luis
Ibanez, William Schroeder “The ITK Software Guide 2.4”.
Kitware, Inc., 2005, which 1s herein incorporated by refer-
ence 1n 1ts entirety.

A Transform (1) 1430 describes a spatial mapping of a
point in the fixed 1image space to points 1n the moving image
space. In an example, a rigid transform can be used. In another
example, a non-rigid transform can be performed. The trans-
form T 1430 1s described by a function T(X,P) that acts on
points X and depends on parameters P. A number of these
parameters depends on the transformation that 1s used and can
vary from three for simple shifting transformations to dozens
or even hundreds for non-rigid transformations, for example.
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For example, an affine transformation 1s defined by a 3x3
rotation A matrix and a 3-component translation vector B in
the form X'=T(X)=AX+B.

The Interpolator 1415 1s used to calculate values of the
moving image at non-grid positions. A bilinear interpolator,
for example, gives a good balance between interpolation
accuracy and complexity. Other supported interpolators can
be found in the I'TK Software Guide, for example. Points
1414 provided by the transform 1430 are used by the inter-
polator 14135 to interpolate pixels from the moving image
1410 to provide interpolated pixel values 1406.

The Metric (M) 1420 1s used to measure similarity between
the fixed 1image 1405 and the transformed moving image
1410. A wide vaniety of similarity metrics 1420 can be used,
for example. In an example, a mean squared pixel-wise dii-
ference between intensities of two 1mages I and J can be used.
The mean-squared pixel-wise difference can be defined as:

N

MS(1, J) = %Z (I, = )’

n=1

Here, 1. and J, are gray values of pixels from the two 1images,
and summation 1s done over all N pixels 1n the overlapping
domains ol both images. The less the mean squared difference
1s, the more 1image similarity 1s reached. In another example,
a mutual information, or normalized mutual information met-
ric 1s used. These metrics are used for registration of 1images
that came from different modalities, for example.

Other metrics, such as Correlation Coetficient (CC), Ratio
Image Uniformity (RIU) also can be used for similarity mea-
surement. The full list of metrics, supported by I'TK can be
found 1n the ITK Software Guide, for example.

Choice of particular components of the registration frame-
work can vary and depends, for example, on the registered
image modalities and body part of interest.

In many cases, advanced visualization involves a signifi-
cant amount of set up time. In fact, in many cases, technicians
set up and save views for radiologists. Certain examples sig-
nificantly increase a user’s productivity and save image set up
time before an actual review of s case begins. Certain
examples support advanced 3D visualization methods, such
as MPR/MIP or volume rendering, as a natural part of a smart
hanging protocol, which 1s taught by a user through a learnming
system 1n real time. Certain examples provide a system that
allows a user to teach preferred MPR and/or 3D views from
previous exams ol possibly different patients and apply the
projection/view to a current exam. Certain examples enable a
view (e.g., an MPR and/or 3D view) from a different case for
a different patient to be learned and applied automatically to
a current case for a current patient.

FIG. 15 1llustrates a flow diagram for an example method
1500 of smart hanging protocol configuration including 3D or
other advanced visualization. At block 1510, a new exam 1s
opened for review by a user. For example, the new exam 1s
opened for review via a workstation (e.g., a PACS workstation
or other image viewing workstation). The user may be 1den-
tified, such as by login, password, and/or other identifier.

At block 1520, 11 a previous hanging protocol was learned
for the user, that protocol is retrieved. For example, it 1s
determined whether the user had selected and saved a par-
ticular layout during a previous machine learning session of
the system. I1 so, at block 1540, advanced visualization (e.g.,
MPR projection, 3D manipulation, etc.) and/or other configu-
ration included in the saved hanging protocol 1s automatically
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applied to the new exam 1n conjunction with a screen layout,
as specified by the hanging protocol.

Alternatively or 1n addition, at block 1530, a previous exam
corresponding (e.g., by user, by patient, by anatomy, by type,
etc.) to the new or current exam 1s identified and an associated
hanging protocol 1s retrieved. For example, 1t 1s determined
whether the new exam corresponds to a prior case for which
a hanging protocol was learned and saved. If so, at block
1540, advanced visualization (e.g., MPR projection, 3D
manipulation, etc.) 1s automatically applied to the new exam
in conjunction with a screen layout, as specified by the pre-
viously saved hanging protocol.

At block 1550, a new hanging protocol learning session
can be triggered, automatically and/or by the user.

FIG. 16 1s a block diagram of an example processor system
1600 that may be used to implement the systems, apparatus
and methods described herein. As shown in FIG. 16, the
processor system 1600 includes a processor 1602 that 1s
coupled to an interconnection bus 1604. The processor 1602
may be any suitable processor, processing unit or miCropro-
cessor. Although not shown 1n FIG. 16, the system 1600 may
be a multi-processor system and, thus, may include one or
more additional processors that are identical or similar to the
processor 1602 and that are commumnicatively coupled to the
interconnection bus 1604.

The processor 1602 of FIG. 16 1s coupled to a chipset 1606,
which includes a memory controller 1608 and an input/output
(I/O) controller 1610. As 1s well known, a chipset typically
provides I/O and memory management functions as well as a
plurality of general purpose and/or special purpose registers,
timers, etc. that are accessible or used by one or more proces-
sors coupled to the chipset 1606. The memory controller 1608
performs functions that enable the processor 1602 (or proces-
sors 1f there are multiple processors) to access a system
memory 1612 and a mass storage memory 1614.

The system memory 1612 may include any desired type of
volatile and/or non-volatile memory such as, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), tlash memory, read-only memory
(ROM), etc. The mass storage memory 1614 may include any
desired type of mass storage device including hard disk
drives, optical drives, tape storage devices, etc.

The I/O controller 1610 performs functions that enable the
processor 1602 to communicate with peripheral input/output
(I/0) devices 1616 and 1618 and a network interface 1620 via
an I/0O bus 1622. The I/O devices 1616 and 1618 may be any
desired type o1 I/O device such as, for example, a keyboard, a
video display or monitor, a mouse, etc. The network interface
1620 may be, for example, an Ethernet device, an asynchro-
nous transfer mode (ATM) device, an 802.11 device, a DSL
modem, a cable modem, a cellular modem, etc. that enables
the processor system 1600 to communicate with another pro-
CESSOor system.

While the memory controller 1608 and the I/O controller
1610 are depicted 1 FIG. 16 as separate blocks within the
chipset 1606, the functions performed by these blocks may be
integrated within a single semiconductor circuit or may be
implemented using two or more separate itegrated circuits.

Certain embodiments contemplate methods, systems and
computer program products on any machine-readable media
to implement functionality described above. Certain embodi-
ments may be implemented using an existing computer pro-
cessor, or by a special purpose computer processor 1mncorpo-
rated for this or another purpose or by a hardwired and/or
firmware system, for example.

One or more of the components of the systems and/or steps
of the methods described above may be implemented alone or
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in combination in hardware, firmware, and/or as a set of
instructions in soiftware, for example. Certain embodiments
may be provided as a set of mstructions residing on a com-
puter-readable medium, such as a memory, hard disk, DVD,
or CD, for execution on a general purpose computer or other
processing device. Certain embodiments of the present inven-
tion may omit one or more of the method steps and/or perform
the steps 1n a different order than the order listed. For
example, some steps may not be performed in certain
embodiments of the present invention. As a further example,
certain steps may be performed 1n a different temporal order,
including simultaneously, than listed above.

Certain embodiments include computer-readable media
for carrying or having computer-executable instructions or
data structures stored thereon. Such computer-readable
media may be any available media that may be accessed by a
general purpose or special purpose computer or other

machine with a processor. By way of example, such com-
puter-readable media may comprise RAM, ROM, PROM,

EPROM, EEPROM, Flash, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to carry or
store desired program code in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer or other
machine with a processor. Combinations of the above are also
included within the scope of computer-readable media. Com-
puter-executable instructions comprise, for example, 1nstruc-
tions and data which cause a general purpose computer, spe-
cial purpose computer, or special purpose processing
machines to perform a certain function or group of functions.

Generally, computer-executable 1nstructions include rou-
tines, programs, objects, components, data structures, etc.,
that perform particular tasks or implement particular abstract
data types. Computer-executable instructions, associated
data structures, and program modules represent examples of
program code for executing steps of certain methods and
systems disclosed herein. The particular sequence of such
executable istructions or associated data structures represent
examples of corresponding acts for implementing the func-
tions described 1n such steps.

Embodiments of the present invention may be practiced in
a networked environment using logical connections to one or
more remote computers having processors. Logical connec-
tions may include a local area network (LLAN), a wide area
network (WAN), a wireless network, a cellular phone net-
work, etc., that are presented here by way of example and not
limitation. Such networking environments are commonplace
in olfice-wide or enterprise-wide computer networks, intra-
nets and the Internet and may use a wide varniety of different
communication protocols. Those skilled 1n the art will appre-
ciate that such network computing environments will typi-
cally encompass many types of computer system configura-
tions, including personal computers, hand-held devices,
multi-processor systems, microprocessor-based or program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, and the like. Embodiments of the
invention may also be practiced in distributed computing
environments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links,
wireless links, or by a combination of hardwired or wireless
links) through a commumnications network. In a distributed
computing environment, program modules may be located 1n
both local and remote memory storage devices.

An exemplary system for implementing the overall system
or portions of embodiments of the invention might include a
general purpose computing device in the form of a computer,
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including a processing unit, a system memory, and a system
bus that couples various system components including the
system memory to the processing unit. The system memory
may 1nclude read only memory (ROM) and random access
memory (RAM). The computer may also include a magnetic
hard disk drive for reading from and writing to a magnetic
hard disk, a magnetic disk drive for reading from or writing to
a removable magnetic disk, and an optical disk drive for
reading from or writing to a removable optical disk such as a
CD ROM or other optical media. The drives and their asso-
ciated computer-readable media provide nonvolatile storage
ol computer-executable instructions, data structures, pro-
gram modules and other data for the computer.

While the invention has been described with reference to
certain embodiments, 1t will be understood by those skilled 1n
the art that various changes may be made and equivalents may
be substituted without departing from the scope of the mnven-
tion. In addition, many modifications may be made to adapt a
particular situation or material to the teachings of the mven-
tion without departing from 1ts scope. Therefore, 1t1s intended
that the invention not be limited to the particular embodiment
disclosed, but that the invention will include all embodiments
talling within the scope of the appended claims.

The mvention claimed 1s:

1. A method to automatically apply advanced three-dimen-
sional mamipulation to an 1mage exam via a hanging protocol
tor clinical image display, said method comprising:;

detecting selection of a new 1mage exam for display by a

user;

automatically identifying at least one of a) a previously

learned hanging protocol saved for the user and b) a
saved hanging protocol associated with a prior 1mage
exam corresponding to the new 1mage exam;

when at least one of a) and b) 1s 1dentified, applying the

saved hanging protocol identified 1n at least one of a) and
b) to the new 1mage exam, the saved hanging protocol
from at least one of a) and b) including three-dimen-
stonal manipulation to be automatically applied to the
new 1mage exam as part of the hanging protocol con-
figuration for display and

facilitating display of the new 1image exam based on the

saved hanging protocol; and

triggering, based on a failure to 1dentify a) and b), a hang-

ing protocol learning session for machine learning of the
hanging protocol configuration from the user.

2. The method of claim 1, wherein the three-dimension
manipulation comprises at least one of multi-planar recon-
struction and maximum intensity projection.

3. The method of claim 1, further comprising monitoring,
in the learning session, user worktflow including three-dimen-
sional manipulation of image data from the new 1image exam
and accepting, using a processor, user mput to record/teach at
least a portion of the worktlow for repeat setup.

4. The method of claim 1, wherein the saved hanging
protocol 1s learned based on 1mages from a first patient and
applied to images from a second patient.

5. The method of claim 1, further comprising facilitating,
user modification of a saved workflow element 1n a saved
hanging protocol.

6. The method of claim 1, wherein the three-dimensional
manipulation mcludes registering pixel values from a fixed
image and an interpolated moving image based on one or
more transform parameters.

7. A non-transitory computer-readable storage medium
including a set of 1nstructions for execution by a processor,
the 1nstructions, when executed, to implement a method to
automatically apply advanced three-dimensional manipula-
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tion to an 1mage exam via a hanging protocol for clinical
image display, said method comprising;:

detecting selection of a new 1mage exam for display by a

user;

automatically identifying at least one of a) a previously

learned hanging protocol saved for the user and b) a
saved hanging protocol associated with a prior image
exam corresponding to the new 1mage exam;

when at least one of a) and b) 1s 1dentified, applying the

saved hanging protocol identified 1n at least one of a) and
b) to the new 1mage exam, the saved hanging protocol
from at least one of a) and b) including three-dimen-
stonal manipulation to be automatically applied to the
new i1mage exam as part of the hanging protocol con-
figuration for display and

facilitating display of the new image exam based on the

saved hanging protocol; and

triggering, based on a failure to identify a) and b), a hang-

ing protocol learning session for machine learning of the
hanging protocol configuration from the user.

8. The computer-readable storage medium of claim 7,
wherein the three-dimension manipulation comprises at least
one ol multi-planar reconstruction and maximum intensity
projection.

9. The computer-readable storage medium of claim 7,
wherein the method further comprises monitoring, in the
learning session, user workflow including three-dimensional
mamipulation of 1image data from the new 1image exam and
accepting, using a processor, user input to record at least a
portion ol the workilow for repeat setup.

10. The computer-readable storage medium of claim 7,
wherein the saved hanging protocol 1s learned based on
images from a first patient and applied to images from a
second patient.

11. The computer-readable storage medium of claim 7,
wherein the method further comprises facilitating user modi-
fication of a saved workilow element in a saved hanging
protocol.

12. The computer-readable storage medium of claim 7,
wherein the three-dimensional manipulation includes regis-
tering pixel values from a fixed image and an interpolated
moving 1image based on one or more transform parameters.

13. A machine learning hanging protocol analysis system
comprising:

a memory to store mstructions; and

a processor to execute the mnstructions which configure the

processor to implement:

an 1mage processor to process image data to provide three-

dimensional 1image mampulation 1n conjunction with a
hanging protocol; and

a learning engine to capture and store the hanging protocol

including three-dimensional 1mage manipulation con-
figured by a momtored user,

the 1mage processor to automatically apply three-dimen-

sional manipulation to an 1mage exam via the hanging
protocol for clinical image display at least 1n part by:

detecting selection of a new 1mage exam for display by a

user;

automatically identifying at least one of a) a previously

learned hanging protocol saved for the user and b) a

saved hanging protocol associated with a prior image

exam corresponding to the new 1mage exam;

when at least one of a) and b) 1s 1dentified, applying the
saved hanging protocol identified 1n at least one of a)
and b) to the new 1mage exam, the saved hanging
protocol from at least one of a) and b) including three-
dimensional manipulation to be automatically
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applied to the new 1mage exam as part of the hanging,
protocol configuration for display and

facilitating display of the new 1image exam based on the
saved hanging protocol; and

triggering, based on a failure to identify a) and b), a
hanging protocol learning session for machine learmn-
ing of the hanging protocol configuration from the
user.

14. The system of claim 13, wherein the three-dimension
manipulation comprises at least one of multi-planar recon-
struction and maximum intensity projection.

15. The system of claim 13, wherein the saved hanging
protocol 1s to be learned based on 1mages from a first patient
and applied to images from a second patient.

16. The system of claim 13, wherein the image processor
turther comprises:

a metric generator to recerve pixel data from a fixed 1image
and a moving image and generate a fitness value for
registration between the fixed image and the moving
1mage;

an 1nterpolator to interpolate pixel data from the moving
image and to provide the interpolated moving image
pixel data to the metric generator;

an optimizer to generate one or more transform parameters
based on the fitness value; and

a transformer to generate one or more spatial mapping
points for the moving 1image based on the one or more
transform parameters.
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In the Claims
Column 25 line 52 (claim 3), between the words “to record” and ““at” delete the word “/teach”.
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