12 United States Patent

Shankar et al.

US009148283B1

US 9,148,283 B1
*Sep. 29, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

(52)

(58)

STORING ENCRYPTED OBJECTS
Applicant: Google Inc., Mountain View, CA (US)

Inventors: Umesh Shankar, New York, NY (US);
Andrei Kulik, Zurich (CH); Bodo
Moller, Adliswil (CH); Sarvar Patel,
Montville, NJ (US); Brian N. Bershad,
Seattle, WA (US); David Erb, Seattle,

WA (US)
Assignee: Google Inc., Mountain View, CA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 91 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/067,162

Filed: Oct. 30, 2013

Related U.S. Application Data

Continuation of application No. 13/110,361, filed on
May 18, 2011, now Pat. No. 8,601,263.

Provisional application No. 61/346,005, filed on May

18, 2010.
Int. Cl.
HO4L 9/32 (2006.01)
HO4L 9/08 (2006.01)
U.S. CL
CPC ... HO4L 9/321 (2013.01); HO4L 9/0819
(2013.01)
Field of Classification Search
CPC e, GO6F 2221/2141; GO6F 21/6209;
GOG6F 3/067; HO4L 2209/60; HO4L 9/0822;
HO041. 2209/603

See application file for complete search history.

llllll
b

(56) References Cited

U.S. PATENT DOCUMENTS

5,335,346 A 8/1994 Fabbio
5,778,222 A 7/1998 Herrick et al.
6,119,230 A * 9/2000 Carterc.coovvvvviviininnnnn, 726/5
6,529,885 B] 3/2003 Johnson
6,577,734 B 6/2003 Etzel et al.
6,751,735 Bl 6/2004 Schell et al.
6,865,555 B2 3/2005 Novak
6,947,556 B1* 9/2005 Matyasetal. 380/29
6,950,819 Bl 9/2005 Behera
7,136,840 B2 11/2006 Pinkas et al.
7,319,759 Bl 1/2008 Peinado et al.
7,373,517 B1* 5/2008 Rigginsccocoeeerrrnnnn, 713/184
(Continued)
OTHER PUBLICATIONS

S1IR1US: Securing Remote Untrusted Storage; Fu-Jin Goh et al.; pp.

131-145;1n Proc. Network and Distributed Systems Security (NDSS)
Symposium; 2003 .*

(Continued)

Primary Examiner — James Turchen
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

An encrypted resource 1s stored 1n association with an access
control list. A request to retrieve the resource 1s recerved. The
wrapped key and the authentication credentials are sent, from
the application server system, to a key server system. An
unencrypted version of the resource encryption key 1s
received from the key server system 1f the key server system
determines that the authentication credentials correspond to a
user 1n the group of users 1dentified by the group i1dentifier.
The stored encrypted resource 1s decrypted using the recerved
unencrypted version of the resource encryption key to gener-

ate an unencrypted version of the resource. The unencrypted
version of the resource 1s sent, from the application server

system, to the client application.

15 Claims, 9 Drawing Sheets

— —m A A am A A A A A A AA A A Ed Bk A A A
Y
o
7l
|:"'|‘-
o
"%
¥

[I S S [P A e | I.............................

— A A Aa—a —a

-] ——
TN
, heiwhrk K
AN JI‘H
I
!
SUSLER : !
.]
e : I
b I
.]
T !
|
1
1
i
!
LT i
Al it i
1
105 !
!
I
!
1
1
l 1
O 2 !
'
----------------------- :
At ' !
'
l 1
e r A 1 !
LLLLLLLLL l
e o
1
e 1

US 9,148,283 B1
Page 2

(56)

7,512,810
7,600,134
7,797,399
7,836,080
7,913,300
7,984,066
8,024,559
8,046,509
8,080,637
8,295,490
8,307,067
8,307,455
8,370,388
8,555,403
8,719,903
2002/0073113
2002/0138843
2003/0088786
2003/0163705
2004/0107342
2004/0168073
2005/0081066
2006/0005261
2006/0026425
2007/0005595
2007/0156842
2007/0255743
2008/0148339
2008/0155652
2008/0301783
2009/0049120
2009/0055397
2009/0240907
2009/0327706
2010/0017596
2010/0138903

2011/0191858

References Cited

U.S. PATENT DOCUMENTS

Bl *
B2 *
Bl
B2
Bl *
Bl
B2
B2
Bl
Bl
B2 *
B2
B2

o~

* % ¥ ¥ *

1 =&

1 =

YT

3/200
10/200
9/201
11/201

3/2011
7/2011
9/2011
10/2011
12/201]

10/201
11/201
11/201
2/201
10/201
5/201
6/200
9/200
5/200
8/200
6/200
8/200
4/200
1/200
2/200
1/200
7/200
11/200
6/200
6/200
12/200
2/200
2/200
9/200
12/200
1/201
6/201

8/201

9
9
0
0

S S I P T N T N T (N I

2
2
3
3
4
4
5
6
6
7
7
7
8
8
8
9
9
9
9
0
0

1

RY&II ***************

Catherman et al.

Svendson
DeBie

Flank et al.

Kilday et al.
Jung et al.
Bondurant

Tsai et al.
McCoy et al.

RY&II

Takahashi et al.
Kilday et al.
Kilday

Kilday

Caraher et al.
Samaan et al.

Moran et al.
Richards et al. ...

Pham et al.
Bourne et al.

[L.ahdensivu et al.
Sukigara et al.
Douceur et al.
Gafter
Vermeulen et al.

(Gaucas
Hill et al.

[]
DeBie

Abrutyn et al.
Sakairi et al.
Man et al.

Crandell

Ikeda et al.

Schertzinger
Medvinsky
Shapiro et al.

‘‘‘‘‘‘‘‘‘‘ 713/189
........... 713/193

************* 726/12

........... 709/224

........... 713/201
********* 713/182
........... 713/165
........... 713/193
.......... 713/202

******** 709/217

********** 711/163

*********** 713/155
............... 726/6
............. 726/27

2011/0270833 A1 11/2011 wvon Kaenel et al.

2011/0271353 Al1* 11/2011 Lietal. ..cooovrvinvivinninnnnnn.. 726/26
2011/0302211 A1 12/2011 Kilday et al.

2014/0075573 Al 3/2014 Kilday

OTHER PUBLICATIONS

Authenticating Network-Attached Storage; Benjamin C. Reed et al ;

pp. 48-57; 2000, IEEE.*
Office Action for U.S. Appl. No. 13/245,393 dated Apr. 25, 2014, 38

pages.

Office Action for U.S. Appl. No. 13/110,297 dated Apr. 28, 2014, 35
pages.

Office Action for U.S. Appl. No. 13/110,306, dated Mar. 15, 2013, 18
pages.

Office Action for U.S. Appl. No. 13/110,323, dated Mar. 20, 2013, 18
pages.

Office Action for U.S. Appl. No. 13/110,336, dated Mar. 18, 2013, 17
pages.

Office Action for U.S. Appl. No. 13/110,361 dated Dec. 20, 2012, 15
pages.

Office Action for U.S. Appl. No. 13/110,297dated Jan. 25, 2012, 16
pages.

Office Action for U.S. Appl. No. 13/110,297dated May 30, 2012, 18
pages.

Office Action for U.S. Appl. No. 13/245,393 dated May 29, 2012, 20
pages.

Office Action for U.S. Appl. No. 13/245,393dated Jan. 25, 2012, 16
pages.

Seitz et al., “Key Management for Encrypted Data Storage in Dis-
tributed Systems,” in Proceedings of the 2”¢ Security in Storage
Workshop (SISW), 2003, 11 pages.

Kher and Kim, “Securing distributed storage: challenges, techniques,
and systems,” Proceedings of the 2005 ACM workshop on Storage
security and survivability, Nov. 11-11, 2005, 17 pages.

Shankar, “Security and Data Integrity in Google Health,”
Powerpoint, May 2010, 30 pages.

* cited by examiner

U.S. Patent Sep. 29, 2015 Sheet 1 of 9 US 9,148,283 B1

ity

Bahaori

104 7

interface
Frorian

Keygiora | L interface
: L Hackend

108 |

Metanais

US 9,148,283 Bl

Sheet 2 0of 9

T e S

B b e R o o ok b & e o o o kb b R g R ok ok b bk R R kb R b bk & o ok ko bk k& Rk b Rk ok ke kb R R Rk kR b bk R e R ok ok b ok & & R ok k& ke Rk bk R R R b bk R N R ko b k& & R b bk k& & Rk bk g Rk kb R R ~ '
. . » .
*)
]
B .
[l
.
a4
. w .
0 »
.- N
[v
. C o . . _._“. _._“.
Y P AR A . *a Y
. - - “" .-_-._. RN » . -_.4-
e i, - . . o
. f e e e e e - - L3 [TP [
Lt A PP K i
—.l.—...—.l.—.l.—.l-—.l.—.l.—.l-—.l.—.l.—...—.l.—.l.—.l-—.l.—.l.—...—.‘.—.l.—.l-—.l.—.l.—.l-—.l.—.l.—...—.l.—.l.—.l-—.l.—.l.—.l-—.l._l.—..._l.—. N "l
P e F L P PR R R Ll PR R R N A R R A . f -l..
l"._.. “}.l'ilﬂ.“iq " R T Tt P R P A Pt P B ..“-..__..._..__..__.._..\.”tl!..__..__.u.__.k.._.- e N] T -_i-
B u%-uﬂ-uv&ﬁg* .t ﬁﬁ%.%“", nu.nuxuf.ﬂﬁ .
e e e e e R e . Pty S L A P . LT e e M Ml ALl " . . ! . .
a' . . . 'a I) LT, P LT e . . . ' B

e . O . L T T O O O O O L O O O T O O O O O O O O O O O O O O O O O O T O O O O O O O T T O T O O O O O O O R O O T DO O O O O O e O R T O O O O O O L O O O T O O O O O O O O T T DO O O O O O O O O O O O TR L O B O L O O O O L L

#k#f4k#kl.._1l..rl..rl..rl..rl..rl..rl..rl..rl.._1l..rl..rl..rl..rl..rl.._1l..rl..rl.._1l.._1l..rl..rl..rl..rl.._1l..rl..rl..rl..rl..rl..rl..rl..rl.._1l..rl..rl..rl..rl..rl.._1l..rl..rl.._1l..rl..rl..rl..rl..rl.._1l..rl..rl..rl..rl..rl.._1l..rl..rl.._1l..rl..rl..rl..rl..rl.._1l..rl..rl.._1l..rl..rl.._1l.._1l..rl.._1l..rl..rl..rl..rl..rl..rl..rl..rl..rl..rl..rl..rikiki?ib Pl

-
[et 30 3G A AL 0 S S0 S0 30 I0 M SC N
' . . o

F F F F F F
[[]

LI I A e

F Ok

*

*

*

EICAC I 30 30 Ao e S A0 S 30 0 JE SC N

F F FFFFFFFFF
[] [[] [

*
'

*
'

L)
.

*
'

F

F FF
[

F

F Ok
]

F

L L R B D D D O D D I I

o R]

T
L]

v
L]
F]
" .
[]
.
[]
L]
F]
" .
[]
.
[]
L]
F]
" .
[]
[e
[]
L]
F]
" .
[]
[e
[]
L]
F]
" .
[]
.
' ' ' ' o ' . ' o o ' X . -_...
' ' ' ' ' ' ' ' ' ' ' ' - h . ' F] [
oo ' oo o ' ' o o [" . L)
' ' ' ' ' ' ' ' ' ' ' ' ' rh . ' [] [}
s & & = & &2 b & & & b &2 b & s s s a2k s sk s s a2k s sk s s ad s s s s ad s sk s d sk s ks h s ks ks h s s s ks s s s as ks s s s ks b s ks ks hoaok 1 o . L]
a a . 2 a a a 2 a 2 a - a a o A . ' [] [}
iH..__.I.-.. ' S) ' i..) il.-
l...n.._n.._l...n.._n.__“.-.. ' 1”.._ . ' ”..) ”l.
o . .
l‘. 'y .._nn..__.l.-... ' 1.._..__ . . ' '... -.-..
o .._.__ * 1o k. '] [
., w0 . ' -_..) -_.-..
N+ ' I ' [e B u
..__.I.-... A . na [] [}
.._nnnl.._..__.l. ir . odroa B . "
L I - h . - a F]
w0 e T -_..) -
a ' ar r [e B
..__.I.-... A . na [] &
..__.I.. I . odroa B . L]
L I - h . - a F] [
..__.I. dr r B - B
X 1o rh . " a [] [}
.-_.I. i i a L L]
[b . na [] [}
. X . . b N . L]
o - h . - a F] *
..__.I.. I I a B - B a
L] rh . na [] L]
" ' ar r [e B
n.__..__.l.-... A . na [] &
a a2 a2 aaaamsasaaaa a . 2 aaaaa a 2 aaaaa . a a . a 2 aaaaasa s - iiiiii..__.l.-.... N La, '... i.-_-
n.__.__._..__.__.__.._.__._..__.__.__.._.__.__.__.__._..__.__.__.._.__._..__.__.__.._.__.__.._.__._..__.__.__.._.__.__.__.__._..._.__.__.._.__._..__.__.__.._.__.__.._.__._..._.__.__n.__.__.__.__.__.._.__.__.._.__.r.__.__.__.-.__.__.-.__.-.-.__.__.-.__.__.__.__.__.-n.._..l.. [r r " . L)
N a s s s s s s a s a s s s s s s s s s X 1......_. O -_.. -_.-..
* 1o . h . aa 'S »
& ..__.I.. I . o B . "
L I - h . - a F]
.__n..__.l.. I I a B - .
I X 1o rh . et [] L]
..__.I.-.. ' o e a -_... -_.-..
.._..__.I.. I . odroa B . L]
L I - h . - a F] [
.__.__.__.__.__.__..__.I. dr r B - B
X 1o rh . " a [] [}
R 2N . -_..) -_.-_.
n..__.l.. ir . o B . LN
- .-... ' l....._ . -...iu. i.. il.-
- ..__.I.-... . . f - h . ata oo o ' T P T R ' oo ' f 'S -
i.__.__._..._.._.._.._.._....__.__.__.._.._.._.._.._....__.__.__.._.._....._.._.._.._.__.__.._.._....._.._.._.._.__.__.._.._....._.._.._.._.__._..._.._.._.._.._.._.._.__._..._.._.._.._.._.._.__.__.__.._.._.._.._.._.r.__.__.__.r.._.._.r.._.._.r.__.-.r.._.._.._.._.._.ri..__.I. L A A T o] .-...__ .__.........1......-.............-....... ..-.............-............-.............-............-.............-............-.............-............-.............-............-.............-............-.............-............-.............-............-.............-............-.............-............-..1.... . -_... -_.4-
-“.n “. “- “.n “.. “. “.- “. “- “.n “. H. “.- “.. “. “.n “. “- “.n “.. “. “.- “.. “.- “.n “. H. “.- “.. “. “.- “. “- “.n “. “. “.- “.. “. “.n “. “- “.- “.. “. “.- “.. “.- “.n “. “. “.- “.. “. “.- “. “- “.- “.. “. “.- “.. “. “.n “. H. “.- “.. “. “.- “.. “.- “.n “.. “. “.- “.. “. “.- “. H. “.- “.. “. “.- “.. “. “.n “.. “. “.- “.. ._._'H. u . .._ . u ' u . » . u ' u . » . u ' r . » . u ' u . » . u ' u . » . u ' u o u ' .”1. » . .”,. u . » . u o » . u ' u . » ..”_ .”_.h._..”_.h._..”_..”_.h._..”_.h._..”_.h_..”_.h._..”_..”_..”_..v “._...__ ; e v
. . .
F O 0 e e e e e e e el e e e N N T N A R A A A T e e el e el e e T e A R N NN N XX N N N N N N A A AT a . e
T T T T O S T S T T T T e T S T T T T T TR T L T T e L T T T T T T . T T T T S T T . ' -_... -_.-_-
F]
" .
[]
.
[]
B .
F]
L]

- L S N M SO S O S U S VO U U WO N N S W MO NYL S WU D SO N U SO SO S U VU S S N N N N N N SYNL NS N S ST S SN N S S
o o o F o F o F o F o F R R R F o F o F R R

-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I*-I*-I*-I‘*-I*-I*-I‘*-I‘-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*-I*-I‘*-I*l*l‘*i*l*l‘*i L

E)

L N e S S M S U N VU U SR W M N N W N UL WS U UL U N S SUC S S SO U R S WO N U W Y N N W W NUNL N N SR S S - - L N N Y S SO N S N S R
il F o F o F o F R F o F o F o F R F R F o E o F o E o F R F R R R

LI I

L]
&
[}
[}
[}
*
L]

B PP |
ok F F F FF R F

L]
)
|]
L)

-
-
'y
o
o+
-
[
'y
[
-
o+
- .
i“ l“. i“-
' 'm ma s s s s s s s a2 s s 8 2 2 2 2 8 a8 8 828 828 82 222 8 828 28 28 28 2 2 &2 & & & 2 2 2 2 & & & & & 2 2 2 2 &2 & 82 2 2 2 2 2 & &2 &2 2 2 2 2 2 = = &2 & = & 1 .l.-. '... i.-_-
F OO I B R DO DO R R R R R R R R RN R D RN RN R BN RN D R RN D R R D DO RN DN RN RN D RN RO R RN RN D RN RN D DN N RN RN DN DN N R RN N RN R RN RN R R] A & b b b &b b bk b Lk & L] B . |]
A AR L R L L N L R R R R L N LN NN o o o
) [) [] -
A ., v e
ir - . Al
L) L]] -
L - L LA
) [) [] *
- .—H.._ .H.q ".__. ._._._”
- e - " .
-) [) [] -
S A . Ly e
S r - . A
- L) L]] -
N L) - L LA
Ju L]
BN ".._..._ .__.H ___“. ___”.
* - L L]
] L]] L]
N e .- - .
S A . Ly e
) iy L] L L]
- L) L]] -
) L3 L L L)
-) [) [] *
S A . Ly e
o) * - .
- - L]]
- ur - L
- L L] L Ll
s il & . L)
- . L L]
- i dr L .
. T L) 1
...r' -.l.l '1#iiiii.-iiiiii.'l
L] -
0 -”.._ H_-_- Il...H...H...H...H...H...H...H...H.-. ...H ...H...H...H...H...H...H...H...H...H... ...H._._ “.__. -
L] _._L......................._-. i drodr o dr dr o dp o dp A dr o
x o N ¥ PN e -
. ur dr dr dp b bk kW i dr L dr dr dp e e e e e P
ir lll.b..;..:.b.b.b.b. ¥ L S B B) ¥ L
A A L) lL......................._-. ¥ drdy A dr ar A A F)
nEn L dr L dr dr dp e dr i dr p a0 dr dp drdrdr i Ew
) a e dr gk ke F drodr o dr d e odp Ay o N
i . oy dr dr A ¥ A e W 1
i d p e e e ey ey e e dp e e e p e e de e e e e dr U dr dr dr dr e L] dr r a0 dr dr e i dr L dr e dp e de e e -
‘_...P ey T T e e a e ' TS iy o P T Tenta
dr dr dr dr drdr d p e dp e Cdpdp e p e dp dp ey ey e dp e e e e p e dp dp de e e p L dr e dp dr W dr dr dr dr A dr ur i L dr dp e dr i dr p a0 dr dp drdrdr el i e
drdp dp dr dr e dr A dr dp e dp o dp gy dpodp A e e e dp dp g dp oy dpode dp e e dp o de ddp dpodp A e e e dp dp g dp e dr dr o dr d) d oo dr d ke F drodr o dr d e odp Ay -na -
9 dr oy A odr d P S dp dp dp dp dr oy dp dpdp dp oy dp o dr dpdr dp dr e dpdp e dp dp drdr dr dp dpdp dpdy o odr dpdp o L3 . drodr drodr a kA ¥ A e ol A
dr U dr dr e dr L dr dp dp e dp ey e dp dp dr dp e p e e dp e e e ey e e dp dp e e ey a0 dr dp e de dr U dr dr dr dr . dr p dr dr dr dr e i dr L dr dr dp e e e e ar wd L)
drodrodrodr d P drodp dp g dpdp o dr dp dpdp e dp dp o de dp dp dpodp dr de e dp dp dp dr dpdr dr de dp g dp o dp o dpodr dr oy brodr o drodr dr ir i odr d b ook ¥ drodp o dp dr drdy o odrdr W . Al
N g g) PN L) ENC F N A s o oA -
dr dr dr dr dr i i ardr i dr dr dr dp e e e ey L e e e e dp ey e dp e e e ey L e dr W ar dr dr dp e dr L) dr dr dr dr dr e dr i - iy dr dr dr dr el e LA
drdp dp g p e de dp dp dpodp dp o dp dpdp e dp dr dr dp dp dp dp g dp o dp o dp dr dp dp e e dp o dr dr dp dpodr g e e dr dp dp g e oo dr drodr o dr g ko] ar e dr gk iy om o ow ke m o o WA *
A) PN i N o il brod ke i N A NN] e N - U]
dr p e dp B e dr p p e dp e e e e e e dp e e e e e dp e e e e e e p e e e e e ey a0 dr U dr dr dr dr W L dr p ar dr dr dr i LI P NI P L]
7- drodr o odr d d o dr A drdp dp dr dpdy o dr o drdp ey dp o dr drdp dp e dp de ey dp dp g dp e de dp g e ody o dpode d oy ur oy odr d ke * lL......._........._........._. [dodd Uk od k. X W& . A
dr dp dp dr y e e de dpdp dp oy e dp dp oy dp dp A dr e dpdp dp dp dp oy dr dr dr dp dpdp dpdr drdr dpdp dp oy A dr d o] A i P P N L]
dr e dp dr L p p e dp e e e e p e dp dp ey e Uy B e dp dp dp de Uy dp iy e dp dp de e ey a0 de dpdr W dr dr dr dr A dr ur i L dr dp e dr " . i i dr W »
X dr el e e e e e e r e e e e e e e e e e e RN NN o "u........_................................_...........-. . Pl i o ___.___“
i dr dr e dp dp dr e p p ar dr e dr U a0 dr dr . ur dr dr dp ek kW F L P N L)
i oo ¥ drdr dp d e dp dp gy i brodr o dr d ke [-r g e ' . i X W& . A
P dr r dp o dp dp dp oy dr ar e o L) " N lL......................._-. "o P] -
[] i ar dr i dr p L dr dp e de e e p a0 iy dr dr dr dr i L dr dr dr dr dp e dr a ar Jrodr kN i dr W .
P » drdr dr o dr dr dr e dr dr o dr d b dp drodr o dr g ko] ar e dr gk Xid o1 o WA
Pl ¥ Ao T e brod ke i N A NN ok Xk W% - .
i i dr p L dr e dp dr e e p p ar dr dr dr U dr dr dr dr W L dr U dr dr dr dr e dr dr dr dp b M k11 P | L]
drodrodrodr d drdp o dr g e Ak i odr d e * lL.......................... drodr b odr dd A X W W . A
P i e T e e e e PN - ik Ny A g o oA x
dr dr dr dr dr i w e dp iy iy e dp e e e e i W dr dr dr dr e ldr ur i ar L e dr e dr p dr dr e dp dr e e e i i W L
p drodrodr dr e e a e de dr dr p e dr Ak dp drodr o dr g ko L] "u......................._-. S dr o dp g o dr o drodr d oy o -
dr oy A odr d dr oy dp dr drdr dp o drdr e d A r dr A dr d L3 r . drodr drodr a kA dr o dpdr y dy e dr a A X W W . A
i P dr p e dp dp de e e p a0 odr dr U a0 dr dr . ur dr dr dp ek kW ar dr dr dp dp de e e p a0 P N L)
e i oo ¥ drdp dp dr dr e e dr e de gy e dp A brodr o dr d ke r g e drdp dp d e dp dp g oy i X W& . A
P a» dr dp dp dp dr dr dr e dpdr dr oy dr o L) lL......................._-. Y dr dr dr dp dr oy A P] -
i ar dr dr e dp dp de e e p a0 de drdr i dr dr dr dp A dr L dr L dr dr dp e dr dr p e dp e de e e p a0 i dr W LA
) S dp o dp drdy e dr d ko dp S dr dp o dr dr e de dp dr p oy dr dr o dr d) a e dr gk ke S dp o dp d e dpodr d ko dp o *
i W dp dr drdr dr dp dpdr oy dr dr dp dpdr drdy o dr dp dp dpody dpodr dpdp rodr A odr dr i . N A NN dr dp dp dr drdr dr dr dpdp dr oy dr X W W . Al
i dr e dp dp e e e p a0 dr g dr dr dr dp dp dp dr e e p a0 dr dp A de dr U a0 dr dr L] dr r a0 dr dr e i dr p a0 dr dp drdrdr P L]
i oo W dr dp dr e e dp dp g dp e dpodr gy drodr dpdr oy dr dp dr e dp dpodr d oy ur oy odr d ke * lL......._........._........._.) S o dp d e dr X W& . A
P e e) Iy F PN - ik Ny i e P] x
o ar ar W dr e dr dp e e e p i e dp e de e e dr ar dr e dp e dr e e W dr dr dr dr e ldr ur i ar L e dr e i ar dr e dp dr e e e o a W L
S X x N A) ENC TN e ey X ok ko kW L) "u......................._-. F drdp o dr dr Ak oo A -
i X W A e e e e A A el i ey x o N F PN e ox e W - UM
i ar ap Ldp dr dp dp e Cdr e p a0 dr dp dr p L dr e dp e dr e e dr U dr dr dr dr W . ur dr dr dp b bk kW i dr L dr dr dp e e e e dr L)
Fo) W dr dp dr e dp dr g dp e odr gy o Frod] R g] X T r T ER e
& dr drdr ar dr dr dr o dr L iy de dp e dr Uy a0 de dp e odr e el il e
X dpodr A A o M e e dr e e e e - i e e e e e e e e .
| W | l.l.l *l.l.-------------------.-. PR R R EEE "E ®E"E'®E°'E'®s"'®E's"'®'®=EB'®m'®=E'®m'®="B'=E'®m'=E'=E"'m'®=s"'s'®m'®s'#"®m'#n "-
] L] L3
ur - L L
) [) [] -
& 'y L - . B . B
. L . . " L)
™ ' . . - L LI
L) L]] -
L) - L LI
] L)] *
: 2 {Wﬁ .) ”
ol L e e e e e e e U L e e e e et e et el R ot e et o el e e e et et e e el e e el e e e el o el L]] L]
. Jr i & dr oF dp O dp oF dr O dp oF dr o dr oF dr oF dr o dp oF dr dF dp o&F dr oF dp o i oF dr o dr oF dr o dr oOF dr oF dr o dr oF dr dF dp oOF dr oF dp O dp oF dr O dp oF dr o dr oOF dr oF dr o dr O dr o & A . »
#l#i###l#i:###i#i###i###l#i###l#i#####i#i#i#i###l#i###ll.ij.#l.#l.il.ij.#l.ij.#j.#l.ij.#j.ll.ij.lj.il.ij.lj.il.ij.ij.#l.ij.#l.ll.il.#l.#l.il.#j.#l.ij.#j.#l.ij.#j.#l.ij.lj.il.ij.#l.#l.ij.####ii#####i#####i#####i#####i#l#i#i#l#i#i##:#i#####i## e o & o o o e o & ok B X &k ok & X & kR l#l.i#####i#####i#####i#iﬁn
L L] L)
- .]
L] .] -
...... |H1ul.-"|. ult..-.lu..tr. .l.._ ..-.I o ..ﬂu -_... ._.-..
.-..-. . ' I.r.-..-_ ['I_.... [- - » -_... .-_-
. R I .“____llt-. "y .- e
- - tunwﬁ_u.ﬁ- . w .. v
.i“ - . [A -“.
-)
[

U.S. Patent

U.S. Patent Sep. 29, 2015 Sheet 3 of 9 US 9,148,283 B1

20377 | Kagiti

Requast Wrapped Key

Recaive Upload Requast

4 Examine and Validate | 214

TIRI : Generats Wranned Kev
Authentication Crade S)

gl

gery Reguesisr's fargs
Buckel's ACL o Determing 8 348
Autheniicaled Principal is

Farmitied 1o CUreals Dhiecls

ad
2O

senarate AL for Obiect

3 -

o Reguest Wrapned Key for bvary 23
Upload Uliect o Usla Share) s T = 4

Frineingt in ACL for Chiect
3 j

5 Store ACL and Keys for Objectin | ¢ 220
Authonization rMetadats :

U.S. Patent Sep. 29, 2015 Sheet 4 of 9 US 9,148,283 B1

302y

Receive Download Reguest

3047
Authenticaton Uredentiais

Casery Requested Target o
Determing f Authenticated
Principal is Permitted 1o Head the |

ook Up Wrappad Key for
Autheniicated Princingl from

306 | 4

Targel Obioot's Metadata

Unwrap Wrapped Key with ¢ 346
futhentication Credentials |

316 CAuery for List Ceorypt Targst Objact = #8

3127 5320

Retumn Ublect

U.S. Patent Sep. 29, 2015 Sheet 5 of 9

mz

412

Send Fature indication

Heraive Authentication Credeniiala ang
Wrapped Key

404

4667 Dacrvpt Wranoed Key with Service Spegific
L Master Key o Generale Unwrapped Key

4082 identify Format of Authentication Credentials
? and User identifer

e Authenicalion e
© Credentiais Comaspond 1o User
identifier in Same

No TS Fomal? ™

| identify Service Assodiated with Wrapped Key |

Yes §

US 9,148,283 Bl

Seng Resoues

Encryplion Key o

414

| Application Server System |

U.S. Patent Sep. 29, 2015 Sheet 6 of 9 US 9,148,283 B1

B33 1 Receive Sesd
' Valus

Genergle
Hesoue
cnoryplion Rey

50477 |

RESoUre

U.S. Patent

Sep. 29, 2015

Sheet 7 of 9

| Receive Resource § ¢ 6§02
| and Wrapped Rey, §

| Deorypt Wrapped

| Encrypt Resourcs |

Kay :

| 508

| Return Encrypled 1

Hespumes

US 9,148,283 Bl

U.S. Patent Sep. 29, 2015 Sheet 8 of 9 US 9,148,283 B1

?@ﬁz

?‘ EM‘- | . . - r
b7 Bucket or Object Ureated

gy

i "?.._ Lise Default ACL

$107 Sarve AGL

f1472 Modify ACL

US 9,148,283 Bl

Sheet 9 of 9

Sep. 29, 2015

U.S. Patent

US 9,148,283 Bl

1
STORING ENCRYPTED OBJECTS

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s a continuation application of and

claims priority to U.S. application Ser. No. 13/110,361, filed
May 18, 2011 which claims priority from U.S. Provisional
Application Ser. No. 61/346,005, filed May 18, 2010. The
contents of the prior application are incorporated herein by
reference in their entirety.

TECHNICAL FIELD

This document relates to hosted storage and associated
cryptographic key storage.

BACKGROUND

Hosted, or cloud-based storage, refers to off-site or remote
data storage that 1s typically provided by a third party. The
third party may implement the hosted storage 1n a data center,
and provide access to the hosted storage over a network, such
as the Internet.

Encryption 1s the process of converting data, sometimes
called plaintext, using an algorithm and an encryption key to
make i1t unreadable to anyone except those possessing the
encryption key. The result of the process 1s encrypted infor-
mation, sometimes called ciphertext.

SUMMARY

In a first aspect a method performed by one or more pro-
cessors 1ncludes storing an encrypted resource at a hosted
storage service and 1n association with an access control list.
The access control list specifies a group 1dentifier that 1den-
tifies a group of users that can access the resource and a
wrapped key associated with the group identifier. The
wrapped key includes an encrypted resource encryption key.
The resource encryption key 1s able to decrypt the encrypted
resource. The method includes recetving, at an application
server system ol the hosted storage service and from a client
application executing on a client system, a request to retrieve
the resource. The request includes authentication credentials.
The method includes sending, from the application server
system, the wrapped key and the authentication credentials to
a key server system. The method includes recerving, at the
application server system, an unencrypted version of the
resource encryption key from the key server system 11 the key
server system determines that the authentication credentials
correspond to a user in the group of users 1dentified by the
group i1dentifier. The method includes decrypting, at the
application server system, the stored encrypted resource
using the received unencrypted version of the resource
encryption key to generate an unencrypted version of the
resource. The method includes sending, {from the application
server system, the unencrypted version of the resource to the
client application.

In a second aspect, a computer system 1includes akey server
system configured to store an encrypted resource at a hosted
storage service and 1n association with an access control list.
The access control list specitying a group 1dentifier that 1den-
tifies a group of users that can access the resource and a
wrapped key associated with the group identifier. The
wrapped key including an encrypted resource encryption key,
wherein the resource encryption key is able to decrypt the
encrypted resource. The key server system 1s configured to

10

15

20

25

30

35

40

45

50

55

60

65

2

receive, at an application server system of the hosted storage
service and from a client application executing on a client
system, a request to retrieve the resource. The request includ-
ing authentication credentials. The key server system 1s con-
figured to send, from the application server system, the
wrapped key and the authentication credentials to akey server
system. The key server system 1s configured to receive, at the
application server system, an unencrypted version of the
resource encryption key from the key server system 11 the key
server system determines that the authentication credentials
correspond to a user in the group of users 1dentified by the
group 1dentifier. The key server system 1s configured to
decrypt, at the application server system, the stored encrypted
resource using the recetved unencrypted version of the
resource encryption key to generate an unencrypted version
of the resource. The key server system 1s configured to send,
from the application server system, the unencrypted version
of the resource to the client application.

In a third aspect, a computer readable medium stores
operations that, when executed by one or more processing
devices, cause the one or more processing devices to perform
operations including storing an encrypted resource at a hosted
storage service and 1n association with an access control list.
The access control list specifies a group 1dentifier that 1den-
tifies a group of users that can access the resource and a
wrapped key associated with the group identifier. The
wrapped key includes an encrypted resource encryption key.
The resource encryption key 1s able to decrypt the encrypted
resource. The operations include recerving, at an application
server system of the hosted storage service and from a client
application executing on a client system, a request to retrieve
the resource. The request including authentication creden-
tials. The operations include sending, from the application
server system, the wrapped key and the authentication cre-
dentials to a key server system. The operations include receiv-
ing, at the application server system, an unencrypted version
of the resource encryption key from the key server system 1f
the key server system determines that the authentication cre-
dentials correspond to a user in the group of users 1dentified
by the group 1dentifier. The operations include decrypting, at
the application server system. The stored encrypted resource
using the received unencrypted version of the resource
encryption key to generate an unencrypted version of the
resource. The operations include sending, from the applica-
tion server system, the unencrypted version of the resource to
the client application.

Implementations of the foregoing aspects can include any,
all or none of the following features. The group of users can
be managed by a provider of the hosted storage service for
reasons other than storage permissions and existed prior to the
storage of the encrypted resource at the hosted storage ser-
vice. The group 1dentifier can be a single username associated
with the group of users, an e-mail address associated with the
group ol users, or adomain name associated with the group of
users. The group of users may not exist prior to the storage of
the encrypted resource at the hosted storage service. The
method can include receiving a group addition request from
the client application. The group addition request can specily
the group of users and the group 1dentifier. The group 1denti-
fier can be mserted into the access control list. The wrapped
key can also 1include the group 1dentifier 1n encrypted form.

Receiving an unencrypted version of the resource encryp-
tion key from the key server system 1f the key server system
determines that the authentication credentials correspond to a
user in the group of users 1dentified by the group 1dentifier can
include decrypting, at the key server system, the recerved
wrapped key to generate an unwrapped key that includes the

US 9,148,283 Bl

3

resource encryption key and the group identifier 1n unen-
crypted form. The group identifier can be accessed from the
unwrapped key at the key server system. The recerved authen-
tication credentials can be determined to correspond to a user
in the group of users 1dentified by the accessed group 1denti-
fier at the key server system. In response to determining that
the recerved authentication credentials correspond to a user in
the group of users 1dentified by the accessed group 1dentifier,

the resource encryption key in unencrypted form can be sent,

from the key server system, to the application server system.

A service associated with the wrapped key can be 1dentified.

Decrypting the recerved wrapped key can include decrypting
the received wrapped key using a master key associated with
the service.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A 1s a block diagram showing an example of a
system for providing hosted storage and accessing the hosted
storage from a client device.

FIG. 1B 1s a block diagram showing an example of a
wrapped key scheme.

FI1G. 2 1s a flow chart showing an example of a process for
storing data 1n a hosted storage service.

FIG. 3 1s a tlow chart showing an example of a process for
providing data 1n a hosted storage service.

FI1G. 4 1s a tlow chart showing an example of a process for
unwrapping a wrapped key.

FI1G. 5 1s a tlow chart showing an example of
creating a resource encryption key from a seed value.

FI1G. 6 1s a tlow chart showing an example of a process for
using a keystore to facilitate user-to-user sharing of encrypted
data.

FIG. 7 1s a flow chart showing an example lifecycle of an
access control list.

FIG. 8 shows an example of a computing device and a
mobile computing device that can be used 1n connection with
computer-implemented methods and systems described 1n
this document.

a process for

DETAILED DESCRIPTION

A hosted storage system can provide data storage for a
variety ol applications. The hosted data storage can receive
data resources, associate the resources with user accounts,
and provide access to the resources to authorized users. A
system ol buckets can be used to index the data storage space,
and permission properties can be assigned to the buckets or to
the resources stored 1n the buckets.

The resources stored 1n the buckets can be encrypted with
resource encryption keys held 1n wrapped keys. Access to the
resource encryption key can be provided by a keystore server
that can ensure a user of the application server has authoriza-
tion to access the resource encryption key. If the user 1s
authorized, the keystore server can unwrap the wrapped key
and provide the resource encryption key to the application
server. The keystore need not store any of the wrapped keys,
instead only having access to a wrapped key when receiving
a request to unwrap 1t.

FIG. 1A 1s a block diagram showing an example of a
system 100 for providing hosted storage and accessing the
hosted storage from a client device 102. System 100 1s one
example of a system that can employ a keystore for using

10

15

20

25

30

35

40

45

50

55

60

65

4

wrapped keys, but other types of systems, providing other
types of services, can employ a keystore for using wrapped
keys. In some implementations, a hosted storage service 120
can provide access to stored data by applications running on
computmg devices geographically separate from each other,
provide oilsite data backup and restore functionality, provide
data storage to a computing device with limited storage capa-
bilities, and/or provide storage functionality not implemented
on a computing device.

The system 100 can provide scalable stores for storing data
resources. The client device 102 can upload data resources to
the hosted storage service 120 and control access to the
uploaded data resources. Access control can include a range
of security levels, from keeping data securely confidential to
publishing 1t without restrictions. Data stored 1n hosted stor-
age service 120 can be secured from unauthorized access. The
hosted storage service 120 can use a simple and consistent
application programming interface, or API, which can allow
arbitrary quantities of structured or unstructured data to be
kept private or shared between individuals, organizations, or
with the world at large. The client device 102 can store data in
the hosted storage service 120 for mutual business reasons
(e.g., submission of work product ordered by the owner of the
hosted storage service 120), or for use in data processing by
other services (e.g., images uploaded are used to automati-
cally and dynamically create a photo gallery web page.)

The client device 102 can be implemented using a comput-
ing device, such as the computing device 800 or the mobile
device 850 described with respect to FIG. 8. The clientdevice
102 can communicate with the hosted storage service 120 via
a network 104, such as the Internet. The client device 102 can
communicate across the network using communication pro-
tocols such as, for example, one or more of Transmission
Control Protocol/Internet Protocol (TCP/IP), Hypertext
Transter Protocol (HTTP), Secure Shell Remote Protocol
(SSH), or Application Program Interfaces (API). While only
a single client device 102 i1s shown, there can be multiple
client devices communicating across the network 104 with
the hosted storage service 120 and/or other services and
devices.

The hosted storage service 120 can be implemented such
that client applications such as a client application 103 can
store, retrieve, or otherwise manipulate data resources 1n the
hosted storage service 120. The hosted storage service 120
can be implemented by one or more server devices, which can
be implemented using a computing device, such as the com-
puting device 800 or mobile device 850 described with
respectto FIG. 8. For example, the hosted storage service 120
can be implemented by multiple server devices operating 1n
the same, or different, data centers.

The hosted storage service 120 generally includes an inter-
face frontend 106, an interface backend 108, a storage back-
end 110, metadata 116 for resources stored in the storage
backend 110, and a keystore 109. In general, the terface
frontend 106 may recerve requests from and send responses to
the client device 102. For instance, the hosted storage service
120 can be implemented as a Web Service with a correspond-
ing set of Web Service Application Programming Interfaces
(APIs). The Web Service APIs may be implemented, for
example, as a Representational State Transfer (REST)-based
HTTP interface or a Stmple Object Access Protocol (SOAP)-
based interface.

An mterface frontend 106 can recerve messages from the
client 102 and parse the request into a format usable by the
hosted storage service 120, such as a remote procedure call
(RPC) to an interface backend 108. The interface frontend

106 writes responses generated by the hosted storage service

US 9,148,283 Bl

S

120 for transmission to the client 102. In some 1implementa-
tions, multiple interface frontends 106 are implemented, for
example to support multiple access protocols.

The interface frontend 106 can include a graphical front
end, for example to display on a web browser for data access.
Theinterface frontend 106 can include a sub-system to enable
managed uploads and downloads of large files (e.g., for func-
tionality such as pause, resume, and recover from time-out).
The mterface frontend 106 can monitor load information and
update logs, for example to track and protect against denial of
service (DOS) attacks.

As described above, the Web Service APl may be a REST-
based HTTP interface. In a REST-based interface, a data
resource 1s accessed as a resource, uniquely named using a
URI, and the client application 103 and service 120 exchange
representations of resource state using a defined set of opera-
tions. For example, requested actions can be represented as

verbs, such as by HI'TP GET, PUT, POST, HEAD, and
DELETE verbs. The GET verb may be used to retrieve a
resource, while the HEAD verb may be used to retrieve infor-
mation about a resource without retrieving the resource 1tself.
The DELETE verb may be used to delete a resource from the
hosted storage service 120. The PUT and POST verbs may be
used toupload aresource to the service 120. PUT requests can
come from the client 102 and contain authentication and
authorization credentials and resource metadata in a header,
such as an HTTP header. POST requests can be received
when a client 102 wants to upload from a web browser form.
The form POST upload protocol for the hosted storage ser-
vice 120 can involve multiple required form fields to provide
authentication, authorization and resource metadata. More
generally, any of the API requests may include credentials for
authentication and authorization, for example, in a header of
the request. For example, an authorization header may be
included in the REST requests, which include an access key to
identily the entity sending the request.

Alternatively, or additionally, a user can be authenticated
based on credentials stored in a browser cookie, which gets
appended to the API requests. I no valid cookie 1s present, a
redirect to an authentication frontend can be generated, and
the authentication frontend can be used to generate the
browser cookie. The authentication frontend can be used by
systems and services 1n addition to the hosted storage service
120 (e.g., 1t the organization operating the hosted storage
service 120 also operates other web services such as email
service.) A user can also or alternatively be authenticated
based on authentication credentials from an external creden-
tialing service or an external service that includes credential-
ing functionality. User or group 1dentifier information can be
calculated from the external service’s credential information.
Requests sent by the client 102 to the interface frontend 106
can be translated and forwarded to the external service for
authentication.

In general, resources stored 1n the hosted storage service
120 can be referenced by resource identifiers. The hosted
storage service 120 can define namespaces to which a valid
resource 1dentifier must conform. For example, the
namespace may require that resource identifiers be a
sequence of Unicode characters whose UTF-8 encoding 1s at
most 1024 bytes long. As another example, the namespace
may require that resource identifiers be globally unique iden-
tifiers (GUIDs), which may be 128-bit integers.

Resources can be stored 1n hosted storage service 120 in
buckets. In some examples, each bucket 1s uniquely named in
the hosted storage service 120, each resource 1s uniquely

5

10

15

20

25

30

35

40

45

50

55

60

65

6

named 1n a bucket, and every bucket and resource combina-
tion 1s unique. Resources may be uniquely identified by a URI
that includes the bucket name and the resource name, and
identifies the hosted storage service 120. For example, a
resource named “long/song.mp3” 1n a bucket named “music™
could be specified using a URI pattern such as http://s.host-
edstoragesystem.com/music/long/song.mp3 or http://music-
.s.hostedstoragesystem.com/long/song.mp3. Alternatively,
the user of the client 102 can create a bucket named www-
1music.org, publish a CNAME alias redirecting that to http://
music.s.hostedstoragesystem.com, and address the resource
as http://www.music.org/long/song.mp3. In some examples,
buckets do not nest.

The interface backend 108 can handle request authentica-
tion and authorization, can manage data and metadata, and
can track activity such as for billing. The interface backend
108 can provide functionality for independent frontend/back-
end scaling for resource utilization and responsiveness under
localized heavy loads. Data management can be encapsulated
in the interface backend 108 while communication serving
can be encapsulated 1n the interface frontend 106. The inter-
face backend 108 can 1solate security mechanisms from the
client-facing interface frontend 106.

The interface backend 108 can expose an interface usable
by both the interface frontend 106 and other systems. In some
examples, some features of the mterface backend 108 are
accessible only by an interface frontend (not shown) used by
the owners of the hosted storage service 120 (internal users).
Such features can include those needed for administrative
tasks (e.g., resolving a resource reference to a low level disk
address.) The interface backend 108 can handle request
authentication (e.g., ensuring a user’s credentials are valid)
and authorization (e.g., verifying that a requested operation 1s
permitted.) The interface backend can also provide encryp-
tion and decryption services to prevent unauthorized access to
data, even by internal users.

The interface backend 108 can manage metadata 116 asso-
ciated with data resources, for example 1n a structured data
format such as a database (e.g., MySQL or Biglable). User-
specified names labeling the buckets can be completely
defined within the metadata 116, and resource metadata 116
can map a resource name to one or more data shares 112
storing the resource. The metadata 116 can also contain
bucket and resource creation times, resource sizes, hashes,
and access control lists 118 (ACL 118) for both buckets and
resources. The interface backend 108 can log activity and
track storage consumption to support accounting for billing
and chargebacks. In some examples, this includes quota
monitoring i1n each dimension 1 which customers are
charged (e.g., reads, writes, network transfers, total storage 1n
use.)

The ACLs 118 define who 1s authorized to perform actions
on corresponding buckets or resources, and the nature of the
permitted actions. The ACLs 118 can be an unordered list of
{scope, role} pairs, plus Boolean flags. The scope may define
a user or group of users and the role may define the access
permissions for the user or group. In some examples, the
union of all {scope, role} pairs can define access rights. In
some examples, more specific {scope, role} pairs override
more general ones. Table 1: Bucket Roles below shows a list
of example roles that can be included in ACLs 118 for buck-
ets. Table 2: Resource Roles below shows a list of example
roles that can be included in ACLs 118 for data resources.

US 9,148,283 Bl

TABLE 1
Bucket Roles
Role Capabilities
READ Can list the bucket’s contents. Cannot create or
delete resources.
WRITE READ capabilities plus ability to create and delete

resources in the bucket.

WRITE capabilities plus ability to read and write
the bucket ACL.

FULL_CONTROL

TABLE 2

Resource Roles

Role Capabilities

Can read the resource.
READER capabilities plus ability
to read and write the resource ACL..

READ
FULL_CONTROL

Scopes can be defined to a single user or a group of users.
In one implementation, those users with a FULL,_CONTROL
role (and therefore able to modity the ACL for a given bucket
or resource) may define a group of users, and then provide a
role for the group. For example, a group of users may be
managed by the hosted storage service 120 (or, more gener-
ally, by the service provider that provides the hosted storage
service 120) for reasons other than storage permissions (for
example, for a message board or other service that employs
groups) and those groups may be 1dentified by a single user-
name or other 1dentifier associated with the group of users, an
¢-mail address associated with the group of users (which may
or may not also correspond to an 1dentifier of the group), or a
domain name associated with a group. This may allow a user
to specily a preexisting group managed by the service pro-
vider that 1s already defined by the identifier, e-mail address,
or domain name. Similarly, users may be able to specily a
group of users (for example, by user 1d or e-mail address) and
associate an access key with the group. This may allow for the
formation of ad-hoc groups for the management of storage
permissions, rather than groups already managed by the ser-
vice provider.

In this way, a group of users can be given a particular role
simply by managing the role of the group. Similarly, 11 the
ACL 1s associated with a bucket containing a number of
resources, or the ACL 1s otherwise associated with multiple
resources, the role with respect to those resources can be
casily changed by simply changing the role of the group.

Table 3: Scopes below shows a list of example scopes that

can be included in ACLs 118 for buckets and/or data
resources.

TABLE 3
Scopes
Name Description
Service ID A single authenticated user specified by username.
Email Address A single user specified by an email address.

A group of users managed by the hosted storage
service 120 and specified by an associated identifier.
One or more users with access to a one time use
digital token.

One or more users with access to a permanent

use digital key.

Service Group ID

Invite Token

Group-Restricted
Key

10

15

20

25

30

35

40

45

50

55

60

65

S
TABLE 3-continued

Scopes

Name Description

All authenticated users of the hosted storage
service 120.

All users, no authentication. Can be anonymous or
SeImI-anonymous.

All Service Users

All Users

The FULL_CONTROL role can represent all possible

capabilities, such as those assigned to a resource or bucket
owner connected to a financially responsible party. The
bucket owner can be configured to always have FULL _CON-
TROL for the bucket. In general, the bucket and/or resource
owner can create or modily scopes and roles 1n the corre-
sponding ACLs, but 1 some implementations the pair
Ibucket owner, FULL_CONTROL} may be prevented from
being removed from the bucket ACL 118 (or the resource

ACL). To create a resource, a user can have write permission
on the bucket, which can be granted by WRITE and

FULL_CONTROL. WRITE permission on the bucket can
imply permission to delete or overwrite a resource 1n the
bucket. Additional constraints can disallow certain modifica-
tions to ACLs 118. In some examples, 1t 1s possible to create
a resource that the bucket owner cannot read.

A given ACL 118 can include a resource encryption key for
an encrypted data resource associated with the ACL 118 and
stored 1n the hosted storage service 120 or 1n other services
(not shown). The resource encryption key itself has been
encrypted by the keystore 109. The encrypted key can also
carry associated metadata that 1s cryptographically bound to
the key 1itsell. Such keys are referred to as wrapped keys.
From the point of view of the interface backend 108, the
wrapped keys can be opaque resources. To obtain the cleart-
ext key of a wrapped key for use (e.g., to encrypt or decrypt a
data resource,) the interface backend 108 can provide the
wrapped key and client authentication credentials to the key-
store 109. The keystore 109 can verily, based 1n part on the
wrapped key’s metadata, that the provided authentication
credential 1s sutficient to authorize release of the key, and 1f
so, can return the unwrapped key to the mterface backend
108. The interface backend 108 can use the key to encrypt or
decrypt the data resource and then can discard the key.

In various implementations, the group exercising adminis-
trative control of the interface backend 108 and the group
exercising administrative control over the keystore 109 may
be different. This may provide greater security for the stored
data because two parties would need to cooperate to access
resource encryption keys.

In some examples, the resource encryption key 1s a sym-
metric key that can be used to both encrypt and decrypt a
resource. A wrapped key can have associated metadata indi-
cating multiple users or groups authorized to access the
cleartext key.

In some cases, the keystore 109 can copy a wrapped key
and rewrap the key for a different principal (e.g., containing
different metadata). This may be considered the basis for the
sharing of resources using a transitive trust model, which
means a user must first have access to a resource before he or
she can share that resource with another. As an example, the
interface backend 108 may receive a request from a first user
to share a wrapped key (or a resource encrypted with a
wrapped key) with a second user. The mterface backend 108
can retrieve the wrapped key from an ACL 118, and send, to
the keystore 109, the wrapped key, authentication credentials
for the first user and a user identifier for the second user. They

US 9,148,283 Bl

9

keystore 109 can unwrap the wrapped key, ensure that the first
user’s authentication credentials match the wrapped key’s
user 1dentifier, and rewrap the wrapped key with the second
user’s 1dentifier. The keystore 109 can return the new
wrapped key to the interface backend 108, who can store the
new wrapped key in the ACL 118 1n association with the
second user.

The resource encryption key can be generated by, for
example, the interface backend 108 and/or the keystore 109.
For example, the interface backend 108 can generate random
or pseudo-random data to use as the resource encryption key.
In another example, the interface backend 108 can request a
new resource encryption key from the keystore 109, and the
keystore 109 can return random or pseudo-random data for
use as the resource encryption key.

Alternatively, the interface backend 108 can request a
resource encryption key from the keystore 109. For example,
the interface backend can 1dentily a seed value from a data
resource 114 to be encrypted, and send that seed value to the
keystore 109. The keystore can generate a resource encryp-
tion key from the seed value, and return 1t to the interface
backend.

In some implementations, the keystore 109 can use a deter-
ministic process to produce resource encryption keys from
seeds. That 1s, the resource encryption key returned by the
keystore 109 may always be the same for a provided seed
value. In these implementations, if the interface backend 108
uses a deterministic encryption technique to encrypt the data
resources 114, identical data resources 114 will have identical
ciphertexts.

Inthis case, the hosted storage system 120 may be designed
to 1dentily and deduplicate data resources 114 that are i1den-
tical. For example, 1 the hosted storage system 120 stores
email attachments, 1t may be likely that many emails may
contain identical attachments (e.g. a popular video, image
files in HI'ML newsletters). I the interface backend 108 uses
the attachment data resources 114, or a hash calculated from
the data resources 114, as seed values, the resultant resource
encryption keys generated by the keystore 109 will be 1den-
tical for each identical data resource 114. If the interface
backend 108 uses a deterministic encryption algorithm to
encrypt the data resources 114, the resultant cypertext of the
encrypted data resources 114 can be identical. With multiple
copies of 1dentical encrypted data resources 114 1n the datas-
tores 112, the interface backend can perform deduplicating
processes to reduce the storage space used by the 1dentical
encrypted data resources 114. For example, 11 an encrypted
data resource 114 1s 1dentical to another encrypted data
resource 114, the interface backend 108 may delete the extra
copy and replace 1t with a pointer to the other instance of the
encrypted data resource 114.

There are other cases in which the interface backend 108
may request aresource encryption key from a seed value from
the keystore 109. For example, the interface backend 108 may
use user authentication data as a seed value. They keystore
109 can require that the user be authenticated by the keystore
109 before supplying a resource encryption key based on user
authentication data. When storing user preferences as data
resources 114, the interface backend 108 can use that user’s
authentication data as a seed value.

The storage backend 110 can contain multiple datastores
112a-112c¢. Although three datastores 112 are shown, more or
tewer are possible. Each of the datastores 112a-112¢ can
store data resources 114a-114¢ 1n a particular format. For
example, data store 112a can store a data resource 114a as a
Binary Large Object (BLOB), data store 1125 can store a data
resource 11454 1n a distributed file system (e.g., Network File

10

15

20

25

30

35

40

45

50

55

60

65

10

System), and data store 112¢ can store a data resource 114¢ 1n
a structured data format such as a database (e.g., MySQL).

In some 1mplementations, the hosted storage system 120
can receive a request to encrypt data from one user using
another user’s wrapped key. For example, the client applica-
tion 103 can upload a data file and a wrapped key to the hosted
storage service 120 with a request to encrypt the data file with
the resource encryption key in the wrapped key. In this
example, the user of the client application 103 need not be the
user specified in the wrapped key’s user identifier. Here, the
keystore 109 can act like a so-called “encryption oracle” that
provides similar functionality as that found 1n a public key
cryptography system.

The interface backend 108 can send the received data file
and the wrapped key to keystore 109 with a request to encrypt
the data file with the wrapped key. The keystore 109 can
unwrap the wrapped key and use the resource encryption key
to encrypt the data file. The wrapped key may be discarded by
the keystore 109, and the encrypted data file can be returned
to the intertace backend 108. The interface backend 108 can
then return the encrypted data file to the client application
103. As such, the user of the client application 103 can receive
the encrypted data file, without ever having access to the
resource encryption key within the wrapped key.

FIG. 1B 1s a block diagram showing an example of a
wrapped key scheme 150 that may be used, for example, 1n
the system 100. The scheme 150 provides for a system of
cryptographic keys that are secret and inaccessible to the
hosted storage service 120, which stores the wrapped keys.
Wrapped keys are encrypted and thus unusable 1n their base
state. Wrapped keys are usetul for granular access control.
The scheme 150 permits creation and cataloging ofkeys at the
same level of detail as access control lists used in data storage
systems. Wrapped keys may be stored on disk near the data
that they are used to encrypt, which may provide good per-
formance and availability in data storage systems.

The data resource 114 1s any resource that a system opera-
tor may want to protect via encryption. An ACL 118 1s asso-
ciated with the data resource 114 and describes the access
permissions for the data resource 114. Here, a user “Alice”
has READ and WRITFE access, and a user “Dr. Bob” has
READ access.

A resource encryption key, K_Bar, can be generated by, for
example, the interface backend 108 or the keystore 109 and
used to encrypt the data resource 114. The ACL 118 can be
modified to store a wrapped key for each user entry. Each
wrapped key can contain the resource encryption key K_Bar,
metadata 1dentifying the data resource 114, and user identi-
fication information. Each of the wrapped key 1s generated by
the keystore 109 using a master key, K_Master.

The user identification information may be associated with
a single user (e.g., Alice or Dr. Bob, as shown) or with a group
of users. For example, user identification information for
wrapped keys can 1dentify any of the scopes for the ACL 118
described previously in Table 3, including Service Group 1D,
Group-Restricted Key, All Service Users, and All Users.

The encrypted data resource 114 and ACL 118 may be
stored together, for example 1n adjacent memory locations,
which may result 1n the data resource 114 and the associated
wrapped keys being stored together, minimize memory read-
ing operations. Alternatively, the data resource 114 and ACL
118 may be store separately, for example 1n a datastore 112
and metadata 116. When one of the users, Alice or Dr. Bob,
attempt to access the encrypted data resource 114, the
wrapped key and the user’s authentication credentials can be
sent to the keystore 109. It the sent authentication credentials

correspond to the user identifier (or group 1dentifier) 1n the

US 9,148,283 Bl

11

wrapped key, the keystore 109 can return the resource encryp-
tion key K_Bar in unencrypted form to the interface backend
108, and the encrypted data resource 114 can be decrypted.

The ACL 118 can contain one entry per principal, with one
wrapped key per entry. Each wrapped key can be completely
decoupled from other wrapped key and entries in the same
ACL 118. That 1s, a change to one entry and/or wrapped key
does not affect the other wrapped keys. As such, access to the
data resource 114 can be managed at a granular level by
adding, removing, or editing individual ACL 118 entries. For
example, to remove access for the Dr. Bob user, the interface
backend 108 can delete the Dr. Bob entry in the ACL 118—no
adjustment to the other entries in the ACL 118 or to the data
resource 114 may be needed.

In some implementations, a wrapped key can be stored in
the ACL 118 for imnvited and/or shared users. For example, i
Alice would like to share the data resource 114 with other
principals, the interface backend 108 can create an entry in the
ACL 118 for other users. The interface backend 108 can
request from the keystore 109 a wrapped key for the data
resource 114 containing a secret token (e.g., a random char-
acter string). The hosted storage system 120 can provide the
secret token to Alice to distribute, or can distribute the secret
token on Alice’s behalf. For example, the hosted storage
system 120 can generate an email for Alice that invites the
recipients to access the data resource 114 via a URI that has
the secret token embedded. The URI can be an address of a
request to the hosted storage system 120 to access the data
resource 114.

The interface backend can send the secret token wrapped
key and the recetved secret token to the keystore 109. If the
wrapped secret token and the received secret token match, the
keystore can return the resource encryption key, permitting,
the interface backend to decrypt and provide the data resource
114.

In some 1mplementations, the secret token wrapped key
can also contain a user identifier, for example 1f Alice intends
to only share the data resource 114 with a particular principal.
In these cases, the keystore 109 can verily the user authent-
cation credentials of the requesting user, as well as the secret
token, 1n order to return the resource encryption key.

FI1G. 2 1s a flow chart showing an example of a process 200
for storing data in a hosted storage service. The process 200
can be performed by, for example, the interface frontend 106
and the mterface backend 110, and for clarity of presentation,
the description that follows uses the system 100 as the basis
for describing the process. However, another system, or com-
bination of systems, may be used to perform the process 200.

A request 1s recerved by the interface frontend 106 from the
client application 103 to store a resource (202). The request
can include a HITTP PUT or POST request, an authentication
credential that authenticates the principal (entity) making the
request, a data resource, and a target for the resource consist-
ing of a bucket and data resource name. In some examples, the
authentication credentials can include an interoperable
authentication header, token, or cookie. The interface fron-
tend can make a RPC to the backend 108 including the request
headers.

The mterface backend 108 can examine and validate the
authentication credentials (204). For example, native creden-
tials (e.g., user ID, token) can be validated using internal
validation features of the hosted storage service 120. External
credentials (e.g., user names and passwords for another sys-
tem) can be sent to the associated external system for valida-
tion.

The interface backend 108 can query the request’s target
bucket’s ACL 118 to determine if the authenticated principal

10

15

20

25

30

35

40

45

50

55

60

65

12

1s permitted to create a resource in the bucket (206). For
example, the principal or a group the principal 1s a member of
can have the WRITE or FULL_CONTROL role assigned 1n
the bucket’s ACL 118, which would allow the principal to
create a resource 1n the bucket. If the principal 1s not autho-
rized to create a resource, the request 1s denied.

Otherwise, the interface backend 108 uploads the resource
to the target bucket with the target data resource name to a
datastore 112 (208). In some examples, each bucket 1s asso-
ciated with only a single datastore 112, and specifying a target
bucket specifies a datastore 112. In some examples, the inter-
face backend 108 can examine the data resource or use a
parameter 1 the RPC from the interface frontend 106 to
determine which datastore 112 to store the resource in, with
associated metadata 116 indicating the location of the
resource (that 1s, the particular datastore the resource 1s stored
in and the resource’s location in that datastore).

The interface backend 108 can encrypt the resource using

a resource encryption key. In some examples, the interface
backend 108 can perform this encryption before or after
uploading the resource to the target bucket. The interface
backend 108 can generate the resource encryption key, for
example by sampling a pseudo-random number generator or
calculating a hash value of data such as the resource or an
input stream. Alternatively, the interface backend can gener-
ate a seed value and request a resource encryption key from
the keystore 109 based on that seed value. Example seeds can
include, but are not limited to user 1dentifier (e.g. a userID or
principallD), scope values, resource 1dentifiers, and arbitrary
byte strings.
The interface backend 108 re-validates the principal’s
authentication and authorization (210). To support long-run-
ning uploads, expiry times of authentication credentials can
be temporarly 1gnored, and instead the action 204 can be
substantially repeated.

The interface backend 108 generates a new resource key
request to the keystore 109 for a wrapped key for the newly-
uploaded resource (212). The request can include the
resource encryption key, a resource 1dentifier for the newly-
uploaded resource, and a user 1dentifier for the principal that
uploaded the resource. The keystore 109 generates and
encrypts a wrapped key (214) and can provide the wrapped
key to the interface backend 108. The wrapped key can
include the resource encryption key, resource 1dentifier, and
user 1identifier 1n the request from the interface backend 108.

The interface backend 108 creates an ACL 118 represent-
ing the access control list for the newly created resource
(216). In some example, a default ACL 118 1s used or an ACL
118 can be specified by the request from the client 102.

The mterface backend 108 generates a new wrapped key
request to the keystore 109 for a wrapped key for every
principal (user or group) 1n the ACL 118 with permissions to
read the resource or modily the resource’s ACL 118 (218).
Each new wrapped key 1s tied to a single principal (user or
group), and contains the resource identifier and resource
encryption key used to encrypt the resource.

For example, the request recerved by the interface frontend
106 from the client application 103 may indicate one or more
other principals that should have shared access to the
resource. To create wrapped keys for each of the other prin-
cipals, the mterface backend 108 can send, to the keystore
109, a wrapped key, authentication credentials for the princi-
pal that uploaded the resource, and a user i1dentifier for a
different principal. The keystore 109 can unwrap the key,
verily that that the received authentication credentials match
the wrapped key’s user identifier, and rewrap the key with the
user i1dentifier for the different principal. The keystore 109

US 9,148,283 Bl

13

can then return the new wrapped key for the different princi-
pal to the interface backend 108.

The interface backend 108 stores the resource’s ACL 118
and wrapped keys 1n the resource’s metadata 116 (220). The
resource encryption key or keys can be discarded by the
interface backend 108.

FI1G. 3 1s a tlow chart showing an example of a process for
providing data 1n a hosted storage service. The process 300
can be performed by, for example, the interface frontend 106
and the mterface backend 110, and for clarity of presentation,
the description that follows uses the system 100 as the basis
for describing the process. However, another system, or com-
bination of systems, may be used to perform the process 300.

A request 1s received by the interface frontend 106 from the
client application 103 to download a resource (302). The
request can 1include a HI'TP GET request, an authentication
credential that authenticates the principal (entity) making the
request, and a target consisting of a bucket (and optionally
data resource) name. In some examples, the authentication
credentials can 1include an interoperable authentication
header, token, or cookie. The interface frontend can make a
RPC to the backend 108 including the request headers.

The interface backend 108 examines and validates the
authentication credentials included 1n the request (304). For
example, native credentials (e.g., user 1D, token) can be vali-
dated using internal validation features of the hosted storage
service 120. External credentials (e.g., user names and pass-
words for another system) can be sent to the associated exter-
nal system for validation.

The interface backend 108 queries the request’s bucket or
resource ACL 118 to determine 11 the authenticated principal
1s permitted to read the target (306). For example, the princi-
pal or a group the principal 1s a member of can have the
READ, WRITE or FULL_CONTROL role assigned, which
would allow the principal to read or otherwise access the
target. If the principal 1s not authorized to read or access the
resource, the request 1s demed.

Otherwise, the interface backend 108 determines i1f the
request 1s for a bucket or for a resource (308). If the request 1s
for a bucket, the interface backend 108 queries for a list of the
bucket’s contents (310) and the listing 1s returned to the client
application 103 (312).

If the request 1s for an resource, the interface backend 108
looks up the appropriate wrapped key for the given authenti-
cated requestor from the resource’s metadata 116 (314). The
interface backend 108 sends the wrapped key and the authen-
tication credentials to the keystore 109, which can return the
decrypted resource encryption key to the interface backend
108 (316). The interface backend 108 can fetch and decrypt
the target resource (318) to be returned to the client applica-
tion 103 (320).

FI1G. 4 1s a flow chart showing an example of a process 400
for unwrapping a wrapped key. The process 400 can be per-
formed by, for example, the keystore 109, and for clarity of
presentation, the description that follows uses the system 100
and the scheme 150 as the basis for describing the process.
However, another system, or combination of systems, may be
used to perform the process 400.

Authentication credentials and a wrapped key are received
at a key server system from an application server system
(402). For example, the keystore 109 can receive authentica-
tion credentials and a wrapped key from the interface backend
108. The authentication credentials can specily one or more
users, and may take the form of a variety of formats. In one or
more implementations, wrapped keys may contain data that 1s
only accessible by an application server with valid authent-
cation credentials.

10

15

20

25

30

35

40

45

50

55

60

65

14

The wrapped key includes a resource 1dentifier, a resource
encryption key, and a user identifier that have been encrypted
using a master key. The resource identifier identifies a
resource encrypted with the resource encryption key and the
user 1dentifier identifies a user that 1s permitted to use the
resource encryption key to decryptthe resource. For example,
the resource 1dentifier can describe a resource with which the
resource encryption key 1s associated. Resource ID, file path-
names, and universal resource locators are all examples of
resource 1dentifiers. The resource encryption key can be the
cryptographic key that has been, or will be, used to encrypt
the resource identified by the resource identifier. For the
wrapped keys 1in the ACL 118, the resource encryption key 1s
K _Bar, the resource 1identifier 1s “‘Bar”’, and the user identifier
1s either Alice or Dr. Bob.

In some 1mplementations, the authentication credentials
are a character string embedded 1n a uniform resource 1den-
tifier (URI). For example, some user authentication schemes
can produce a unique character string for an authorized user.
That character string can be included 1n to URI request to
identify a user associated with the request. A service associ-
ated with the wrapped key 1s 1dentified (404). For example, 1n
addition to a wrapped key and authentication credentials, a
service 1dentifier may be recetved. The wrapped key 1s
decrypted with amaster key associated with the service (406).
For example, the keystore 109 may store a collection of
master keys, one per service, which are used for encrypting
and decrypting the wrapped keys associated with a single
service. Alter identifying the service, the keystore 109 may
access, based on the 1dentified service, the master key asso-
ciated with the identified service and use the master key to
decrypt the wrapped key. For instance, keystore 109 may
identify, based on the 1dentified service, the master key asso-
ciated with the service, access the 1dentified master key, and
use the accessed master key to decrypt the wrapped key.
Likewise, when wrapping keys, keystore 109 may identity the
service, 1dentily, based on the identified service, the master
key associated with the service, access the identified master
key, and use the accessed master key to wrap the key. In other
implementations, the same master key may be used for dii-
ferent services.

The format of the authentication credentials and user 1den-
tifier are 1dentified (408). The keystore 109 may recognize
many authentication formats, and the hosted storage system
120 may use one or more of those formats to authenticate
users and 1dentily principals 1n the ACLs 118. For example,
the hosted storage system 120 may use 1ts own native authen-
tication system, and may also allow users of a third party
authentication system use credentials from that third party
authentication system. In this example, entries 1n the ACLs
118 and 1n wrapped keys may be 1n either the native or third
party format. The keystore 109 may, as a preliminary authen-
tication action, determine that the format of the authentication
credentials and the user identifier are the same or compatible.
The keystore 109 determines 1f the received authentication
credentials correspond to the accessed user 1dentifier accord-
ing to the identified format (410). For example, the keystore
109 may use the identified format to determine the processes
needed to compare the authentication credentials and user
identifier. For some formats, the keystore 109 can provide the
authentication credentials and user i1dentifier to a third party
authentication system and recerve an indication of correspon-
dence. For some other formats, the keystore 109 can perform
the determination directly by selecting a format-approprate
comparison function, and using the authentication credentials
and user identifier as parameters for the function. For
example, some formats of authentication credentials and user

US 9,148,283 Bl

15

identifier may be comparable by determining 1f both consist
of the same data (e.g. character string, cookie). If both consist
of identical data, then they can be considered to correspond.
Some formats may require some pre-processing ol the
authentication credentials and/or user 1dentifier, for example
to convert the authentication credentials into the format of the
user 1dentifier, or vice-versa.

In some 1mplementations, the user identifier may indicate
no more than one user. For example, in the ACL 118 of FIG.
1B, each wrapped key user 1dentifier indicates only one user,
Alice or Dr. Bob. In this case, when more than one user 1s able
to access the data resource 114, multiple wrapped keys, one
for each user, are stored 1n the ACL 118.

In some implementations, the user i1dentifier and/or the
authentication credentials may indicate multiple users 1n a
group. That 1s, the user 1dentifier acts as a group identifier
when used 1n relation to a group. For example, Table 3 lists
some example scopes that include groups of multiple users.
When the keystore 109 1s determining if the authentication
credentials correspond to the group specified in the user 1den-
tifier, the keystore may determine that the authentication cre-
dentials belong to a group 1dentified by the user 1dentifier,
instead of just strictly matching the user identifier.

If the received authentication credentials do not correspond
to the accessed user identifier, a failure indication 1s sent
(412). For example, the keystore 109 can return to the inter-
face backend 108 an error or failure message that specifies
that the authentication credentials do not match the user iden-
tifier 1n the recerved wrapped key.

If the received authentication credentials do correspond to
the accessed user identifier, the resource encryption key 1s
sent 1 unencrypted form to the application server system
(414). For example the keystore 109 can transmait to the inter-
face backend 108 the resource encryption key 1n unencrypted
form. The interface backend 108 can then use the resource
encryption key, such as described 1n the processes 200 and
300. In some 1implementations, communication between the
keystore 109 and the interface backend 108 can use an
encrypted transier protocol such as Transport Layer Security
(TLS) so that the encryption key 1s encrypted 1n transport.

FIG. 5 1s a flow chart showing an example of a process for
creating a resource encryption key from a seed value. The
process 500 can be performed by, for example, the keystore
109, and for clarity of presentation, the description that fol-
lows uses the system 100 and the scheme 150 as the basis for
describing the process. However, another system, or combi-
nation of systems, may be used to perform the process 500.

A seed value 1s recerved from the application server system
(502). For example, the interface backend 108 can send a seed
value to the keystore 109. The seed value can be based on data
available to the interface backend 108 and/or arbitrary data.
For example, for use in encrypting user preferences, the inter-
tace backend 108 can use some data relating to each user as a
seed value for a wrapped key for each user’s preferences.
Additionally, an arbitrary character string can be appended to
the seed data by the interface backend 108. In another case,
the seed can be based on the resource that 1s to be encrypted.
For example, the interface backend 108 can send a copy of the
resource to the keystore 109 to be used as a seed value, or a
hash of the resource may be calculated by the interface back-
end 108 and send to the keystore 109 to be used as a seed
value.

The resource encryption key 1s generated from the seed
value (504). For example, the keystore 109 can use the seed
value and a master key as parameters to a pseudo random
function, such as a keyed cryptographic hash function, to
generate a resource encryption key. Most or all one-way

10

15

20

25

30

35

40

45

50

55

60

65

16

functions that can be used to generate the resource encryption
key are deterministic algorithm. Assuming keyed crypto-
graphic hash function 1s deterministic, the resource encryp-
tion key 1s determined by the seed value, and any set of
wrapped keys with identical seed values will also have 1den-
tical resource encryption keys.

The resource encryption key 1s sent to the application
server system (506). For example, the keystore 109 can return
the newly generated resource encryption key to the interface
backend 108 for use in encrypting data resources 114.

FIG. 6 1s a flow chart showing an example of a process 600
for using a keystore to facilitate user-to-user sharing of
encrypted data. In this process, a keystore can use a wrapped
key to encrypt data from one user using another user’s
wrapped key. The process 600 can be performed by, for
example, the keystore 109, and for clarity of presentation, the
description that follows uses the system 100 and the scheme
150 as the basis for describing the process. However, another
system, or combination of systems, may be used to perform
the process 600.

Theprocess 600 can be used to encrypt data with a wrapped
key by any actor, even 11 the actor 1s not authorized to access
the unwrapped key. This process can mimic functionality
available in public key encryption schemes. In one or more
implementations, wrapped keys may be used to facilitate
public key encryption functionality without requiring the
computation of public key/private key pairs.

A resource 1n unencrypted form and a wrapped key are
received from an application server system (602). For
example, the keystore 109 can receive from the interface
backend 108 an encryption request that includes an encrypted
resource and a wrapped key. The request need not specity that
the interface backend 108 access or receive the resource
encryption key from the wrapped key, only that the keystore
109 use 1t to encrypt the resource.

The wrapped key 1s decrypted to access the resource
encryption key (604). For example, the keystore 109 can
decrypt the wrapped key to gain access to the resource
encryption key 1n the wrapped key. The resource 1s encrypted
from unencrypted form into encrypted form with the resource
encryption key (606). For example, keystore 109 can encrypt
the resource using the accessed resource encryption key.
Once the resource 1s encrypted, the keystore 109 may discard
the wrapped key and the resource encryption key.

The encrypted resources are sent to the application server
system (608). For example, the keystore 109 can return the
encrypted resource to the interface backend 108, which may
forward the encrypted resource to an external system or store
the encrypted resource, as previously described.

Once encrypted, the user i1dentified 1n the wrapped key
used encrypt the resource may access the resource. For
example, 11 the encrypted resource 1s stored 1n a datastore 112
by the hosted storage system 120, the 1dentified user may log
into the hosted storage system 120 and access the encrypted
resource. The interface backend can send, to the keystore 109,
the user’s authentication credentials and the wrapped key
associated with the resource. Since the user’s authentication
credentials would match the user identifier in the wrapped
key, the keystore 109 can return the resource encryption key
to the interface backend. With the resource encryption key,
the interface backend 108 can decrypt the resource and pro-
vide 1t to the user.

In some 1mplementations, a keystore that performs the
process 600 may later perform the process 400. For example,
an application server system can provide hosted email service
to users. Email resources can be recerved by that application
server even when the recipient user 1s not logged 1n. Since the

US 9,148,283 Bl

17

recipient user may not logged 1n, authentication credentials
for that user may not available to the application server sys-
tem, and the application server system may not be able to
successiully request the resource encryption key from the
user’s wrapped key. In order to encrypt the email for storage
until 1t can be accessed by the user, the application server
system can send the email and the user’s wrapped key to a
keystore. The keystore can perform the process 600 and
return the email 1 encrypted form back to the application
server system.

Later, the user may log 1n, making the user’s authentication
credentials available to the application server system. The
application server system can send the user’s authentication
credentials to the same keystore, along with the user’s
wrapped key. The keystore can perform the process 400 and
return the resource encryption key from the wrapped key,
permitting the application server system to decrypt the user’s
email.

Another implementation that uses the same keystore to
perform the processes 400 and 600 could include a first user
creating and giving a resource to a second user. For example,
a financial mstitution may us an application server system to
generate reports or statements for each account holder. Each
report or statement may be encrypted by a keystore using the
process 600, and stored on the application server system.
When a user attempts to access the statement, the application
server system can send a request to the same keystore to
perform the process 400 so that the application server system
can access the resource encryption key and decrypt the state-
ment for the user.

In some implementations, different keystores can perform
the process 400 and 600. For example, a research firm may
use an application server system to compile statistical data
that includes sensitive information (e.g., medical, financial,
privacy, or security information). The research firm’s appli-
cation server system may request a local keystore to encrypt
the sensitive information with a client specific wrapped key
using the process 600. The research firm may transmit the
encrypted data to the client through any suitable type of
communication channel, including unsecure channels such as
standard email, parcel delivery, or via a mimmimally secured
internet connection. The client can receive the encrypted
information at a different application server system, which
may offer different serves than the research firm’s application
server system, without ever exposing the plaintext of the
sensitive information to any other parties. The client’s appli-
cation server system can then request a different keystore to
perform the process 400 1n order to access the resource
encryption key to decrypt the sensitive information.

FI1G. 7 1s a flow chart showing an example lifecycle 700 of
an ACL 118. Although the steps of the lifecycle 700 show an
order of steps, 1t 1s not implied that each step leads directly to
another. The steps shown are a listing of possible steps that
may be performed on an ACL 118 in roughly chronological
order. The actual order, number, and kind of steps will be
dependent on implementation details and usage of the hosted
storage system 120.

A bucket or resource 1s created by the backend interface
108 based on requests from the client application 103 (702).
The client request can include a bucket name, a resource
name, and/or an ACL 118. The principal requesting the new

bucket or resource 1s authenticated and made the owner of the
bucket or resource.

Ifan ACL 118 1s specified in the request (704), the specified
ACL 118 1s associated with the bucket or resource. 11 the
specified ACL 118 does not include a {scope, role} pair

specilying the principal having FULL_CONTROL, one such

10

15

20

25

30

35

40

45

50

55

60

65

18

{scope, role} pair can be added to the ACL 118. In one
implementation, an ACL may be specified in a request by
enumerating each scope and role pair to be included 1n the
ACL, or may be specified by reference to the name of a
pre-specified or “canned” ACL. A list of pre-specified or
‘canned’ ACLs 118 1s shown 1n Table 4 Canned ACLs below.
The canned ACLs 118 can be cataloged by the hosted storage
system 120 and referenced by the client application 103 by
name, rather than requiring the request enumerate each scope
and role pair.

TABLE 4
Canned ACLs
Canned ACL Name {scope, permission }
private {creating user or bucket owner,

FULL_CONTROL}

{all users, READ}

{bucket owner, FULL_CONTROL}
{all users, WRITE}

{bucket owner, FULL_CONTROL}
{all authenticated users, READ}
{bucket owner, FULL_CONTROL}
{bucket owner, READ |}

{resource owner, FULL_CONTROL}
{bucket owner, FULL_CONTROL}
{resource owner, FULL_ CONTROL}

public-read
public-read-write
authenticated-read
bucket-owner-read
for resources only]

bucket-owner-full-control
for resources only]

Ifan ACL 118 is not specified 1in the request (704), a default
ACL 118 can beused (708). For example, bucket and resource
creation can default to the “private” canned ACL 118 for
authenticated users. For resource creation by unauthenticated
users, such as for new resources created 1n a “public-read-
write” bucket, a default of “bucket-owner-full-control” can
be used.

An ACL 118 can be served, for example, to a principal with
READ, WRITE, or FULL CONTROL of the associated
bucket or resource (710). For example, a client application

103 canperforma HI'TP GET to atarget’s URI with the query
string ?acl to retrieve the ACL associated with the target. The
ACL 118 can be serialized and returned to the client applica-
tion 103.

The serialization may be defined, for example, by the fol-
lowing extended Backus-Naur form. Nonterminals appear 1n
sans serif italics, terminals appear in Courier Bold, { } denote
zero or more repetitions, | | enclose optional entities, sepa-
rates alternatives, and () denote grouping. The terminal sym-
bols canonical-id, email-address, and domain are defined 1n

English below:
access-control-list: <AccessControllList> owner entries
</AccessControllist>

owner: <Owner> 1d </Owner>
entries: <Entries> entry {entry} </Entries>
entry: <Entry> (permission scopelscope permission) </En-

try>
permission: <Permission> (READIWRITEIFULL_CON-
TROL)</Permission>

scope: <Scope type=UserByld> 1d </Scope>

<Scope type=UserByEmail> email </Scope>

<Scope type=GroupByld> 1d </Scope>

<Scope type=GroupByEmail> email </Scope>

<Scope type=GroupByDomain> <Domain> domain </Do-
main> </ Scope>

<Scope type=AllUsers/>

<Scope type=All AuthenticatedUsers/>

1d: <ID> canonical-1d </ID> [<Name> text </Name> |
[[<Name> text </Name> | <ID> canonical-1d </ID>

US 9,148,283 Bl

19

email: <EmailAddress> email-address </EmailAddress>
[<Name> text </Name>]

[[<Name> text </Name> | <EmailAddress> canonical-1d
</EmailAddress>

text: {printable character excluding < and >}

canonical-1d: 64 hex digits

email-address: standard RFC 822 email address

domain: standard RFC 822 domain specification

A canonical-1d or an email-address can identily a user or a
group. A canonical-i1d 1s the encrypted service 1d for the user
or group. Email addresses are a convenience for speciiying
canonical 1ds. In some implementations, the ACLs returned
from the system always contain canonical 1ds. The <Name>
text</Name> element may be used for information purposes
only such that 1t 1s otherwise 1gnored by the system, and the
system does not return 1t if there 1s no public name associated
with the user or group.

An example serialized ACL 118 1s shown below.
<AccessControlList>
<Owner>
<ID>a9a’7b886d61d24a521e8casSbel65189a64¢0193123000¢
241b19b1c61be666e9</1D>
<Name>chriscustomer</Name>
</Owner>
<Entries>
<Entry><Permission>FULL_CONTROL</Permission>
<Scope type=UserByld>
<ID>a9a’7b886d61d24a521e8casSbet65189a64¢0193123000¢
241b19b1c61be666e9</1D>
<Name>chriscustomer</Name>
</Scope>
</Entry>
<Entry><Permission>FULL_CONTROL</Permission>
<Scope type=UserByld>
<ID>79a59d1900b949¢55d96al e6981bacedid6e09d98eacty
18d5218e7cd4’/etf2be</1D>
<Name>Frank</Name>
</Scope>
</Entry>
<Entry><Permission>FULL_CONTROL</Permission>
<Scope type=UserByld>
<ID>de019164ebb07241167188¢243¢aec9 ccbebdde523717
cc312255d9a82498e394a</ID>
<Name>Jose</Name>
</Scope>
</Entry>
<Entry><Permission>READ</Permission><Scope
type=AllUsers></Entry>
</Entries>
</AccessControlList>

An ACL 118 can be updated, for example by a principal
with WRITE or FULL_CONTROL of the associated bucket
or resource (712). In some examples, a client must read,
modity, and write an ACL 118 in order to update an ACL 118.
In this example, the ACL 118 1s served (710) as part of
modification (712). In some implementations, a client appli-
cation 103 can send ACL update requests to the hosted stor-
age system 120.

FIG. 8 shows an example of a computing device 800 and a
mobile computing device that can be used to implement the
techniques described here. The computing device 800 1s
intended to represent various forms of digital computers, such
as laptops, desktops, workstations, personal digital assistants,
servers, blade servers, mainirames, and other appropriate
computers. The mobile computing device 1s intended to rep-
resent various forms of mobile devices, such as personal
digital assistants, cellular telephones, smart-phones, and
other similar computing devices. The components shown

10

15

20

25

30

35

40

45

50

55

60

65

20

here, their connections and relationships, and their functions,
are meant to be exemplary only, and are not meant to limait
implementations of the iventions described and/or claimed
in this document.

The computing device 800 includes a processor 802, a
memory 804, a storage device 806, a high-speed interface 808
connecting to the memory 804 and multiple high-speed
expansion ports 810, and a low-speed interface 812 connect-

ing to a low-speed expansion port 814 and the storage device

806. Each of the processor 802, the memory 804, the storage

device 806, the high-speed interface 808, the high-speed
expansion ports 810, and the low-speed interface 812, are
interconnected using various busses, and may be mounted on
a common motherboard or 1n other manners as appropriate.
The processor 802 can process instructions for execution
within the computing device 800, including instructions
stored 1n the memory 804 or on the storage device 806 to
display graphical information for a GUI on an external input/
output device, such as a display 816 coupled to the high-speed
interface 808. In other implementations, multiple processors
and/or multiple buses may be used, as appropriate, along with
multiple memories and types of memory. Also, multiple com-
puting devices may be connected, with each device providing
portions of the necessary operations (e.g., as a server bank, a
group of blade servers, or a multi-processor system).

The memory 804 stores information within the computing
device 800. In some implementations, the memory 804 1s a
volatile memory unit or units. In some 1implementations, the
memory 804 1s a non-volatile memory unit or units. The
memory 804 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 806 1s capable of providing mass stor-
age for the computing device 800. In some implementations,
the storage device 806 may be or contain a computer-readable
medium, such as a tfloppy disk device, a hard disk device, an
optical disk device, or a tape device, a flash memory or other
similar solid state memory device, or an array of devices,
including devices 1n a storage area network or other configu-
rations. A computer program product can be tangibly embod-
ied 1n an information carrier. The computer program product
may also contain instructions that, when executed, perform
one or more methods, such as those described above. The
computer program product can also be tangibly embodied 1n
a computer- or machine-readable medium, such as the
memory 804, the storage device 806, or memory on the pro-
cessor 802.

The high-speed interface 808 manages bandwidth-inten-
stve operations for the computing device 800, while the low-
speed interface 812 manages lower bandwidth-intensive
operations. Such allocation of functions 1s exemplary only. In
some 1mplementations, the high-speed interface 808 1s
coupled to the memory 804, the display 816 (e.g., through a
graphics processor or accelerator), and to the high-speed
expansion ports 810, which may accept various expansion
cards (not shown). In the implementation, the low-speed
interface 812 1s coupled to the storage device 806 and the
low-speed expansion port 814. The low-speed expansion port
814, which may include various communication ports (e.g.,
USB, Bluetooth, Ethernet, wireless Ethernet) may be coupled
to one or more 1nput/output devices, such as a keyboard, a
pointing device, a scanner, or a networking device such as a
switch or router, e.g., through a network adapter.

The computing device 800 may be implemented 1n a num-
ber of different forms, as shown in the figure. For example, 1t
may be implemented as a standard server 820, or multiple
times 1n a group o such servers. In addition, 1t may be 1mple-
mented 1n a personal computer such as a laptop computer 822.
It may also be implemented as part of a rack server system

US 9,148,283 Bl

21

824. Alternatively, components from the computing device
800 may be combined with other components 1n a mobile
device (not shown), such as a mobile computing device 850.
Each of such devices may contain one or more of the com-
puting device 800 and the mobile computing device 850, and
an entire system may be made up of multiple computing
devices communicating with each other.

The mobile computing device 850 includes a processor
852, a memory 864, an input/output device such as a display
854, a communication interface 866, and a transceiver 868,
among other components. The mobile computing device 850
may also be provided with a storage device, such as a micro-
drive or other device, to provide additional storage. Each of
the processor 852, the memory 864, the display 854, the
communication interface 866, and the transceiver 868, are
interconnected using various buses, and several of the com-
ponents may be mounted on a common motherboard or in
other manners as appropriate.

The processor 852 can execute instructions within the
mobile computing device 850, including instructions stored
in the memory 864. The processor 852 may be implemented
as a chipset of chips that include separate and multiple analog
and digital processors. The processor 852 may provide, for
example, for coordination of the other components of the
mobile computing device 850, such as control of user inter-

faces, applications run by the mobile computing device 850,
and wireless communication by the mobile computing device
850.

The processor 852 may communicate with a user through a
control interface 858 and a display interface 856 coupled to
the display 854. The display 854 may be, for example, a TFT
(Thin-Film-Transistor Liquid Crystal Display) display or an
OLED (Organic Light Emitting Diode) display, or other
appropriate display technology. The display interface 856
may comprise appropriate circuitry for driving the display
854 to present graphical and other information to a user. The
control interface 858 may receive commands from a user and
convert them for submission to the processor 852. In addition,
an external interface 862 may provide communication with
the processor 852, so as to enable near area communication of
the mobile computing device 850 with other devices. The
external iterface 862 may provide, for example, for wired
communication i some implementations, or for wireless
communication in other implementations, and multiple inter-
faces may also be used.

The memory 864 stores information within the mobile
computing device 850. The memory 864 can be implemented
as one or more of a computer-readable medium or media, a
volatile memory unit or units, or a non-volatile memory unit
or units. An expansion memory 874 may also be provided and
connected to the mobile computing device 850 through an
expansion mnterface 872, which may include, for example, a
SIMM (Single In Line Memory Module) card interface. The
expansion memory 874 may provide extra storage space for
the mobile computing device 850, or may also store applica-
tions or other information for the mobile computing device
850. Specifically, the expansion memory 874 may include
instructions to carry out or supplement the processes
described above, and may include secure information also.
Thus, for example, the expansion memory 874 may be pro-
vide as a security module for the mobile computing device
850, and may be programmed with mstructions that permait
secure use of the mobile computing device 850. In addition,
secure applications may be provided via the SIMM cards,
along with additional information, such as placing 1dentify-
ing information on the SIMM card 1n a non-hackable manner.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

The memory may include, for example, flash memory and/
or NVRAM memory (non-volatile random access memory),
as discussed below. In some implementations, a computer
program product 1s tangibly embodied 1n an information car-
rier. The computer program product contains instructions
that, when executed, perform one or more methods, such as
those described above. The computer program product can be
a computer- or machine-readable medium, such as the
memory 864, the expansion memory 874, or memory on the
processor 852. In some 1mplementations, the computer pro-
gram product can be recerved 1n a propagated signal, for
example, over the transceiver 868 or the external interface
862.

The mobile computing device 850 may communicate wire-
lessly through the communication interface 866, which may
include digital signal processing circuitry where necessary.
The communication interface 866 may provide for commu-
nications under various modes or protocols, such as GSM
voice calls (Global System for Mobile communications),
SMS (Short Message Service), EMS (Enhanced Messaging
Service), or MMS messaging (Multimedia Messaging Ser-
vice), CDMA (code division multiple access), TDMA (time
division multiple access), PDC (Personal Digital Cellular),
WCDMA (Wideband Code Division Multiple Access),
CDMA2000, or GPRS (General Packet Radio Service),
among others. Such communication may occur, for example,
through the transceiver 868 using a radio-frequency. In addi-
tion, short-range communication may occur, such as using a
Bluetooth, WiFi1, or other such transceiver (not shown). In
addition, a GPS (Global Positioning System) receiver module
870 may provide additional navigation- and location-related
wireless data to the mobile computing device 850, which may
be used as appropriate by applications running on the mobile
computing device 850.

The mobile computing device 850 may also communicate
audibly using an audio codec 860, which may receive spoken
information from a user and convert 1t to usable digital infor-
mation. The audio codec 860 may likewise generate audible
sound for a user, such as through a speaker, e.g., in a handset
of the mobile computing device 850. Such sound may include
sound from voice telephone calls, may include recorded
sound (e.g., voice messages, music files, etc.) and may also
include sound generated by applications operating on the
mobile computing device 850.

The mobile computing device 850 may be implemented 1n
a number of different forms, as shown in the figure. For
example, it may be implemented as a cellular telephone 880.
It may also be implemented as part of a smart-phone 882,
personal digital assistant, or other similar mobile device.

Various implementations of the systems and techniques
described here can be realized 1n digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
soltware, and/or combinations thereotf. These various imple-
mentations can include implementation 1n one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which may be special or general purpose, coupled
to rece1ve data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, soltware applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or 1n assembly/machine language. As
used herein, the terms machine-readable medium and com-

US 9,148,283 Bl

23

puter-readable medium refer to any computer program prod-
uct, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used
to provide machine 1nstructions and/or data to a program-
mable processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term machine-readable signal refers to any signal used to
provide machine instructions and/or data to a programmable
Processor.

To provide for interaction with a user, the systems and
techniques described here can be implemented on a computer
having a display device (e.g., a CRT (cathode ray tube) or
LCD (liqud crystal display) monitor) for displaying infor-
mation to the user and a keyboard and a pointing device (e.g.,
a mouse or a trackball) by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feed-
back); and input from the user can be received 1n any form,
including acoustic, speech, or tactile input.

The systems and techniques described here can be imple-
mented 1n a computing system that includes a back end com-
ponent (e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front end component (e.g., a client computer having a graphi-
cal user interface or a Web browser through which a user can
interact with an implementation of the systems and tech-
niques described here), or any combination of such back end,
middleware, or front end components. The components of the
system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples ol communication networks include a local area
network (LLAN), a wide area network (WAN), and the Inter-
net.

The computing system can 1nclude clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer

programs running on the respective computers and having a
client-server relationship to each other.

What 1s claimed 1s:

1. A method comprising:

receiving, at an application server system, a message mndi-
cating a resource that corresponds to a wrapped key, the
wrapped key including an encrypted resource encryp-
tion key and encrypted permission data for the resource,
the permission data indicating a plurality of users that
are permitted to access the resource;

receiving, at the application server system, authentication
credentials for the message, to retrieve the resource,
wherein the authentication credentials include a group
identifier that identifies a group of users, and wherein the
group 1dentifier and the group of users did not exist prior
to the storage of the encrypted resource at a hosted
storage service;

receiving, at a key server system, the wrapped key and the
authentication credentials;

decrypting, at the key server system, the recetved wrapped
key to generate an unwrapped key that includes the
resource encryption key and the permission data for the
resource 1n unencrypted form;

accessing, at the key server system, the permission data for
the resource from the unwrapped key;

10

15

20

25

30

35

40

45

50

55

60

65

24

determiming, at the key server system, that the received
authentication credentials correspond to a user that 1s
permitted to access the resource according to the per-
mission data;

transmitting, by the key server system, an unencrypted

version ol the resource encryption key in response to
determining that the recerved authentication credentials
correspond to a user that 1s permitted to access the
resource according to the permission data

recerving, at the application server system, the unencrypted

version of the resource encryption key;

decrypting, at the application server system, the stored

encrypted resource using the recerved unencrypted ver-
s1on of the resource encryption key to generate an unen-
crypted version of the resource; and

sending, from the application server system, the unen-

crypted version of the resource to a client application.

2. The method of claim 1, wherein the authentication cre-
dentials 1mclude a second group identifier that identifies a
second group of users managed by a provider of the hosted
storage service for reasons other than storage permissions and
existed prior to the storage of the encrypted resource at the
hosted storage service.

3. The method of claim 2, wherein the second group 1den-
tifier 1s a single username associated with the second group of
users, an e-mail address associated with the second group of
users, or a domain name associated with the second group of
users.

4. The method of claim 1, further comprising;

recerving a group addition request from the client applica-

tion, the group addition request specilying the group of
users and the group 1dentifier; and

inserting the group identifier into the permission data for

the resource.

5. The method of claim 1, the method further comprising:

identilying a service associated with the wrapped key; and

wherein decrypting the recerved wrapped key includes
decrypting the recerved wrapped key using a master
key associated with the service.

6. A computer system comprising:

an application server system, comprising at least one

memory and at least one processor, configured to:
receive amessage indicating a resource that corresponds
to a wrapped key, the wrapped key including an
encrypted resource encryption key and encrypted per-
mission data for the resource, the permission data
indicating a plurality of users that are permitted to
access the resource; and
receive authentication credentials for the message, to
retrieve the resource, wherein the authentication cre-
dentials include a group identifier that i1dentifies a
group of users, and wherein the group 1dentifier and
the group of users did not exist prior to the storage of
the encrypted resource at a hosted storage service;
a key server system, comprising at least one memory and at
least one processor, configured to:

receive the wrapped key and the authentication creden-

tials:

decrypt the recerved wrapped key to generate an

unwrapped key that includes the resource encryption
key and the permission data for the resource 1n unen-
crypted form;

access the permission data for the resource from the

unwrapped key;

determine that the received authentication credentials

correspond to a user that 1s permitted to access the
resource according to the permission data; and

US 9,148,283 Bl

25

transmit, by the key server system, an unencrypted ver-
sion of the resource encryption key in response to
determining that the received authentication creden-
tials correspond to a user that 1s permitted to access
the resource according to the permission data;
the application server system 1s further configured to:
receive the unencrypted version of the resource encryp-
tion key;
decrypt the stored encrypted resource using the recerved
unencrypted version of the resource encryption key to
generate an unencrypted version of the resource; and
send the unencrypted version of the resource to a client
application.
7. The system of claim 6, wherein the authentication cre-

dentials include a second group identifier that identifies a
second group of users managed by a provider of the hosted
storage service for reasons other than storage permissions and
existed prior to the storage of the encrypted resource at the
hosted storage service.

8. The system of claim 7, wherein the second group 1den-
tifier 1s a single username associated with the second group of
users, an e-mail address associated with the second group of
users, or a domain name associated with the second group of
users.

9. The system of claim 6, the application server system 1s
turther configured to:

receive a group addition request from the client applica-

tion, the group addition request speciiying the group of
users and the group 1dentifier; and

insert the group identifier into the permission data for the

resource.

10. The system of claim 6, the key server system further
configured to:

identily a service associated with the wrapped key; and

wherein decrypting the received wrapped key includes

decrypting the recetved wrapped key using a master key
associated with the service.

11. A non-transitory computer readable medium storing
instructions that, when executed by one or more processing
devices, cause the one or more processing devices to perform
operations including:

receiving, at an application server system, a message mndi-

cating a resource that corresponds to a wrapped key, the
wrapped key including an encrypted resource encryp-
tion key and encrypted permission data for the resource,
the permission data indicating a plurality of users that
are permitted to access the resource;

receiving, at the application server system, authentication

credentials for the message, to retrieve the resource,
wherein the authentication credentials include a group
identifier that identifies a group of users, and wherein the

10

15

20

25

30

35

40

45

50

26

group 1dentifier and the group of users did not exist prior
to the storage of the encrypted resource at a hosted
storage service;

receving, at a key server system, the wrapped key and the

authentication credentials;

decrypting, at the key server system, the received wrapped

key to generate an unwrapped key that includes the
resource encryption key and the permission data for the
resource 1n unencrypted form;

accessing, at the key server system, the permission data for

the resource from the unwrapped key;

determining, at the key server system, that the received

authentication credentials correspond to a user that 1s
permitted to access the resource according to the per-
mission data;

transmitting, by the key server system, an unencrypted

version of the resource encryption key in response to
determining that the received authentication credentials
correspond to a user that 1s permitted to access the
resource according to the permission data

recerving, at the application server system, the unencrypted

version of the resource encryption key;

decrypting, at the application server system, the stored

encrypted resource using the recerved unencrypted ver-
s1on of the resource encryption key to generate an unen-
crypted version of the resource; and

sending, from the application server system, the unen-

crypted version of the resource to a client application.

12. The medium of claim 11, wherein the authentication
credentials include a second group 1dentifier that 1dentifies a
second group of users managed by a provider of the hosted
storage service for reasons other than storage permissions and
existed prior to the storage of the encrypted resource at the
hosted storage service.

13. The medium of claim 12, wherein the second group
identifier 1s a single username associated with the second
group of users, an e-mail address associated with the second
group of users, or a domain name associated with the second
group of users.

14. The medium of claim 11, further comprising:

receving a group addition request from the client applica-

tion, the group addition request specitying the group of
users and the group 1dentifier; and

inserting the group 1dentifier into the permission data for

the resource.

15. The medium of claim 11, the instructions further
including;

identilying a service associated with the wrapped key; and

wherein decrypting the received wrapped key includes

decrypting the recerved wrapped key using a master key
associated with the service.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

