US009146744B2
12 United States Patent (10) Patent No.: US 9,146,744 B2
Caprioli et al. 45) Date of Patent: Sep. 29, 2015
(54) STORE QUEUE HAVING RESTRICTED AND (56) References Cited
UNRESTRICTED ENTRIES
U.S. PATENT DOCUMENTS
(75) Inventors: Paul Caprioli, Santa Clara, CA (US); 2005/0120179 Al* 6/2005 Akkaryetal. 711/126
Martin Karlsson, San Francisco, CA OTHER PURIICATIONS
(US); Shailender Chaudhry, San
Francisco, CA (US); Gideon N. AkKkary et al; Checkpoint Processing and Recovery: Towards Scal-
Levinsky, Austin, TX (U S) able Large Instruction Window Processors; 2003; IEEE.*

Liu; Scaling Load-Store Queue; Dec. 2006.*

‘ (Gandhi et al.; Scalable L.oad and Store P ine in Lat Toler-
(73) Assignee: ORACLE AMERICA, INC., Redwood anatnpml:eszom; 308‘ S;GIEEE _f’n OIC I'rocessing in Lalency 1oler

Shores, CA (US) Sethumadhavan et al.; Scalable Hardware Memory Disambiguation
for High ILP Processors; 2003; IEEE.*

(*) Notice: Subject to any disclaimer, the term of this

R -
patent 1s extended or adjusted under 35 cited by examiner

U.S.C. 154(b) by 1644 days. Primary Examiner — Corey S Faherty
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
(21) Appl. No.: 12/116,009 Dowler LLP; Anthony P. Jones
(37) ABSTRACT
(22) Filed: May 6, 2008 Embodiments of the present invention provide a system
which executes a load 1nstruction or a store instruction. Dur-
(65) Prior Publication Data ing operation the system receirves a load instruction. The

system then determines 1f an unrestricted entry or a restricted
entry 1n a store queue contains data that satisfies the load
istruction. If not, the system retrieves data for the load
(51) Int. Cl. instruction from a cache. It so, the system conditionally for-

US 2009/0282225 Al Nov. 12, 2009

GO6F 15/00 (2006.01) wards data from the unrestricted entry or the restricted entry
GO6F 7/38 (2006.01) by: (1) forwarding data from an unrestricted entry that con-
GO6F 9/00 (2006.01) tains the youngest store that satisfies the load mstruction
GO6F 9/44 (2006.01) when any number of unrestricted or restricted entries contain
GO6F 9/38 (2006.01) data that satisfies the load instruction; (2) forwarding data
(52) U.S. CL from an unrestricted entry when only one restricted entry and
CPC GO6F 9/3826 (2013.01); GOGF 9/383 no unrestricted entries contain data that satisfies the load

(2013.01); GO6F 9/3842 (2013.01); GO6F instruction; and (3) deterring the load instruction by placing
9/3855 (2013.01) the load instruction 1n a detferred queue when two or more

(58) Field of Classification Search restricted entries and no unrestricted entries contain data that
USPC 712/995 satisfies the load instruction.
See application file for complete search history. 18 Claims, 4 Drawing Sheets

ENCOUNTER A LOAD
300

DOES AN
UNRESTRICTED ENTRY
OR A RESTRICTED ENTRY IN THE
STORE QUEUE CONTAIN DATA
THAT SATISFIES THE LCAD
302

NO YES

IF ANY NUMBER OF UNRESTRICTED OR
RESTRICTED ENTRIES CONTAIN DATA
THAT SATISFIES THE LCAD, FCRWARD
DATA FROM AN UNRESTRICTED ENTRY
THAT CONTAINS THE YOUNGEST STORE
306

Y

RETRIEVE DATA FOR THE THE LOAD FROM
A CACHE
304 IF QONLY ONE RESTRICTED ENTRY AND NO
UNRESTRICTED ENTRIES CONTAIN DATA
THAT SATIEFIES THE LOAD, FORWARD
DATA FROM A RESTRICTED ENTRY
308

IF MORE THAN ONE RESTRICTED ENTRY
AND NO UNRESTRICTED ENTRIES
CONTAIN DATA THAT SATISFIES THE
LOAD, DEFER THE LOAD BY PLACING THE
LOAD INTO A DEFERRED QUEUE
310

IEND’

U.S. Patent Sep. 29, 2015 Sheet 1 of 4 US 9,146,744 B2

PIPELINE 112

L1 L2

MAS S-
CACHE CACHE ME%(;RY STORAGE
104 106 DEVICE

110

PROCESSOR 102

COMPUTER SYSTEM 100

STORE
QUEUE
126
— |
FETCH DECODE | .l EXECUTION
UNIT

120 122

124

|
|
|
|
| UNIT UNIT
|
|
|

PIPELINE 112 -
e e e e = % _____ |
DEFERRED
L1 CACHE QUEUE
104 128

PROCESSOR 102

FIG. 1B

U.S. Patent Sep. 29, 2015 Sheet 2 of 4 US 9,146,744 B2

METADATA

T oo
T evrmen |—
—

|

l ENTRY/[1] -
l ENTRY([O]
. COMP[1]
STORE
QUEUE SELECTI0,1]

126

FIG. 2

U.S. Patent Sep. 29, 2015 Sheet 3 of 4 US 9,146,744 B2

ENCOUNTER A LOAD
300

DOES AN
UNRESTRICTED ENTRY
OR A RESTRICTED ENTRY IN THE
STORE QUEUE CONTAIN DATA
THAT SATISFIES THE LOAD

302

NO

IF ANY NUMBER OF UNRESTRICTED OR
RESTRICTED ENTRIES CONTAIN DATA
THAT SATISFIES THE LOAD, FORWARD
DATA FROM AN UNRESTRICTED ENTRY
THAT CONTAINS THE YOUNGEST STORE
306

RETRIEVE DATA FOR THE THE LOAD FROM
A CACHE

304 IF ONLY ONE RESTRICTED ENTRY AND NO
UNRESTRICTED ENTRIES CONTAIN DATA
THAT SATISFIES THE LOAD, FORWARD
DATA FROM A RESTRICTED ENTRY
308

IF MORE THAN ONE RESTRICTED ENTRY
AND NO UNRESTRICTED ENTRIES
CONTAIN DATA THAT SATISFIES THE

LOAD, DEFER THE LOAD BY PLACING THE
LOAD INTO A DEFERRED QUEUE
310

END

FIG. 3

U.S. Patent Sep. 29, 2015 Sheet 4 of 4 US 9,146,744 B2

ENCOUNTER ANEW STORE TO A CACHE
LINE

400

DO ONE OR
MORE UNRESTRICTED
ENTRIES CONTAIN BUFFERED
STORES DIRECTED TO THE SAME
CACHE LINE?
402

DOES THE AGE OF ANY
UNRESTRICTED ENTRY MATCH
THE GLOBAL AGE COUNTER?
406

BUFFER THE NEW STORE TO THE NEXT
ENTRY IN THE STORE QUEUE
404

MERGE THE NEW STORE INTO THE
UNRESTRICTED ENTRY WITH THE
MATCHING AGE
408

END

US 9,146,744 B2

1

STORE QUEUE HAVING RESTRICTED AND
UNRESTRICTED ENTRIES

BACKGROUND

1. Field of the Invention

Embodiments of the present invention relate a store queue.
More specifically, embodiments of the present invention
relate to a store queue that provides ellicient data forwarding,
and store merging.

2. Related Art

Most modern processors contain store queues to prevent
the processor from experiencing delays associated with com-
mitting stores to the next level of the memory hierarchy.
Generally, when a store 1s executed by a processor the store 1s
builered 1n a store queue, making it appear that the store has
been completed. However, the store may be held 1n the store
queue until updates to the next level of the memory hierarchy
have fimished.

Because a store can be held in the store queue for an
extended period of time, processors typically forward data
from bulfered stores to subsequent dependent loads. In order
to determine 1f data should be forwarded to a subsequent load,
processors compare the addresses of subsequent loads to the
address for each entry 1n the store queue. This process typi-
cally mvolves using a content addressable memory (CAM)
circuit to perform the comparison. Unfortunately, CAM cir-
cuits require considerable semiconductor area, consume sig-
nificant power, and complicate the processor’s design. More-
over, because the size of the CAM circuit scales with the
number of entries in the store queue, the designers have been
forced to limit the number of entries in store queue.

In addition, when forwarding data for a load that matches
multiple entries 1n the store queue, the processor 1s required to
determine which entry 1s the youngest entry. Hence, proces-
sors typically include an *“age” value with each entry in the
store queue. When determining 1f data should be forwarded
from the store queue, the processor compares the ages of each
matching entry. This age comparison 1s on the critical path of
a forwarding operation, which further limits the number of
entries that can be used 1n a store queue.

Hence, what 1s needed 1s a store queue without the above-
described problems.

SUMMARY

Embodiments of the present invention provide a system
which 1ncludes a processor with a store queue that handles
data on a processor. During operation, the system receives a
load nstruction. The system then determines 1 an unre-
stricted entry or a restricted entry in a store queue contains
data that satisfies the load instruction. If not, the system
retrieves data for the load instruction from a cache. If so, the
system conditionally forwards data from the unrestricted
entry or the restricted entry by: (1) forwarding data from the
unrestricted entry that contains the youngest store that satis-
fies the load 1nstruction when any number of unrestricted or
restricted entries contain data that satisfies the load nstruc-
tion; (2) forwarding data from the restricted entry when only
one restricted entry and no unrestricted entries contain data
that satisfies the load 1nstruction; and (3) deferring the load
instruction by placing the load instruction in a deferred queue
when two or more restricted entries and no unrestricted
entries contain data that satisfies the load instruction.

In some embodiments, when determining 11 an unrestricted
entry contains data that satisfies the load instruction, the
system: (1) determines if any unrestricted entry in a set of

10

15

20

25

30

35

40

45

50

55

60

65

2

unrestricted entries in the store queue contains a builered
store to a same cache line as the load; (2) for each such
unrestricted entry, determines 11 an age of the unrestricted
entry matches a global age counter; and (3) if the age of an
unrestricted entry matches the global age counter, uses a
bitmask for the unrestricted entry to determine if each byte
needed to satisiy the load instruction 1s contained in the
unrestricted entry. In these embodiments, an unrestricted
entry satisiies the load instruction when the buffered store 1s
directed to the same cache line, the bitmask indicates that
cach byteneeded to satisty the load instruction 1s contained 1n
the entry, and the age of the entry and the global age counter
match.

In some embodiments, when determining i a restricted
entry contains data that satisfies the load instruction, the
system: (1) determines 11 any one restricted entry 1n the store
queue contains a store directed to the same cache line as the
load; and (2) for the restricted entry, uses a bitmask for the
restricted entry to determine 1f each byte for the load 1nstruc-
tion 1s contained 1n the restricted entry. In these embodiments,
a restricted entry satisfies the load mstruction when the buil-
ered store 1s directed to the same cache line and the bitmask
indicates that each byte needed to satisiy the load instruction
1s contained 1n the entry.

In some embodiments, the system re-executes the deferred
load when no more than one of the restricted entries contain
data that will satisty the load instruction.

In some embodiments, the system receives a new store to a
cache line. The system then determines if one or more unre-
stricted entries in the store queue contain butfered stores that
are directed to a same cache line. If not, the system buflers the
new store 1n a next entry in the store queue. If so, the system
determines an age of the one or more unrestricted entries. If an
age of an unrestricted entry matches a global age counter, the
system merges the new store into the unrestricted entry, oth-
erwise, the system buflers the new store 1n the next entry 1n
the store queue.

In some embodiments, when forwarding data, the system
copies the data from an entry 1n the store queue to a processor
register so that the processor register can be used 1n subse-
quent computational operations.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A presents a block diagram of a computer system 1n
accordance with embodiments of the present invention.

FIG. 1B presents a block diagram of processor 1n accor-
dance with embodiments of the present invention.

FIG. 2 presents a block diagram of a store queue 1n accor-
dance with embodiments of the present invention.

FIG. 3 presents a flowchart 1llustrating a process for for-
warding data 1n accordance with embodiments of the present
invention.

FIG. 4 presents a flowchart illustrating a process of store
merging 1n accordance with embodiments of the present
invention.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled i1n the art to make and use the invention, and 1s
provided 1n the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled 1n the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present

US 9,146,744 B2

3

imnvention 1s not limited to the embodiments shown, but 1s to
be accorded the widest scope consistent with the principles
and features disclosed herein.

Computer System

FIG. 1A presents a block diagram of a computer system
100 1n accordance with embodiments of the present inven-
tion. Computer system 100 includes processor 102, .2 cache
106, memory 108, and mass-storage device 110. Processor
102 includes L1 cache 104 and pipeline 112.

Processor 102 can be a general-purpose processor that
performs computational operations. For example, processor
102 can be a central processing unmit (CPU) such as a micro-
processor. Note that processor 102 can also be a controller or
an application-specific integrated circuit.

Mass-storage device 110, memory 108, L2 cache 106, and
[.1 cache 104 are computer-readable storage media that col-
lectively form a memory hierarchy that stores data and
instructions for processor 102. Generally, mass-storage
device 110 1s a igh-capacity non-volatile memory, such as a

disk drive or a large flash memory, with a large access time,
while L1 cache 104, L2 cache 106, and memory 108 are

smaller, faster semiconductor memories that store copies of
frequently used data. Memory 108 1s typically a dynamic
random access memory (DRAM) structure that 1s larger than
[.1 cache104 and .2 cache 106, whereas .1 cache 104 and .2
cache 106 are typically comprised of smaller static random
access memories (SRAM). In some embodiments of the
present invention, 1.2 cache 106, memory 108, and mass-
storage device 110 are shared between one or more proces-
sors 1n computer system 100. Such memory structures are
well-known 1n the art and are therefore not described 1n more
detail.

Computer system 100 can be incorporated into many dif-
ferent types of electronic devices. For example, computer
system 100 can be part of a desktop computer, a laptop com-
puter, a server, a media player, an appliance, a cellular phone,
a piece of testing equipment, a network appliance, a calcula-
tor, a personal digital assistant (PDA), a hybrid device (1.e., a
“smart phone”), a guidance system, a control system (e.g., an
automotive control system), or another electronic device.

Although we use specific components to describe com-
puter system 100, 1n alternative embodiments different com-
ponents can be present 1n computer system 100. For example,
computer system 100 can include video cards, network cards,
optical drives, and/or other peripheral devices that are
coupled to processor 102 using a bus, a network, or another
suitable communication channel. Alternatively, computer

system 100 may include one or more additional processors,
wherein the processors share some or all of L2 cache 106,
memory 108, and mass-storage device 110.

FIG. 1B presents a block diagram of processor 102 in
accordance with embodiments of the present invention. As
shown 1n FIG. 1B, pipeline 112 includes fetch umt 120,
decode unit 122, and execution unit 124. Pipeline 112 1s used
to execute mstructions from program code.

Within pipeline 112, fetch unit 120 fetches instructions
from L1 cache 104 (or from higher levels of the memory
hierarchy) for execution in processor 102. Decode unit 122
decodes the fetched instructions and prepares the instructions
for execution in execution unit 124. Execution unit 124
executes 1nstructions forwarded from decode unit 122.
Execution unit 124 can include one or more tloating point
execution units, integer execution units, branch execution
units, and/or memory execution units (e.g., load-store units).

In embodiments of the present invention, pipeline 112
includes deferred queue 128. Pipeline 112 uses deferred
queue 128 to store instructions with unresolved dependencies

10

15

20

25

30

35

40

45

50

55

60

65

4

until the unresolved dependencies are resolved. When the
unresolved dependencies are resolved, processor 102
executes the instructions. While the instructions with unre-
solved data dependencies are held in the deferred queue,
processor 102 can speculatively execute subsequent non-de-
pendent mstructions. Speculative execution 1s described in
more detail below.

In embodiments of the present invention, pipeline 112
includes store queue 126, which 1s an N-entry queue used by
processor 102 to butler stores. Generally, a store 1s executed
by processor 102 and then butiered 1n store queue 126, mak-
ing it appear to processor 102 that the store has been com-
pleted. However, the store may be held in store queue 126
until pending updates to the next level of the memory hierar-
chy have finished.

While a given store 1s buffered in store queue 126, the data

from the bufiered store can be “forwarded” to subsequent
load 1nstructions. When forwarding data, processor 102 cop-
ies the data from an entry 1n store queue 126 to a register for
subsequent use by execution unit 124. Note that data forward-
ing 1n embodiments of the present mnvention 1s described 1n
more detail below.
In addition, subsequent stores can be merged with already-
butilered stores in store queue 126 by coalescing subsequently
buffered stores into existing entries that contain stores
directed to the same cache line address. For example, because
processor 102 supports stores ranging in size from a single
byte to a doubleword, merging stores can involve coalescing
single bytes into an entry in the store queue that already
contains one or more bytes of a buffered store. This merging
of stores 1s described 1n more detail below.

In embodiments of the present invention, the entries in
store queue 126 are classified as “unrestricted entries” or
“restricted entries.”” An unrestricted entry 1s available for
unrestricted store merging and data forwarding. In contrast, a
restricted entry 1s available for limited data forwarding, but 1s
not available for store merging.

In some embodiments of the present mvention, unre-
stricted entries make up a small portion of the entries 1n store
queue 126, while the remaining entries are restricted entries.
For example, assuming that store queue 126 includes eight
entries, two of the entries can be unrestricted entries, while
the remaining entries are restricted. Alternatively, assuming
that store queue 126 includes 64 entries, four of the entries can
be unrestricted entries, while the remaining entries are
restricted.

Unrestricted entries require additional circuitry in store
queue 126 for supporting unrestricted data forwarding and
store merging. Hence, by dividing store queue 126 into a
smaller number of unrestricted entries and a large number of
restricted entries, embodiments of the present invention pro-
vide the benefit of data forwarding and store merging for a
limited number of entries while avoiding the timing overhead,
area and power consumption, and circuit complexity of exist-
ing store queue implementations that support data forwarding
and store merging from all entries.

Note that pipeline 112 1s an exemplary pipeline for the
purposes of illustration. In alternative embodiments, pipeline
112 contains other stages (units) and/or circuits. The stages
and/or circuits that can be used 1n a pipeline are known 1n the
art and hence are not described 1n more detail.

Store Queue

FIG. 2 presents a block diagram of a store queue 126 1n
accordance with embodiments of the present invention. Store
queue 126 includes N entries, entry[O]-entry[N], two multi-
plexers, mux|[0] and mux[1], and two comparators, comp|O]
and comp[1].

US 9,146,744 B2

S

Entries[0-N] are used for storing the data from builered
stores until the stores can be completed to L1 cache 104.
Because processor 102 supports stores ranging in size from a
single byte to a doubleword, 1n some embodiments of the
present invention, each entry i1s a doubleword 1n length.

As described above, the entries 1n store queue 126 are
divided 1nto restricted entries and unrestricted entries. In
some embodiments of the present invention, the unrestricted
entries are indicated using select indicators (select[0] and
select[1]). In these embodiments, store queue 126 can use
cach select indicator to access the metadata 1n a correspond-
ing entry, as well as control which entries are used for data
forwarding and store merging. In some embodiments of the
present invention, each select indicator (e.g., select|0]) con-
tains the address for the entry 1n store queue 126 where the
unrestricted entry 1s located.

When bulfering a new store, store queue 126 bufiers the
new store into an available restricted or unrestricted entry. I
the store 1s buffered to a restricted entry, store queue 126 then
updates the corresponding select indicator from the oldest
unrestricted entry to the new entry. Upon updating the select
indicator, the oldest unrestricted entry becomes a restricted
entry, while the new entry becomes an unrestricted entry. (In
some embodiments of the present invention, if there 1s no
restricted entry available, store queue 126 does not butler the
store, instead processor 102 defers the store and re-executes
the store when space becomes available 1n store queue 126.)

In embodiments of the present invention, when comparing,
unrestricted entries to the load (1.e., not restricted entries), the
addresses of the unrestricted entries, the age values, and the
bitmasks are forwarded from the entries to comp[0-1] via
mux|[0-1] (age values and bitmasks are described 1n more
detail below). Comp[0-1] then performs the comparison
operations. Select[0-1] determines which entries this infor-
mation 1s forwarded from for the comparison.

Each entry 1n store queue 126 includes metadata that con-
tains a bitmask and an age value. The bitmask indicates which
bytes in the entry presently contain data from a butlered store.
During operation, when data 1s read from an entry 1n store
queue 126, the bitmask can also be read to determine which
bytes in the entry are valid (1.e., have had data buffered in
them).

Because processor 102 has a limited number of clock
cycles for acquiring forwarded data from store queue 126, 1n
some embodiments of the present invention there 1s 1nsuili-
cient time to: (1) determine 11 store queue 126 has a match; (2)
determine 11 the bitmask indicates that the bufiered store can
satisty the load; and (3) read the appropriate data from store
queue 126 to a processor register. Hence, 1n these embodi-
ments, processor 102 determines 11 store queue 126 contains
a qualilying entry that matches with the load address (as
described 1in more detail below) and immediately loads the
buffered data from a matching entry. In parallel with loading,
the data, processor 102 compares the bitmask in the matching,
entry with the load to determine if the data i the entry can
satisiy the load. If so, the data from the entry 1s used to satisiy
the load. Otherwise, data from another source 1s used to
satisy the load (e.g., from L1 cache 104). In order to have
data from another source ready for this case, these embodi-
ments can load the data from the other source (from L1 cache
104 or L.2 cache 106, ctc.) in parallel with the attempt to load
the data from store queue 126.

The age value for each entry 1s a numerical value that
represents the age of the entry. The age value 1s used by
processor 102 to track the age of bullered stores in unre-
stricted entries to: (1) prevent merging stores 1nto an existing
unrestricted entry in store queue 126 when an intervening,

10

15

20

25

30

35

40

45

50

55

60

65

6

unsatisfied load has been deferred; and (2) prevent younger
stores from among multiple butiered stores to the same cache
line (in the unrestricted entries) from being madvertently
used to satisty subsequent loads. In some embodiments, the
age value 1s used to track the age of an entire entry. In alter-
native embodiments, an age value can be maintained for
individual bytes in the entry (1.e., several age values can be
maintained for each entry).

During operation, processor 102 increments a global age
counter when deferring the first load following a store opera-
tion to the same address. Before a store 1s buifered in store
queue 126, processor determines 11 one or more unrestricted
entries contain a bulfered store that 1s directed to the same
address. If so, processor 102 determines 1f the global age
counter and the age 1n the metadata for any of the determined
entries match (meaning that no deferred loads of the same
address have occurred since the last store was builered to the
entry). If so, processor 102 can merge the current store with
the determined entry. Otherwise, processor 102 buifers the
store to a new unrestricted entry.

Although not shown i FIG. 2, in embodiments of the
present invention store queue 126 includes additional mecha-
nisms for handling stores. For example, store queue 126 can
include mechanisms for writing stores from execution unit
124 to entries O-N, mechanisms for reading one or more of
entries 0-N for use in forwarding the data from butfered stores
to subsequent dependent instructions.

Note that in embodiments of the present invention, all of
the addresses for stores bulilered in restricted entries 1n store
queue 126 are compared to each load address. In these
embodiments, the comparison1s used to determine 1f there are
one or more matches among the restricted entries, because
data can be forwarded from among the restricted entries, but
only when exactly one restricted entry can satisty the load.
More specifically, because an age comparison 1s never done
for restricted entries, data can be forwarded from a restricted
entry 11 exactly one restricted entry (and no unrestricted
entries) can satisty the load. If there are several restricted
entries (and no unrestricted entries) that can satisty the load,
these embodiments defer the load. Because the buflered
stores 1n the unrestricted entries are guaranteed to be younger
than the buifered stores 1n the restricted entries, any time that
there 1s an unrestricted entry that can be used to satisiy the
load, these embodiments use the unrestricted entry.
Speculative Execution

Embodiments of the present invention support speculative
execution. Generally, these embodiments start by executing
instructions 1n program order in a normal-execution mode.
Then, when processor 102 (see FIG. 1) encounters a stall
condition, these embodiments can enter a speculative execu-
tion mode to continue to perform useful computational work
until the stall condition i1s resolved. For example, some
embodiments of the present invention support execute-ahead
mode, wherein nstructions with unresolved data dependen-
cies are deferred, while other non-dependent instructions are
executed 1n program order.

During execute-ahead mode, processor 102 defers an
instruction with an unresolved data dependency by placing
the 1nstruction into a deferred queue 128, then executes sub-
sequent non-dependent instructions. While executing the
subsequent mnstructions, processor 102 can defer instructions
with unresolved data dependencies by placing these mnstruc-
tions into deferred queue 128 1n program order. When data
ultimately returns for a deferred instruction, processor 102
can make one or more passes through deferred queue 128 to
execute deferred instructions that depend on the returned
data. While executing these instructions, processor 102 can

US 9,146,744 B2

7

re-defer instructions with unresolved data dependencies by
placing these instructions back into deferred queue 128 in
program order. If all the deferred instructions in deferred
queue 128 are executed (1.e., when deferred queue 128 1is
empty), processor 102 can resume execution 1n normal-ex-
ecution mode. Otherwise, processor 102 can resume execu-
tion in execute-ahead mode until a subsequent data return.

In these embodiments, upon determining that two or more
restricted entries 1n store queue 126 contain a buifered store
that can satisty a load, embodiments of the present invention
defer the load by placing the load 1n deferred queue 128 and
enter a speculative execution mode until the stores have
cleared from store queue 126 (1.¢., until the two or more stores
in the restricted entries that are directed at the cache line have
cleared). When the stores have cleared from store queue 126,
processor 102 can make a pass through deferred queue 128 to
re-execute the deferred load instruction.

Note that 11 one or more unrestricted entries can satisiy the
load, regardless of the number of restricted entries that can
satisiy the load, the load 1s not deferred. Instead, data for the
load 1s forwarded from the unrestricted entry (because the
unrestricted entries are guaranteed to be younger than the
restricted entries).

Forwarding Data

FIG. 3 presents a flowchart 1llustrating a process for for-
warding data 1n accordance with embodiments of the present
invention. The process starts when processor 102 encounters
a load (step 300). Processor 102 then forwards the address of
the load to store queue 126 so that store queue 126 can
determine 1f data can be forwarded to the load from a buitered
store (1.e., data from an entry 1n store queue 126 can be used
to satisiy the load).

Note that although we describe embodiments of the present
invention where processor 102 and store queue 126 perform
the operations for the data forwarding process, in alternative
embodiments some or all of the operations are performed by
other structures within computer system 100.

Store queue 126 then determines 1f any unrestricted or
restricted entries 1n store queue 126 contain data that satisfies
the load (step 302). When making this determination, store
queue 126 determines 1f any restricted or unrestricted entry 1in
store queue 126 contains a butifered store that 1s directed to the
same cache line as the load. More specifically, store queue
126 compares the address of the load to the address for the
buffered store in each entry in store queue 126 (1.e., the
address to which the butfered store in the entry 1s directed) to
determine 1if there 1s a match between the addresses. Store
queue 126 also determines 11 the bitmask for the entry indi-
cates that the bytes within the entry contain the data that 1s
being loaded. I both are true for a given restricted or unre-
stricted entry, the load can be satisfied from the entry.

If no entry 1n store queue 126 can be used to satisty the
load, processor 102 retrieves the data for the load from a
cache (step 304). For example, processor 102 can retrieve the
data from L1 cache 104. In some embodiments of the present
invention, processor 102 loads the cache line from the cache
(e.g., L1 cache 104) in parallel with doing the comparison 1n
store queue 126. In these embodiments, 11 there 1s no entry 1n
store queue 126 that can satisiy the load, processor 102 1s
prepared to immediately use the cache line loaded from the
cache.

If any number of unrestricted or restricted entries contain
data that satisfies the load, store queue 126 forwards the data
from the unrestricted entry that contains the youngest store
(step 306). In other words, the unrestricted entry that contains
the most recently buffered store 1s used to satisty the load
regardless to the number of restricted entries that may be

10

15

20

25

30

35

40

45

50

55

60

65

8

available. In these embodiments, the restricted entries are not
used because the stores contained 1n the unrestricted entries
are guaranteed to be more recently buffered than the store 1n
any restricted entry.

When more than one unrestricted entry contains a buifered
store that satisfies the load, store queue 126 compares the age
value 1n the metadata for each of the unrestricted entries to
determine which store 1s the youngest. The entry with the
lowest age value contains the youngest store. (The age value
1s never compared for restricted entries.) In some embodi-
ments, store queue 126 also compares the age value to a
global age counter to determine 11 the age value for the young-
est store (1n the unrestricted entry) 1s the same as the global
age counter. If the values differ, one or more dependent loads
have been deferred since the store was written to the entry in
store queue 126 and processor 102 does not use the data
contained in the entry to satisfy the load. Processor 102
instead defers the load by placing the load in the deferred
queue.

If only one restricted entry and no unrestricted entries
contain data that satisfies the load, store queue 126 forwards
the data from a restricted entry (step 308). (Note that in some
embodiments of the present invention this 1s the only case
when data 1s forwarded from a restricted entry 1n store queue
126.)

If more than one restricted entry and no unrestricted entries
contain data that satisfies the load, processor 102 defers the
load by placing the load into deferred queue 128 (step 310).
As described above, placing the load in the deferred queue
delays the execution of the load until one or more of the stores
to the cache line have been committed from store queue 126.
Store Merging

FIG. 4 presents a tlowchart illustrating a process of store
merging 1n accordance with embodiments of the present
invention. The process starts when processor 102 encounters
anew store to a cache line (step 400). Processor 102 forwards
the new store to store queue 126 to builer the store.

Store queue 126 then determines 1f one or more unre-
stricted entries contain bullered stores directed to the same
cache line (step 402). When making this determination, store
queue 126 compares the address of the store to the addresses
to which the buflered store 1n any unrestricted entry 1s
directed.

Recall that store merging 1s not enabled for restricted cache
lines. Hence, store queue 126 does not compare the addresses
ol restricted cache lines with the address for the new store.
Because store queue 126 does not compare these addresses,
store queue 126 need not include some of the comparison
circuitry which 1s present in store queues 1n existing systems
that support store merging for all entries.

If none of the unrestricted entries contain a butfered store
directed to the same cache line, store queue 126 butlers the
store 1n a next entry 1n store queue 126 (step 404). Buffering
the store 1n the next entry in store queue 126 involves butler-
ing the store 1n an available restricted or unrestricted entry.
Some embodiments of the present invention preferentially
butler the store 1n an unrestricted entry (which 1s only avail-
able when no unrestricted entries are have been used). How-
ever, upon butlfering the store 1n a restricted entry, store queue
126 updates a select indicator to indicate the restricted entry.
Updating the select indicator causes the restricted entry to
become unrestricted and the previously unrestricted entry to
become restricted. In this way, store queue 126 retains a
record of the most-recently butlered stores.

I one or more of the unrestricted entries contain a butfered
store directed to the same cache line, store queue 126 deter-
mines 1f the age value of any unrestricted entry matches the

US 9,146,744 B2

9

global age counter (step 406). If so, no deterred loads have
occurred since the last store operation and the new store
operation 1s merged into the unrestricted entry with the
matching age (step 408). Otherwise, store queue 126 butlers
the store 1n a next entry 1n store queue 126 (step 404).

Note that 11 store queue 126 1s full (1.e., no unrestricted or
restricted entries are available for butiering the store), some
embodiments of the present invention defer the store by plac-
ing the store 1n deferred queue 128.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of 1llustra-
tion and description. They are not intended to be exhaustive or
to limit the present invention to the forms disclosed. Accord-
ingly, many modifications and vanations will be apparent to
practitioners skilled 1n the art. Additionally, the above disclo-
sure 1s not itended to limit the present invention. The scope
of the present invention 1s defined by the appended claims.

What 1s claimed 1s:

1. A method for processing a load 1nstruction, comprising:

receiving the load mstruction;

determining 11 an entry 1n a store queue contains data that

satisfies the load instruction;

if no entry 1n the store queue contains data that satisfies the

load 1nstruction, retrieving data for the load instruction
from a cache; and

il an entry 1n the store queue contains data that satisfies the

load 1instruction, conditionally forwarding data from

entry by:

forwarding data from an unrestricted entry that contains
the youngest store that satisfies the load instruction
when any number of unrestricted or restricted entries
contain data that satisfies the load instruction;

forwarding data from an unrestricted entry when only
one restricted entry and no unrestricted entries con-
tain data that satisfies the load instruction; and

deferring the load instruction by placing the load
instruction 1n a deferred queue when two or more
restricted entries and no unrestricted entries contain
data that satisfies the load instruction.

2. The method of claim 1, wherein determining 11 an unre-
stricted entry contains data that satisfies the load instruction
involves:

determining 1f any unrestricted entry 1n a set of unrestricted

entries 1n the store queue contains a buffered store to a
same cache line as the load;
for each such unrestricted entry, determining if an age of
the unrestricted entry matches a global age counter; and

if the age of an unrestricted entry matches the global age
counter, using a bitmask for the unrestricted entry to
determine 11 each byte needed to satisiy the load mstruc-
tion 1s contained in the unrestricted entry;

wherein an unrestricted entry satisfies the load 1nstruction

when the buffered store 1s directed to the same cache
line, the bitmask indicates that each byte needed to sat-
1s1y the load 1nstruction 1s contained 1n the entry, and the
age of the entry and the global age counter match.

3. The method of claim 1, wherein determining if a
restricted entry contains data that satisfies the load instruction
involves:

determining 11 any one restricted entry in the store queue

contains a store directed to the same cache line as the
load; and

for the restricted entry, using a bitmask for the restricted

entry to determine 11 each byte for the load mstruction 1s
contained 1n the restricted entry;

wherein a restricted entry satisfies the load instruction

when the buifered store 1s directed to the same cache line

5

10

15

20

25

30

35

40

45

50

55

60

65

10

and the bitmask indicates that each byte needed to sat-
1s1y the load instruction 1s contained 1n the entry.

4. The method of claim 1, wherein the method further
comprises re-executing the deferred load when no more than
one of the restricted entries contain data that satisfies the load
instruction.

5. The method of claim 1, further comprising:

receving a new store to a cache line; and

determining 11 one or more unrestricted entries 1n the store
queue contain bullered stores that are directed to a same
cache line;
if not, butlering the new store 1n a next entry in the store

queue;

i so, determining an age of the one or more unrestricted
entries;

11 an age of an unrestricted entry matches a global age
counter, merging the new store into the unrestricted
entry,

otherwise, bulfering the new store 1n the next entry 1n
the store queue.

6. The method of claim 1, wherein forwarding data
involves copying the data from an entry 1n the store queue to
a processor register so that the processor register can be used
in subsequent computational operations.

7. An apparatus that processes a load instruction, compris-
ng:

a Processor;

a cache coupled to the processor, wherein the cache stores

data for the processor;

a store queue 1n the processor, wherein the processor 1s
configured to butler stores 1nto the store queue until the
stores have been commuitted to the cache;

wherein the processor 1s configured to recerve a load
instruction;

in response to receiving the load instruction, the processor
1s configured to determine if an entry 1n the store queue
contains data that satisfies the load instruction;

11 no entry in the store queue contains data that satisfies the
load nstruction, the processor i1s configured to retrieve
data for the load 1nstruction from the cache: and

11 an entry in the store queue contains data that satisfies the
load 1nstruction, the processor 1s configured to condi-
tionally forward data from the entry by:
forwarding data from an unrestricted entry that contains

the youngest store that satisfies the load instruction

when any number of unrestricted or restricted entries
contain data that satisfies the load instruction;

forwarding data from an unrestricted entry when only
one restricted entry and no unrestricted entries con-
tain data that satisfies the load instruction; and

deferring the load instruction by placing the load
instruction 1n a deferred queue when two or more
restricted entries and no unrestricted entries contain
data that satisfies the load istruction.

8. The apparatus of claim 7, wherein when determining 11
an unrestricted entry contains data that satisfies the load
instruction, the processor 1s configured to:

determine 1f any unrestricted entry 1n a set of unrestricted
entries 1n the store queue contains a bullered store to a
same cache line as the load;

for each such unrestricted entry, use a bitmask for the
unrestricted entry to determine 1f each byte needed to
satisly the load instruction i1s contained in the unre-
stricted entry; and

11 each byte needed to satisiy the load instruction i1s con-
tained 1n the unrestricted entry, determine 1 an age of the
unrestricted entry matches a global age counter;

US 9,146,744 B2

11

wherein an unrestricted entry satisfies the load instruction
when the buffered store 1s directed to the same cache
line, the bitmask 1ndicates that each byte needed to sat-
1s1y the load 1nstruction 1s contained 1n the entry, and the
age ol the entry and the global age counter match.

9. The apparatus of claim 7, wherein when determining 11 a
restricted entry contains data that satisfies the load mnstruc-
tion, the processor 1s configured to:

determine 11 any one restricted entry in the store queue
contains a store directed to the same cache line as the
load; and

for the restricted entry, use a bitmask for the restricted entry
to determine 1f each byte for the load instruction 1is
contained in the restricted entry;

wherein a restricted entry satisfies the load instruction
when the buifered store 1s directed to the same cache line
and the bitmask indicates that each byte needed to sat-
1s1y the load 1nstruction 1s contained 1n the entry.

10. The apparatus of claim 7, wherein the processor 1s
configured to re-execute the deferred load when no more than
one of the restricted entries contain data that satisfies the load
instruction.

11. The apparatus of claim 7, wherein the processor 1s
turther configured to:

recelve a new store to a cache line; and

determine 1f one or more unrestricted entries in the store
queue contain buflered stores that are directed to a same
cache line;

i not, the processor 1s configured to butier the new store
in a next entry 1n the store queue;

if so, the processor 1s configured to determine an age of
the one or more unrestricted entries;

11 an age of an unrestricted entry matches a global age
counter, the processor 1s configured to merge the
new store into the unrestricted entry,

otherwise, the processor 1s configured to buifer the
new store 1n the next entry 1n the store queue.

12. The apparatus of claim 7, wherein when forwarding
data, the processor 1s configured to copy the data from an
entry in the store queue to a processor register so that the
processor can use the register in subsequent computational
operations.

13. A computer system, comprising;:

a Processor;

a cache coupled to the processor, wherein the cache 1s a
fast-access memory that stores recently-used data for the
Processor;

a mass-storage device coupled to the cache, wherein the
mass-storage device 1s a high-capacity, slow-access
storage memory that stores data for the processor;

a store queue 1n the processor, wherein the processor 1s
configured to butler stores into the store queue until the
stores have been commiutted to the cache;

wherein the processor 1s configured to recerve a load
instruction;

in response to recerving the load mstruction, the processor
1s configured to determine 1f an entry 1n the store queue
contains data that satisfies the load instruction;

if no entry 1n the store queue contains data that satisfies the
load instruction, the processor 1s configured to retrieve
data for the load instruction from the cache; and

if an entry in the store queue contains data that satisfies the
load 1nstruction, the processor 1s configured to condi-
tionally forward data from the entry by:
forwarding data from an unrestricted entry that contains

the youngest store that satisfies the load instruction

10

15

20

25

30

35

40

45

50

55

60

65

12

when any number of unrestricted or restricted entries

contain data that satisfies the load instruction;

forwarding data from an unrestricted entry when only
one restricted entry and no unrestricted entries con-
tain data that satisfies the load instruction; and

deferring the load instruction by placing the load
instruction 1n a deferred queue when two or more
restricted entries and no unrestricted entries contain
data that satisfies the load mstruction.

14. The computer system of claim 13, wherein when deter-
mining 1f an unrestricted entry contains data that satisfies the
load instruction, the processor 1s configured to:

determine 11 any unrestricted entry 1n a set of unrestricted

entries 1n the store queue contains a buflered store to a
same cache line as the load:

for each such unrestricted entry, use a bitmask for the

unrestricted entry to determine 1f each byte needed to
satisty the load instruction i1s contained in the unre-
stricted entry; and
11 each byte needed to satisiy the load instruction 1s con-
tained 1n the unrestricted entry, determine 1f an age of the
unrestricted entry matches a global age counter;

wherein an unrestricted entry satisfies the load instruction
when the bulffered store 1s directed to the same cache
line, the bitmask 1ndicates that each byte needed to sat-
1s1y the load mstruction 1s contained in the entry, and the
age of the entry and the global age counter match.

15. The computer system of claim 13, wherein when deter-
mining 11 a restricted entry contains data that satisfies the load
instruction, the processor 1s configured to:

determine i1f any one restricted entry 1n the store queue

contains a store directed to the same cache line as the
load; and

for the restricted entry, use a bitmask for the restricted entry

to determine if each byte for the load instruction 1s
contained 1n the restricted entry;

wherein a restricted entry satisfies the load instruction

when the bufiered store 1s directed to the same cache line
and the bitmask indicates that each byte needed to sat-
1s1y the load 1nstruction 1s contained 1n the entry.

16. The computer system of claim 13, wherein the proces-
sor 1s configured to re-execute the deferred load when no
more than one of the restricted entries contain data that sat-
isfies the load 1nstruction.

17. The computer system of claim 13, wherein the proces-
sor 1s Turther configured to:

recelve a new store to a cache line; and

determine 1f one or more unrestricted entries 1n the store

queue contain bullered stores that are directed to a same

cache line;

if not, the processor 1s configured to builer the new store
in a next entry 1n the store queue;

if so, the processor 1s configured to determine an age of
the one or more unrestricted entries:

11 an age of an unrestricted entry matches a global age
counter, the processor 1s configured to merge the
new store into the unrestricted entry,

otherwise, the processor 1s configured to buffer the
new store 1n the next entry in the store queue.

18. The computer system of claim 13, wherein when for-
warding data, the processor 1s configured to copy the data
from an entry 1n the store queue to a processor register so that
the processor can use the register in subsequent computa-
tional operations.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 9,146,744 B2 Page 1 of 1
APPLICATION NO. . 12/116009

DATED . September 29, 2015

INVENTOR(S) . Paul Caprioli et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims:

In claim 1 (at column 9, line 33) delete the words “from an unrestricted entry” and replace therefor
with the words -- from a restricted entry without deferring the load instruction --

In claim 7 (at column 10, line 48) delete the words “from an unrestricted entry” and replace therefor
with the words -- from a restricted entry without deferring the load instruction --

In claim 13 (at column 12, line 3) delete the words “from an unrestricted entry” and replace therefor
with the words -- from a restricted entry without deferring the load instruction --

Signed and Sealed this
Thirtieth Day of August, 2016

e cbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

