12 United States Patent

Kamay et al.

US009135024B2

US 9,135,024 B2
Sep. 15, 2015

(10) Patent No.:
45) Date of Patent:

(54) PLAYING MULTIMEDIA CONTENT AT
REMOTE GRAPHICS DISPLAY CLIENT

(75)

(73)

(%)

(21)
(22)

(65)

(1)
(52)

(58)

(56)

Inventors: Yaniv Kamay, Modi” (IL); Shahar
Frank, Ramat Hasharon (IL)

Assignee: Red Hat Israel, Ltd., Raanana (IL)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1098 days.
Appl. No.: 12/325,233
Filed: Nov. 30, 2008
Prior Publication Data
US 2010/0138744 Al Jun. 3, 2010
Int. Cl.
GO6I 9/44 (2006.01)
U.S. CL
CPC e GO6F 9/4445 (2013.01)
Field of Classification Search
CPC .o GO6F 17/30017; GO6F 17/30781;
GO6F 17/3074
USPC 715/7751, 733, 740, 749; 709/219, 203;

718/1

See application file for complete search history.

6,091,412
7,275,212
7,487,454
7,681,134
7,958,453
8,099,512
8,169,916
8,170,123

References Cited

U.S. PATENT DOCUMENTS

A 3
B2 *
B2 *
Bl *
Bl *
B2 *
Bl *
Bl *

7/2000 Simonoffetal. 715/749
9/2007 Leichtling 715/733
2/2009 Czerwimnski etal. 715/751
3/2010 Grechishkin et al. 715/740
6/2011 Taingcoooveeviiinninnn, 715/744
1/2012 Katisetal. ..., 709/231
5/2012 Paretal. 370/238
5/2012 Hobgood et al. 375/240.26
Client Application
(e.g., thin client
browser}) 110 100
I
Rendering Agent
(e.g., protocol client)
112

Client Application
(e.g., thin client

Client
107

Network

103

(8.9., LAN, WAN)

2004/0031058 Al* 2/2004 Reisman 725/112
2005/0039133 Al* 2/2005 Wellsetal. 715/740
2006/0168526 Al1* 7/2006 Sturbucooooeiiiiinn, 715/740
2006/0256130 Al* 11/2006 Gonzalez 345/619
2007/0106811 Al* 5/2007 Ryman 709/230
2007/0174429 Al1* 7/2007 Mazzaferrietal. 709/218
2007/0192329 Al* 8/2007 Croftetal.o...ooeeen. 707/10
2007/0204003 Al* 8/2007 Abramson 709/217
2008/0008458 Al* 1/2008 Gudipaty etal. 386/13

2008/0082691 Al* 4/2008 Hochwarth etal. 709/246
2008/0114694 Al* 5/2008 Hamdaneetal. 705/59
2008/0209330 Al* 8/2008 Cruvercoooeevvvvnnnennn, 715/733
2009/0019367 Al* 1/2009 Cavagnarietal. 715/716
2009/0070687 Al* 3/2009 Mazzaferrt 715/751

(Continued)
OTHER PUBLICATIONS

Meyers. Interactive 3D with Shockwave. www.webtechniques.com

Feb. 2002. accessed Aug. 2, 2011.*
Hoff. Netscape Plug-Ins. Linux J. 65¢s, Article 5. Sep. 1999.%
Qumranet, Solid ICE™, Connection Broker, Apr. 2008, 7 pages.

(Continued)

Primary Examiner — Amy M Levy
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

Method and apparatus for playing multimedia content at a
remote graphics display client are described herein. Accord-
ing to one embodiment, a stream of data objects 1s sequen-
tially transmitted to a client over a network. The stream 1s
generated by a desktop application representing a snapshot of
a display output of the desktop application. The data objects
are to be rendered at the client for graphics remoting pur-
poses. It 1s detected that a multimedia object 1s to be rendered
by the desktop application. The multimedia object 1s caused
to be rendered remotely at the client without having to render
the multimedia object locally and without having to transmit
a display result of the rendering to the client over the network.
Other methods and apparatuses are also described.

17 Claims, 6 Drawing Sheets

|
Application(s)
1086

Media Player

Proxy
107

browser) 111

Virtual Machine —,_

109

I Multimedia Data |
Object Virtual Daskiop Server
Rendering Agent 108 104
(e.g., protocol cller::?a Server
105

Cliant

102

US 9,135,024 B2
Page 2

(56)

2009/0248802
2009/0249222
2009/0287772
2010/0045662
2010/0077290
2011/0078532
2012/0246227

AN A AN

% ¥ % * * ¥ *

References Cited

10/2009
10/2009
11/2009

2/201
3/201
3/201

9/201

Mo — O O

U.S. PATENT DOCUMENTS

Mahajan etal. 709/204
Schmudtetal. 715/751
Stoneetal. 709/203
Boothroyd et al. 345/419
Pueyooccooviiiiiiiinnnn, 715/230
Vonogetal. 714/752
Vonogetal. 709/203

OTHER PUBLICATIONS

Qumranet, KVM-Kernel-based Virtualization Machine, White
Paper, 2006, 5 pages.

Qumranet, Solid ICE™, Provisioning Manager, Apr. 2008, 5 pages.
Qumranet, Solid ICE™, Virtual Desktop Server (VDS), Apr. 2008, 6

pages.
“Solid ICE™ Overview,” Qumranet Inc., Apr. 2008, 15 pages.

* cited by examiner

US 9,135,024 B2

Sheet 1 of 6

Sep. 15, 2015

U.S. Patent

1201

1aAJag dopysa |BNMIA

60|
SUIYDB [ENUIA

/01
AXoid

1ahe|d elpa|p

901
(s)uoneolddy

l Ol

GOl
JETNELS

801
109[q0
eled elpswi]ninl

€0l

(NVM ‘NVY1°
)IOM)SN

00L

‘H°9)

JUal|d

(3us1|5 |000)04d “69)
Jusby Bullepusy

dds (Jesmolq

Jualjo ulyy 6'9)
uoneolddy JuslD

JUSI|o

(3us110 |000304d ““6°O)
Jusby bulepusy

OL1l
(JOSMO.Q
Jusi|o Uy “6°8)
uoneo|ddy usi)

US 9,135,024 B2

Sheet 2 of 6

Sep. 15, 2015

U.S. Patent

¢0c¢

(Bulyoe |enNMIA) SO Jseng)

Axold 18Ae|d elpa|y

18AB|d BIPS|N SANEN

uoljesi|ddy dopisaq

¢ Old

(seoIAa(] O/ ‘AloWa N
alempleH

0C

00¢

‘NdD 'b'9)

S0 JSOH

(JosiIaadAH B o)

IC)IUCIA SUIYDB|A] |ENMIA

(suIyoep |eniip) SO 1seng
L0C

AX0ld 18Ae|d Blpe N

18AB|d BIpa|\ SAEN

uonesi|ddy dopise

US 9,135,024 B2

Sheet 3 of 6

Sep. 15, 2015

U.S. Patent

00¢

0%

14012

0

c0¢

L0t

UBI[D 8Y) UIYIIMm A||BD0| painoaxa/palspuad aq 0}
Jusi|o ay) 0} Joalgo Aleulq syl Jwsued) ‘Ajsaneudsye 40

JUSI119 8Y) UIyIM Aj|eo0] 108[g0
Aleulq ay) 8)1ndexs/iepusl pue JeAlss 8)oulsd su)
wodj 198lqo Aieuiq ay) peojumop 0} Jusi|d su) s|geus
0] 1UBI|0 8Y] 0] JBAISS BJ0Wal B O] MUl B lIwsuel |

JUB110 8y} 1e dop{Sep |ENMIA B SE palapuad aq O] Jusi[o
ay) 0} abew painides ay) JiLsuel) pue Ajjeoo| 108(qo

AJeulq ay) bunnosxs/bulispusd Jnoylim abew dopissp
IenMIA e 1o joysdeus e Bunussaidal sbewl ue sinyden

‘uolnesi|dde dopisep ayj Ag pajnosxs/palspust 8g O]
1noge si (10alqo yseyl “°6°8) 10algo Aleuig e jey) 108187

"MIOM)OU B JSAO JUSI|0 9)oWal B
AQ pasSS820k JUSWUOCIIAUS dOPISSpP |[ENMIA B UIBlUIBW O]
suIYoBW |ENMIA B UIY)im uones|idde dopisep e 8)noax3

US 9,135,024 B2

Sheet 4 of 6

Sep. 15, 2015

U.S. Patent

¥ Old

0

0

14

00V

18] 2

18] %

cOv

cOv

LOF

‘dopjsap |enjia sy} 1o do) Uuo jjnsal au) asodwliadng

‘uolnoaxs/Bulispusd sy JO Jnss.
e BunelJausb ‘A|jes0o| 193lgo Aleuiq sy S1nNoSxXs/IspUay

‘(Jasmolq “B'a) uoneoljdde Jusip UIY) B O] JUBSWUOIIAUS
dopsep [enMIA 8y} Juasald pue JuswuoliAus dopjsap
|IENMIA B 8]8840 0] S}08(qo Bjep JO Wead)s ay) Jopusy

"19AI8S JSJ1} 8} UIUlIm Jo3(go
AJeuig sy) Buipnosxs/buliapual JNOYNIM J8AISS BJoW .
1S41} 8U) WoJ) 108lgo Aleulqg ay) aAlsdad ‘AjBAljeuUIB)E 10

"MUI| 8] BIA JBAIBS 8)0WB) pUCOSS
e woJ) (Joslgo ysell “be) 108lgo Aleuig B peojumop
pUEB 18AJ8S 8]0Wal)Sdl] 8] WOIL YUl| B 8AI808Y

1oAI8S 8)0Wal }S41) aU] JO BUIUDSEW |BNUIA B
UIY}IM pajnoaxa abew dopisap [enliA B Jo Joysdeus e
Buljuasaidal 108(qo Blep Uoes HI0MISU B JBAO JBAISS
9)owWal)SlIL B WOoJ) S108[00 B)Ep JO LUESJ)S B 8AI908Y

US 9,135,024 B2

Sheet Sof 6

Sep. 15, 2015

U.S. Patent

¢08

908

(s)uonesddy

aoedg-las

G Old

(seo1na(] O/ ‘AIOWBIN ‘NdD ““b'9)

008

alempJleH

(JosiInJsdAH ‘NINA B 8)

(jouday xnuiq - H°9)
SINPON NAM SO 1SOH

(8uUIyoB|\ |BNUIA)
SO 1seno

G08

(NINTO “6'9)
(s)Jo)e|nwi3 alempleH

708

(s)uoneijddy
90edg-18sN

U.S. Patent Sep. 15, 2015 Sheet 6 of 6 US 9,135,024 B2

1000
1002 1010

PROCESSOR

VIDEQ DISPLAY
1020
1008
1004 1012
ALPHA-NUMERIC
1026 INPUT DEVICE
1000 1014
CURSOR
STATIC MEMORY CONTROL
DEVICE
W
)
m
1016
1022
DATA STORAGE DEVICE
NETWORK ST0
INTERFACE
DEVICE COMPUTER- 1094

READABLE MEDIUM I
1026

NN
. INSTRUCTIONS

1020

SIGNAL
GENERATION

DEVICE

FIG. 6

US 9,135,024 B2

1

PLAYING MULTIMEDIA CONTENT AT
REMOTE GRAPHICS DISPLAY CLIENT

TECHNICAL FIELD

The present invention relates generally to graphics remot-
ing. More particularly, this invention relates to playing mul-
timedia content at a remote graphics display client.

BACKGROUND

Graphics remoting systems allow computing device net-
work clients to connect to a remote server and recerve a visual
representation of at least some of the graphics being dis-
played at or output by the server. Often the network client can
display all the graphical output associated with the session.
Likewise, the client may be allowed to 1nteract with the ses-
s10n, 1jecting user mput, generated from devices such as a
mouse or keyboard connected to the client, into the server
SESS1011.

In some computing environments, entities also use termi-
nal servers to provide remote access to applications and data.
A terminal server 1s a computer system that maintains appli-
cations that can be remotely executed by client computer
systems. Input 1s entered at a client computer system and
transierred over a network (e.g., using protocols based on the
I'TU T.120 family of protocols, such as, for example, Remote
Desktop Protocol (“RDP”)) to an application at the terminal
server. The application processes the input as 1f the input was
entered at the terminal server. The application generates out-
put 1n response to the received mput and the output 1s trans-
terred over the network (e.g., also T.120 based protocols) to
the client computer system. The client computer system pre-
sents the output data.

Thus, 1nput 1s recerved and output 1s presented at the client
computer system, while processing actually occurs at the
terminal server. In most, 1f not all terminal server environ-
ments, input data (entered at a client computer system) typi-
cally includes mouse and keyboard data representing com-
mands to an application and output data (generated by an
application at the terminal server) typically includes video
data for display at a display device.

Recently, desktop virtualization or virtual desktop inira-
structure has become more popular. Desktop virtualization 1s
a server-centric computing model that borrows from the tra-
ditional thin-client model but i1s designed to give system
administrators and end-users the best of the ability to hostand
centrally manage desktop virtual machines in the data center
while giving end users a full PC desktop experience.

Desktop virtualization provides many of the advantages of
a terminal server, while providing users with much more
flexibility. Each user, for example, might be allowed to install
and configure his/her own applications. Users also gain the
ability to access their server-based virtual desktop from other
locations. However, there has been a lack of efficient stream-
ing mechanisms to improve network traffic and processing
eificiency of the client 1n a desktop virtualization environ-
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example and
not limitation in the figures of the accompanying drawings in
which like references indicate similar elements.

FIG. 1 1s a block diagram 1illustrating an example of a
network configuration according to one embodiment of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a block diagram 1illustrating an example of a
system providing virtual desktop solutions according to one

embodiment of the invention.

FIG. 3 1s a flow diagram 1illustrating an example of a
method for providing a virtual desktop according to one
embodiment of the mvention.

FIG. 4 1s a flow diagram illustrating an example of a
method for rendering a virtual desktop according to one
embodiment of the mnvention.

FIG. 5 1s a block diagram 1illustrating an example of a
kernel-based virtual machine architecture which may be used
with an embodiment of the invention.

FIG. 6 1s a block diagram 1llustrating an example of a data
processing system which may be used with an embodiment of
the invention.

DETAILED DESCRIPTION

Method and apparatus for multimedia data object traific
redirection 1n aremote display system are described herein. In
the following description, numerous details are set forth to
provide a more thorough explanation of the embodiments of
the present invention. It will be apparent, however, to one
skilled 1n the art, that embodiments of the present invention
may be practiced without these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form, rather than in detail, in order to avoid
obscuring embodiments of the present invention.

Reterence 1n the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described 1n connection with the embodiment
1s included 1n at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places 1n the specification do not necessarily all refer to the
same embodiment.

According to certain embodiments, a desktop application
1s executed within a virtual machine hosted by a server (e.g.,
hosting server). The display output of the desktop application
1s streamed to a client over a network, for example, 1n order to
establish a virtual desktop environment at the client, while the
desktop application 1s actually executed remotely at the
server. In addition, certain activities of the desktop applica-
tion are monitored at the hosting server. In response to detect-
ing that a multimedia data object (e.g., a Flash object) 1s about
to be rendered or executed within the local desktop applica-
tion within the virtual machine, the virtual machine of the
hosting server transmits the multimedia data object to the
client to enable the client to render the multimedia data object
locally at the client without having to render or execute the
multimedia data object at the server and without having to
transmit the display output of the rendering or execution to
the client.

Alternatively, 11 the multimedia data object 1s located at a
remote server (e.g., other than the hosting server) and reach-
able by the client, a link (e.g., URL or universal resource
locator) referenced to the multimedia data object may be
transmitted to the client without having to transmait the entire
multimedia data object to the client. This would allow the
client to download the multimedia data object from the
remote server for rendering or execution. A decision regard-
ing whether to transmit the whole multimedia data object or
just a link to the multimedia data object to the client may be
dynamically determined based on network tratfic conditions
and/or client’s local processing bandwidth (e.g., CPU usage)
at the point 1n time. Thus, since the multimedia data object 1s
rendered or executed at the client instead of at the server, the
server does not have to stream the display output (e.g., graph-

US 9,135,024 B2

3

ics data) of the rendering or execution of the multimedia data
object to the client over the network. As a result, the network
traflic between the client and the server has been reduced.

FIG. 1 1s a block diagram illustrating an example of a
network configuration according to one embodiment of the
invention. Referring to FIG. 1, network configuration 100
includes, but 1s not limited to, one or more clients 101-102
communicatively coupled to a remote server or a cluster of
servers 104 over a network 103. Network 103 may be a local
area network (LAN) or a wide area network (WAN) and may
be a combination of one or more networks. Clients 101-102
can be any computer system in communication with server
104 for remote execution of applications at server 104. For
example, system 100 may be implemented as part of a graph-
ics remoting system. Generally, a client such as client 101 can
be a computer system 1in communication with server 104 for
remote execution of applications at server 104. Thus, input
data (e.g., mouse and keyboard input) representing applica-
tion commands 1s received at the client and transferred over
network 103 to server 104. In response to client side data, an
application (e.g., application 106) can generate output dis-
play commands (e.g., graphics commands, simply referred to
herein as graphics data), which may include one or more paint
and/or draw operations, for example, 1n the form of execut-
able mstructions. The output display commands can then be
transmitted (e.g., as graphics update commands) with
optional compression back to the remote client and a remote
display driver (e.g., rendering agent 112) of the remote client
can collect the graphics commands and generate correspond-
ing drawing commands for rendering at a display device of
the client.

In one embodiment, server 104 1s configured to host one or
more virtual machines 109, each having one or more desktop
applications 106 (e.g., desktop operating system). Desktop
application 106 may be executed and hosted by an operating
environment (€.g., a host operating system, not shown) within
virtual machine 109. Such an operating system in virtual
machine 109 1s also referred to as a guest operating system.
Multiple guest operating systems and the associated virtual
machines may be controlled by another operating system
(also referred to as a host OS). Typically, a host OS represents
a virtual machine monitor (VMM) (also referred to as a
hypervisor) for managing the hosted virtual machines. A
guest OS may be of the same or different type with respect to
the host OS. For example, a guest OS may be a Windows
operating system from Microsoit and a host OS may be a
Linux operating system available from Red Hat.

Virtual machine 109 can be any type of virtual machine,
such as, for example, hardware emulation, full virtualization,
para-virtualization, and operating system-level virtualization
virtual machines. Different virtual machines hosted by server
104 may have the same or different privilege levels for access-
ing different resources.

In one embodiment, server 104, also referred to as a virtual
desktop server (VDS), hosts multiple virtual machines (e.g.,
virtual machine 109), each hosting or maintaining a desktop
environment remotely accessed by a client such as clients
101-102, 1n this example, virtual desktop 106. For the pur-
pose of 1llustration, virtual desktop 106 represents an output
(e.g., a snapshot of an 1image to be displayed) generated by a
desktop application running within virtual machine 109. The
virtual desktop 106 1s then captured and streamed to a client
such as clients 101-102, where the virtual desktop 106 may be
rendered by a rendering agent (e.g., agents 112-113) and
presented by a client application (e.g., applications 110-111)
respectively. Note that throughout this application and for the
purposes of 1illustration only, data to be transmitted from a

10

15

20

25

30

35

40

45

50

55

60

65

4

server to a client represents a snapshot of a virtual desktop
image. Typically, the data being transmitted includes graphics
commands (e.g., paint and/or draw commands) as well as
other information (e.g., location and/or shape, etc.) such that
the client can execute or render the graphics commands to
construct the associated virtual desktop image.

According to one embodiment, system 100 includes a
media player proxy (also referred to as a media player agent
or a virtual media player) 107 running within each virtual
machine 109, which may include a data compressor and/or a
resource manager for monitoring network tratfic conditions
and/or client local processing bandwidth. In addition, media
player proxy 107 1s configured to detect whether virtual desk-
top 106 1s about to render or execute a multimedia data object,
which may be a Flash® object that can be rendered by an
Adobe® Flash® player. If so, media player proxy 107 may
transmit the multimedia data object to the client for rendering,
or execution at the client without having to render or execute
the multimedia data object within virtual machine 109 at
server 104. Alternatively, 1if the multimedia data object 1s
stored remotely, for example, as multimedia data object 108
stored 1n server 105, media player proxy 107 may simply
transmit a link (e.g., URL of server 105) to the client to allow
the client to download the multimedia data object from a
remote server for rendering or execution.

Again, a decision regarding whether to transmit the whole
multimedia data object or just a link to the multimedia data
object to the client may be dynamically determined based on
network traific conditions, reachability, and/or client’s local
processing bandwidth (e.g., CPU usage) at the point 1n time.
It can also be dependent upon whether the multimedia data
object 1s stored locally or remotely. Thus, since the multime-
dia data object 1s rendered or executed at the client instead of
at the server, the server does not have to transmait the display
output of the rendering or execution of the multimedia data
object to the client over the network. As a result, the network
traffic between the client and the server has been reduced.
Note that throughout this application, a media object 1s uti-
lized as an example of a data object for rendering or execus-
tion. However, the techniques described herein can also be
applied to other types of data objects.

System 100 may be implemented as part of a server or a
cluster of servers within a data center of an enterprise entity.
It allows enterprises the benefit of centralized desktops with-
out the need to change their applications or infrastructure.
Enterprises benefit from an improvement in the manageabil-
ity, security and policy enforcement for their desktop envi-
ronment, and consequently, realize a significant reduction in
the desktop TCO (total cost of ownership).

In one particular embodiment, VDS 104 1s configured to
run the virtualization platform/hypervisor and the virtual
desktops. SPICE communication protocol 1s utilized to com-
municate between a client and a server. SPICE 1s a remote
rendering technology developed specifically for virtual desk-
tops that allow users to “see” their desktops and interact with
them. In this embodiment, a user’s desktop runs inside a
kernel-based virtual machine (KVM) on VDS 104 in the
enterprise data center. The user then accesses his/her desktop
from a thin client (e.g., client application 110) using SPICE
protocol. System 100 may be implemented as part of Solid
ICE™ (independent computing environment) virtualization
solution available from Qumranet. Note that an application
related to a virtual desktop 1s utilized herein as an example
throughout this application for illustration purposes only.
However, techniques described herein can also be applied to
any kinds of graphics remoting applications.

US 9,135,024 B2

S

FIG. 2 1s a block diagram illustrating an example of a
system providing virtual desktop solutions according to one
embodiment of the mnvention. For example, system 200 may
be implemented as part of VDS 104 of FIG. 1. Referring to
FIG. 2, system 200 includes one or more virtual machines
201-202 having guest operating systems which are managed
by a host operating system 203. Host operating system 203
and guest operating systems 201-202 may be executed at
different privilege levels and can be different operating sys-
tems, different versions of the same operating system, or
different istances of the same operating system version.

In one embodiment, each guest OS implemented 1n a vir-
tual machine hosts a virtual desktop for a remote client such
as clients 101-102 of FIG. 1. For example, virtual machine
201 may be associated with client 101 of FIG. 1 and virtual
machine 202 may be associated with client 102 of FIG. 1.
When a client’s desktop application (e.g., desktop application
207-208) 1s executed within the associated virtual machine
(e.g., virtual machines/guest operating systems 201-202), a
driver 209 (e.g., virtual display drivers) 1s configured to cap-
ture the output of the desktop application (e.g., snapshot
image). In this example, each driver 1s implemented as a
virtual display driver or an emulator (e.g., QEMU emulator)
corresponding to a virtual graphics device maintained by the
host 203. In one particular embodiment, a virtual display
driver 1s a SPICE compatible driver.

According to one embodiment, a media player proxy (e.g.,
media proxies 213-214) 1s configured to detect whether a
multimedia object (e.g., Flash® object) 1s about to be ren-
dered or executed, where the multimedia object may be stored
locally or remotely. In response, instead of rendering or
executing the multimedia object within a virtual machine of
system 200, the media player proxy may transmit the multi-
media object to the client for rendering or execution at the
client locally. Alternatively, 11 the multimedia object 1s stored
in a remote server, the media player proxy may transmit a link
(e.g., URL) referencing a storage location associated with the
multimedia object of the remote server to the client, such that
the client can download the multimedia object from the
remote server for local execution. As a result, network traffic
between the client and server 200 may be further reduced.

In one embodiment, in addition to detecting that a multi-
media object 1s about to be rendered or executed, the media
player proxy may further determine coordinates of a window
(c.g., Flash® player’s window) in which the multimedia
object would be rendered or executed. The coordinates of the
window 1s transmitted to the client such that the client can
render or execute the multimedia object at the corresponding,
coordinates of the virtual desktop.

According to one embodiment, a native media player (e.g.,
native media players 211-212) may be maintained within a
virtual desktop. A native media player 1s utilized to render or
play a multimedia object locally within the virtual machine at
the server under certain circumstances. For example, system
200 may operate as a stand along station 1n which a multime-
dia object 1s played locally by the native media player. When
system 200 operates in a remote mode such as a graphics
remoting system accessed remotely by a client (e.g., clients
101-102 of FIG. 1), a media player proxy 1s utilized without
actually rendering or executing the multimedia object as
described above.

In some situations, although system 200 operates 1 a
remote mode; however, a client 1s not capable of rendering a
multimedia object, a native media player can be utilized to
render or execute the multimedia object at the host and trans-
mit the display output of the rendering or execution to the
client. Examples of a media player may include an ActiveX,

10

15

20

25

30

35

40

45

50

55

60

65

6

Mozilla plug-in, and Windows™ graph manager component,
ctc. Communications between a media player proxy and a
client can be performed through remoting protocol specific
channel or an independent connection.

According to a specific embodiment, when a media player
proxy draw into ofl-screen or in any other cases where the
media player proxy 1s unaware of its position and/or its vis-
ibility region, the media player proxy will draw a watermark
that contains an object ID and position; otherwise, the media
player proxy will draw blackness. The media player proxy
can handle a variety protocol commands, such as, for
example, open stream and/or read stream. The remote media
controller can handle a variety protocol commands, such as,
for example, create player, set URL, destroy player, and/or set
shape mode and position. On the client side, a window 1s
created with a specified shape or a shape of a watermark,
where the window 1s placed at a specified location or on top of
the watermark.

Referring back to FIG. 2, system 200 further includes a
virtual machine monitor (VMM) 205, also referred to as
hypervisor. VMM 203, though typically implemented in soft-
ware, may emulate and export a bare machine interface to
higher level software. In one embodiment, VMM 203 may be
implemented as a separate layer without the entire host OS
203 to mediate between a guest OS and the hardware 204.
VMM 205 may be run within, or on top of, another VMM.
VMM 205 may be implemented, for example, 1n hardware,
soltware, firmware, or by a combination of various tech-
niques.

According to one embodiment, VMM 205 may be imple-
mented as a kernel module that enables a hypervisor feature
within the host OS 203 (e.g., Linux kernel), also referred to as
kernel-based virtual machine (KVM) virtualization, which 1s
designed and maintained by Qumranet. In this example,
VMM 205 1s a kernel module running within the kernel space

of the host OS 203. VMM 205 (also referred to as a KVM
module) enables the kernel of the host OS 203 to be VMM/
hypervisor capable. The guest OS (e.g., guest OS 201) 1s
running in a guest mode (as a process) within a user space of
the host OS 203. The virtual display driver (e.g., driver 209)
1s 1mplemented as part of an emulator such as QEMU emu-
lator, which exposes the hardware 204 as virtual hardware to
the virtual desktop. In one embodiment, the virtual display
driver 1s a SPICE capable driver. Further information regard-
ing the KVM virtualization model will be described in details
below.

Note that the virtual machine configuration as shown 1n
FIG. 2 1s provided for the purpose of 1llustration only. System
200 may also be applied to a vaniety of different kinds of
virtual machine configurations, such as, for example, hard-
ware emulation, full virtualization, para-virtualization, and
operating system-level virtualization virtual machines. Fur-
ther, although a guest OS and a virtual machine are sometimes
interchangeably utilized throughout this application; a guest
OS 1s typically executed within a virtual machine environ-
ment.

Retferring back to FIG. 2, system 200 further includes
platiorm hardware 204 representing a virtualization platform
that 1s capable of executing a host operating system 203 and
guest operating systems 201-202. Platform 204 can be of a
personal computer (PC), mainirame, handheld device, por-
table computer, set-top box, or any other computing systems.
Platform hardware 204 can include a processor, memory,
input/output (I/0) devices, which can be, for example, a key-
board, a cursor control device, a display device, eftc.

Furthermore, virtual graphics devices 206 represent graph-
ics devices of one or more clients such as clients 101-102.

US 9,135,024 B2

7

Specific characteristics of a client display device may be
emulated via a virtual graphics device and/or a virtual display
driver at the host. Fach virtual graphics device may be
adapted to emulate certain graphics operations, such as draw-
ing lines, ellipses, 11ll areas, and displayed images, etc. Each
virtual graphics device may be communicatively coupled to a
client via a communication channel (e.g., socket connection).
One or more virtual graphics devices may be associated with
an individual client.

Further, according to one embodiment, a desktop opti-
mizer (not shown) 1s utilized to further fine tune the environ-
ment for desktops. The desktop optimizer includes a memory
optimizer (not shown) that allows memory page sharing
across multiple virtual desktops (e.g., desktops 207-208) on
the same server. In one embodiment, the memory optimizer
scans the memory for identical memory pages and maintains
only one copy. It shares memory pages at the host level
(transparently to the guests) 1in a secure manner, and thereby
helps significantly increase the density of virtual desktops on
the server. The desktop optimizer further includes an adaptive
remote rendering module (not shown) that in some cases
processes graphics at the host level, 1 the client 1s not capable
of rendering graphics. That 1s, graphics rendering processes
may be performed at the client, host, or a combination of both
dependent upon a specific operating environment (e.g., net-
work traffic condition and/or client processing power, etc.)
Other configurations may exist. Note that system 200 of FIG.
2 1s shown for 1llustration purposes only. Other configurations
may exist. For example, the virtual media player or media
player proxy may be implemented within host OS 203.

FIG. 3 1s a flow diagram illustrating an example of a
method for providing a virtual desktop according to one
embodiment of the mvention. Note that process 300 may be
performed by processing logic which may include software,
hardware, or a combination of both. For example, process 300
may be performed by system 200 of FI1G. 2. Referring to FIG.
3, at block 301, a desktop application 1s executed within a
virtual machine of a server to host a virtual desktop environ-
ment accessed by a remote client as a virtual desktop over a
network. At block 302, processing logic detects that a multi-
media data object 1s about to be rendered or executed by the
desktop application. At block 303, an 1image representing a
snapshot of a virtual desktop 1image 1s captured without ren-
dering or executing the multimedia data object locally. The
image 1s transmitted to the client to be rendered as a virtual
desktop at the client. If the multimedia data object 1s stored at
a remote location, at block 304, a link to the remote location
1s transmitted to the client to allow the client to download the
multimedia data object and render/execute the same locally
within the client. Alternatively, at block 303, the multimedia
data object may be downloaded from the remote location and
transmitted to the client for local rendering/execution within
the client.

FIG. 4 1s a flow diagram illustrating an example of a
method for rendering a virtual desktop according to one
embodiment of the invention. Note that processing 400 may
be performed by processing logic which may include soft-
ware, hardware, or a combination of both. For example, pro-
cess 400 may be performed by any of rendering agents 112-
113 of clients 101-102 of FIG. 1. Referring to FIG. 4, at block
401, a stream of data objects 1s received at a client from a {irst
remote server over a network. Each data object represents a
snapshot of a virtual desktop 1image executed within the first
remote server. In addition, at block 402, a link i1s received
from the first remote server and a multimedia data object 1s
downloaded from a second remote server via the link. Alter-
natively, at block 403, the multimedia data object 1s received

10

15

20

25

30

35

40

45

50

55

60

65

8

from the first remote server without having the multimedia
data object being executed at the first remote server. At block
404, the stream of data objects 1s rendered at the client to
create a virtual desktop environment, which 1s presented to a
thin client application (e.g., browser) at the client. At block
405, the multimedia data object 1s rendered or executed
locally within the client, generating a result, and at block 406,
the display result 1s superimposed on the top of the virtual
desktop.

FIG. 5 1s a block diagram illustrating an example of a
kernel-based virtual machine architecture which may be used
with an embodiment of the imnvention. For example, architec-
ture 800 may be implemented as part of virtual machine
architecture as shown 1n FIG. 2. User space application 804
may be implemented as part of virtual desktop application
while hardware emulator may include a desktop optimizer
described above.

Referring to FIG. 5, virtual machine architecture 800 1s
also referred to as kernel-based virtual machine (KVM) vir-
tualization. The approach of KVM architecture 1s to turn a
host operating system’s kernel into a hypervisor using a ker-
nel module. The kernel module exports a device (e.g., /dev/
kvm 1n a Linux environment), which enables a guest mode of
the kernel (in addition to the traditional kernel and user
modes). In the guest mode, each VM has its own address
space separate from that of the kernel or any other VM that 1s
running. Because the standard OS kernel (e.g., Linux kernel)
1s the hypervisor, 1t benefits from the changes to the standard
kernel (e.g., memory support, scheduler, etc.) Optimizations
to these standard components benefit both the hypervisor
(e.g., the host operating system) and the guest operating sys-
tems.

Referring to FIG. 5, at the bottom 1s a hardware platform
803 to be virtualized. Running on the bare hardware 803 1s the
hypervisor (e.g., the host OS kernel 802 with KVM module
806). This hypervisor looks just like a regular kemel (e.g.,
Linux kernel) on which other applications 807 can be
executed. But this kernel 802 can also support guest operating
systems 801 running 1n a guest mode. The guest mode 1s used
for execution of a guest operating system code. Typically,
kernel mode represents the privileged mode for code execu-
tion, while user mode represents the non-privileged mode (for
programs runmng outside of the kernel).

Guest mode exists to execute guest operating system code
but only for code that 1s non-1/0. The guest mode provides to
the standard modes, so that a guest operating system can run
in guest mode but also support the standard kernel and user
modes for 1ts kernel and user-space applications (e.g., appli-
cation 804). The user mode of a guest operating system exists
to perform 1/0, which 1s independently managed.

Performing I/O from a guest operating system 801 is pro-
vided with a hardware emulator 805 (e.g., QEMU compatible
emulator). Emulator 805 may be used to virtualize an entire
computing environment including disks, graphic adapters,
and network devices, etc. Any I/0O requests a guest operating
system 801 makes are intercepted and routed to the user mode
to be emulated by emulator 805. KVM provides virtualization
of memory through the exported device (e.g., /dev/kvim 1n a
Linux environment). Each guest operating system has 1ts own
address space that 1s mapped when the guest 1s instantiated.
Other configurations may exist.

FIG. 6 1s a block diagram 1llustrating a data processing,
system which may be used with an embodiment of the inven-
tion. For example, system 1000 may be implemented as part
of a client and/or a server described above. System 1000
illustrates a diagrammatic representation of a machine 1n the
exemplary form of a computer system within which a set of

US 9,135,024 B2

9

instructions, for causing the machine to perform any one or
more ol the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines 1n a LAN, an
intranet, an extranet, or the Internet. The machine may oper-
ate 1n the capacity of a server or a client machine in client-
server network environment, or as a peer machine in a peer-
to-peer (or distributed) network environment. The machine

may be a personal computer (PC), a tablet PC, a set-top box
(STB), a Personal Digital Assistant (PDA), a cellular tele-

phone, a web appliance, a server, a network router, switch or
bridge, or any machine capable of executing a set of mnstruc-
tions (sequential or otherwise) that specily actions to be taken
by that machine. Further, while only a single machine 1s
illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly execute
a set (or multiple sets) of mnstructions to perform any one or
more of the methodologies discussed herein.

The exemplary computer system 1000 includes a process-
ing device (processor) 1002, a main memory 1004 (e.g.,

read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM

(SDRAM) or Rambus DRAM (RDRAM), etc.), a static
memory 1006 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 1016,
which communicate with each other via a bus 1008.

Processor 1002 represents one or more general-purpose
processing devices such as a microprocessor, central process-
ing unit, or the like. More particularly, the processor 1002
may be a complex instruction set computing (CISC) micro-
processor, reduced instruction set computing (RISC) micro-
processor, very long mstruction word (VLIW) microproces-
sor, or a processor implementing other instruction sets or
processors implementing a combination of instruction sets.
The processor 1002 may also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the like.
The processor 1002 1s configured to execute the mstructions
1026 for performing the operations and steps discussed
herein.

The computer system 1000 may further include a network
interface device 1022. The computer system 1000 also may
include a video display unit 1010 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 1012 (e.g., a keyboard), a cursor control device 1014
(e.g., a mouse), and a signal generation device 1020 (e.g., a
speaker).

The data storage device 1018 may include a machine-
accessible storage medium 1024 on which 1s stored one or
more sets of instructions 1026 (e.g., software) embodying any
one or more of the methodologies or functions described
herein. The software may also reside, completely or at least
partially, within the main memory 1004 and/or within the
processor 1002 during execution thereol by the computer
system 1000, the main memory 1004 and the processor 1002
also constituting machine-accessible storage media. The soit-
ware may further be transmitted or received over a network
via the network interface device 1022.

Thus, method and apparatus for multimedia data object
traffic redirection 1n a virtual desktop environment have been
described herein. Some portions of the preceding detailed
descriptions have been presented 1n terms of algorithms and
symbolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled 1n the art. An algorithm 1s here,
and generally, conceived to be a self-consistent sequence of

10

15

20

25

30

35

40

45

50

55

60

65

10

operations leading to a desired result. The operations are
those requiring physical manipulations of physical quantities.
Usually, though not necessarily, these quantities take the form
of electrical or magnetic signals capable of being stored,
transierred, combined, compared, and otherwise manipu-
lated. It has proven convenient at times, principally for rea-
sons of common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mining” or “displaying™ or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories mto other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Embodiments of the present mvention also relate to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes, or
it may comprise a general-purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored 1n a com-
puter readable medium. A machine-readable medium
includes any mechamism for storing or transmitting informa-
tion 1n a form readable by a machine (e.g., a computer). For
example, a machine-readable (e.g., computer-readable)
medium includes a machine (e.g., a computer) readable stor-
age medium (e.g., read only memory (*ROM™), random
access memory (“RAM™), magnetic disk storage media, opti-
cal storage media, flash memory devices, etc.), a machine
(e.g., computer) readable transmission medium (electrical,
optical, acoustical or other form of propagated signals (e.g.,
carrier waves, inirared signals, digital signals, etc.)), etc.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
form the required method operations. The required structure
for a variety of these systems will appear from the description
above. In addition, embodiments of the present invention are
not described with reference to any particular programming
language. It will be appreciated that a variety of programming
languages may be used to implement the teachings of
embodiments of the mnvention as described herein.

In the foregoing specification, embodiments of the mven-
tion have been described with reference to specific exemplary
embodiments thereotf. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of embodiments of the invention as
set forth 1n the following claims. The specification and draw-
ings are, accordingly, to be regarded 1n an illustrative sense
rather than a restrictive sense.

What 1s claimed 1s:

1. A method comprising:

transmitting, by a processing device of a host server
executing a virtual machine, a stream of data objects to
a client over a network, the stream being generated by a
desktop application of the processing device, represent-
ing a snapshot of a display output of the desktop appli-
cation of the processing device, the data objects to be
rendered at the client;

US 9,135,024 B2

11

detecting, by the processing device of the host server, that
a media object 1s to be rendered from the desktop appli-
cation;
determining, by the processing device of the host server, in
view ol at least one of a network condition or a process-
ing bandwidth condition to transmit a link to a remote
server comprising the media object, wherein the net-
work condition or the processing bandwidth condition 1s
monitored by a virtual media player executed by the
virtual machine; and

transmitting, in response to the detecting and determining,
the link to the remote server comprising the media object
to the client to allow the client to download the media

object from the remote server and render the media

object at the client without having to render the media
object locally by the processing device of the host server

and without having to transmit a display result of the
rendering from the processing device of the host server
to the client over the network.

2. The method of claim 1, further comprising:

determining a window location within a desktop 1image
representing the snapshot of the display output of the
desktop application 1n which the media object 1s sup-
posed to be rendered and displayed; and

transmitting the window location to the client such that
when the media object 1s rendered at the client, a display
result of the rendering 1s displayed and superimposed
approximately within the window location relative to the
desktop image at the client.

3. The method of claim 2, further comprising;

constructing the link to the media object comprising a
reference to a storage location of the remote server in

which the media object 1s stored.

4. The method of claim 2, wherein the media object 1s a
Flash® object, and wherein the Flash® object 1s rendered at
the client using a Flash® player.

5. The method of claim 1, wherein the desktop application
1s executed within a guest operating, system (OS) within the
virtual machine (VM) of the processing device, wherein the
guest OS and the VM are hosted by a host OS which virtual-
1zes underlying hardware to the guest OS and the VM.

6. The method of claim S5, wherein the guest OS and the VM
are running as a process 1n a user space of the host OS,
wherein the host OS comprises a kernel module runming
within a kernel space of the host OS which enables kernel of
the host OS to be a hypervisor for managing the VM, and
wherein the guest OS comprises a hardware emulator for
emulating the underlying hardware which 1s exposed by the
kernel module.

7. The method of claim 5, wherein the desktop image 1s
presented by a thin client application running within the client
as part of a virtual desktop at the client.

8. A non-transitory computer readable storage medium
including 1nstructions that, when executed by a processing
device, cause the processing device to:

transmit, by the processing device of a host server execut-

ing a virtual machine, a stream of data objects to a client
over a network, the stream being generated by a desktop
application ol the processing device representing a snap-
shot of a display output of the desktop application, the
data objects to be rendered at the client;

detect, by the processing device, that amedia object is to be

rendered from the desktop application;

determine 1n view of at least one of a network condition to

transmit a link to a remote server comprising the media
object, wherein the network condition or the processing

10

15

20

25

30

35

40

45

50

55

60

65

12

bandwidth condition 1s monitored by a virtual media

player executed by the virtual machine; and
transmit, 1n response to the detecting and determining, the

link to the remote server comprising the media object to
the client to allow the client to download the media
object from the remote server and render the media
object at the client without having to render the media
object locally by the processing device of the host server
and without having to transmit a display result of the
rendering from the processing device of the host server

to the client over the network.

9. The non-transitory computer readable storage medium
of claim 8, the processing device to:

determine a window location within a desktop 1mage rep-

resenting a snapshot of the display output of the desktop
application 1n which the media object 1s supposed to be
rendered and displayed; and

transmit the window location to the client such that when

the media object 1s rendered at the client, a display result
of the rendering 1s displayed and superimposed approxi-
mately within the window location relative to the desk-
top 1mage at the client.

10. The non-transitory computer readable storage medium
of claim 9, the processing device to:

construct the link to the media object comprising a refer-

ence to a storage location of the remote server in which
the media object 1s stored.

11. The non-transitory computer readable storage medium
of claim 9, wherein the media object 1s a Flash® object, and
wherein the Flash® object 1s rendered at the client using a
Flash® player.

12. The non-transitory computer readable storage medium
of claim 8, wherein the desktop application 1s executed within
a guest operating system (OS) within the virtual machine
(VM), wherein the guest OS and the VM are hosted by a host
OS which virtualizes underlying hardware to the guest OS
and the VM.

13. The non-transitory computer readable storage medium
of claim 12, the guest OS and the VM to execute as a process
in a user space of the host OS, wherein the host OS comprises
a kernel module running within a kernel space of the host OS
which enables kernel of the host OS to be a hypervisor for
managing the VM, and wherein the guest OS comprises a
hardware emulator for emulating the underlying hardware
which 1s exposed by the kernel module.

14. The non-transitory computer readable storage medium
of claim 12, wherein the 1image 1s presented by a thin client
application to execute within the client as part of a virtual
desktop at the client.

15. A system comprising:

a memory comprising instructions; and

a processing device of a host server, the processing device

operatively coupled to the memory to execute the
instructions to:
transmit a stream of data objects to a client over a network,
the stream being generated by a desktop application of
the processing device representing a snapshot of a dis-
play output of the desktop application of the processing
device, the data objects to be rendered at the client,

detect that a media object 1s to be rendered from the desk-
top application,

determine 1n view of at least one of a network condition to

transmit a link to a remote server comprising the media
object, wherein the network condition or the processing
bandwidth condition 1s monitored by a virtual media
player executed by the virtual machine, and

US 9,135,024 B2
13

transmit the link to the remote server comprising the media
object to the client to allow the client to download the
media object from the remote server and render the
media object at the client without having to render the
media object locally by the processing device of the host 5
server and without having to transmit a display result of
the rendering from the processing device of the host
server to the client over the network.

16. The system of claim 15, the processing device to:

determine a window location within a desktop 1mage rep- 10
resenting a snapshot of the display output of the desktop
application 1n which the media object 1s supposed to be
rendered and displayed,

transmit the window location to the client such that when
the media object 1s rendered at the client, a display result 15
of the rendering 1s displayed, and

superimpose approximately within the window location
relative to the desktop 1image at the client.

17. The system of claim 16, the processing device to:
construct the link to the detected media object comprising 20
a reference to a storage location of the remote server 1in

which the media object 1s stored.

¥ ¥ # ¥ o

14

	Front Page
	Drawings
	Specification
	Claims

