US009128702B2
12 United States Patent (10) Patent No.: US 9,128,702 B2
Michael et al. 45) Date of Patent: Sep. 8, 2015
(54) ASYNCHRONOUS MESSAGE PASSING OTHER PUBLICATIONS

(75) Inventors: David A. Michael, Louisville, CO (US);

Darin Fisher, San Carlos, CA (US);
Brett E. Wilson, Sunnyvale, CA (US)

(73)

(%)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 167 days.

(21) 13/428,970

(22)

Appl. No.:

Filed: Mar. 23, 2012

Prior Publication Data

US 2015/0193286 Al Jul. 9, 2015

(65)

Int. CI.
GO6F 9/44
GO6F 9/54

U.S. CL.
CPC . GO6F 8/31(2013.01); GO6F 9/545 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(51)
(2006.01)
(2006.01)

(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

7,929,523 B2 4/2011 Shenfield etal. 370/389
2001/0049749 Al1* 12/2001 Katsuragi et al. 709/248
2002/0008703 Al* 1/2002 Merrll etal. 345/473
2003/0033443 Al 2/2003 Igotti
2006/0225053 A1 10/2006 Lakshman et al.
2007/0100967 Al* 5/2007 Smuthetal. 709/219
2010/0014437 Al1* 1/2010 Wangetal. 370/252
2010/0153692 Al1* 6/2010 Kotaetal. 712/222
2010/0165392 Al1* 7/2010 Yabecccoooevvnnninnnn, 358/1.15
2011/0085667 Al* 4/2011 Berriosetal. 380/282
2012/0020466 Al1* 1/2012 Dunsmuir 379/88.04

5002

‘Mozilla developer center’ [online]. “Mozilla Developer Preview
Now Available With Out-of-Process Plugins,” 2010, [retrieved on
May 24, 2012]. Retrieved from the Internet: URL: < https://devel-
oper.mozilla.org/devnews/index.php/2010/03/03/Mozilla-devel-
oper-preview-now- >, 3 pages.

‘Mozilla Developer Network’ [online]. “Functions,” 2012, [retrieved

on May 24, 2012]. Retrieved from the Internet: URL: <https://devel-

oper.mozilla.org/en/Core_ JavaScript_ 1.5_ Guide/
Functions#Defining Functions>. 14 pages.

‘Mozilla Developer Network’ [online]. “Scripting plugins,” 2012,
[retrieved on May 24, 2012]. Retrieved from the Internet:

URL:<https://developer.mozilla.org/En/Gecko_ Plugin_ API__
Reference:Scripting_ plugins>. 5 pages.

* cited by examiner

Primary Ikxaminer — Don Wong

Assistant Examiner — Mohammad Kabir
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

This specification describes technologies relating to software
execution. A computing device includes a processor. An oper-
ating system 1ncludes an execution environment in which
applications can execute computer-specific commands. A
web-browser application includes a scripting environment for
interpreting scripted modules. The web-browser application
turther 1includes a native environment in which native mod-
ules can execute computer-specific commands. The web-
browser application further includes an interface between the
scripting environment and the native environment. The inter-
face includes functions to asynchronously pass data objects
by value, from one of the scripting environment and the native
environment, to the other of the scripting environment and the
native environment.

20 Claims, 5 Drawing Sheets

_|_I_l_

Input/Output

Input/Output
Devices

US 9,128,702 B2

Sheet 1 of S

Sep. 8, 2015

U.S. Patent

iwjy-aweb

1OAI9S Woo ajdwexs mMmm

1 Old

¢0!}

No&.

U.S. Patent Sep. 8, 2015 Sheet 2 of 5 US 9,128,702 B2

200

Computer

202

Processor

204 Operating System

206 Execution Environment

Text Editor 200 Email Application
210

212 Browser

214 Scripting Environment

Plugin Script
Module

222 Interface

21 Native Environment

Webpage Plugin Native

Native Module
Module

FIG. 2

US 9,128,702 B2

Sheet 3 of 5

Sep. 8, 2015

U.S. Patent

¢ Ol

JUSWUOIIAUT SANEN

109[qO e1eq

109[qO e1eq

81¢ 0¢¢ 9|NPON

SAIEN 103100 ejeq

109[qO ejeQ 103(qO eleQ
NNN Hom.ﬁomﬁo é_oc_amb: Hom.ﬁogmo

|dV Aleuonolg

90¢

109[q0 eleq

SRIINEII] Alelql #oe

108[qO eleQ

474 9l¢ S|NPON
1d1I0S

103[qO eleQ

Alowspy Bundiuos gge

JuswiuoJdiaug bunduog

U.S. Patent Sep. 8, 2015 Sheet 4 of 5 US 9,128,702 B2

g

Execute Application In

402 Execution
Environment
Interpret Scripted
404 Module in Scripting
Environment
406 Execute Native

Module in Native
Environment

Asynchronously Pass
408 Data Object By Value
(include 14 and 15

End

FIG. 4

U.S. Patent Sep. 8, 2015 Sheet 5 of 5 US 9,128,702 B2

Input/Output

Input/Output

FIG. 5

S _li
F’?_IE_I
—
Memory
980

Storage Device

US 9,128,702 B2

1
ASYNCHRONOUS MESSAGE PASSING

BACKGROUND

The present disclosure relates to software execution.

A browser plugin 1s a separate software module that modi-
fies the browser 1nterface and the browser behavior. Conven-
tional browsers are configured to provide a plugin interface
for runtime support of plugins. A browser can expose a subset
of 1ts capabilities to be used directly at runtime by 1ts sup-
ported plugins. Netscape Plugin Application Programming,
Interface (NPAPI) 1s an example of a conventional browser
plugin interface used by many web browsers.

SUMMARY

This specification describes technologies relating to soft-
ware execution.

A web-browser or other application can interpret scripted
modules and execute native modules 1n a managed environ-
ment. To facilitate communication between the scripted mod-
ules and the native modules, an interface of the web-browser
can pass data objects between the modules.

The 1nterface can pass the data objects by value so that
sending the data object creates a copy. As a result, the sending
and recerving modules will both have mndependent copies of
the data object. The interface can also pass the data objects
asynchronously. As a result, the sending and recerving mod-
ules may be timed independently and the sending module
does not need to wait for the receiving module to accept the
data object before continuing operation.

In general, one aspect of the subject matter described in this
specification can be embodied in a system that includes a
computing device that includes a processor. The system fur-
ther includes an operating system that includes an execution
environment 1n which applications can execute computer-
specific commands. The system further includes a web-
browser application. The web-browser application includes a
scripting environment for interpreting scripted modules. The
web-browser application further includes a native environ-
ment in which native modules can execute computer-specific
commands. The web-browser application further includes an
interface between the scripting environment and the native
environment. The interface includes functions to asynchro-
nously pass data objects by value, from one of the scripting
environment and the native environment, to the other of the
scripting environment and the native environment.

Implementations can include any, all, or none of the fol-
lowing features. The web-browser application further
includes a scripted module iterpreted in the scripting envi-
ronment. The scripted module 1s configured to asynchro-
nously send a first data object, through the interface, to the
natrve module by value without halting interpretation of the
scripted module until the first data object 1s received by the
native module. The scripted module 1s configured to asyn-
chronously receive a second data object, through the inter-
face, from the native module by value. A native module 1n the
native environment 1s configured to asynchronously receive
the first data object, through the interface, from the native
module by value. The native module 1s configured to asyn-
chronously send the second data object, through the interface,
to the native module by value without halting execution of the
natrve module until the second data object 1s received by the
scripted module. The scripted module 1s written 1n a scripting
language and the first data object and the second data objects
are of types specified by the scripting language. The first data
object and the second data object are of dictionary type. The

10

15

20

25

30

35

40

45

50

55

60

65

2

scripted module 1s interpreted in a first process and the native
module 1s executed 1n a second process. The data object 1s a
serialized string. Web-browser application further includes a
dictionary of values. The dictionary 1s available to the script-
ing environment and to the native environment. The data
object 1s an index of a value of the dictionary. The functions to
asynchronously pass data objects by value include functions
to recerve, from one of the scripting environment and the
native environment, a reference to a memory location con-
taining a data object; create a copy of the data object in a
second memory location; and provide, to the other of the
scripting environment and the native environment, a refer-
ence to the second memory location. The functions to asyn-
chronously pass data objects by value include functions to:
receive, from one of the scripting environment and the native
environment, a data object; store the data object until the data
objects are requested; and provide, to the other of the script-
ing environment and the native environment, the data object
responsive to a request for the data object from the other of the
scripting environment and the native environment. The com-
puter-specific commands are processor-specific commands.

In general, one 1nnovative aspect of the subject matter
described 1n this specification can be embodied 1n methods
that include the actions of executing, on a processor, an appli-
cation’s computer-specific commands 1n an operating sys-
tem’s execution environment; interpreting a scripted module
in a web-browser’s scripting environment; executing, on the
processor, a native module’s computer-specific commands 1n
the web-browser’s native environment; and asynchronously
passing, from one of the scripting environment and the native
environment, a data object by value from the other of the
scripting environment and the native environment, from one
of the scripting environment and the native environment, to
the other of the scripting environment and the native environ-
ment.

The foregoing and other embodiments can each optionally
include one or more of the following features, alone or 1n
combination. The scripted module 1s written 1n a scripting
language and the data object 1s of a type specified by the
scripting language. The first data object and the second data
object are of a dictionary type. The scripted module 1s inter-
preted 1n a first process and the native module 1s executed 1n
a second process. The data object 1s a serialized string. Asyn-
chronously passing the data object includes: receving, from
one of the scripting environment and the native environment,
the data object; storing the data object 1n a library in associa-
tion with an 1ndex; and providing, to the other of the scripting
environment and the native environment, the mdex. Asyn-
chronously passing a data object by value includes: receiving,
from one of the scripting environment and the native environ-
ment, a reference to a memory location contaiming a data
object; creating a copy of the data object 1n a second memory
location; and providing, to the other of the scripting environ-
ment and the native environment, a reference to the second
memory location. Asynchronously passing a data object by
value includes: receiving, from one of the scripting environ-
ment and the native environment, a data object; storing the
data object until the data object 1s requested; and providing, to
the other of the scripting environment and the native environ-
ment, the data object responsive to a request for the data
object from the other of the scripting environment and the
native environment. The computer-specific commands are
processor-specific commands.

In general, one 1nnovative aspect of the subject matter
described 1n this specification can be embodied 1n methods
that include the actions of executing, on a processor, an appli-
cation’s computer-specific commands 1n an operating sys-

US 9,128,702 B2

3

tem’s execution environment; interpreting a scripted module
in a web-browser’s scripting environment; executing, on the
processor, a native module’s computer-specific commands in
the web-browser’s native environment; receiving, from one
of the scripting environment and the native environment, a
reference to a memory location contaiming a data object;
creating a copy of the data object in a second memory loca-
tion; and providing, to the other of the scripting environment
and the native environment, the copy of the data object
responsive to arequest for the data object from the other of the
scripting environment and the native environment.

Various implementations of the subject matter described
here may provide one or more of the following advantages.
For example, a browser may allow a native code portion of a
web page to be executed 1n a managed environment. As such,
up to date software may be dynamically delivered through
web browsing. A web browser that asynchronously passes
data object by value between scripted modules and native
modules can permit more tlexible and etficient design of both
the scripted modules and native modules. For example, by
passing a data object by value, an entire copy of a composite
data structure may be passed. As such, each individual ele-
ment of the composite data structure do not necessarily need
to be passed 1n individual messages. Module developers may
know that code in a module will not be reentered while
blocked waiting for a result. As such, module developers are
supported to write modules that are easier to design correctly.
A native module can be prevented from causing a web page to
hang during operations that take a long time to complete. For
example, an interface passing a data object asynchronously
can prevent a scripted module from hanging while a native
module handles a very large incoming data object.

The details of one or more embodiments of the invention
are set forth 1n the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram of an example of a system 1n which a
game 1s served 1 a webpage.

FIG. 2 1s a diagram of an example of a computer system
containing a browser with a native environment.

FI1G. 3 1s a diagram of an example of an interface between
a scripting environment and a native environment.

FI1G. 4 1s a flowchart of an example of a process for execut-
ing native code.

FIG. 5 1s a schematic diagram that shows an example of a
computing system that can be used 1n connection with com-
puter-implemented methods and systems described 1n this
document.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 11s adiagram of an example of a system 100 in which
a game 1s served 1n a webpage. Here, a user 102 1s accessing
a webpage that has an embedded video game. The video game
has a computationally complex three-dimensional (3D)
world with moving elements that are rendered onto a two-
dimensional (2D) viewing surface. To process the moving
clements and the rendering, the video game has a game
engine that runs native code on the user’s computer, produc-
ing process throughput sufficient to play the game at a desir-
able speed and quality.

10

15

20

25

30

35

40

45

50

55

60

65

4

To load the game, the user 102 uses a web-browser 104 on
a computer 106 to request a webpage 108 from a web server
110 over the network 112. In this example, the computer 1s a
personal computer, such as a desktop or laptop. However, 1t
will be understood that any type ol computer suitable to
execute an application may be used in other example. These
other computers include, but are not limited to, tablet com-
puters, phones, televisions, game consoles, game cabinets,
and kiosk machines.

At the user’s direction, the web-browser 104 can request
the webpage 108 from the web server 110. The request 1s
passed over the network 112, which may include any suitable
wired or wireless network such as a local area network
(LAN), awide areanetwork (WAN) and the Internet. The web
server 110 can respond to the request by sending a copy of the
webpage 108 back to the web-browser 104 over the network
112.

The webpage 110 1n this example 1s a hypertext markup
language (HI'ML) document that includes at least a scripted
module 114 and a native module 116. The HITMUL portions of
the webpage 110 define many portions of the webpage, for
example, the layout of elements in the webpage when it 1s
displayed by a web-browser. One such eclement of the
webpage 110 1s a game created by the scripted module 114.
The scripted module 114 in this example 1s a JavaScript
program, although any appropriate scripting language that 1s
interpreted by a web-browser may be used. The scripted
module 114 can handle many of the functions of the game that
are not computationally complex, such as user log in, input
handling, and an 1mn-game chat with other players.

More complex or time sensitive processes like rendering a
3D world and collision detection can be handled by a game
engine created using the native module 116. In this example,
the native module 1s written 1n c++, although any appropnate
programming language that 1s executed by the web-browser
may be used. The native module may be, or may include, off
the shell game engines and graphics libraries, e.g., 1d Tech 3
or Panda30 and OpenGL or Direct3D, respectively.

When the web-browser 104 receives the webpage 108, the
web-browser displays the web-page 104. Displaying the web-
page 104 can include one or more of rendering the HIML,
interpreting the scripted module 114, or executing the native
module 116. The web-browser 104 has a number of mecha-
nisms to protect the computer 106 from any potential mali-
cious or erroneous functionally of the web-page 108. For the
HTML rendering, user-options may be set to restrict behavior
that the user 102 may not want, such as storing cookies. For
the script interpreting, the scripting language or interpreter
may not support potentially dangerous functionality like
reading or writing to a hard drive. For the native code execu-
tion, the web-browser 104 may execute the native module 116
in a sandbox. A sandbox 1s a managed environment 1n which
a subset of the computer’s 106 resources are available. For
example, the sandbox may have access to only one directory
of disk memory, a pre-allocated memory buffer, and a subset
ol operating system or processor application programming
interfaces (APIs).

The native module 116, and any other untrusted native
code, may execute 1n the sandbox at, or near, the speed of
native code executed outside of the sandbox. By executing the
natrve module 116 1n the sandbox, the browser can protect the
rest of the computer 106 from untrusted native code without
significantly diminishing the performance of the native mod-
ule 116. As such, the developers of the game are able to embed
games and other resources into webpages for display on a
browser, and a user 1s able access the game without worrying
that 1t will affect the user’s computer.

US 9,128,702 B2

S

Although a video game was used 1n this example, the
system 100 can also be used for distributing other types of
applications. Another example includes text-to-speech 1n
which a scripted module sends page text to a native module
and the native module generates a sound emulating a voice
speaking the text, an embedded interpreter 1n which an arbi-
trary scripting language 1s used to create the scripted module
and the native module 1s an interpreter for the arbitrary script-
ing language. Other uses include, but are not limited to, media
players that are able to use hardware acceleration, remote
desktop and virtualization services, computer aided drafting
programs, and teleconierencing applications.

FIG. 2 1s a diagram of an example of a computer system
200 contaiming a browser with a native environment. The
computer system 200 may be used for, for example, down-
loading and displaying a webpage with a scripted module and
a native module.

The computer system 200 includes hardware components
including, but not limited to, a processor 202. The processor
202 can be configured to carry out 1nstructions ol computer
programs and to perform arithmetic, logical, and input/output
operations of the computer system 200. Other hardware com-
ponents that may be included 1n the computer system 200
include, but are not limited to, main memory, disk memory,
input/output hardware, and network connections (not shown
tfor clarity). The hardware of the computer system 200 runs an
operating system 204 that manages computer hardware
resources and provides common services for application soft-
ware. The operating system 204 may be a general purpose
operating system that 1s compatible across a variety of hard-
ware configurations, or the operating system 204 may be
system-specific. Some of the tasks that the operating system
204 may be responsible for include, but are not limited to,
user authentication, windowing, and managing network traf-
fic.

The operating system 204 can create an execution environ-
ment 206 for executing one or more applications. The execu-
tion environment 206 can represent the conditions, policies,
and tools that the operating system 204 provides to applica-
tions executing in the operating system 204. Although one
execution environment 206 1s shown, some computer systems
200 can create multiple execution environments 206. For
example, a computer system 200 may have many users, and
the computer system 200 can create an execution environ-
ment for each user. The execution environments 206 may not
all be the same. For example, an execution environment 206
for an administrative user may have more permissions
enabled than an execution environment 206 for a non-admin-
istrative user.

Applications that can execute 1n the execution environment
206 can include user-facing applications, for example, an
email application 208, a text editor 210, and a browser 212.
Other types of application that are not user-facing, e.g., utili-
ties daemons, may also execute 1n the execution environment
206. The applications in the execution environment 206 can
execute computer-specific commands. Computer-specific
commands 1nclude any function, library, API, or other com-
mand that 1s compatible with the computer system 200, but
that may not be compatible with other computer systems.

One type of computer-specific command 15 a processor-
specific command. Processor-specific commands are com-
mands that are associated with one or more processors. Often,
the processor-specific commands are part of an instruction set
associated with a processor architecture, though not always.
One group of processor-specific mstructions 1s the x86 family
of mstruction sets. Example processor-specific instruction 1n
the x86 family of instruction sets include AND for a logical

10

15

20

25

30

35

40

45

50

55

60

65

6

“and”, CBW {for converting a byte to a word, ST1 for setting
an 1nterrupt flag, and SUB {for subtraction. Other example
processor 1struction sets mclude the ARM instruction set
and the PowerPC 1nstruction set.

Another type of computer-specific command 1s an operat-
ing system-specific command. Operating system-speciiic
commands are commands that are associated with one or
more operating systems. Operating system-specific com-
mands are often organized into APIs related to a particular
concept or task. For example, some Unix-based operating
systems include an API for sockets and another API for shared
memory management. Other operating system-specific com-
mands include files and features often or always found in an
operating system. For example, the /dev/random file 1n some
Unix-based operating systems servers as a pseudorandom
number generator.

Other types of computer-specific commands can exist. For
example, a hardware device connected to the computer sys-
tem 200 may have associated commands. The complete set of
all computer-specific commands available 1n the execution
environment can include processor-specific commands, oper-
ating system-specific commands, and other commands. The
number and type of processor-specific commands may
depend on the configuration of the computer system 200, as
well as other factors.

A shown 1n FIG. 2, the browser 212 executes 1n the execu-
tion environment 206 and may access some or all of the
computer-specific commands of the execution environment
204. The browser 212 can load and display documents, e.g.,
files or other data, to a user. In doing so, the browser 212 may
need to render, interpret, and or execute portions of the docu-
ments. Examples of the browser 212 include, but are not
limited to, file browsers, document editors, and web-brows-
ers.

The browser 212 can create a scripting environment 214 for
interpreting received scripted modules 216. The scripted
modules 216 may come from a variety of sources. For
example scripted module 216a may be a component of a
document being loaded and displayed by the browser 212 and
scripted module 2165 may be a plugin of the browser 212 The
scripted modules 216 are written 1n a scripting language e.g.,
JavaScript or Perl and may contain either the source code of
the scripted modules 216 or bytecode created from the source
code.

The browser 212 can interpret the scripted modules 216 by
reading each command of source code or bytecode and per-
forming the associated action or actions within the execution
environment 206. In some implementations, the scripting
language limaits the types of commands that are possible. The
browser 212 can enforce security policies that prevent inter-
pretation of commands thatmay be malicious or unwanted. In
some implementations, interpreting the scripted modules 216
1s significantly slower than executing applications in the
execution environment 206. Additionally, some of the com-
mands that are not available 1n a scripting language may be
desirable for a particular task.

The browser 212 can also create a native environment 218
for executing recetved native modules 220. The native mod-
ules 220 may come from a variety of sources. For example,
natrve module 220aq may be component of a document being
loaded and displayed by the browser 212 and native module
2205 may be a plugin of the browser 212. Native modules, as
the term 1s used here, refers to modules that can be configured
to execute computer-specific commands. The native modules
220 are written 1 a computer-specific programming lan-
guage such as ¢ or c++ and may contain binary data created by
compiling the source code into computer-specific commands.

US 9,128,702 B2

7

The native environment 218 can include a sandbox for
executing the native modules 220. The sandbox may be an
environment that 1s similar to an execution environment 206
that limits the types of computer-specific commands that are
permitted. For example, the native environment 218 may
intercept the commands and messages and of the native mod-
ules 220 and prevent some of the commands and messages. In
some 1mplementations, a white list of permitted commands
and messages 1s established for a native environment 218 and
only those commands and messages are permitted. In some
implementations, a black list of restricted commands and
messages 1s established for the native environment 218 and
those commands are denied. Other configurations of the
native environment are possible. For example, the native envi-
ronment 218 may prevent cross-process messaging and may
1solate soitware faults.

In some implementations, executing the native modules
216 1n the native environment 218 may be as fast, or nearly as
fast, as executing applications 1n the execution environment
206. This execution may be faster than interpreting scripted
modules 216 1n the scripting environment 214. Additionally,
the computer-specific programming languages used to write
natrve modules 220 often do not have the same limitations on
the types of commands available 1n a scripting language.

Scripted modules 216 can be associated with one or more
native modules 220 to gain access to computer-specific com-
mands that are not available 1n the scripting environment 214
and/or to increase the speed of computation for a task. For
example, a scripted module 216 can send data to a native
module 220. The native module 202 can process the data and
return the processed data to the scripted module 216.

To facilitate the passage of data between the scripting envi-
ronment 214 and the native environment 218, the browser 214
can create an interface 222. The interface 222 can expose
functions to the scripting environment 214 and the native
environment 218 for sending and receiving data objects. In
some 1mplementations, the interface 222 may pass data by
value. That 1s, the interface 222 may create a copy of the data
as part of passing the data. By way of comparison, passing
data by reference involves creating a copy of a reference to the
data and passing the copy of the reference. In a pass by
reference scheme, the data 1s not copied as part of passing the
data.

Additionally, the interface 222 may pass the data asynchro-
nously. That 1s, the recerving module may not need to prepare
to recerve data from the sending module before the sending
module 1s able to send the data. One possible configuration of
the interface 222 for asynchronously sending data by value 1s
described with respect to FIG. 3 below.

A scripted module 216 and a native module 220 that are
passing data objects may be interpreted and executed, respec-
tively, in separate processes. The browser 212 may be execut-
ing in the execution environment 206 1 two or more pro-
cesses. Some of these processes are used to maintain the
scripting environment 214 and the native environment 218. In
some cases, each module 216 and 220 may have their own
process and/or each document loaded in the browser 212 may
have a process. As such, the interface 222 may be configured
to pass data objects between modules 1n different process.

FIG. 3 1s a diagram of an example of an interface 222
between a scripting environment 214 and a native environ-
ment 218. The interface 222 1s configured to pass data objects
between the scripting environment 214 and native environ-
ment 218 asynchronously. Additionally, the interface 220 can
be configured to pass data objects between the scripting envi-
ronment 214 and native environment 218 by value. By pass-
ing data objects asynchronously, the module sending a data

10

15

20

25

30

35

40

45

50

55

60

65

8

object does not need to wait until the data object 1s fully
received before beginming another action. By way of com-
parison, passing data synchronously involves coordinating
the timing of the sending module and the receiving module,
resulting 1n halt by the sending module until the recerving
module has received the data object. Additionally, the sending
module and the receiving module do not need to coordinate
their operations so that the sending and receiving occur at the
same time. By passing data objects by value, the receiving
module will receive a copy of a data object that1s separate and
independent of the data object sent by the sending module.

In this example configuration of the interface 220, the
scripting environment 214, a scripted module 216, the native
environment 218, and a native module 220 of FIG. 2 1s shown.
However, other configurations of these and/or other compo-
nents can be used to facilitate asynchronous data passing by
value.

The scripting environment 214 and the native environment
218 can be assigned a scripting memory buifer 300 and a
nattve memory bufler 302, respectively. The scripting
memory builer 300 and native memory buifer 302 are por-
tions of the main memory of the computer system 200 that
have are allocated and managed by the operating system 204
and the browser 212. These memory butlers 300 and 302 may
be the only portions of main memory to which the scripted
module 216 and the native module 220 can read and write data
to, for example, to segregate the scripted modules 216 and the
native module 220 from the rest of the execution environment
206.

The memory buifers 300 and 302 can store data objects
¢.g., files, data structures, or any other data stored 1n main
memory by the scripted module 216 and the native module
220. The data objects can be 1dentified 1n the scripted module
216 and the native module 220 by references. The references
can include, for example, variable names, pointers, or other
approprate identifiers.

To send a data object to a module 1n the other environment,
the scripted module 216 or the native module 220 can provide
the interface 222 with a reference to the data object to be sent.
The interface 222 can create a copy of the referenced data
object and add the copy to a queue between the two environ-
ments. In some 1mplementations, the interface 222 has two
queues, one for scripting environment 214 to native environ-
ment 218 data object passing, and one for native environment
220 to scripting environment 214 data object passing. In this
case, every module 1n an environment that receives data
objects from the other environment can subscribe to the same
queue and pull a data object intended for that module. In some
other implementations, the interface 222 has a queue for each
module, and any module configured to send a data object to
another module can push it to the associated queue. In still
some other implementations, a module may have any number
of associated queues 1n the iterface 222. In some of these
cases, a module can have different queues for different pur-
poses such as different types of data object, data objects from
different modules, or data objects intended for different uses
within the module. The number and types of queues may be
determined either the intertace 222 or the script module 216
and the native module 220.

Once a data object 1s 1n a queue of a module, the module
can pull the data object according to one or more schemes. In
one scheme, the interface 222 can send an alert to the module
that notifies the module that there are data objects waiting to
be pulled. In another scheme, the module can poll the inter-
face 222 to determine the state of the queue—either empty or
containing data objects. The interface 222 can serve the data
objects to the module 1n the order that they are recerved by the

US 9,128,702 B2

9

interface 222 or according to some other criteria. For
example, the sending module may be permitted to give each
data object a weight, and the data objects may be ordered and
dequeued 1n order of this weight. This may permit, for
example, real time or high-priority data objects to be passed
faster than non-real time or low-priority data objects.

Other configurations for passing data objects by the inter-
face 222 are possible, and 1t will be understood that any one of
these options or any combination thereof can be used. For
example, the interface 222 can place references to data
objects 1n the queues and not create the copies of the data
objects until the recerving module pulls the data object from
the queue. In this configuration, for example, a more up-to-
date data object can be passed by the interface 222. This may
be desirable, for example, 1 a data object contains constantly
updating or aggregate data such as an input stream.

Another configuration 1nvolves the use of a library 304.
Modules may store a data object in the library 304, and the
library can return a library index to the module. This library
index may be a unique 1dentifier of the data object that can be
used by any module to access a copy of the data object stored
in the library 304. This library index may be sent from one
module to another module in the other environment using any
suitable interface 222 mechanism, including the queues
described above.

In some implementations, modules can or must serialize
data objects to be passed by the interface 222. Serializing here
refers to a reversible process of moditying a data object for
transmission. Some serializing techniques ivolve transform-
ing data objects into an ordered bitstream, a string, or another
common data format. This data format may be the format of
some data as 1t 1s used by the modules. For example, the
modules may use string type data objects to store text, and
serializing any object must involve changing 1t to a string type
data object.

Additionally or alternatively, the interface 222 may pass
data objects 1n a format that 1s native to one or more scripting
languages or native module languages. For example, a script-
ing language may define an ArrayBulfer data type to repre-
sent a generic, fixed-length binary data builer. ArrayBuller-
View objects may be used to represent the buller with a
specific format and to facilitate reading and writing to the
butifer. The interface 222 may be configured to pass Array-
Butlers, ArrayBullerViews, and other data objects while pre-
serving their typing.

As another example, the interface 222 may pass data
objects in the format of a dictionary. The dictionary format
includes a composite data structure, sometimes a hash map
but other configurations are possible, that indexes each ele-
ment by a string value key. By way of comparison, many other
composite data structures, such as arrays, usually index each
clement by an ordinal value. In some implementations, the
natrve module 220 lacks some of the functionally to use the
dictionary, for example to iterate over a dictionary data
object, to lookup a value by key, or to discover the key strings.
In some of these cases, the interface 222 may include a
dictionary API to provide these and/or other functions to the
native module 220.

By passing data objects asynchronously and by value, the
interface 222 allows the developers of the script module 216
and the native module 220 more flexibility 1n design than 1f
the data objects were only passed synchronously and by ref-
erence. For example, in the game webpage of FIG. 1, the
natrve module 116 may be able to pass an entire copy of a
pixel bulfer to the scripted module 114. IT the pixel builer
were to be passed by reference, the scripted module 114 may
need to request the value of each pixel in separate requests.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Further, the native module 116 would not have to wait for the
scripting module 114 to recerve the pixel butier before begin-
ning the process of rendering the next frame of the game.

FIG. 4 1s a flowchart of an example of a process 400 for
executing native code. For convenmience the process 400 will
be described as being performed by a system including one or
more computing devices, for example the computer system
200. Theretore, the description that follows uses the computer
system 200 as the basis of an example describing the system
for clarity of presentation. However, another system, or com-
bination of systems, can be used to perform the process 400.

The system executes, on a processor, an application’s com-
puter-specific commands 1n an operating system’s execution
environment (402). For example, a computer (e.g. computer
system 200) can execute an application (e.g. email applica-
tion 208, text editor 210, or browser 212) in an execution
environment (e.g. execution environment 206). The applica-
tion may include commands that are specific to the hardware
of the computer (e.g. processor 202) and/or the software of
the computer (e.g. operating system 204). In some implemen-
tations, the applications have been written in a programming
language, compiled by a computer-specific compiler 1nto a
series of binary machine instructions, and executed.

The system nterprets a scripted module 1n a scripting
environment of a browser (404). For example, a web-browser
(e.g. browser 212) can create one or more environments (€.g.
scripting environment 214) for interpreting scripted modules
(e.g. scripted modules 216). The web-browser can interpret
scripted modules by parsing the commands of the scripted
modules and performing the actions called for by the com-
mands. In some implementations, the scripted modules have
been written 1n a scripting language that 1s not computer-
specific. That 1s, the scripted modules may be interpreted by
any system that provides a scripting environment that meets
the requirements of the scripting language. As such, the same
scripting module may be used across a wide variety of sys-
tems to provide the same functionality.

The system executes, on the processor, a native module’s
computer-specific commands in the web-browser’s native
environment (406). For example, a web-browser (212) can
create one or more environments (e.g. native environment
218) for executing native modules (e.g. native modules 220).
Thenative module may include commands that are specific to
the hardware of the computer (e.g. processor 202) and/or the
soltware ol the computer (e.g. operating system 204). In some
implementations, the applications have been written 1n a pro-
gramming language, compiled by a computer-specific com-
piler mto a series of binary machine instructions, and
executed.

Compared to the applications executing 1n the execution
environment, the native modules 1n the native environment
may only be permitted to access a subset of the computer-
specific commands of the system. The web-browser and/or
the native environment may have one or more security poli-
cies or other mechanism 1n place to limit the impact of the
native module on the operating system or the system as a
whole. These limits may be tied to the permitted and expected
functionality of the native modules. For example, the design-
ers of the native environment may determine that no reason-
able use of a native module includes accessing a hard drive. In
this case, the native environment would prevent any attempts
by a native module to access a hard drive. In some cases, the
limited functionalities are those that could affect the com-
puter system outside of the native environment. For example,
computer-specific commands to perform calculations on the
processor may always be permitted by the native module.

US 9,128,702 B2

11

The system asynchronously passes, from one of the script-
ing environment and the native environment, a data object by
value from the other of the scripting environment and the
native environment (408). For example, the web-browser
(e.g. mterface 222) may receive data objects from a module
(e.g. scripted module 216, native module 220) 1n one envi-
ronment (e.g. scripting environment 214, native environment
218) and may pass the data object to a module 1n the other
environment.

The web-browser may pass these data objects by value.
That 1s, when a module sends a data object, the web-browser
creates copy of the data object and passes the copy to the
receiving module. As such, two independent copies of the
data object will exist. Each module may edit or delete their
copy without affecting the copy held by the other module.

The web-browser passes these data objects asynchro-
nously. That 1s, the sending module may not need to wait for
the recerving module to accept the data object before begin-
ning on another task. One scheme for asynchronously passing,
the data objects includes temporarily storing the data object
while 1n transit. The web-browser may create a data storage
structure to temporarily hold the data object until the recerv-
ing module 1s prepared to accept 1t. In this case, it 1s the
web-browser’s data storage structure, or a process thereot,
that must wait for the recerving module to accept the data
object before beginning on another task.

Some configurations for asynchronously passing by value
include the system receiving, from one of the scripting envi-
ronment and the native environment, the data object. The
system then stores the data object ina library (e.g. library 304)
in association with an index. This library may take the form of
any suitable data repository such as a hash table or array. The
format of the library index may depend on the format of the
library. For example, for a hash table library, the library index
may take the form of the hash of the data object. For an array
library, the library index may take the form of an array index.

The system provides, to the other of the scripting environ-
ment and the native environment, the index. The system may
provide this index directly to the recerving module. For
example, when the sending module sends the data object to
the library, the sending module may specily one or more
modules to receive the library index. In this case, the web-
browser may pass the library 1index to those specified mod-
ules. In another example, the web-browser may return the
library index to the sending module. The sending module may
then send the library index to any other module, and the other
modules may retrieve the data object from the library with the
library index.

Some configurations for asynchronously passing by value
include the system recerving, from one of the scripting envi-
ronment and the native environment, a reference to a memory
location containing a data object. The system then creates a
copy of the data object 1n a second memory location. The
system then provides, to the other of the scripting environ-
ment and the native environment, a reference to the second
memory location. For example, the web-browser may create
the copy of the data object 1n a memory buller of the envi-
ronment of the recetving module and may provide a reference
of the data object to the receiving module. In another
example, the web-browser may create the copy of the data
object 1n a memory location that 1s not available to the receiv-
ing module. When the receiving module 1s ready to receive
the data object, the web-browser can move the data object to
the receving environment’s memory bufler and pass a refer-
ence to the new location to the receiving module.

Some configurations for asynchronously passing by value
include the system recetving, from one of the scripting envi-

10

15

20

25

30

35

40

45

50

55

60

65

12

ronment and the native environment, a data object. The sys-
tem stores the data object until the data object 1s requested,
and then the system provides, to the other of the scripting
environment and the native environment, the data object
responsive to a request for the data object from the other of the
scripting environment and the native environment. For
example, the web-browser may create the copy of the data
object 1n a memory location that is not available to the receiv-
ing module. When the receiving module 1s ready to receive
the data object, the web-browser can provide the data object
to the module. The module may then store the data object in
a memory buller or perform any other appropriate operation
on the data object.

Some features described can be implemented 1in digital
clectronic circuitry, or in computer hardware, firmware, soit-
ware, or 1n combinations of them. The apparatus can be
implemented 1 a computer program product tangibly
embodied 1n an information carrier, €.g., 1n a machine-read-
able storage device, for execution by a programmable proces-
sor; and method steps can be performed by a programmable
processor executing a program ol instructions to perform
functions of the described implementations by operating on
input data and generating output. The described features can
be implemented advantageously in one or more computer
programs that are executable on a programmable system
including at least one programmable processor coupled to
recetve data and instructions from, and to transmit data and
instructions to, a data storage system, at least one input
device, and at least one output device. A computer program 1s
a set of mstructions that can be used, directly or indirectly, 1n
a computer to perform a certain activity or bring about a
certain result. A computer program can be written 1n any form
of programming language, including compiled or interpreted
languages, and 1t can be deployed 1n any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer are a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM (erasable programmable
read-only memory), EEPROM (electrically erasable pro-
grammable read-only memory), and tlash memory devices;
magnetic disks such as iternal hard disks and removable
disks; magneto-optical disks; and CD-ROM (compact disc
read-only memory) and DVD-ROM (digital versatile disc
read-only memory) disks. The processor and the memory can
be supplemented by, or incorporated 1n, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, some features can be
implemented on a computer having a display device such as a
CRT (cathoderay tube) or LCD (liquid crystal display) moni-
tor for displaying information to the user and a keyboard and
a pointing device such as a mouse or a trackball by which the
user can provide mnput to the computer.

US 9,128,702 B2

13

Some features can be implemented 1n a computer system
that includes a back-end component, such as a data server, or
that includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., a LAN (local area network), a WAN (wide area
network), and the computers and networks forming the Inter-
net.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of

computer programs running on the respective computers and
having a client-server relationship to each other.

What is claimed 1s:

1. A system comprising:

a computing device comprising:

a Processor;

an operating system that includes an execution environ-
ment 1n which applications can execute computer-
specific commands; and

a web-browser application comprising:

a scripting environment for interpreting scripted mod-
ules according to one or more security policies that
restrict interpretation of scripted modules;

a native environment in which native modules can
securely execute computer-speciiic commands, the
native environment configured to restrict native
modules from accessing one or more resources of
the computing device or to restrict execution of one
or more computer-specific commands; and

an 1nterface between the scripting environment of the
web-browser application and the native environ-
ment of the web-browser application, the interface
including functions to asynchronously pass data
objects by value, from one of the scripting environ-
ment and the native environment, to the other of the
scripting environment and the native environment,
by providing copies of the data objects to one of the
scripting environment and the native environment
so that the copies are available to a scripted module
or a native module in the other of the scripting
environment and the native environment, respec-
tively.

2. The system of claim 1, wherein the scripted module 1s
written 1 a scripting language and the data objects are of
types specified by the scripting language.

3. The system of claim 2, wherein one or more of the data
objects are of a dictionary type.

4. The system of claim 1, wherein the scripted module 1s
interpreted 1n a first process and the native module 1s executed
in a second process that 1s separate from the first process.

5. The system of claim 1, wherein at least one of the data
objects 1s a serialized string.

6. The system of claim 1, wherein web-browser application
turther comprises:

a library of values, the library available to the scripting

environment and to the native environment; and
wherein the data object 1s an index of a value of the library.

7. The system of claim 1, wherein the functions to asyn-
chronously pass data objects by value include functions to:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

recetve, Irom one of the scripting environment and the
native environment, a reference to a memory location
containing a data object;

create a copy of the data object 1n a second memory loca-

tion; and

provide, to the other of the scripting environment and the

native environment, a reference to the second memory
location.

8. The system of claim 1, wherein the functions to asyn-
chronously pass data objects by value include functions to:

recerve, from one of the scripting environment and the

native environment, a data object;

store the data object until the data objects are requested;

and

provide, to the other of the scripting environment and the

native environment, the data object responsive to a
request for the data object from the other of the scripting
environment and the native environment.

9. The system of claim 1, wherein the computer-specific
commands are processor-specific commands.

10. The system of claim 1, further comprising:

a scripted module interpreted 1n the scripting environment

configured to:

asynchronously send a first data object, through the
intertace, to the native module by value without halt-
ing interpretation of the scripted module until the first
data object 1s recetved by the native module; and

asynchronously receirve a second data object, through
the interface, from the native module by value; and

a native module 1n the native environment configured to:

asynchronously receive the first data object, though the
intertace, from the scripted object by value; and

asynchronously send the second data object, through the
interface, to the scripted module by value without
halting execution of the native module until the sec-
ond data object 1s recerved by the scripted module.

11. A method comprising:

identitying a scripted module and a native module, at least

one of the scripted module and the native module con-
figured to interact with the other of the scripted module
and the native module 1n a web-browser;

interpreting the scripted module 1n a scripting environment

of the web-browser that restricts interpretation of the
scripted module according to one or more security poli-
cles:
executing the native module 1n a native environment of the
web-browser, the native environment configured to
securely execute computer-specific commands of the
native module by at least one of restricting the native
module from accessing particular computer resources
and restricting execution of particular commands; and

asynchronously passing, from one of the scripting environ-
ment and the native environment to the other of the
scripting environment and the native environment, a
data object by value so as to provide a copy of the data
object that 1s available to the scripted module or the
native module 1n the other of the scripting environment
and the native environment, respectively.

12. The method of claim 11, wherein the data objectis of a
dictionary type.

13. The method of claim 11, wherein the scripted module 1s
interpreted in a first process and the native module 1s executed
in a second process that 1s separate from the first process.

14. The method of claim 11, wherein the data object 1s a
serialized string.

15. The method of claim 11, wherein asynchronously pass-
ing the data object comprises:

US 9,128,702 B2

15

receiving, from one of the scripting environment and the
native environment, the data object;
storing the data object 1n a library 1n association with an
index; and
providing, to the other of the scripting environment and the
native environment, the index.
16. The method of claim 11, wherein asynchronously pass-
ing a data object by value includes:
receiving, from one of the scripting environment and the
native environment, a reference to a memory location
containing a data object;
creating a copy of the data object 1n a second memory
location; and
providing, to the other of the scripting environment and the
native environment, a reference to the second memory
location.
17. The method of claim 11, wherein asynchronously pass-
ing a data object by value includes:
receiving, from one of the scripting environment and the
native environment, a data object;
storing the data object until the data object 1s requested; and
providing, to the other of the scripting environment and the
native environment, the data object responsive to a
request for the data object from the other of the scripting
environment and the native environment.
18. The method of claim 11, wherein the computer-specific
commands are processor-speciiic commands.
19. The method of claim 11, wherein asynchronously pass-
ing the data object comprises one of:
sending the data object from the native environment with-
out halting execution of the native module until 1t 1s
determined that the data object has been received 1n the
scripting environment, and

10

15

20

25

30

16

sending the data object from the scripting environment
without halting interpretation of the scripted module
until 1t 1s determined that the data object has been
received 1n the native environment.

20. One or more non-transitory computer-readable storage
devices having instructions stored thereon that, when
executed by one or more processors, cause the one or more
processors to perform operations comprising;:

identifying a scripted module and a native module, at least
one of the scripted module and the native module con-
figured to interact with the other of the scripted module
and the native module 1n a web-browser;

interpreting the scripted module 1n a scripting environment
of the web-browser that restricts interpretation of the
scripted module according to one or more security poli-
cles:

executing the native module 1n a native environment of the
web-browser, the native environment configured to
securely execute computer-specific commands of the
native module by at least one of restricting the native
module from accessing particular computer resources
and restricting execution of particular commands; and

asynchronously passing, from one of the scripting environ-
ment and the native environment to the other of the
scripting environment and the native environment, a
data object by value so as to provide a copy of the data
object that 1s available to the scripted module or the
native module 1n the other of the scripting environment
and the native environment, respectively.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

