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(57) ABSTRACT

A system and method for efficient scheduling of dependent
load instructions. A processor includes both an execution core
and a scheduler that 1ssues instructions to the execution core.
The execution core includes a load-store unit (LSU). The
scheduler determines a first condition 1s satisfied, wherein the
first condition comprises result data for a first load istruction
1s predicted eligible for LSU-internal forwarding. The sched-
uler determines a second condition 1s satisfied, wherein the
second condition comprises a second load 1nstruction
younger 1n program order than the first load 1nstruction 1s
dependent on the first load instruction. In response to each of
the first condition and the second condition being satisfied,
the scheduler can 1ssue the second load instruction earlier
than 1t otherwise would. The LSU internally forwards the
received result data from the first load instruction to address

generation logic for the second load nstruction.
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POINTER CHASING PREDICTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to computing systems, and more
particularly, to eflicient scheduling of speculative load
instructions.

2. Description of the Relevant Art

The pipeline depth of modern microprocessors continues
to 1increase 1n order to support higher clock frequencies and
increased microarchitectural complexity. Despite improved
device speed, higher clock frequencies of next-generation
processors limit the levels of logic to fit within a single clock
cycle. The deep pipelining trend has made i1t advantageous to
predict the events that may happen 1n the pipe stages ahead.
One example of this technique 1s latency speculation between
an 1nstruction and a younger (1in program order) dependent
instruction. These younger dependent instructions may be
picked for out-of-order (0-0-0) 1ssue and execution prior to a
broadcast of the results of a corresponding older (in program
order) imstruction. Additionally, the deep pipelining trend
increases a latency to receive and use load (read) operation
result data.

One example of the above instruction dependency and
latency speculation 1s a load-to-load dependency. A younger
(in program order) load 1nstruction may be dependent on an
older (in program order) load instruction. The older load
instruction that produces the result data may be referred to as
the producing load instruction. The younger instruction
dependent on the result data of the producing load instruction
may be referred to as the consuming load nstruction. When
the target register of an older producing load (read) instruc-
tion 1s also an address register (source operand) of a younger
consuming load instruction, the occurrence may be referred
to as pointer chasing. Linked list traversals typically include
frequent pointer chasing.

For load (read) instructions, the requested data may be
retrieved from a cache line within a data cache. Alternatively,
the requested data may be retrieved from a store queue, such
as 1n the case when control logic determines whether a load-
store dependency exists. Data forwarding of load results to
dependent instructions may occur by sending the retrieved
data to a reservation station and/or a register file. Afterward,
the data may be sent to one or more execution units corre-
sponding to the younger dependent instructions. The data
torwarding incurs an appreciable delay. The traversal of one
or more linked lists within a software application accumu-
lates this delay and may reduce performance. The latency for
receiving and using load instruction result data may vary
depending on instruction order within the computer program.
However, the shorter latency cases may not be taken advan-
tage of within a pipeline despite a high frequency of occur-
rence of the shorter latency cases. The traversal of a linked list
1s one case that may allow an opportunity to decrease the
latency to use load instruction result data.

In view of the above, methods and mechanisms for etficient
scheduling of speculative load 1nstructions are desired.

SUMMARY OF EMBODIMENTS

Systems and methods for eflicient scheduling of specula-
tive load instructions are contemplated. In various embodi-
ments, a processor includes a data cache, an execution core
that executes memory access instructions, and a scheduler
that 1ssues 1nstructions to the execution core. The execution
core mcludes a load-store unit (LSU). The scheduler deter-
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mines a first condition 1s satisfied. The first condition com-
prises result data for a first load instruction 1s predicted to

reside 1n the data cache, rather than reside 1n a store queue 1n
the LSU. Additionally, the first condition may include a LSU-
internal forwarding condition comprising the step of predict-
ing the result data for the producing load instruction 1s avail-
able directly from the data cache. The scheduler determines a
second condition 1s satisfied, the second condition compris-
ing a second load instruction younger in program order than
the first load instruction 1s dependent on the first load 1nstruc-
tion. In response to each of the first condition and the second
condition being satisfied, the scheduler issues the second load
instruction prior to the result data being available. In doing so,
a load-to-load latency may be reduced. The LSU forwards the
result data recerved from the data cache to address generation
logic used to generate an address for the dependent second
load 1nstruction. For a series of load-to-load dependencies,
such as a traversal of a linked list, performance of an appli-
cation may significantly increase.

The scheduler may be coupled to a load-store (LLS) predic-
tor for predicting store-to-load dependencies. The LS predic-
tor may store an indication indicating whether a store instruc-
tion with a dependent load instruction has already recerved
result data. Therefore, the LS predictor predicts store-to-load
dependencies whether or not the result data i1s already
received within a store queue within the LSU. In order to
determine result data for the first load nstruction 1s not from
a store queue within the LSU, and 1s predicted to reside in the
data cache, the scheduler may determine the second load
instruction has no allocated entry 1n the LS predictor. Should
the result data be unavailable for the second load instruction
when the second load instruction 1s ready for address genera-
tion, the second load nstruction may be replayed.

These and other embodiments will be further appreciated
upon reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram of one embodiment
ol a computer program with data dependencies between load
instructions.

FIG. 2 1s a generalized block diagram of one embodiment
ol a processor.

FIG. 3 1s a generalized flow diagram of one embodiment of
a method for efficient scheduling of speculative load nstruc-
tions.

FIG. 4 1s a generalized flow diagram of one embodiment of
a method for executing early scheduled speculative load
instructions.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example 1n the drawings and will herein be
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the imvention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims. As used
throughout this application, the word “may” 1s used in a
permissive sense (1.€., meaning having the potential to),
rather than the mandatory sense (1.e., meaning must). Simi-
larly, the words “include,” “including,” and “includes™ mean
including, but not limited to.

Various units, circuits, or other components may be
described as “configured to” perform a task or tasks. In such
contexts, “configured to” 1s a broad recitation of structure
generally meaming “having circuitry that” performs the task
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or tasks during operation. As such, the unit/circuit/component
can be configured to perform the task even when the unit/

circuit/component 1s not currently on. In general, the circuitry
that forms the structure corresponding to “configured to” may
include hardware circuits. Similarly, various units/circuits/
components may be described as performing a task or tasks,
for convenience 1n the description. Such descriptions should
be interpreted as including the phrase “configured to.” Recit-
ing a unit/circuit/component that 1s configured to perform one
or more tasks 1s expressly itended not to invoke 35 U.S.C.
§112, paragraph six, interpretation for that unit/circuit/com-
ponent.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some 1nstances, well-known
circuits, structures, and techniques have not been shown 1n
detail to avoid obscuring the present invention.

Referring to FIG. 1, one embodiment of 1dentification of
data dependencies between load instructions in computer
code1s shown. As used herein, the data dependencies between
load instructions may also be referred to as load-to-load
dependencies. Table 100 illustrates an example of computer
program 1nstructions with load instructions dependent on
other mstructions for source operand data. The source oper-
and data 1s used to generate an address for a memory read
access. The generated address may or may not be translated.
Translation may comprise a virtual-to-physical mapping.
Source operand data may contain an immediate integer value
included within an instruction. In the example of the load
instruction in line 1 of the table 100, the load 1nstruction has
an 1nteger value of 8 as an immediate source operand. Another
example of source operand data includes data stored in a
register by the time execution of the mnstruction begins. An
identifier (ID) within the instruction 1dentifies the register.

Continuing with the example of the load instruction 1n line
1 of the table 100, the load instruction has a source register
R30 that stores data to be used as source operand data by the
time execution of the load instruction begins. An address 1s
generated from an addition operation with the integer 8 and
the contents stored in register R30. The generated address
may be further translated. The data dependencies between
load instructions are highlighted 1n table 100. Table 100
includes 24 lines of code numbered from line 1 to line 24. The
lines of code include 1nstructions presented in program order.
In the example shown 1n table 100, the 1nstructions 1nclude
load, store and arithmetic addition instructions.

For a given load instruction, the result data may be
retrieved from a cache line within a data cache. However, the
result data for the given load 1nstruction may already be 1n a
processor and not need to be retrieved from the data cache
using a corresponding generated address. For example, the
result data may be in an entry 1n a store queue. The result data
may be forwarded from the store queue within the processor
to a destination register of the given load instruction. In this
case, the result data 1s not retrieved from the data cache using
the corresponding generated address. The forwarding within
the processor of the result data may reduce the latency to
obtain the result data for the given load instruction.

Similar to the above case of forwarding result data, the
source operand data of the given load instruction may also be
torwarded. The forwarding of source operand data may
reduce the latency of the given load instruction and increase
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instruction throughput. The source operand data may be for-
warded to a source register used by the given load mstruction.
The forwarding of the source operand data may occur 1n place
ol retrieving the source operand data from a register file. For
example, the source operand data may be forwarded from an
arithmetic logic unit (ALU) 1n an execution unit, an entry in
the store queue, and so forth.

Additionally, the source operand data for the given load
instruction may be forwarded directly from a cache pipeline
stage. In such a case, the forwarding may occur within a
load/store unit (LSU) on the processor after the source oper-
and data 1s read out from a cache line in a cache array of a data
cache. The source operand data for the given load instruction
may be retrieved from the data cache due to execution an
older (in program order) load instruction. Accordingly, the
source operand data may be forwarded to the younger given
load mstruction within the LSU on the processor. Further
details are provided later. In these cases, the given load
instruction may be speculatively scheduled to 1ssue early.
Other conditions described later may also be checked prior to
scheduling the given load instruction early. A predictor may
be used to both speculate when data forwarding may be used
and to select which source supplies the forwarded data.

In table 100, line 1 includes a load 1instruction with a source
register denoted as R30. As described earlier, an address 1s
generated from the addition operation using the integer 8 and
the contents stored in register R30. The generated address
may be additionally translated. If data forwarding 1s not used
to obtain the result data, the contents of memory located at
this generated address 1s retrieved from the data cache. After-
ward, the retrieved contents of memory, which also may be
referred to as the result data, are sent to the destination reg-
ister. The load mstruction in line 1 has a destination register
denoted as R13. In some embodiments, each of the registers
R13 and R30 are included 1n a register {ile.

Lines 2 and 3 1n table 100 include an addition nstruction
and a store instruction, respectively. Each of these instruc-
tions 1s dependent on the load mstruction in line 1. Therefore,
the mstructions in lines 2 and 3 may not be scheduled to 1ssue
until the result data 1s at least retrieved from the data cache
and placed 1n an 1dentified destination register within a reg-
ister file and/or a reservation station.

The addition 1nstruction 1n line 2 produces result data that
1s stored in the destination register R19 1n the register file.
This result data from the addition 1nstruction 1s stored 1n the
destination register R19. The result data produced by the
addition 1nstruction 1s also sent to memory for storage by the
store instruction in line 3. The load instruction in line 4
utilizes the result data produced by the addition mstruction in
line 2 as source operand data. Therefore, a corresponding
entry 1n a reservation station for the load instruction in line 4
may receive the result data forwarded from an arithmetic
logic unit (ALU). This result data 1s to be used as source
operand data by the load instruction in line 4. The load
instruction in line 4 receives source operand data that 1s in the
processor. The latency of the load 1nstruction in line 4 may be
reduced due to using forwarded data from the ALU rather
than reading data from the register file.

Table 100 1llustrates from where the source operand data 1s
sourced for address generation for load instructions. For
example, the load instruction 1n line 7 uses for address gen-
cration the data to be stored in the source register denoted as
R2.This data 1s produced by the load instruction in line 4. The
producers of source operand data for load instructions are
illustrated 1n table 100, such as in lines 1, 4,7, 10, 13, 16, 19
and 22-24.
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Moving to line 19 1n table 100, the producer of the source
operand data stored in register R7 for the load instruction at
line 19 1s an older (in program order) load instruction at line
16. The older load instruction at line 16 utilizes register R7 as
a destination register. The result data for the older load
instruction at line 16 1s retrieved from the data cache at the
location indicated by “8(R3)”. The address for the load
instruction 1n line 16 1s generated from the addition operation
between the integer 8 and the data stored 1n source register
R3. In some embodiments, the generated address 1s trans-
lated. The result data stored 1n a location 1n the data cache
identified by the generated address is retrieved. This result
data may be sent to a register file and stored 1n the register R/
in the register file. Additionally, this result data may be stored
in a corresponding entry 1n a reservation station.

After the above steps, the load instruction at line 19 may be
1ssued and the result data may be sent to an adder to generate
an address for the load instruction at line 19. The adder may
be located 1n an ALU within an integer execution unit. Alter-
natively, the adder may be located within the LSU. The
latency for obtaining and using the result data to be stored 1n
the register R7 may incur an appreciable delay. Long trans-
mission lines, repeater buffers, and staging storage elements
may be used to transport the result data from the data cache to
the register file. Forwarding the result data to the correspond-
ing entry in the reservation station may reduce the latency.
However, the on-die real estate layout may still appreciably
aifect the latency.

Continuing with the above example, the result data pro-
duced by the load mstruction at line 16 may be sent from read
out storage clements in the data cache directly to an adder.
The adder may be used to generate an address for the load
instruction at line 19 by adding the integer 4 to the data stored
in the read out storage elements. IT the adder 1s included
within the LSU, then this type of forwarding occurs within the
L.SU, rather than across the die of the processor. The load-to-
load latency may be appreciably reduced. Accordingly, the
load 1nstruction at line 19 may be scheduled to 1ssue early. For
example, 1n some processor designs, the load-to-load latency
may be 4 clock cycles. However, the load-to-load latency may
be 3 or less clock cycles when the result data produced by the
older load instruction 1s from a data cache hit and the result
data 1s forwarded within the LSU to the younger, dependent
load 1nstruction.

Similar to the above example regarding the load instruction
at line 19, the younger dependent load instructions at lines
22-24 1n table 100 may be scheduled early. The load nstruc-
tions at lines 19 and 22-24 may be scheduled to 1ssue prior to
the result data 1s stored 1n a corresponding entry 1n a reserva-
tion station or a scheduler. The load instructions may be
scheduled prior to the result data being available within the
LLSU. For each of these load instructions, the result data
produced by an older load instruction may be forwarded
within the LSU. This local forwarding may appreciably
reduce the load-to-load latency.

Each of the load instructions at lines 19 and 22-24 satisiy
conditions for being scheduled to 1ssue early and reduce the
load-to-load latency. For example, each of these load instruc-
tions 1s dependent on an older load istruction, rather than an
arithmetic operation, a store operation or other operation.
Additionally, another condition may be a corresponding older
load 1nstruction receives or 1s scheduled to receive the result
data from a data cache hit, rather than from the store queue.
Determining the conditions are satisiied for early scheduling
ol load 1nstructions may utilize preexisting logic in the pro-
cessor. Further details are provided later. The load nstruc-
tions at lines 19 and 22-24 may correspond to a traversal of
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6

one or more linked lists within a software application. Reduc-
ing the load-to-load latency may improve processor perfor-
mance for processing the instructions of the application.

The load instructions at lines 1, 4, 7, 10, 13 and 16 do not
satisly the conditions described above. Accordingly, these
load 1nstructions are not scheduled to 1ssue early as described
above. The load 1instructions at lines 1, 4 and 10 are not
dependent on an older load instruction. The source operand
data for the load 1nstructions at lines 7, 13 and 16 are depen-
dent on older load instructions that receive or are scheduled to
receive result data from a source other than a data cache hat.
For example, the source may be the store queue. Next, a
description of the components of a processor used to deter-
mine the conditions for allowing early scheduling and thus
reducing the load-to-load latency are provided.

Referring to FIG. 2, a generalized block diagram 1llustrat-
ing one embodiment of a processor 10 1s shown. In the 1llus-
trated embodiment, the processor 10 includes a fetch control
unmit 12, an instruction cache 14, a decode unit 17, a mapper
18, a scheduler 20, aregister file 22, an execution core 30, and
an interface unit 60. As 1s well known 1n the art, the processor
10 may operate on multiple threads and include multiple
cores, where each core includes the components shown 1n
FIG. 2. A brief description of each of these components 1s
provided here. A description of the execution core 30 1nclud-
ing a load-store unit (LSU) 40 used for handling memory
accesses 1s 1mitially described. A description of the remaining
components shown 1n processor 10 follows this description.

The execution core 30 may include a load-store unit (LSU)
40 for processing memory access operations, such as integer
and floating-point load and store instructions and other types
of memory reference instructions. The LSU 40 may access a
data cache (d-cache) 50. The d-cache 50 may be a first level of
a multi-level memory hierarchy. For example, the d-cache 50
may be a level one (1) d-cache placed on the die. In some
embodiments, the L1 d-cache may be placed within the
execution core 30. In other embodiments, the .1 d-cache may
be placed elsewhere 1n the processor 10. The d-cache 50 may
include a cache controller 52 for receving memory access
requests and indexing the cache array 54. The cache array 54
may store data determined likely to be used again based on
temporal and special locality. The cache array 54 may utilize
a direct-mapped, a fully associative, or a set-associative stor-
age arrangement. Both metadata and data that 1s read out of
the cache array 54 may be stored 1n the read results 56. The
read results 56 may utilize storage elements, such as flip-tlops
or latches. The LSU 40 may include logic for detecting data
cache misses and to responsively request data from the multi-
level memory hierarchy. For example, a miss request may go
to a lower level of the memory hierarchy, such as at least a L2
data cache.

The actual computation of addresses for load/store instruc-
tions may take place within a computation unit in the execu-
tion core 30, such as i1n the integer and floating-point (FP)
execution units 34. Although 1n other embodiments, the LSU
40 may implement dedicated address generation logic. For
example, the LSU 40 may include the address generation unit
(AGU) 46. In some embodiments, the LSU 40 may imple-
ment an adaptive, history-dependent hardware prefetcher
configured to predict and prefetch data that 1s likely to be used
in the future.

The LSU 40 may include load and store buifers configured
to store 1ssued but not-yet-committed load and store mnstruc-
tions for the purposes of coherency snooping and dependency
checking for bypassing data. A load queue 44 may hold
addresses of not-yet-committed load instructions. In some
embodiments, the data corresponding to these addresses may
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also be stored in the load queue 44. In other embodiments, the
data corresponding to these addresses may be sent on buses to
other components on the processor. The data may arrive from
the read results 56 1n the d-cache 50 or from the store queue
42. The LSU 40 may include a miss buffer (not shown)
configured to store outstanding loads and stores that cannot
yet complete, for example due to cache misses.

A store queue 42 may hold addresses of not-yet-commatted
store 1mstructions. The data corresponding to these addresses
may be stored in the store queue 42. Alternatively, the corre-
sponding data may be stored 1n a separate store buffer (not
shown). Accessing the store queue 42 and forwarding data
from the store queue 42 to a younger dependent load 1nstruc-
tion 44 may consume an appreciable amount of time. In
particular 1t may take longer than accessing the d-cache 50.

The store queue 42 and the load queue 44 maintain 1nfor-
mation for in-tlight load and store instructions. A load instruc-
tion may have corresponding data from an older store mnstruc-
tion bypassed to 1t. The corresponding data may be stored in
the store queue 42 prior to being written 1nto the L1 d-cache.
As load instructions enter the LSU 40, a dependency check
may be performed for determining possible data bypass. The
dependency check may comprise a content-addressable-
memory (CAM) access of the store queue 42 to compare
addresses between 1n-flight load and store 1nstructions. When
an address 1s resolved (generated and possibly translated) for
a given load instruction, this address may be used to index the
store queue 42. A match with an address stored 1n the store
queue 42 1 addition to a match with predetermined status and
age information produces an access hit. A hit indicates data
from an older store instruction may be bypassed from the
store queue 42 to the load instruction. A corresponding read
access of the d-cache 50 may be cancelled. A prediction of the
access results may occur i an earlier pipeline stage. For
example, aload/store (LLS) predictor 19 may maintain predic-
tion information for store-to-load (STL) forwarding.

The LS predictor 19 may store program counter (PC)
address information of load instructions that have been pre-
viously found to be dependent on older store 1nstructions. PC
address imnformation of the particular older store instruction
may also be stored 1n a corresponding entry 1n the LS predic-
tor 19. The LS predictor 19 may additionally store an indica-
tion indicating whether a given store instruction with a depen-
dent load instruction has already received result data.
Theretore, the LS predictor 19 maintains information for STL
torwarding for both cases where the result data has not yet
arrived 1n the store queue 42 for the store instruction and
where the result data has already arrived in the store queue 42

tor the store 1nstruction. The LS predictor 19 may be used to
predict whether a given load instruction receives source data
from the L1 d-cache 50.

Continuing with the above description, when the PC
address of a given load 1s used to access the LS predictor 19
and the PC address misses 1n the LS predictor 19, there may
be high confidence that the source operand data for the given
load 1nstruction 1s not from the store queue 42, but rather from
the L1 d-cache 50. Alternatively, an index may be generated
for the given load instruction to use for accessing the LS
predictor 19. For example, a portion of the PC address may be
input to a hash function. Other information such as history
information may also be mput to the hash function to generate
the corresponding index. The index generation may be simi-
lar to the logic used for branch prediction mechanisms. The
given load instruction may be referred to as the producing
load nstruction. A younger load instruction may be depen-
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dent on the given load instruction. This younger, dependent
load mstruction may be referred to as the consuming load
instruction.

Determining a load-to-load dependency between the pro-
ducing load instruction and the consuming load instruction
may occur prior to or during a register renaming pipeline
stage 1n the processor 10. For example, the destination regis-
ter ol the producing load instruction may be determined to
match the source register of the consuming load instruction.
In addition, no intervening instruction between the producing
and consuming load 1nstructions modily or store the result
data of the producing load instruction. Similarly, predicting
the result data for the producing load instruction 1s from the
d-cache 50 rather than from the store queue 42 may occur
prior to or during the register renaming pipeline stage in the
processor 10.

In response to both (1) determining the load-to-load depen-
dency exists between the producing and consuming load
istructions and (11) a corresponding 1ndex for the producing
instruction does not hit in the LS predictor 19, thus, predicting
the producing load instruction receives 1ts result data from the
.1 d-cache 50, the consuming load instruction may be sched-
uled to 1ssue from the scheduler 20 to the execution core 30
carly prior to the source operand data 1s available. An LSU-
internal forwarding condition may include the step of predict-
ing the result data for the producing load instruction 1s avail-
able directly from the L1 d-cache 50. This result data for the
producing load instruction 1s the source operand data for the
consuming load instruction. The source operand data may be
torwarded within the LSU 40 after the .1 d-cache hit for the
producing load instruction. For example, the result data for
the producing mstruction may be sent from the read results 56
in the d-cache 50 to the AGU 46. The AGU 46 may use the
received data for generating an address for the consuming
load instruction. The producing and consuming instructions
may be used 1n a pointer chasing scenario, such as a traversal
of a linked list.

If the prediction 1s wrong, such as there 1s a L1 d-cache
miss for the producing load instruction or the producing load
instruction actually produces a CAM match hit in the store
queue 42, then the consuming load instruction may be
replayed. One or more 1nstructions younger than the produc-
ing istruction may also be replayed. Depending on the replay
logic, either all younger instructions are replayed or only
younger 1nstructions dependent on the producing load
instruction are replayed.

In some embodiments, a further qualifying condition for
1ssuing the consuming load instruction early may be a count
of replays 1s below a given threshold. Either the scheduler 20,
the LSU 40, or logic 1n the execution core 30 may maintain a
respective count of replays for one or more detected consum-
ing load instructions. The count may be for consecutive
replays and reset when a prediction 1s correct. Alternatively,
the count may be incremented for each replay and decre-
mented for each correct prediction. Further, the count may be
maintained over a given time period and the count 1s reset at
the end of each time period. In response to logic determining
a respective count has reached a given threshold, logic in the
processor 10 may block an early 1ssue of a corresponding
consuming load instruction.

A turther description of the remaining components 1n pro-
cessor 10 now follows. In some embodiments, processor 10
may 1mplement an address translation scheme 1n which one
or more virtual address spaces are made visible to executing
soltware. Memory accesses within the virtual address space
are translated to a physical address space corresponding to the
actual physical memory available to the system, for example
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using a set ol page tables, segments, or other virtual memory

translation schemes. In embodiments that employ address

translation, each of the data caches and the instruction cache
14 may be partially or completely addressed using physical
address bits rather than virtual address bits. For example, the
caches may use virtual address bits for cache indexing and
physical address bits for cache tags.

In order to avoid the cost of performing a full memory
translation when performing a cache access, processor 10
may store a set of recent and/or frequently used virtual-to-
physical address translations 1n a translation lookaside butier

(TLB), such as the data TLB (DTLB) 32 and the instruction
TLB (ITLB) 16. During operation, each of the ITLB 16 and
the DTLB 32 (which may be implemented as a cache, as a
content addressable memory (CAM), or using any other suit-
able circuit structure) may recerve virtual address information
and determine whether a valid translation 1s present. If so,
cach of the ITLB 16 and the DTLB 32 may provide the
corresponding physical address bits to a corresponding
cache. It 1s noted that although ITLB 16 and DTLB 32 may

perform similar functions, in various embodiments they may
be implemented differently. For example, they may store
different numbers of translations and/or different translation
information.

Generally, each of the data caches, such as d-cache 50, and
the instruction cache (i-cache) 14 may store one or more lines,
cach of which 1s a copy of data stored at a corresponding
address 1n the system memory. As used herein, a “line” 1s a set
of bytes stored 1n contiguous memory locations, which are
treated as a unit for coherency purposes. As used herein, the
terms “‘cache block™, “block”, “cache line”, and “line” are
interchangeable. In some embodiments, a cache line may also
be the unit of allocation and deallocation 1n a cache. In some
embodiments, each of the caches 14 and 26 may return one or
more additional cache lines not yet requested when returning,
a first cache line that 1s requested. The instructions or data
returned from this prefetch mechanism may be buflered for
subsequent use.

The execution core 30 may include several computation
units that perform arithmetic operations, bitwise logic opera-
tions, and detection of branch mispredictions. The execution
core 30 may calculate and compare target addresses for
branch operations, and generate addresses for memory access
operations. These computation units are grouped within the
integer and FP execution units 34 and not explicitly shown for
case of 1llustration. The execution core 30 may also be con-
figured to detect various events during execution of ops that
may be reported to the scheduler. Branch operations (ops)
may be mispredicted, and some load/store ops may be
replayed (e.g. for address-based contlicts of data being writ-
ten/read). Various exceptions may be detected (e.g. protection
exceptions for memory accesses or for privileged instructions
being executed in non-privileged mode, exceptions for no
address translation, etc.). The exceptions may cause a corre-
sponding exception handling routine to be executed.

The fetch control unit 12 1s coupled to provide a program
counter address (PC) for fetching from the mstruction cache
14. The nstruction cache 14 1s coupled to provide instruc-
tions (with PCs) to the decode unit 17, which 1s coupled to
provide decoded instruction operations (ops, again with PCs)
to the mapper 18. Relatively simple op generations (e.g. one
or two ops per 1nstruction) may be handled in hardware while
more extensive op generations (e.g. more than three ops for an
instruction) may be handled 1n micro-code. In addition, the
fetch control unit 12 may handle branch prediction algo-

rithms.
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The mapper 18 1s coupled to provide ops, a scheduler

number (SCH#), source operand numbers (SO#s), one or
more dependency vectors, and PCs to the scheduler 20. The
mapper 18 may implement register renaming to map source
register addresses from the ops to the source operand numbers
(SO#s) 1dentitying the renamed source registers. Addition-
ally, the mapper 18 may be configured to assign a scheduler
entry to store each op, 1identified by the SCH#. In one embodi-
ment, the SCH# may also be configured to identity the
rename register assigned to the destination of the op. In other
embodiments, the mapper 18 may be configured to assign a
separate destination register number. The mapper 18 may be
configured to generate dependency vectors for the op. The
dependency vectors may identily the ops on which a given op
1s dependent. The mapper 18 may provide the ops, along with
SCH#, SO#s, PCs, and dependency vectors for each op to the
scheduler 20.
The scheduler 20 1s coupled to receive replay, mispredict,
and exception indications from the execution core 30. In
addition, the scheduler 20 may be coupled to provide a redi-
rect indication and redirect PC to the fetch control unit 12 and
the mapper 18, provide ops for execution to the execution core
30 and 1s coupled to the register file 22. The register file 22 1s
coupled to provide operands to the execution core 30, and 1s
coupled to recerve results to be written from the execution
core 30. The register file 22 may generally include any set of
registers usable to store operands and results of ops executed
in the processor 10. In other embodiments, processor 10 may
utilize reservation stations as part of a scheduling mechanism.
For example, reservation stations may be utilized on a per
execution unit basis. These and other embodiments are pos-
sible and are contemplated.

The execution core 30 1s coupled to the interface unit 60,
which 1s further coupled to an external interface of the pro-
cessor 10. The external interface may include any type of
interconnect (e.g. bus, packet, etc.). The external interface
may be an on-chip mterconnect, 1f the processor 10 1s inte-
grated with one or more other components (e.g. asystem on a
chip configuration). The external interface may be on off-chip
interconnect to external circuitry, if the processor 10 1s not
integrated with other components. It 1s contemplated that
processor 10 may implement any suitable instruction set
architecture (ISA), such as, e.g., the ARM™, PowerPC™, or
x86 ISAs, or combinations thereof.

Referring now to FIG. 3, a generalized flow diagram of one
embodiment of a method 300 for efficient scheduling of
speculative load instructions 1s shown. The components
embodied 1n processor 10 may generally operate 1n accor-
dance with method 300. For purposes of discussion, the steps
in this embodiment are shown 1n sequential order. However,
in other embodiments some steps may occur in a different
order than shown, some steps may be performed concur-
rently, some steps may be combined with other steps, and
some steps may be absent.

In block 302, a processor may be processing instructions of
one or more software applications. The processor fetches
instructions of one or more soitware applications. In various
embodiments, these fetched instructions may be decoded,
renamed and allocated in a scheduler where they are later
1ssued to an execution core. The processing may occur con-
currently for one or more threads.

For a given thread, 11 the processor detects a load instruc-
tion (conditional block 304), then 1n 306, logic 1n the proces-
sor determines whether the detected load 1s dependent on an
older load instruction. For example, a decode unit and a
mapper in the processor may perform this determination. In
block 308, logic 1n the processor predicts whether the result
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data of the older load instruction, which may also be referred
to as the producing load 1nstruction, 1s sourced from the data
cache (1.e., the result data 1s predicted to be resident in the data
cache). For example, a hash function may receive at least a
portion of the PC address for the producing load instruction
and generate an 1ndex. The index may be used to access a
load-store (LLS) predictor used to find store-to-load (STL)
torwarding cases. If the index does not hit in the LS predictor,
then 1n one embodiment it may be assumed that the result data
tor the producing load mstruction 1s from the data cache.

In some embodiments, the steps 1n blocks 306 and 308 may
occur 1n the same pipeline stage. The window of instructions
to stmultaneously process 1n a clock cycle may include the
producing and the consuming load instructions. For a tra-
versal of a linked list, the producing and consuming load
instructions may be located near one another in the compiled
computer program. If either one of the conditions determined
in blocks 304 and 306 1s not satisfied, then processing may
resume with block 302. In conditional block 308, if the result
data for the older load 1s not predicted to be 1n the data cache,
then 1n block 312, the detected load instruction 1s not 1ssued
carly 1n order to recerve source operand data early from the
data cache. Rather, the detected load instruction may be
issued when the source operand data 1s ready and received.
For example, the source operand data may be forwarded from
the store queue or an ALU component to an entry in the
scheduler or a reservation station. Additionally, the source
operand data 1s written to a register file. If forwarding 1s not
used, the source operand data may be read from the register
file for the detected load instruction. Alternatively, 11 1n block
308 the result data for the older load 1s predicted to be 1n the
data cache, then in block 314, the detected load 1nstruction
may be 1ssued early (1.e., prior to the source operand data
being available). The early 1ssue may reduce the load-to-load
latency. The detected load instruction may recerve the source
operand data in the LSU.

Turning now to FIG. 4, a generalized flow diagram of one
embodiment of a method 400 for executing early scheduled
speculative load instructions 1s shown. The components
embodied 1n processor 10 may generally operate in accor-
dance with method 400. For purposes of discussion, the steps
in this embodiment are shown 1n sequential order. However,
in other embodiments some steps may occur 1n a different
order than shown, some steps may be performed concur-
rently, some steps may be combined with other steps, and
some steps may be absent.

In block 402, a processor may be processing instructions of
one or more software applications. In block 404, the proces-
sor may 1ssue a load instruction early based on predicting that
the source operand data, which may also be referred to as the
dependent data, will be sourced locally within the LSU from
the data cache. The prediction may be based on conditions,
such as the conditions described for method 300. In block
406, the prediction to 1ssue the load instruction early may be
resolved. For example, the early 1ssued load instruction may
be the consuming load instruction. Each of the hit/miss status
ol an access of the L1 data cache and an access of the store
queue for the older producing load instruction may be
resolved.

A misspeculation of the scheduling of the producing load
instruction may be due to the instruction hitting in the store
queue or some other condition (such as an alignment restric-
tion) making the early forwarding from the d-cache 1impos-
sible. If a misspeculation 1s detected (conditional block 408),
then 1n block 410, one or more 1nstructions younger (in pro-
gram order) than the producing load instruction are replayed.
The consuming load 1nstruction itself may or may not need to
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be replayed. In some embodiments, the dependency informa-
tion may be used to select which younger instructions to
replay. The dependency information may be used to cancel
the younger dependent instructions in various locations
throughout processor. In other embodiments, all younger
instructions are replayed. The replay may also reset stored
values 1n the scheduler, such as deasserting picked or 1ssued
status information.

In various embodiments, program instructions of a soft-
ware application may be used to implement the methods
and/or mechanisms previously described. The program
instructions may describe the behavior of hardware 1n a high-
level programming language, such as C. Alternatively, a hard-
ware design language (HDL) may be used, such as Verilog.
The program 1nstructions may be stored on a computer read-
able storage medium. Numerous types of storage media are
available. The storage medium may be accessible by a com-
puter during use to provide the program instructions and
accompanying data to the computer for program execution. In
some embodiments, a synthesis tool reads the program
instructions 1n order to produce a netlist comprising a list of
gates from a synthesis library.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. It 1s intended that the follow-
ing claims be nterpreted to embrace all such vanations and
modifications.

What 1s claimed 1s:

1. A processor comprising:

a data cache;

a load-store unit (LSU); and

a scheduler, wherein the scheduler 1s configured to:

determine whether a second load instruction 1s depen-
dent on a first load instruction, the second load
instruction being younger 1n program order than the
first load 1nstruction; and

issue the second load instruction prior to result data
corresponding to the first load 1nstruction being avail-
able, in response to determining the second load
instruction 1s dependent on the first load instruction
and predicting the result data for the second load
instruction is available from the data cache.

2. The processor as recited 1n claim 1, wherein predicting
the result data for the second load instruction 1s available from
the data cache comprises predicting the first load instruction
misses on a store queue within the LSU.

3. The processor as recited 1n claim 2, wherein the sched-
uler 1s coupled to a load-store (LLS) predictor configured to
determine whether a load 1nstruction 1s dependent on an older
store instruction.

4. The processor as recited 1n claim 3, wherein to predict
the first load instruction misses on the store queue, the sched-
uler 1s turther configured to determine the first load 1nstruc-
tion has no allocated entry in the LS predictor.

5. The processor as recited 1n claim 3, wherein the proces-
sor further comprises an execution core, and wherein in
response to determining the result data 1s unavailable for the
second load mnstruction when the second load mstruction 1s
ready to generate an address, each of the scheduler and the
execution core 1s further configured to replay the second load
istruction.

6. The processor as recited 1n claim 3, wherein 1n response
to determining the result data 1s available for the second load
instruction when the second load instruction 1s ready to gen-
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erate an address, the LSU 1s further configured to forward the
result data to a computation unit within the LSU for address
generation.

7. The processor as recited 1n claim 6, wherein the sched-
uler 1s further configured to maintain a count of replays for the
second load instruction.

8. The processor as recited 1n claim 7, wherein 1n response
to determining a respective count for the second load 1nstruc-
tion reaches a given threshold, the scheduler 1s further con-
figured to block the 1ssue of the second load instruction prior

to result data corresponding to the first load instruction being
available.

9. A method for efficient scheduling of load instructions
executable by atleast one processor 1n a computer system, the
method comprising:

determining whether a second load 1nstruction 1s depen-

dent on a first load instruction, the second load 1nstruc-
tion being younger in program order than the first load
instruction; and

issuing the second load instruction prior to result data

corresponding to the first load instruction being avail-
able, 1n response to determining the second load 1nstruc-
tion 1s dependent on the first load instruction and pre-
dicting the result data for the second load instruction 1s
available from the data cache.

10. The method as recited 1n claim 9, wherein predicting
the result data for the second load 1nstruction 1s available from
the data cache comprises predicting the first load 1nstruction
misses on a store queue within a load-store unit (LSU).

11. The method as recited 1n claim 10, further comprising:

determining whether a load 1instruction 1s dependent on an

older store 1nstruction; and

storing information corresponding to the load 1nstruction

and the older store instruction in a load-store (LS) pre-
dictor.

12. The method as recited 1n claim 10, wherein to predict
the first load mstruction misses on the store queue, the method
turther comprises determining the first load istruction has no
allocated entry in the LS predictor.

13. The method as recited in claim 10, wherein in response
to determining the result data 1s unavailable for the second
load 1nstruction when the second load instruction 1s ready to
generate an address, the method further comprises replaying
the second load 1nstruction within each of a scheduler and an
execution core.
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14. The method as recited 1n claim 13, further comprising
replaying one or more istructions younger than the second
load 1nstruction within each of the scheduler and the execu-
tion core.

15. The method as recited 1n claim 13, further comprising
maintaining a count of replays for the second load instruction.

16. The method as recited 1n claim 15, wherein in response
to determining a respective count for the second load 1nstruc-
tion reaches a given threshold, the method further comprises
blocking the issue of the second load instruction prior to result
data corresponding to the first load istruction being avail-

able.

17. A non-transitory computer readable storage medium
storing program instructions operable to perform eflicient
scheduling of speculative load 1nstructions, wherein the pro-
gram 1nstructions are executable to:

determine a second load 1nstruction 1s dependent on a first

load 1nstruction, the second load instruction being
younger 1n program order than the first load instruction;
and

1ssue the second load instruction prior to result data corre-

sponding to the first load instruction being available, in
response to the second load instruction 1s dependent on
the first load instruction and predicting the result data for
the second load instruction resides in a data cache.

18. The non-transitory computer readable storage medium
as recited 1n claim 17, wherein predicting the result data for
the second load instruction resides 1n the data cache com-
prises predicting the first load instruction misses on a store
queue within a load-store unit (LSU).

19. The non-transitory computer readable storage medium
as recited 1in claim 18, wherein the program instructions are
further executable to:

determine whether a load instruction 1s dependent on an

older store 1nstruction; and

store information corresponding to the load instruction and

the older store 1nstruction 1n a load-store (LLS) predictor.

20. The non-transitory computer readable storage medium
as recited 1n claim 19, wherein to predict the first load istruc-
tion misses on the store queue, the program instructions are
further executable to determine the first load instruction has
no allocated entry 1n the LS predictor.
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