US009112825B2
12 United States Patent (10) Patent No.: US 9.112.825 B2
Liu et al. 45) Date of Patent: Aug. 18, 2015
(54) PERFORMANCE MONITORING OF A MEDIA (38) Field of Classification Search
PLAYER LAUNCHED BY A WEB BROWSER P e GO6F 11/30
USPC e, 715/234
(75) Inventors: Yuejiang Liu, Beljing (CN); Cheng See application file for complete search history.
Tang, Beljing (CN); Xudong Zhang, _
Lexington, MA (US); Jia Xie, Be1jing (56) References Cited
(CN); Xiaogiang Li, Be1jing (CN) U.S. PATENT DOCUMENTS
(73) Assignee: Dynatrace LLC, Detroit, MI (US) 5,838,906 A * 11/1998 Doyleetal. ... 715/205
7,765,295 B2 7/2010 Anastas et al.
i e : - - - 8,122,122 B1* 2/2012 Clingenpeel etal. 709/224
(%) Notice: Subject to any disclaimer, the term of this 2002/0010621 Al* 1/2002 Bell et al.ovovvvvvorrereen 705/10
patent 1s extended or adjusted under 35 2004/0136327 Al* 7/2004 Sitaraman etal. 370/252
U.S.C. 154(b) by 154 days. 2006/0085420 Al* 4/2006 HWANE ..oovvoveeverereerenn, 707/10
2006/0136578 Al 6/2006 Covell et al.
(21) Appl. No.: 13/319,913 (Continued)
(22) PCT Filed: Sep. 7, 2011 FOREIGN PATENT DOCUMENTS
(86) PCT No.: PCT/CN2011/001515 CN 1437124 8/2003
CN 101282348 10/2008
¥ 371 (e)(1), (Continued)

(2), (4) Date: Jul. 31, 2012 _
Primary Examiner — Kavita Padmanabhan

(87) PCT Pub. No.: W02013/033863 Assistant Examiner — Tionna Burke
PCT Pub. Date: Mar. 14, 2013 gili)czjirrom@z, Agent, or Firm — Harness, Dickey & Pierce,

(65) Prior Publication Data (57) ABSTRACT
S 2013/0061129 A1 Mar. 7, 2013 A computer-implemented system 1s provided for monitoring
performance of a media player launched by a web browser.
(51) Int. CL. The media player 1s referenced by a document that defines a
GOGF 11/30 (2006.01) web page and 1s implemented as a plug-in to the web browser.
HO4L 29/08 (2006.01) Upon accessing the web page, the web browser launches the
HO4IN 21/442 (2011.01) media player. The media player in turn launches a perfor-
HO4AN 21/4782 (2011.01) mance monitor that 1s implemented as a plug-in to the media
HOAN 21/8543 (2011.01) pl&}yer. The performance mqnitor subscribes to event listener
(52) U.S. CL obj ects exposed by the media pilayer and receives event data
cec HO4L 67/02 (2013.01); GO6F 11/30 that 1s reported by the event listener objects. Performance

(2013.01); HO4L 67/22 (2013.01); HO4N metrics pertaining to the media player are derived from the

21/44231 (2013.01); HO4N 21/4782 (2013.01); event data.
HO4N 21/8543 (2013.01) 16 Claims, 7 Drawing Sheets
14
Web Browser
15
Ad Plug-In

Media Player Plug-In Monitor Plug-In i—\ 16
I Ofher Plug-In

US 9,112,825 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS CN 101478669 7/2009
CN 101848367 9/2010

2006/0136927 Al 6/2006 Covell et al. ‘ ‘
2007/0271590 Al 11/2007 Gulas et al. * cited by examiner

U.S. Patent Aug. 18, 2015 Sheet 1 of 7 US 9,112,825 B2

ﬂ‘h - . Witg. Wi ¢ : ;I!... A?;IJ- !I!)
uﬁ(/A7l AL JIF < Wi

L

U.S. Patent Aug. 18, 2015 Sheet 2 of 7 US 9,112,825 B2

Other Plug-In

14
Web Browser
/1_5
B ‘ o Ad Plug-In '
Media Player Plug-In 16
| Overign

US 9,112,825 B2

Sheet 3 of 7

Aug. 18, 2015

0
N

PUN—

U.S. Patent

“ SJudA] Joday “

| ' Ll

" "

_ P R —

“ “ JuaA3 sbed peojun “

| ¢ |

_ m ! _

| ¢ | _

_ STETEITLEY | o | m

_ i _

.

“ P S “

“ “ SjusA3 Loday “ |

| . |

_ _ vz _

| “ N

“ | equosqng _ _

“ “ | "

“ 7 “ “

_ D ¢

J0JUOW pes

" “ JIUOW pea ! _

“ “ " 18Ae|4 youne “

| | ! |

| l | |

J0SS320.d pusyoey I0}JJUO Jad 1ake|d elpajy 19SMOJg

L — g} — gl —* bl —

U.S. Patent Aug. 18, 2015 Sheet 4 of 7 US 9,112,825 B2

Initialize Plug-in

32

Subscribe
Player Events
Subscribe
Page Unload
34 .

Cookie? No Send Server
~ Cookie’ . Request 35
' Yes
37 Setsaatr:ple Create Cookie 6

33

U.S. Patent Aug. 18, 2015 Sheet 5 of 7 US 9,112,825 B2

Receive Event
Data

&

41
42
Yes

. Queue Full? Send Data 43

No Session
N Complete?,

Yes
| Flush Event
43 Queue

a6-—"] Set Session Flag

Page
Unload?

47

S Ol

US 9,112,825 B2

E
T
E

-----"-'------‘*---**---—----*--‘-‘---

- m m w : 1ayng e

» m A o . Lo A m

= m w uoneinq] Aeld pu? - Jsid w 1einQ Aeld 1s) m st dn el

i m |

Z m 3
m St
“ A/m..
m S
_ J%.A/OO
e e AW | UOISSBG ~=====m=mmccccccmcccrorac e e

U.S. Patent

US 9,112,825 B2

Sheet 7 of 7

Aug. 18, 2015

U.S. Patent

lew3 puas

80IAIeS Haly

L

_ 3JIA18G Joday _

_ 30IA19S JUN02Y _ |

| 9VIAIBS PIEOQUSE(] _ II

[elod 4aM 1/

S0INIBS [lew3 &) .

89 ~
9 "Old4
ap
Haly
79
29 -
gp
€9
Hoday
18)}14 Juaby Jasn
ananp) ' 194 d|
99 ~ abessay
g LONI8}0Id J18S
.__._.mmU 79 al anbiun ejesauas |
3100 S0INBS
Mmmwmmo% JoN809)y abessapy
asnoyalep Bjeq SI9AJ2S JONBODY 19

US 9,112,825 B2

1

PERFORMANCE MONITORING OF A MEDIA
PLAYER LAUNCHED BY A WEB BROWSER

FIELD

The present disclosure relates to real time performance
monitoring of media players launched by web browsers.

BACKGROUND

Web site owners need to know which users are having
trouble 1nteracting with their web site and specifically what
those problems are. For example, web site owners need to
know 11 the problems are 1solated 1n a certain geographical
area, 1I the problems are tied to a specific operating system,
etc. Failure to diagnose and correct the problems that user’s
encounter on a web site ultimately impact a user’s ability, for
example, to do business with a web site.

Performance monitoring tools for web sites are commer-
cially available 1n the marketplace. With the prevalence of
client-side scripting 1n web page development, it has become
significantly more difficult to properly diagnose problems
experienced by users. In particular, streaming content provid-
ers are unable to track performance experienced by users of
media players embedded into web browsers. While synthetic
performance monitoring solutions have been proposed, there
remains a need for real time performance monitoring of
media players launched by web browsers.

This section provides background information related to
the present disclosure which 1s not necessarily prior art.

SUMMARY

A computer-implemented system 1s provided for real-time
monitoring performance of a media player launched by a web
browser. The media player 1s referenced by a document that
defines a web page and 1s implemented as a plug-in to the web
browser. Upon accessing the web page, the web browser
launches the media player. The media player in turn launches
a performance monitor that 1s implemented as a plug-in to the
media player.

The performance monitor operates to subscribe to event
listener objects exposed by the media player and receives
event data that 1s reported by the event listener objects. Per-
formance metrics pertaining to the media player are dertved
from the event data. In some embodiments, event data 1s
stored 1n a queue and sent periodically over a data network by
the performance monitor to a server. Performance metrics for
the media player are then determined from the event data at
the server. In other embodiments, performance metrics are
determined by the performance monitor before being com-
municated to the remote server.

This section provides a general summary of the disclosure,
and 1s not a comprehensive disclosure of 1ts full scope or all of
its features. Further areas of applicability will become appar-
ent Irom the description provided herein. The description and
specific examples 1n this summary are intended for purposes
of 1llustration only and are not intended to limait the scope of
the present disclosure.

DRAWINGS

FIG. 1 1s a diagram of an exemplary computer network
system;

FIG. 2 1s a diagram of an exemplary framework for inte-
grating a performance monitor into a web browser;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a sequence diagram illustrating a method for
monitoring performance of a media player launched as a

plug-n to a web brows;

FIGS. 4A and 4B are flowcharts depicting an exemplary
embodiment of a performance monitor;

FIG. 5 15 a diagram 1llustrating various performance met-
rics pertinent to a media player; and

FIG. 6 1s adiagram depicting an exemplary architecture for
a backend processor for performance data captured by web
browsers.

The drawings described herein are for illustrative purposes
only of selected embodiments and not all possible implemen-
tations, and are not intended to limit the scope of the present
disclosure. Corresponding reference numerals indicate cor-
responding parts throughout the several views of the draw-
Ings.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary computer network system
10. The computer network system 10 may be comprised of
one or more client computing devices 11 interconnected via a
computer network 12 to one or more server computers 13.
One popular use of such computer systems 1s to retrieve and
view web pages on the World Wide Web. Web browsers are
used to retrieve web pages and associated content. Inresponse
to requests for web pages made by web browsers, web servers
obtain the requested web pages and serve those pages back to
the web browser for viewing by a user. Web browsers typi-
cally reside on client computing devices 11; whereas, web
servers are typically hosted by the server computers 13.
Server computers 13 (either the same or different from those
hosting web servers) are also used to host backend processing
for performance monitoring tools as will be further described
below. Although the client computing devices 11 are illus-
trated as desktop computers 1n FI1G. 1, 1t 1s readily understood
that this term more broadly encompasses other types of com-
puting devices, including phones, tablets, cameras, laptops,
etc.

FIG. 2 provides an exemplary framework for monitoring,
performance of a media player 135 launched by a web browser
14. Media players are known software components for play-
ing multimedia files, such as streaming video. Exemplary
media players may include (but are not limited to) Adobe’s
Flash player and Microsoit’s Silverlight player. Web pages
often rely upon media players to enhance content delivery. In
a typical scenario, the media player 15 1s launched as a plug-in
to the web browser 14. Reference to the media player 1s made
via a link to the media player contained 1n the HTML docu-
ment that defines a given web page.

Likewise, the media player 135 1tself may support plug-ins,
such that a performance monitor 16 may be launched by the
media player. The performance monitor 16 1s a software
component executed 1n the client computing environment to
monitor the performance of the media player 15 in a manner
turther described below. In exemplary embodiment, the per-
formance monitor 16 may be implemented as a client-side
script written 1n JavaScript, ActionScript, or other similar
scripting languages. Thus, execution of both the media player
15 and the performance monitor 16 occurs 1n the computing
environment of the client computer hosting web browser 14.
Other techniques for dynamically imitiating the performance
monitor 16 by the media player 15 are also contemplated by
this disclosure.

With reference to FIG. 3, the web browser 14 will operate
at 21 to launch the media player 15. More specifically, the
web browser will launch the media player upon rendering of

US 9,112,825 B2

3

a web page that makes reference to the media player 15. The
media player 15 will 1n turn load the performance monitor as
indicated at 22. In an exemplary embodiment, the media
player 15 1tsell supports plug-ins such that the performance
monitor may be implemented as a plug-1in to the media player.
Accordingly, the HTML document would contain a reference
to the performance monitor. More specifically, the tag for the
media player in the HIML document includes a URL for the
performance monitor. The media player uses the URL to
launch the performance monitor. Sample code for an exem-
plary HTML document modified 1n this manner is set forth
below.

<embed height="450" width="540" align="middle” type="application/x-
shockwave-flash” flashvars="
plugins=http://imgl.cO.=letv.com/ptv/player/plugins/zoomBar.swi,
http://gomez.customer_a.com/perfmonitorplugin.swi,
http://1imgl.cO.letv.com/ptv/player/plugins/lerecommend.swi,
http://imgl.cO.letv.com/ptv/player/plugins/displayBar.swi

While reference 1s made to hypertext markup language
(HITML), it 1s understood that the concept 1s extendable to
other types of markup languages.

To monitor performance of the media player 15, the per-
formance monitor 16 needs to be aware of key events occur-
ring within the media player 15. In the exemplary embodi-
ment, the media player 15 supports different types of event
handlers or event listeners. To receive event data, the perfor-
mance monitor will subscribe to one or more of the event
listeners as indicated at 24. When an event occurs, the event
listener will report the event occurrence to the performance
monitor as indicated at 25. For example, the media player
may support an event handler pertaining to buifering of con-
tent by the media player. When the media player 1s butiering
content for playback, the bullering event will be reported to

the performance monitor. Exemplary events to be monitored
tor Adobe’s Flash player are presented in the table below.

Event Description

Initialization Triggered when the player call the plug-in
Metadata Player has got media file header information.
AuthenticationNeeded Player tries to access protected media content
Authenticating Player 1s acquiring a license to play protected

content

AuthenticationComplete Content has been successfully authenticated.

AuthenticationError Content authentication attempt failed.
DrmSystemUpdating DRM system 1s currently being updated.
MediaError During the playing media, any error will
cause this event to occur
Buffering Player 1s loading content for playback; position
does not advance during this state.
Paused Player does not advance 1ts position.
Playing Player 1s playing the content specified by its
source property; its position advances forward.
Stopped Player loaded media, but it 1s not playing or

paused. Its position 1s O and does not advance.

Exemplary events to be monitored for Microsoit’s Silverlight
player are also presented 1n the table below.

Event Description

Initialization Triggered when the player call the monitor plug-in

Acquuringl.icense Only applicable when serving DRM-protected
content; player is acquiring a license required to play
DRM-protected content.

Buffering Player is loading the media for playback; its

position does not advance during this state.

10

15

20

25

30

35

40

45

50

55

60

65

4
-continued

Event Description

Closed Player contains no media; the player displays a
transparent frame.(or logo frame)

Individualizing Only applicable when serving DRM-protected content:
The player 1s in the process of ensuring that proper
individualization components {(only applicable when
playing DRM-protected content) are installed on
the user’s computer.

Opening Player 1s validating and attempting to open the
Uniform Resource Identifier (URI).

Opened When the media stream has been validated and
opened, and the file headers have been read.

Paused Player does not advance its position.

Playing Player 1s playing the media specified by its source
property; 1ts position advances forward.

Stopped Player loaded media, but it 1s not playing or paused. Its
position i1s O and does not advance.

MediaError During the playing media, any error will cause this

event occurred

It 1s envisioned that other types of events may prove to be
useiul and thus fall within the scope of this disclosure. Like-
wise, 1t 1s understood that the principles described herein are
extendable to events supported by other types of media play-
ers. In this way, the performance monitor learns of events
occurring inside the media player and otherwise not visible to
components residing on the client computing device.

Upon receiving event data from the media player, the per-
formance monitor can store the event data locally and peri-
odically send the event data over a data network to a backend
processor remote from the client computing device. In this
case, performance metrics for the media player will be com-
puted from the event data by the backend processor. Alterna-
tively, performance monitor can compute the performance
metrics from the event data before sending the performance
metrics to the backend processor. In either case, the perfor-
mance monitor communicates either the event data or the
performance metrics over a data network at 26 to a backend
processor 17 residing on a server remote from the client
computing device.

Operation of the performance monitor 16 1s further
described 1n relation to the flowchart depicted 1n FIGS. 4A
and 4B. The performance momnitor 1s loaded by the media
player as noted above. In doing so, the media player 15 will
initialize at 31 various parameters of the performance monitor
16 such as an account identifier, a group 1dentifier, a web page
identifier, etc. These parameter values are typically specified
in the html document of the web page that launched the media
player.

Once mitialized, the performance momtor 16 will sub-
scribe to at least two event handlers. To recerve event data
from the media player 15, the performance monitor 16 will
first subscribe at 32 to one or more of the event listeners
exposed by the media player. Details regarding the different
types of events are further described below. In addition, the
performance monitor 16 will subscribe at 33 to the page
unload event handler. This enables the performance monitor
16 to determine when an end user has left the web page and
therealter terminate 1ts processing.

Next, the performance monitor 16 will determine a rate at
which the monitor will sample and/or report event data to a
backend processor 17. A check 1s made at 34 for a cookie or
some other type of local data store associated with the per-
formance monitor. IT a cookie resides on the client computing
device, the sample rate 1s obtained from the cookie. The
cookie may also used to store other types on data, including a
unmique 1dentifier assigned by the backend processor 17 to the

US 9,112,825 B2

S

client computing device. The umique 1dentifier may be gen-
erated 1n various ways and used by the backend processor for
reporting purposes.

When the cookie 1s absent or expired, the performance
monitor will send a request at 35 for the sample rate to the
backend processor. In an exemplary embodiment, the request
may be communicated using an HT'TP GET method although
other means are contemplated. The backend processor will 1n
turn respond to the request with the sample rate as well as
other information. Upon receipt of the response, the perfor-
mance monitor will create a cookie at 36 on the client com-
puting device or otherwise update the local data store. In
either case, the sample rate 1s used to regulate the monitoring
processing in the manner further described below.

The performance monitor 1s now configured to receive
event data from the media player. Event data 1s recerved at 40
by the performance monitor. Rather than report each event to
the backend processor, events are collected 1n a queue and
periodically sent to the backend processor. Thus, each event s
placed 1n a send queue as indicated at 41. For each new event,
the queue 1s checked at 42. For example, does the number of
events 1n the queue exceed a configurable threshold (e.g., 15
events). When the queue 1s full, the performance monitor will
bundle the event data in the send queue as a package and send
the data at 43 to the backend processor. In addition to the event
data, the data package may include the unique identifier
assigned to the client computing device by the backend pro-
cessor 17. The data package may further include 1dentifiers
for the type of web browser (e.g., Safari, Chrome, etc.), the
type of media player, the type of operating system and other
parameters associated with the execution environment of the
client computing device. In an exemplary embodiment, the
package, including event data, 1s sent by the performance
monitor 16 using an HI'TP SEND method although other
means are contemplated. The send queue 1s emptied once the
data package has been successtully sent. Whether the queueis
tull or not, a determination 1s made as to whether the media
session 1s complete at 44 before processing the next event.
Different event types signily the end of a session, such as a
stop event or a media error event.

Event data continues to be processed by the performance
monitor until the media session 1s complete. Once the media
session 1s complete, the performance monitor will send any
remaining event data in the queue to the back processor and
empty the queue as indicated at 45.

Rather than report data for each media session, the perfor-
mance monitor can be configured to process or report on a
subset of media sessions handled by the media player. The
sample rate dictates the percentage of media sessions pro-
cessed by the performance monitor. For a sample rate set to
100%, the performance monitor would report event data for
cach media session handled by the media player. When the
sample rate 1s set to 25%, the performance monitor would
report event data for one or every four media sessions handled
by the media player. Whether to process a given media ses-
s10n 1s determined at step 46. In an exemplary embodiment,
the performance monitor will maintain a count of the number
of media sessions. A determination as to whether to process a
grven media session can then be made from the sample rate
and the session count. A Boolean flag can be set to indicate
whether the next media session 1s to be processed. For
example when the sample rate 15 50%, the flag 1s set to true
when the session count 1s an even number and set to false
when the session count 1s an odd number. When the sample
rate 15 25%, the tlag 1s set to true for event fourth session.
Betore event data 1s sent to the backend processor, the flag 1s
checked (e.g., 1n steps 43 and 45). Event data 1s sent when the

10

15

20

25

30

35

40

45

50

55

60

65

6

flag 1s set to true and not sent when the flag 1s set to false.
Other ways for sampling a subset of media sessions are also
contemplated by this disclosure.

Media sessions handled by the media player continue to be
processed until the web page that launched the media player
1s closed. Once the web page 1s closed, the performance
monitor receives an event indicating the web page was
unloaded and terminates processing as indicated at 47. It 1s to
be understood that only the relevant steps of the methodology
are discussed 1n relation to FIGS. 3A and 3B, but that other
soltware-implemented mstructions may be needed to control
and manage the overall operation of the performance monitor.

One aspect of this disclosure 1s determining which perfor-
mance metrics are pertinent to a media player launched by a
web browser. Some of the most pertinent performance met-
rics are further described below 1n relation to FIG. 5. Start-up
time 1s a measure of how long 1t takes for a stream to start
playing. In one embodiment, the start-up time 1s determined
by subtracting the timestamp for the plug-in mmitialization
event from the timestamp for the first play event. This metric
1s 1important because 1t reflects how long an end user of the
media player has to wait before seeing the media content.

Start to stop time (session time) 1s a measure of how long 1t
takes for a stream to play until the session ends, including
buifering. In one embodiment, the start to stop time 1s deter-
mined as the time difference between the plug-in 1nitializa-
tion event and the stop event. This metrics measures how long
cach session lasts and may also be computed using other
events that terminate a session.

Session error 1s a measure of the number of errors that
occurred while the media player was loaded. In one embodi-
ment, the performance momtor maintains a count ol error
events that occurred. This metric provides an indication of the
stability of the data link between the content source and the
media player.

Initial buffer time 1s a measure of the time elapsed during
the first buifer event. More specifically, the time elapsed from
the point at which a URL has been resolve, the connection
made and any metadata downloaded to the point at which the
butfer 1s filled and playback begins. In one embodiment, the
initial buffer time 1s determined as the time difference
between the first bulfer event and the first play event.

Average rebulfer time 1s a measure of average time spent
builfering content and thus waiting by the end user. The aver-
age rebuffer time 1s determined by summing all of the buil-
ering time (1.¢. time between a buffer event and the next play
event) and dividing this sum by a count of butier events. This
metric may be computed inclusive or exclusive of the mnitial
builer time with the buller count adjusted accordingly. Fur-
thermore, this metric may be computed for a given session or
across multiple sessions.

Rebuller ratio 1s a measure of the total time spent waiting,
during butiering as a percentage of the total session time. The
ratio 1s determined by summing the total buffer time and then
dividing the total buffer time by the session time. Alterna-
tively, the ratio may exclude start up time, such that total
butler time 1s divided by the sum of the total play time and the
total buffer time. Again, this metric may be computed for a
grven session or across multiple sessions.

Average play time 1s a measure of an uninterrupted play-
back session between mterruptions during playback of media
content. In one embodiment, the average play time 1s deter-
mined by summing of all play time during a session (i.¢., total
play time) and dividing the total play time by the play count.
Since 1nterruptions may be caused by numerous types of
events, mcluding user-initiated events, the metric may be
computed inclusive or exclusive of the user-initiated events.

US 9,112,825 B2

7

Session success rate 1s a measure of session started that
completed successtully. In one embodiment, a session count
1s maintained for the number of sessions initialized and a
success count 1s maintained for the number of these 1nitiated
sessions completed successtully (1.e., without error). The ses-
s10n success rate 1s computed by dividing success count by
the session count.

Performance metrics such as those described above can be
derived by the performance monitor before sending to the
backend processor or can be derived from event data sent by
the performance monitor to the backend processor. While a
tew key performance metrics have been described above, 1t 1s
readily understood that other types of performance metrics
can be derived from the event data captured by the pertor-
mance monitor and thus fall within the broader aspects of this
disclosure.

Performance metrics are accumulated by the backend pro-
cessor for subsequent analysis and reporting. For instance,
performance metrics may be accumulated over time from a
particular client computing device. Such performance met-
rics may then be subsequently analyzed to evaluate perfor-
mance media players launched on that particular client com-
puting device. For example, the backend processor may
compile reports as to how the media players performed at
different times of the day. In another example, since one web
site may reference Adobe’s Flash player while another web
site may reference Microsoit’s Silverlight player, reports may
be compiled comparing how each of these two different
media players performed on the this particular client comput-
ing device. Other types of reports pertaining to a particular
client computing device are also contemplated.

Moreover, performance metrics are accumulated across
many different client computing devices. Likewise, these
accumulated performance metrics can be analyzed by the
backend processor. As a result, different types of reports can
be generated regarding the performance of media players
across the network. For example, performance metrics can be
reported 1n relation to a particular geographic area, such as
city or country. Performance metrics can be reported in rela-
tion to particular aspects of the computing environment, such
as metrics for different types of web browser or operating
systems. In another example, performance metrics can be
reported according to the Internet service provider and/or the
type of network connection between the media player and its
data source. Most importantly, performance metrics are
aggregated for customers associated with a particular web site
or series of web sites. In this way, web site owners can track
the performance experienced by users ol media players inte-
grated mnto their web sites.

FI1G. 6 1llustrates an exemplary architecture for a backend
processor 60. The backend processor 60 may be comprised
generally of a message receiver 61, a message queue 62, a
message processor service 63, and a data warechouse 64. Each
of these components 1s further described below. It 1s readily
understood that these components may be implemented on a
single server computer or distributed across multiple server
computers.

The message receiver 61 1s responsible for interfacing with
the performance monitor. More specifically, the message
receiver 61 1s configured to receive requests (e.g., HI'TP GET
requests) and respond accordingly to the requests. For
example, the message recerver 61 will respond to a request for
a sample rate from a performance monitor. Additionally, the
message recerver 61 will recerve messages sent by the per-
formance monitor and place the messages 1n the message
queue 62 for asynchronous processing. When a message 1s
inserted 1nto the queue, a timestamp 1s added to the message

10

15

20

25

30

35

40

45

50

55

60

65

8

body. The message recetver may pertorm other tasks includ-
ing generating a unique 1dentifier for new requestors, filtering
out messages from addresses 1n a blacklist as well as 1imple-
ment other protection mechamisms. In an exemplary embodi-
ment, the message receiver 61 1s implemented as an applica-
tion running 1n the Internet Information Services (11S).

The message processor service 63 1s responsible for pro-
cessing incoming messages placed 1n the message queue 62.
In particular, the message processor service 63 1s configured
to parse the messages and place the data contained therein,
including event data, into more persistent data stores or data-
bases residing 1n data warehouse 64. To do so, the message
processor service 63 will classily data, including identifying
associated customer and mapping IP address to geographic
locations. Data may be stored in an aggregate manner or
partitioned amongst different data stores based on traffic type
(e.g., mobile vs. non-mobile), customer type, etc. In an exem-
plary embodiment, the data warchouse 64 includes a configu-
ration database 66, a reporting database 67 and an alert data-
base 68. The message processor service 63 will also analyze
the data gathered by the performance monitor. For example,
message processor service 63 may create alert events based
on customer settings. In an exemplary embodiment, the mes-
sage processor service may be implemented as a Windows
service.

The backend processor 60 may further support difierent
ancillary services, including a web portal 71, an alert service
72 and an email service 73. The web portal 71 may be used by
system administrators to input, modily and maintain configu-
ration parameters stored 1n the configuration database. Exem-
plary configuration parameters may include a global default
value for the sample rate. The web portal 71 may also offer
dashboard services as well as other reporting functions for
data contained 1n the data warehouse 635. The alert service 72
1s responsible for generating alerts and the email service 73 1s
responsible for sending alert notifications to subscribing cus-
tomers. Each of these services may also be implemented as a
Windows service.

The foregoing description of the embodiments has been
provided for purposes of illustration and description. It 1s not
intended to be exhaustive or to limit the disclosure. Individual
clements or features of a particular embodiment are generally
not limited to that particular embodiment, but, where appli-
cable, are interchangeable and can be used 1 a selected
embodiment, even il not specifically shown or described. The
same may also be varied 1n many ways. Such variations are
not to be regarded as a departure from the disclosure, and all
such modifications are intended to be included within the
scope of the disclosure.

The terminology used herein 1s for the purpose of describ-

ing particular example embodiments only and 1s not intended

to be limiting. As used herein, the singular forms *““a,” “an,”
and “the” may be intended to include the plural forms as well,
unless the context clearly indicates otherwise. The terms
“comprises,” “comprising,” “including,” and “having,” are
inclusive and therefore specily the presence of stated fea-
tures, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereol. The method steps, pro-
cesses, and operations described herein are not to be con-
strued as necessarily requiring their performance 1n the par-
ticular order discussed or illustrated, unless specifically
identified as an order of performance. It 1s also to be under-

stood that additional or alternative steps may be employed.

US 9,112,825 B2

9

What 1s claimed 1s:

1. A computer-implemented system for monitoring perfor-
mance ol a media player launched by a web browser residing,
on a client computing device, comprising;:

a document that defines a web page and 1s formatted in

accordance with a markup language;

a media player referenced by the document and 1mple-
mented as a plug-in to a web browser;

a processor executing a performance monitor implemented
as a plug-in to the media player and that operates to
subscribe to event listener objects exposed by the media
player and receives event data that 1s reported by the
event listener objects during rendering of content by the
media player, including wherein the performance moni-
tor further subscribes to a page unload event handler and,
in response to an unload page event, terminates process-
ing of the performance monitor, the document includes
a tag for the media player and the tag for the media
player 1s embedded with a uniform resource locator for
the performance monitor; and

a web browser configured to receive the document over a
data network from a server and operable to launch the
media player using the tag for the media player in the
document, wherein the media player 1n turn operates to
launch the performance monitor using the uniform
resource locator embedded in the tag, wherein the per-
formance monitor 1s computer-executable instructions
residing 1n a non-transitory, tangible computer readable
storage medium of the client computing device.

2. The system of claim 1 wherein the document 1s format-

ted 1n accordance with hypertext markup language.

3. The system of claim 1 wherein the performance monitor
1s 1implemented as a client-side script written 1n a scripting
language.

4. The system of claim 1 wherein the media player depends
upon computing services provided by the web browser.

5. The system of claim 4 wherein the performance monitor
depends upon computing services provided by the media
player.

6. The system of claim 1 wherein the performance monitor
operates to store the event data 1n a data store residing on the
client computing device and send the event data over the data
network.

7. The system of claim 6 further comprises a backend
processor in data communication with the performance moni-
tor over the data network, wherein the backend processor 1s
configured to receive the event data sent by the performance
monitor and operates to dertve performance metrics from the
event data.

8. The system of claim 7 wherein the performance monitor
receives an event indicating butlering of content by the media
player and the backend processor derives one or more perfor-
mance metrics pertaining to buifering of content from the
event.

10

15

20

25

30

35

40

45

50

10

9. A computer-implemented method for monitoring per-
formance of a media player launched as a plug-in to a web
browser residing on a client computing device, comprising:

launching, by a web browser, a media player while render-

ing a web page, where a document formatted 1n accor-
dance with a markup language defines the web page and
includes a tag for the media player;

launching, by the media player, a performance monitor as

a plug-in to the media player using the tag, where the tag
1s embedded with a uniform resource locator for the
performance monitor;

subscribing, by the performance monitor, to an event lis-

tener object, where the event listener object 1s supported
by the media player;
receving, by the performance monitor, event data occur-
ring during rendering of content by the media player and
that 1s reported by the event listener object;

determining performance metrics for the media player
from the event data:

commumnicating at least one of the event data and the per-

formance metrics from the performance monitor over a
data network to a server remote from the client comput-
ing device; and

subscribing, by the performance monitor, to a page unload

event handler and, in response to an unload page event
for the web page, terminate processing.

10. The method of claim 9 further comprises receiving
event data pertaining to buffering of content by the media
player.

11. The method of claim 9 further comprises determining
performance metrics for the media player from the event data
by the performance momitor before communicating the per-
formance metrics to the server.

12. The method of claim 9 further comprises storing the
event data in a queue associated with the performance moni-
tor, periodically sending the event data to the server and
determining performance metrics for the media player from
the event data at the server.

13. The method of claim 9 further comprises communicat-
ing the performance metric 1n accordance with a hypertext
transier protocol.

14. The method of claim 9 further comprises requesting a
umque 1dentifier for the client computing device from the
server by the performance monitor and associating the unique
identifier with the performance metrics.

15. The method of claim 9 further comprises recetving an
unload page event at the performance monitor and commu-
nicating at least one of the event data and the performance
metrics to the server 1n response thereto.

16. The method of claim 9 further comprises recerving
event data at the performance monitor during the rendering of
content by the media player.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

