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FIG. 4
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1

SYSTEM AND METHOD OF DETECTING
OBJECTS IN SCENE POINT CLOUD

BACKGROUND

1. Field

The present invention relates to a system and method of
detecting objects 1n scene point clouds.

2. Background

Object detection 1s one of the most basic tasks 1n computer
vision. Numerous techniques focused on detection of
humans, human faces, cars, ships, daily life objects, etc. Until
recently, however, most techniques were only limited to two-
dimensional (2D) image data. With the development of sensor
technology in recent years, three-dimensional (3D) point
clouds of real scenes have been increasingly popular and
precise. However, very few methods that directly detect
objects from 3D point clouds are presently available.

Conventional point cloud processing can be divided into
several categories based on their focus: segmentation, classi-
fication, matching, modeling, registration and detection.
Object detection 1n the scene point cloud 1s a systematic work
that typically requires multiple techniques in different
aspects. Various point cloud processing have been applied to
various forms of data such as detection of vehicles, poles and
other outdoor objects 1n urban scenes, detection/classification
of chairs, tables and other indoor objects 1n the office scenes,
etc. None of the conventional point cloud processing has been
implemented 1n industrial scene point clouds, which may
include complex object shapes and a complex arrangement of
the objects 1n a scene.

SUMMARY

An aspect of an embodiment of the present invention 1s to
provide a method of detecting one or more objects 1n a three-
dimensional point cloud scene. The method includes receiv-
ing a three-dimensional point cloud scene, the three-dimen-
sional point cloud scene comprising a plurality of points;
classiiying at least a portion of the plurality of points in the
three-dimensional point cloud into two or more categories by
applying a classitying-oriented three-dimensional local
descriptor and learning-based classifier; extracting from the
three-dimensional point cloud scene one or more clusters of
points utilizing the two or more categories by applying at least
one of segmenting and clustering; and matching the extracted
clusters with objects within a library by applying a matching-
oriented three-dimensional local descriptor.

Another aspect of an embodiment of the present invention
includes a system of detecting one or more objects in a three-
dimensional point cloud scene. The system includes a pro-
cessor configured to: (a) receive a three-dimensional point
cloud scene, the three-dimensional point cloud scene com-
prising a plurality of points; (b) classily at least a portion of
the plurality of points 1n the three-dimensional point cloud
into two or more categories by applying a classiiying-ori-
ented three-dimensional local descriptor and learning-based
classifier; (¢) extract from the three-dimensional point cloud
scene one or more clusters of points utilizing the two or more
categories by applying at least one of segmenting and clus-
tering; and (d) match the extracted clusters with objects
within a library by applying a matching-oriented three-di-
mensional local descriptor.

Other aspects of embodiments of the present invention
include computer readable media encoded with computer
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executable instructions for performing any of the foregoing
methods and/or for controlling any of the foregoing systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing,
executed 1n color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

Other features described herein will be more readily appar-
ent to those skilled 1n the art when reading the following
detailed description in connection with the accompanying
drawings, wherein:

FIG. 1 shows a library of three-dimensional (3D) objects
that can be found 1n a 3D point cloud industrial scene, accord-
ing to an embodiment of the present invention;

FIG. 2 shows an example of a 3D point cloud industrial
scene, according to an embodiment of the present invention;

FIG. 3 1s a flow-chart of a method of detecting one or more
objects 1n a 3D point cloud, according to an embodiment of
the present invention;

FIG. 4 illustrates a vector geometry used 1n point feature
histogram calculation, according to an embodiment of the
present invention;

FIG. 5 shows an example of a 3D point cloud industrial
scene where pipe points, plane points, edge points and the
remaining part points are classified, according to an embodi-
ment of the present invention;

FIG. 6 shows a result of the segmentation and clustering of
the 3D point cloud scene shown 1n FIG. 5;

FIG. 7 depicts an assembly of several parts that are detected
by the present detection method, according to an embodiment
of the present invention;

FIG. 8 depicts detection results from a sub-scene of an
industrial 3D-point cloud, according to an embodiment of the
present invention;

FIG. 9 shows another 3D point cloud scene where parts that
are detected are shown 1n color with respect to ground truth,
according to an embodiment of the present invention;

FI1G. 10 shows the statistical results of the industrial scene,
according to an embodiment of the present invention. FIG. 10
1s plot of the precision-recall curve, according to an embodi-
ment of the present invention;

FIG. 11A depicts an example of publically available 3D
data 1n which occlusion of some data point by other data
points 1s present;

FIG. 11B depicts a result of applying the detection method
to the scene 1n FIG. 11A, according to an embodiment of the
present invention; and

FIG. 12 1s a schematic diagram representing a computer
system for implementing the methods, according to an
embodiment of the present invention.

DETAILED DESCRIPTION

According to an embodiment of the present invention,
there 1s provided a method of detecting one or more objects in
a three-dimensional (3D) point cloud scene. For example, the
objects can be industrial parts, such as valves, valve parts or
connectors shown in FIG. 1. FIG. 1 shows a library of three-
dimensional (3D) objects that can be found 1 a 3D point
cloud industrial scene, according to an embodiment of the
present invention. For example, the 3D point cloud scene can
be an industrial scene such as a 3D scene or 3D 1image of o1l
or gas field equipment or o1l refinery equipment. FIG. 2 shows
an example of a 3D point cloud industrial scene, according to
an embodiment of the present invention.
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The use o1 3D point cloud data provides numerous benefits
over 2D mmage data. For example, the 3D point cloud data
provides a better geometric spatial relationship between vari-
ous elements present 1n the 1mage. However, 3D point cloud
data detection has also a set of challenges. First, the texture
information 1n 3D point clouds may be less clear than the
texture information 1 2D 1mages. Second, 3D point cloud
data may be affected by noise and occlusions, 1n a different
way than 1n 2D data. Third, objects 1n 3D space have more
degrees of freedom, which may render alignment more diffi-
cult. Fourth, 3D point cloud data are typically large compared
to 2D 1mage data with millions of points even in a single
scene. As a result, an object detection algorithm of higher
eificiency may be needed for 3D point cloud data.

FIG. 3 1s a flow-chart of a method of detecting one or more
objects 1n a 3D point cloud, according to an embodiment of
the present invention. The method includes inputting a scene
point cloud, at S10. The scene point cloud 1s a 3D 1mage of a
scene. The 3D point cloud comprises a plurality of points
provided 1n the Xyz-space. For example, each point has (X, v,
7) coordinates or cylindrical coordinates or spherical coordi-
nates. In one embodiment, the scene can be for example an
industrial scene comprising pipelines, valves, valve connec-
tors, etc., as shown in FIG. 2. The method further includes
classiiying at least a portion of the plurality of points in the
three-dimensional point cloud into two or more categories by
applying a classifying-oriented three-dimensional local
descriptor and learming-based classifier, at S12A and S12B.

In one embodiment, a three-dimensional Fast Point Feature
Histogram (FPFH) 1s selected as the descriptor. Here, classi-
tying includes calculating a Fast Point Feature Histogram
(FPFH) at each point 1n the plurality of points in the point
cloud, S12A. The principle for the selection of descriptor for
classification can be depicted as: everything should be as
simple as possible using simple geometry, but not simpler. By
simple, 1t 1s meant that the calculation 1s not expensive, and
the dimension 1s small. One of the simplest features 1s Shape
Index (SI). However, SI only considers the principal curva-
tures, which 1s not distinctive enough for multiple categories
in this application. On the other hand, brief experiments on
simple shape classification show that other descriptors such
as Spin Image and 3D Shape Context are outperformed by
FPFH 1n both accuracy and efficiency. It 1s noted, however,
the performance of the descriptors can be different when the
descriptors are used 1n, for example, complex shape match-
ng.

FPFH 1s an approximate and accelerated version of Point
Feature Histogram (PFH). PFH uses a histogram to encode
the geometrical properties of a point’s neighborhood by gen-
eralizing the mean curvature around the point. The histogram
representation 1s quantized based on all relationships between
the points and their estimated surface normals within the
neighborhood as shown 1n FIG. 4.

FI1G. 4 1llustrates a vector geometry used in a point feature
histogram calculation, according to an embodiment of the
present invention. A local frame for computing a relative
difference between two points p_ and p,1s defined 1n Equation

(D).

r"'_'h. RN )

(1)

U =n;
- . (Pr_Ps)
L V=U X
lp: — psll,
W =T XD
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With this frame, the difference between the point-normal
pair can be represented by the angles 1n Equation (2).

(=77, (2)
lo=7. (P: — Ps)

1p: — psll;
0 = arctan(w -7, U -7;)

these angles are then quantized to form the histogram.
FPFH reduces the computational complexity of PFH from

O(nk?) to O(nk), where k is the number of neighbors for each

point p 1n point cloud P, without losing much of the discrimi-
native power in PFH. Equation (3) provides the relationship
between FPFH with conventional PFH.

| 3
— - PFH(p;) )

]
FPFH(p,) = PFH(p,) + ;Zle -

In one embodiment, the FPFH method that 1s used 1s
retrieved from an open-source Point Cloud Library (PCL)
thatis described in “3D 1s here: Point Cloud Library (PCL); In
Proceedings of the IEEE International Conference on Robot-
ics and Automation (ICRA ’11), Shanghai, China, May
2011,” by R. B. Rusu and S. Cousins, the entire content of
which 1s incorporated herein by reference.

In one embodiment, the classifying at S12A, S12B
includes applying a support vector machine (SVM)-test on
the plurality of points within the point cloud scene, at S12B to
classily the plurality of points. The plurality of points are thus
classified as one of the 4 regular categories (e.g., plane) or
others. Although, SVM 1s used as a tool to classity the plu-
rality of points, other methods may be employed as well.
Other methods of classification may include k-Nearest
Neighbor (k-NN) classifier, Decision Trees, Naive Bayes
classifier, and various kinds of Probabilistic Graphic Models.

In the present example where the 3D point cloud 1s an
industrial scene, as shown 1n FIG. 2, a large portion of the
points belong to basic geometrical shapes, mainly planes (e.g.
ground, ladders and boxes) and pipe-shapes (cylindrical
pipes, bent connection, posts). Therefore, removing large
clusters of such points can facilitate and accelerate support
vector machine (SVM) processing and allow for focusing on
the objects of interest to be detected.

In one embodiment, in the offline traiming stage, the
method includes selecting and labeling about 75 representa-

tive small trunks o point clouds, which represents around 200
k labeled points. In one embodiment, support vector machine
LIBSVM package using the radial basis function (RBF) ker-
nel 1s applied, in which parameters C=8 and v=0.5. A detailed
description of LIBSVM can be found m “LIBSVM: A
Library for Support Vector Machines. (2011), by C.-C. Chang
and C.-J. Lin, and online at www.csie.ntu.edu.tw/~cjlin/lib-
svm, the entire content of which 1s incorporated herein by
reference.

In some embodiments, it 1s determined that near places
where two or more planes 1ntersect, some points cannot be
classified as “plane” points due to the interference of another
plane 1n their neighborhood. On the other hand, these points
do not belong to parts when they group together as a large
cluster. Therefore, these points, which cannot be classified as
plane points due to 1nterference, are assigned to another cat-
egory referred to as the “edge”.
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In addition to the presence of edges, some thinner pipes can
be missing 1n pipe detection. Experiments show that simply
adding the thinner pipes in the training dataset may have
negative elfects on pipes with larger sizes or thicker pipes.
This suggests that the thinner pipes may need to be regarded
as a separate category from pipes. This may be partially dueto
the neighborhood size of the FPFH descriptor.

In order to determine the ability to distinguish pipes of

different sizes, a series of cross validation can be performed.

For example, a series of cross-validation 1s summarized 1n
Table 1.

TABLE 1
Testing
Training 5cm 10 cm 15 cm 20 cm
5 cm Y N N N
10 cm N Y Y Y
15 cm N Y Y Y
20 cm N Y Y Y

Table 1 provides cross validation results for pipes of different
s1zes. The left column corresponds to the training data, and
the top row corresponds to the testing data. “Y ™ indicates that
at least 80% of the testing points are classified as pipe, while
“N” indicates the opposite. Accordingly, Table 1 shows that
10, 15, 20-cm pipe classifiers can classify the 10, 135, 20-cm
pipes interchangeably, while a 5-cm pipe classifier can dis-
tinguish the 35-cm pipe from the others. This demonstrates
how the category “Thin-Pipe” can be separated from the
category “Pipe” 1 desired. If distinguishing between 10, 15,
20-cm pipes 1s Turther desired or needed, other sizes can be
added as negative examples to provide further precise bound-
aries between them.

In one embodiment, points are labeled/categorized as
plane, pipe, edge, thin-pipe or other points. Here, SVM 1s
performed 4 times, once for each category. FIG. 5 shows an
example of a 3D point cloud industrial scene where pipe
points (normal/thin), plane points, edge points and other
points are classified, according to an embodiment of the
present invention. Plane points are depicted as yellow, pipe
points are depicted as green, edge points are depicted as
purple and the rest are depicted as red. Some large pipe-
shaped objects, such as tanks having a relatively large radius,
locally appear as planes. As a result, for purposes of better
segmentation, relatively large tanks with smaller curvature
(1.e., larger curvature radius) are assimilated as planes rather
than pipes. The terms “larger” and “smaller” are relative
terms and are used herein in the context that a tank appears
with a larger radius than a regular pipe having a smaller radius
within the same 3D point cloud scene. For example, in some
embodiments, 1tems having a curvature radius greater than 40
cm are assimilated as planes.

In the above paragraphs, the classification step at S12A,
S12B 1s performed using FPFH and SVM (FPFH+SVM).
However, the classification step at S12A, S12B can also be

performed using other combination of methods. For example,
instead of FPFH+SVM, SVM and a 3D self-similarity (3D

SSIM) descriptor can be used (i.e., 3D SSIM+SVM). Seli-
Similarity (SSIM) 1s the property held by parts of data or
object that resemble themselves 1n comparison to other parts
of the data. The resemblance can be photometric properties,
geometric properties or a combination thereof. The 3D SSIM
1s an extension of seli-similarity concept to the 3D domain. To
calculate the descriptor, the 3D extension of 2D self-similar-
ity surface 1s generated using the normal similarity across the
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local region. The normal similarity between two points x and
y 1s defined by the angle between the normals. Then, the
seli-similarity surface 1s quantized along log-spherical coor-
dinates to form the 3D selt-similarity (3D-SSIM) descriptor
in a rotation-invariant manner, achieved by using a local
reference system at each key point.

Another classification method that can be used for classi-
fication at S12A, S12B 1s the Spin Image (SI) 1n combination
with SVM (1.e., SI+SVM). Spin Image (SI) 1s a well-known

teature descriptor for 3D surface representation and match-
ing. One key element of spin image generation 1s the oriented
point, or 3D surface point with an associated direction. Once
the oriented point 1s defined, the surrounding cylindrical
region 1s compressed to generate the spin 1image as the 2D
histogram of number of points lying i1n different distance
orids. By using local object-oriented coordinate system, the
spin 1mage descriptor 1s view independent. Several variations
of spin 1image have been suggested. For example, a spherical
spin 1mage for 3D object recognition can be used. The spheri-
cal spin 1mage can capture the equivalence classes of spin
images dertved from linear correlation coelficients.

Another method that can also be used for classification at
S12A, S12B 1s the SVM in combination with 3D Shape
Context (3D SC). 3D Shape Context 1s an extension of the 2D
Shape Context (2D SC) approach, which 1s a well-known
method for matching 2D shapes (especially hand-written dig-
its and letters) and 2D object recognition without relying on
extracted features. It combines global (by regarding all points
of a shape) and local (by storing information about the rela-
tion of all possible point pairs) shape knowledge 1n a clever
way. The support region for a 3D shape context 1s a sphere
centered on the basis point p and its north pole oriented with
a surface normal estimate for p. The support region 1s divided
into bins determined by the log-polar coordinate system.

In one embodiment, the above classification methods are
compared 1n terms of computational speed and running time.
Table 2 provides a summary of the runming time comparison.
The running time includes three parts: descriptor computa-
tion, SVM training and SVM testing. Descriptor computation
time 1s related to the time complexity of the descriptor 1itself,
while the time for SVM training and SVM testing depends
largely on the dimensionality of the descriptor. In Table 2, the
minus sign (—) indicates relatively shorter time (e.g., less than
2 hrs), while the plus sign (+) indicates a relatively longer
time (e.g., between 2 and 5 hrs), and the double plus sign (++)
indicates an even longer time (e.g., greater than 5 hrs). As 1t
can be noted from Table 2, the SVM+FPFH method provides
overall a faster runming time (about 1 hour) compared to the
other methods.

TABLE 2
Time
SVM SVM
Dimension  Overall Descriptor Training Testing
SVM + FPFH 33 ~1h - — _
SVM + SSIM 125 ~6 h — + +
SVM + SI 153 ~6 h — + +
SVM + SC 125 ~12 h ++ + +

In another embodiment, the above classification methods
are compared 1n terms of precision. Table 3 provides a sum-
mary ol the precision comparison. Precision 1s expressed as
the ratio between points correctly classified as positive
(IP=True Positive) and the sum of TP and points wrongly
classified as positive (FP=False Positive). The precisions can
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be written as TP/(TP+FP). A lower percentage of false-pre-
diction provides a higher precision. Recall 1s expressed as the
ratio between TP and the sum of TP and points classified
wrongly classified as negative (FN=False Negative). The
recall can be written as TP/(TP+FN). A lower percentage of
miss-prediction provides a higher recall rate.

TABL.

L1

3

Precision = TP/(TP + FP) Recall = TP/(TP + FN)

SVM + FPFH 72.8% 84.7%
SVM + SSIM 48.6% 60.3%
SVM + S1 36.4% 86.3%
SVM + SC 18.3% 91.9%
All-Positive 12.9% 100.0%

As 1t can be noted 1n Table 3, SVM+FPFH outperforms the

other methods 1n precision as well, while retaining a relatively
high recall. It 1s noted that even the trivial All-Positive clas-
sifier can achieve 100% recall, but with a very low precision.
Therefore, precision 1s a more important indicator in this
table, particularly when the recall rate 1s relatively high (e.g.,
greater than 75%).

In one embodiment, prior to performing the classification,
at S12A-B, a library of objects 20 may be used for training the
classification model so as to be able to distinguish various
teatures or objects within the 3D scene point cloud. In one
embodiment, this may include training, at S13. For example,
the SVM can be trained for the so-called regular points,
including plane, pipe and edge points. In one embodiment,
this may include calculating a Fast Point Feature Histogram
(FPFH) for each point within the input scene cloud (e.g., 3D
point cloud) using, for example, the method disclosed 1n “Fast
Point Feature Histograms (FPFH) for 3D Registration 1n Pro-

ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan, May 12-17 2009 by
R. B. Rusu, N. Blodow, and M. Beetz, the entire content of
which 1s incorporated herein by reference, and then feeding
several trunks of a positive/negative clusters in the SVM.

In one embodiment, the library 20 may contain both mesh
models and point cloud models of the objects. Examples of
library objects that may be present in the 3D point cloud scene
shown 1n FIG. 2, are depicted in FIG. 1. In particular, FIG. 1
depicts a series of objects (e.g., valves, connectors, etc.) that
may be detected 1n the 3D scene point cloud shown 1n FI1G. 2.
If a mesh model of the objects within the library 20 1s pro-
vided, a virtual-scanning process 1s used, at S13, to create a
corresponding point cloud 1n the library. In other words, a
procedure 1s employed for converting the objects that are
mesh-based 1nto objects that are point cloud-based. The vir-
tual scanning simulates the way a real scanner works. A
Z-bufler scan conversion and back-projection are used to
climinate points on hidden or internal surfaces. The point
clouds 1n the library 20 are pre-processed so that features and
descriptors are prepared for matching.

There are many learning or training methods available. In
some embodiments, SVM 1s used as a classifier for the fol-
lowing reasons. First, classification 1s performed on simple
geometric shapes. Thus, complicated descriptors or compli-
cated classifiers may not be needed. Second, the generaliza-
tion ability of the classifier 1s used since a limit number of
training examples (especially for the parts) are present while
there may exist many more types of shapes. Finally, although
there may be many categories (e.g., 5), they are typically not
equivalent. For example, in some embodiments, “part” 1s the
only category used 1n detection. Hence, a subtraction process
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1s used over the 2-class classification results. See, for
example, below equations (4) and (5).

However, the scalability to apply SVM to more compli-
cated multi-class objects may also be considered. In the
present example, however, boundaries between categories
other than the parts (e.g., big pipes can be classified as plane,
pipes can be classified as thin pipes as long as the result 1s
consistent) may be i1gnored. The classification algorithm
applying, for example, the FPFH and SVM methods 1s effi-
cient enough to solve the seemingly multi-class, but intrinsi-
cally 2-class problem.

In some embodiments, five categories are used for training,

clusters: Plane, Pipe, Edge, Thin-Pipe and Part. Since two-
class classification 1s used, when one kind of classifier 1s
trained, all clusters labeled as this class will be regarded as the
positive example, while the negative samples will be selected
from the remaining categories. Table 4 summarizes the sta-
tistics of training data. In Table 4, TrC=Traimning Cluster,
TrP=Training Point, and SV=Support Vector. The ratio cor-
responds to the ratio Positive/Negative.

TABLE 4
Classifier #1rC H#TrP HSV
Plane 14/23 94602 2069/2063
Pipe 14/9 01613 1496/1503
Edge 9/24 0483 8% 1079/1121
Thin Pipe 8/22 83742 1020/1035

The number of support vectors shows the complexity of the
category, 1n order to distinguish 1t from the others. Table 5
shows the number of points 1n the residual point cloud after
removing each of the four categories. The eflectiveness of the
point classification step 1s demonstrated as the percentage of
points needing classification 1s drastically reduced prior to
detection—nearly half of the points are removed with the
classification of plane, an additional 20% are removed with
the classification of pipe, and only one fifth of the original
points need to be considered in detection after edge and thin
pipe are removed.

TABLE 5
Original Plane Pipe Edge Thinpipe
#HPts 25,135k 14,137k 8,767k 6,015k 5,534k
(%0) 100.0% 56.2% 34.9% 23.9% 22.0%

The method turther includes segmenting and clustering, at
S14. In one embodiment, connected components of the same
category are extracted and fitted, while remaining points are
clustered based on Euclidean distance. There exist many seg-
mentation procedures including the min-cut approach and
other approaches derived from 2D cases. However, 11 classi-
fication of non-part (background) points 1s made with relative
confidence, the segmentation step can be done in a fast and
light-weighted manner.

In one embodiment, the segmentation procedure includes
iteratively selecting a random unvisited seed point and
expanding the seed point to unvisited neighboring points
within a given Fuclidean distance using the classical Flood-
Fill algorithm. A neighbor threshold 1s determined by a
granularity of the mput cloud. After finite steps, the residual
cloud can be divided into a number of disjoint clusters.

In one embodiment, the segmentation method further
includes applying a clustering routine for two or more times
(e.g., 5 times). First, clustering 1s performed on points labeled
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as one ol the four categories to get a list of plane/pipe/edge/
thin-pipe clusters, respectively. Then, the relatively large
clusters are subtracted from the original point cloud. This 1s
performed so as not to remove small areas of regular shapes
that may lie on a relatively larger part. Finally, clustering 1s
performed on the remaining points that are believed to be part
points.

Using S(C) to denote the set of points 1n category C, a
segmentation algorithm can be expressed by the following
equation (4).

S(Candidate):=S(All)-S(Plane)-S(Pipe)-S(Edge)-S

(ThinPipe) (4)

An extendable definition of the candidates can be derived
and expressed by equation (5).

S(Candidate):=S(Irregular)=S(All)-U . S(Regular,) (5)

where Regular, can be any connected component Wlth repeti-
tive patterns and large size. This definition also offers the
possibility of discovering candidates of new targets that are
actually not in the database.

FI1G. 6 shows a result of the segmentation and clustering of
the 3D point cloud scene shown 1n FIG. 5. The blue, green,
and purple points correspond to smaller parts of interest
within the 3D point cloud scene or image shown in FIG. 5.
These parts appear to show valves and connectors, as will be
turther described in the following paragraphs.

The method can further include filtering the clustered
points to obtain clustered filtered points, at S16. In one
embodiment, each cluster 1s passed through a cluster filter.
The cluster filter may 1include one or more filters, based on
application, that can segregate clusters with or without certain
significant characteristics.

In one embodiment, i1t 1s determined that even after per-
forming the segmentation and clustering, 1t can be observed
that not all clusters are not good candidates for matching. For
example, a number of clusters 1n a scene may not belong to a
category of objects 1n a library that the user may have
selected. As a result, clusters are further filtered using a filter
that can quickly segregate clusters with or without certain
characteristics. In one embodiment, the filter 1s selected so as
to be a fast filter while being able to filter out a number of
impossible candidates. In one embodiment, a linear filter 1s
used. However, as 1t can be appreciated, other types of filters
can also be used including non-linear filters.

The linearity of a cluster can be evaluated by the absolute
value of a correlation coeflicient 1n the Least Squares Fitting
(LSF) on the 2D points of the three projections on the x-y, y-z
and z-x planes. For example, the correlation coelficient in the
x-y plane can be expressed by the following equation (6).

(6)

PINCESIGTES)

I8 =X X (i — )

A linearity score 1s measured by equation (7) by taking the
maximum of the correlation coelficients calculated 1n the xy,
yz and zx planes.

(7)

A cluster can be considered to be linear 1t the correlation
coellicient 1s greater than 0.9 (r>0.9). In this case, at least one
ol 1ts projections can be fitted by a line with higher confi-
dence. It can be noted that planes and thin pipes may fall in
this linear category. However, since planes (including large
diameter pipes) and thin pipes (small diameter pipes) were

r=max(1r,,l 171,17, 1)
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removed using the classification steps S12A and S12B and
regular shape removal S14, any remaiming linear clusters are
considered to be lines, missed pipes, missed planes, or noise
in this embodiment. Experiments show that the linearity
scores ol all representative targets or objects are below 0.8,
with a substantial margin from the threshold of 0.9. This
indicates the selected target objects will not be filtered out 1n
this step. The selected target objects will not be filtered out
because only clusters with linearity score higher than 0.9 will
be filtered, while all the selected objects have scores smaller
than 0.8 will not be filtered. In one embodiment, out of 1905
initial clusters obtained after the segmentation and clustering
at step S14, only 1491 candidates remained after eliminating
the most linear clusters.

The method further includes matching candidate clusters
(or filtered clusters) with objects within the library, at S18. In
one embodiment, descriptors for candidate clusters generated
online are compared to descriptors for the objects within the
library that are generated oflline.

In one embodiment, the matching includes comparing the
feature representations with point descriptors between the
candidate clusters and part library objects. Initially all near-
est-neighbor correspondences, or pairs of features, with the
Nearest Neighbor Distance Ratio (NNDR) value, are com-
puted and then, a “greedy” filtering strategy 1s applied. In the
ogreedy strategy, a heuristic approach 1s applied such that a
locally optimal choice 1s made. For example, the confirmed
matches/correspondences 1n each step can be selected from
the candidate correspondences with the smallest NNDR val-
ues. A transformation 1s estimated based on all correspon-
dences 1n accord with the hypothesis, and refined through
Gram-Schmidt Orthogonalization. The percentage of aligned
points can be used as the matching score. If the matching
score between a cluster and an object (a target object) within
the library 1s higher than certain threshold, the cluster 1s
considered to be a detected instance of the object within the
library (1.e., a target object within the library). That 1s, the
object within the library 1s detected 1n the 3D point cloud.

In case that there are multiple targets 1n a single cluster, the
aligned part 1s iteratively removed until the remaining part of
the cluster 1s small enough. In one embodiment, the aligned
part 1s iteratively removed until the remaining part of the
cluster 1s less than 300 points, for example, which 1s consid-
ered a “small enough” cluster.

In one embodiment, the matching 1s performed using a
three-dimensional Self-Similarnty (3D SSIM) descriptor. In
one embodiment, the 3D SSIM descriptor described 1n “Point

Cloud Matching based on 3D Selif-Similarity International
Workshop on Point Cloud Processing (Affiliated with CVPR

2012), Providence, R.1., Jun. 16, 2012,” by J. Huang, and S.
You, the entire content of which 1s incorporated herein by
reference, 1s used to match candidate and target object point
clouds. In the present example, a simplified version 1s used
where the normal similarity 1s employed since there 1s typi-
cally no intensity information 1n the targets (1.¢., objects in the
library).

In one embodiment, key-points on both point clouds are
first extracted to find matches on a local scope, 1.e. between
points 1n the two point clouds. A descriptor (vector) on each of
the key-points can then be calculated. A set of candidate
matches (1.¢., a pair ol key-points on the two point clouds) are
found 11 the distance between the descriptors at the two key-
points 1s small (1.e., satisiying the Nearest-Neighbor-Dis-
tance-Ratio criteria).

In one embodiment, subsets of the candidate matches are
selected (since some of them are wrong matches) and the
selected candidate matches are used to calculate the transfor-
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mation between the point clouds to find a match between two
point clouds on a global scope. If the transformation makes
the two point clouds well-aligned, then the matches used to
calculate the transformation are considered the final matches
between the two point clouds. It 1s then stated that the two
point clouds are matched. In the present example, the trans-
formation 1s used to satisiy the rigid-body constraint. How-
ever, 1n other applications, the transformation can have other
types of constraints.

In one embodiment, the feature extraction process 1s per-
formed such that 3D peaks of local maxima of principle
curvature are detected in the spatial space. Given a point of
interest and a local region of the point, two major steps are
employed to construct the descriptor.

First, a 3D extension of a 2D self-similarity surface 1s
generated using the normal similarity across the local region.
The normal similarity between two points x and y 1s defined
by the angle between the normals, as provided in equation (8)

(assuming [|7 (-)[|=1).

$Ce )= [m—cos™ (1,0 £, () Y a=l—cos (T (x)
)i (8)

When the angle between the normals 1s substantially 0, the
function returns 1. Whereas, when the angle between the
normal 1s substantially 7, 1.e. the normals are opposite to each
other, the function returns 0.

Second, the self-similarity surface 1s quantized along log-
spherical coordinates to form the 3D seli-similarity descrip-
tor 1n a rotation-invariant manner. This 1s achieved by using
local reference system at each key point. The z-axis 1s the
direction of the normal. The x-axis 1s the direction of the
principal curvature. The y-axis 1s the cross product of z and x
directions. In this example, 5 divisions in radius, longitude
and latitude, are set. The values in each cell are then replaced
with the average similarity value of all points 1n the cell. This
results 1n a descriptor of 5*5%*5=1235 dimensions. The dimen-
sions can be reduced without deduction of performance.
Finally, the descriptor 1s normalized by scaling the dimen-
sions with the maximum value to be 1.

In one embodiment, detection 1s performed by matching.
In matching, the descriptors for the candidate clusters gener-
ated online are compared against the descriptors for the tar-
gets generated offline. The transformation 1s then estimated.
To establish the transformation, nearest neighbors are first
calculated with any Nearest Neighbor Distance Ratio
(NNDR) between the candidate cluster and the target object
from the library. Then, unlike the normal Random Sample
Consensus (RANSAC) procedure, a “greedy algorithm™ 1s
used. The greedy algorithm 1s based on the observation that
(1) the top-ranked correspondences are more likely to be
correct; and (2) the objects to be detected are rigid industrial
parts with fixed standard sizes and shapes. In general, the

transformation can be represented by equation (9).

p'=sRp+T (9)

where s 1s the scaling factor, R 1s the rotation matrix and T 1s
the translation vector.

For ngid-body transformation, s=1. Therefore, solving for
the 12 unknowns (7 of which are independent) in 3*3 matrix
R and 3*1 vector T may be needed. This may need at most 4
correspondences of (p, p'). A greedy 4-round strategy can be
used to find the 4 correspondences based on the following
insight: rigid-body transformation preserves the distance
between points. Initially, nearest-neighbor correspondences
with any NNDR value in the candidate set are obtained. In the
beginning of round 1, the correspondence with the minimum
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NNDR value, ¢, =(a,, b,), 1s added to the final correspondence
set and removed from the candidate set. Then, for each of the

correspondence ¢'=(a', b') 1n the candidate set, the Fuclidean
distance dist(a', a,) and dist(b', b,) 1s calculated. If the ratio of
the (squared) distance 1s larger than some threshold (1.1), ¢'1s
removed from the candidate set. If the candidate set becomes
empty within 4 rounds, for example, the match 1s discarded as
a Tailed rigid-body match. Otherwise, the transformation can
be estimated over at least 4 distance-compatible correspon-
dences. Specifically, a 3*3 afline transformation matrix and a
3D translation vector are solved from the equations formed by
the correspondences.

To prevent matching from being sensitive to the first cor-
respondence, multiple 1mitial seeds are tried and only the
transformation with the highest alignment score 1s selected.

Finally, the rnigid-body constraint 1s used again to refine the
result, through the known Gram-Schmidt Orthogonalization

of the base vectors (R=(n |, n ,, 1 ,)), as expressed in equa-
tion (10).

Ir'_'n..lr "

Hl—Hl

(10)

—t — . —
@y = - projy (@)

Ay

—f s . . .
(U3 =U3 — projy (U3) — projy, (u3)

Thevectors ', n',, n', arethe non-normalized bases of the
new transformation. The normalized basis that form

the new transformation matrix R' are n',, n',, n', 1ie¢

R'=(n', n', n.). The vectors u', are normalized using
equation (11).

—/f

7 U;
e; = i=1,2,3

N ITE
I1%; ||

(11)

A point p 1n cluster A 1s said to be aligned with a point 1n
cluster B 11 the nearest neighbor 1n cluster B to p under the
transformation 1s within a threshold (e.g., Se-4 for an 1ndus-
trial scene). The alignment score 1s thus defined as the per-
centage of aligned points. It the alignment score between a
cluster and a target 1s larger than 0.6, the cluster 1s considered
to be a detected instance of the target.

In case that there are multiple targets 1n a single cluster, the
aligned part 1s 1teratively removed through the cloud subtrac-
tion routine. The remaining part of the cluster 1s examined
until the remaining part 1s small enough to be matched. In one
embodiment, the aligned part 1s 1teratively removed until the
remaining part of the cluster 1s less than 300 points, for
example, which 1s considered a “small enough” cluster.

The present method 1s applied in multi-target detectionin a
single cluster. An assembly 1s divided 1nto several parts. The
parts are then detected one-by-one using the alignment and
iterative detection process. FIG. 7 depicts an assembly of
several parts that are detected by the present detection
method, according to an embodiment of the present mnven-
tion. In this example, segmentation 1s not used, and the
descriptors are not identical at the same location of the parts
and the assembly. That 1s, the points (in a neighborhood of a
key-point) used to calculate the descriptor 1n the part are a
subset of the points (1n a neighborhood of a key-point) used to
calculate the descriptor 1n the assembly because the part point
cloud is a subset of the assembly point cloud. This means that
the detection 1s non-trivial.
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In the following paragraphs, testing results of the method
on an 1ndustrial scene point cloud are provided.

FIG. 8 depicts a sub-scene of an industrial 3D-point cloud,
according to an embodiment of the present invention.
Detected parts are highlighted 1n color and bounding boxes.
FIG. 9 shows another 3D point cloud scene where parts that
are detected are shown 1n color with respect to ground truth,
according to an embodiment of the present invention. The red

color indicates false negative, 1.e. the object 1s mis-detected or
the point on the candidate cluster 1s misaligned. The blue
color indicates false positive, 1.e. there 1s no target at the
position but the algorithm detected one, or the point on the
target 1s misaligned. The yellow and cyan colors indicate true
positive, 1.e., the aligned points are close enough.

Table 6 and FIG. 10 show the statistical results of the
industrial scene, according to an embodiment of the present
invention. Balls, flanges, tanktops and valves are more suc-
cessiully detected than the other objects. In Table 6, there are
8 categories, 33 sub-categories and 127 instances (Ground-
truth) of targets in the scene. Among them 62 are correctly
identified (TP=True Positive), while 35 detections are wrong
(FP=False Positive), and 65 instances are missed (FN=False
Negative).

TABLE 6
#Sub-
Category cat. #Truth #1P HEP #EN
Ball 1 22 11 4 11
Connection 2 3 0 0 3
Flange 4 32 20 3 12
Handle 6 10 3 1 7
Spotlight 1 6 1 0 5
Tanktop 2 4 3 3 1
T-Junction 5 25 7 0 18
Valve 12 25 17 24 8
All 33 127 62 35 65

FIG. 10 1s a plot of the recall number versus the precision,
according to an embodiment of the present invention. The
recall number 1s higher for smaller precision and lower for
higher precision.

Results of the experiment show that the present method
works with virtual point clouds almost as well as with real
point clouds. Since the virtual point clouds can be automati-
cally generated from mesh models with a virtual scanner,
tully-automatic matching between the point clouds and the
mesh models can be expected.

For the sake of comparing the present method with other
methods, the algorithm 1s tested on some of publicly available
3D point cloud data. FIG. 11 A depicts an example of publi-
cally available 3D point cloud data 1n which occlusion of
some data points by other data points 1s present. For example,
the “dinosaurs™ are partly occluding the “chef”. As shown in
FIG. 11A occlusions lead to discontinuity of some parts,
which renders matching or detection challenging. FIG. 11B
depicts a result of applying the detection method to the scene
in FIG. 11A, according to an embodiment of the present
invention. As shown in FIG. 11B, by using the present match-
ing and detection method, the entirety of the “chef” (shown 1n
yellow) 1s detected from only portions of the “chef” that are
shown in FIG. 11A. In addition, the right dinosaur shown 1n
blue 1n FIG. 11B 1s also detected and completely rendered.
This 1s achieved by using appropriate library objects or tar-
gets. The library of objects in this case contains the “chef” and
the “blue dinosaur”. However, the library of objects does not
contain the left dinosaur and as a result, the left dinosaur1s not
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detected and 1s shown 1n gray 1n FIG. 11B. It must be appre-
ciated that 1n the present detection method, the point classi-
fication phase 1s not used. Therefore, the point classification
method 1s an optional step 1n the present method.

An object detection framework for a 3D scene point cloud
1s described using a combinational approach containing
SVM-based point classification, segmentation, clustering,
filtering, 3D self-similarity descriptor and rigid-body
RANSAC. The SVM+FPFH method in pipe/plane/edge point
classification gives a nice 1llustration of how descriptors can
be combined with training methods. Applying two local
descriptors (FPFH and 3D-SSIM) in different phases of pro-
cessing shows that different descriptors could be superior
under different circumstances. The proposed varniant of
RANSAC considering the rigid body constraint also shows
how prior knowledge could be incorporated in the system.
The experiment results show the effectiveness of this method,
especially for large cluttered industrial scenes.

In one embodiment, the method or methods described
above can be implemented as a series of instructions which
can be executed by a computer, the computer having one or
more processor processors configured to execute computer
modules. As 1t can be appreciated, the term “computer” 1s
used herein to encompass any type of computing system or
device icluding a personal computer (e.g., a desktop com-
puter, a laptop computer, or any other handheld computing
device), or a mainirame computer (e.g., an IBM mainirame),
or a supercomputer (e.g., a CRAY computer), or a plurality of
networked computers in a distributed computing environ-
ment.

For example, the method(s) may be implemented as a
soltware program application which can be stored 1n a com-
puter readable medium such as hard disks, CDROMs, optical
disks, DVDs, magnetic optical disks, RAMs, EPROMs,
EEPROMSs, magnetic or optical cards, flash cards (e.g.,a USB
flash card), PCMCIA memory cards, smart cards, or other
media.

Alternatively, a portion or the whole software program
product can be downloaded from a remote computer or server
via a network such as the internet, an ATM network, a wide
area network (WAN) or a local area network.

Alternatively, instead or in addition to implementing the
method as computer program product(s) (e.g., as software
products) embodied 1n a computer, the method can be imple-
mented as hardware in which for example an application
specific mtegrated circuit (ASIC) can be designed to imple-
ment the method.

Various databases can be used which may be, include, or
interface to, for example, an Oracle™ relational database sold
commercially by Oracle Corporation. Other databases, such
as Informix™, DB2 (Database 2) or other data storage,
including file-based, or query {formats, platiorms, or
resources such as OLAP (On Line Analytical Processing),
SQL (Standard Query Language), a SAN (storage area net-
work), Microsoit Access™ or others may also be used, incor-
porated, or accessed. The database may comprise one or more
such databases thatreside 1n one or more physical devices and
in one or more physical locations. The database may store a
plurality of types of data and/or files and associated data or
file descriptions, administrative information, or any other
data.

FIG. 12 1s a schematic diagram representing a computer
system 100 for implementing the methods, according to an
embodiment of the present invention. As shown 1n FIG. 12,
computer system 100 comprises a processor (€.g., one or
more processors) 112 and a memory 114 in communication
with the processor 112. The computer system 100 may further
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include an 1mput device 116 for inputting data (such as key-
board, a mouse or the like) and an output device 118 such as
a display device for displaying results of the computation.
The computer may further include or be 1n communication
with a storage device 120 for storing data such as, but not
limited to, a hard-drive, a network attached storage (NAS)
device, a storage area network (SAN), etc. It must be appre-
ciated that the term processor 1s used herein to encompass one
or more processors. Where reference 1s made to a processor
that term should be understood to encompass any of these
computing arrangements.

As 1t can be appreciated from the above paragraphs, the
system 100 1s provided for detecting one or more objects 1n a
three-dimensional point cloud scene. The system 100
includes one or more processors 112 that are configured to:
(a) receive a three-dimensional point cloud scene, the three-
dimensional point cloud scene comprising a plurality of
points; (b) classily at least a portion of the plurality of points
in the three-dimensional point cloud 1nto two or more catego-
ries by applying a classifying-oriented three-dimensional
local descriptor and learning-based classifier; (¢) extract from
the three-dimensional point cloud scene one or more clusters
of points utilizing the two or more categories by applying at
least one of segmenting and clustering; and (d) match the
extracted clusters with objects within a library by applying a
matching-oriented three-dimensional local descriptor.

Although the mvention has been described 1n detail for the
purpose of illustration based on what 1s currently considered
to be the most practical and preferred embodiments, it 1s to be
understood that such detail 1s solely for that purpose and that
the invention 1s not limited to the disclosed embodiments, but,
on the contrary, 1s mtended to cover modifications and
equivalent arrangements that are within the spirit and scope of
the appended claims. For example, it 1s to be understood that
the present invention contemplates that, to the extent pos-
sible, one or more features of any embodiment can be com-
bined with one or more features of any other embodiment.

Furthermore, since numerous modifications and changes
will readily occur to those of skill in the art, 1t 1s not desired to
limit the mvention to the exact construction and operation
described herein. Accordingly, all suitable modifications and
equivalents should be considered as falling within the spirit
and scope of the imvention.

What 1s claimed 1s:

1. A method of detecting one or more objects 1n a three-
dimensional point cloud scene, the method being imple-
mented by a computer system that includes one or more
processors configured to execute computer modules, the
method comprising:

receiving, by one or more processors, a three-dimensional

point cloud scene, the three-dimensional point cloud
scene comprising a plurality of points;

classitying, by the one or more processors, at least a portion

of the plurality of points in the three-dimensional point
cloud into two or more categories by applying a classi-
tying-oriented three-dimensional local descriptor and
learning-based classifier;

extracting, by the one or more processors, from the three-

dimensional point cloud scene one or more clusters of
points utilizing the two or more categories by applying at
least one of segmenting and clustering; and

matching, by the one or more processors, the extracted

clusters with objects within a library by applying a
matching-oriented three-dimensional local descriptor.

2. The method according to claim 1, further comprising
receiving, by the one or more processors, the objects within
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the library and training the learning-based classifier to distin-
guish various objects within the three-dimensional point
cloud scene.

3. The method according to claim 1, wherein the learning-
based classifier comprises a support vector machine.

4. The method according to claim 1, wherein the classify-
ing-oriented three-dimensional local descriptor comprises a
Fast Point Feature Histogram that uses a histogram to encode
geometrical properties of a neighborhood of each point by
generalizing a mean curvature around each point.

5. The method according to claim 1, wherein the classify-
ing-oriented three-dimensional local descriptor comprises a
Fast Point Feature Histogram, the learning-based classifier 1s
a Support Vector Machine, and the Fast Point Feature Histo-
gram feeds positive/negative clusters to the Support Vector
Machine to train the Support Vector Machine to distinguish
various objects within the three-dimensional point cloud
scene.

6. The method according to claim 1, wherein the library
includes one or more mesh models of objects, one or more
point clouds of the objects, or both.

7. The method according to claim 6, wherein 11 the library
contains one or more mesh models of the objects, converting,
by the one or more processors, the one or more mesh models
ol the objects into point clouds of the objects.

8. The method according to claim 1, further comprising
filtering, by the one or more processors, each of the extracted
clusters to obtain filtered clusters with desired characteristics
and then matching, by the one or more processors, the filtered
clusters with the objects within the library by applying the
matching-oriented three-dimensional local descriptor.

9. The method according to claim 1, wherein the two or

more categories comprise at least two of the following: a
plane category, a pipe category, an edge category and a thin
pipe category.

10. The method according to claim 1, wherein applying at
least one of segmenting and clustering comprises extracting
and fitting connected components of the same category and
clustering remaining points based on Euclidean distance.

11. The method according to claim 1, wherein segmenting
1s applied using a min-cut approach.

12. The method according to claim 1, wherein segmenting
1s applied by iteratively selecting a random unvisited seed
point and expanding the seed point to unvisited neighboring
points within a given Fuclidean distance using a classical
Flood-Fill algorithm.

13. The method according to claim 1, wherein clustering 1s
applied by subtracting relatively large clusters from the origi-
nal point cloud to remove small areas of regular shapes that
may lie on a relatively larger part, and clustering remaining,
points that are believed to be part points.

14. The method according to claim 1, wherein clustering 1s
applied by evaluating a linearity of each cluster by an absolute
value of a correlation coellicient i a least square fitting on
three-dimensional points of three projections in three
orthogonal planes.

15. The method according to claim 1, wherein matching
comprises computing all nearest-neighbor correspondences,
or pairs of features, with a Nearest Neighbor Distance Ratio
(NNDR) value, applying a filtering procedure to look for
correspondences that fit a distance constraint, estimating a
transformation based on all correspondences, and refiming
through Gram-Schmaidt Orthogonalization.

16. The method according to claim 1, wherein the matching
procedure comprises a three-dimensional self-similarity

descriptor.
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17. A system of detecting one or more objects 1n a three-
dimensional point cloud scene, the system comprising a pro-
cessor configured to:

receive a three-dimensional point cloud scene, the three-

dimensional point cloud scene comprising a plurality of 5
points;

classily at least a portion of the plurality of points in the

three-dimensional point cloud 1nto two or more catego-

ries by applying a classiiying-oriented three-dimen-

stonal local descriptor and learning-based classifier; 10
extract from the three-dimensional point cloud scene one

or more clusters of points utilizing the two or more

categories by applying at least one of segmenting and

clustering; and

match the extracted clusters with objects within a library by 15

applying a matching-oriented three-dimensional local
descriptor.

18. The system according to claim 17, wherein the proces-
sor 1s configured to filter each of the extracted clusters to
obtain filtered clusters with desired characteristics and then 20
match the filtered clusters with the objects within the library
by applying the matching-oriented three-dimensional local
descriptor.

19. The system according to claim 17, wherein at least one
of the classitying-oriented three-dimensional local descriptor 25
and the matching-oriented three-dimensional local descriptor
comprises a three-dimensional self-similarity descriptor.

20. The system according to claim 17, wherein the two or
more categories comprise at least two of the following: a
plane category, a pipe category, an edge category and a thin 30

pipe category.
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