12 United States Patent

Lam et al.

US009098328B2

US 9,098,328 B2
Aug. 4, 2015

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR EVENT
STREAM PROCESSING

(75) Inventors: Wang Chee Lam, San Jose, CA (US);
Lu Liu, Princeton, NI (US); Taraka
Subrahmanya Prasad Siripurapu,
Saratoga, CA (US); Anand Rajaraman,
Palo Alto, CA (US); Zoheb Vacheri,
Sunnyvale, CA (US); AnHai Doan,
Madison, WI (US)

(73) Assignee: Wal-Mart Stores, Inc., Bentonville, AR
(US)
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 413 days.

(21) Appl. No.: 13/553,640

(22) Filed: Jul. 19, 2012
(65) Prior Publication Data
US 2013/0347005 Al Dec. 26, 2013

Related U.S. Application Data
(60) Provisional application No. 61/664,658, filed on Jun.

26, 2012.
(51) Int.CL.

GOGF 3/00 (2006.01)

GOGF 9/44 (2006.01)

GOG6F 9/46 (2006.01)

GOGF 13/00 (2006.01)

GOGF 9/48 (2006.01)

GOGF 9/54 (2006.01)
(52) U.S.CL

CPC ... GOGF 9/4843 (2013.01); GOGF 9/4881

(2013.01); GOGF 9/542 (2013.01)

Instance 1202

Evaluate Event Load v.
Clear Rate for Updater

Cverload
Condition?
1204

Spread Events Across
Sub-Instances 1208

v

Update Partial Slates in
Sub-Instances 1210

Y

Publish Partial Slate
States for Sub-Instances
to Qutput Streams 1212

Y

Receive Published

Partial Siate States 1214

Y

Slate States 1216

Update Slate per Partial

Y

1218

[Publish Slate Statg]

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,512,829 B2 3/2009 Mital

7,756,919 B1* 7/2010 Deanetal. 709/201
8,200,803 B2 9/2012 Hsu

8,745,434 B2* 6/2014 Yangetal. 714/4.1

2009/0287628 Al 11/2009 Indeck
2011/0154339 Al* 6/2011 Leeetal.ccc..c..o. 718/100
2012/0311562 Al 12/2012 Wang

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Kacy Verdi
(74) Attorney, Agent, or Firm — Bryan Cave LLP

(57) ABSTRACT

Disclosed are systems and methods for processing events 1n
an event stream using a map-update application. The events
may be embodied as a key-attribute pair. An event 1s pro-
cessed by one or more 1nstances implementing either a map or
an update function. A map function receives an input event
from the event stream and publishes one or more events to the
event stream. An update function recerves an event and
updates a corresponding slate and publishes zero or more
events. Systems and methods are also disclosed herein for
implementing a map-update application 1n a multithreaded
architecture and for handling overloading of a particular
thread or node. Systems and methods for providing access to
slates updated according to update operations are also dis-
closed.

14 Claims, 21 Drawing Sheets

U.S. Patent Aug. 4, 2015 Sheet 1 of 21 US 9,098,328 B2

100

112 ’/

Processor 102

Mass Storage
Device(s) 108

Hard Disk Drive
124

Memory Device(s)
104

Removable
RAM 114 Storage 126
ROM 116

Input/Output (1/0O)
Device(s) 110

User Interface

118 Display Device 130

Network
Interface 120

Peripheral

Device Interface
122

Fig. 1

U.S. Patent Aug. 4, 2015 Sheet 2 of 21 US 9,098,328 B2

200
»

S|
<
AN

QN
o
LL
g O QO
O O O
< - - -
S QN aV QN

US 9,098,328 B2

Sheet 3 of 21

Aug. 4, 2015

U.S. Patent

g¢ 'bi4

(JUBASB JUBAT ‘plweal)s Junysignd
(piLUeas JuIl)aguosgns
(JUBAd Juang)dew

O1L€ SPOYISIN

(s)uoneslgnd
(s)uonduoasqng

80¢€ saInquUNy

90¢€ sse|n) Jadde

ve b4

(JUBAS JUBAT ‘piweas unysI|gnd
(plweais WIagLosgns

(91€|S ‘a1e|])azIieul

(91BIS ‘B)B|S JUBAS JusAg)ajepdn
(e1€]S a1E|IS)Iul

(JUBAD JUDAT)aIR|SDIEDID

¥0€ SPOYIoN

(s)Aay are|S
(s)yuoneolgnd
(S)uonduosgnsg

¢0g saINguly

00€ sse|n J1a1epdn

U.S. Patent

Aug. 4, 2015 Sheet 4 of 21

400
o\ .
404¢
M \Y
402a 402d

<Key1,Valuel>
500

<Key2,Value2>
204

<Key1,Valuel>
206

<Key2,Value2>
212

Slate (sID)
210

Fig. 5B

US 9,098,328 B2

U.S. Patent Aug. 4, 2015 Sheet 5 of 21 US 9,098,328 B2

Conductor 602

600

\‘ Hash Function 604 Event Stream 606

Worker Node 608

Virtual Machine 610
VM Conductor 612
Thread Queue 614a hread Queue 614b Thread Queue 614c¢

Thread 616a Thread 616b Thread 616c¢

Slate 618a Slate 618b Slate 618¢

Memory Space 620

Instance Store 622
Slate Cache 624

U.S. Patent Aug. 4, 2015 Sheet 6 of 21 US 9,098,328 B2

700

4

Global Hash
Function 704

Node ID, Key,
Value 706

VM Hash
Function 703

PTID, STID,
Instance, Key,
Value 710

Fig. 7

US 9,098,328 B2

Sheet 7 of 21

Aug. 4, 2015

U.S. Patent

g "bi

918

anany) Alewiid O} ppy

N
- 218
718 anang ¢, PloYsaly |
Alepuodag 0] ppy A 9A0QY anany)
Alewd

018 senany) Alepuooasg

pue Alewlld ayenjeA3

008

808 peaiy|

j0ds]0H 0] UbISSY

908
/ 80UR)SU|
10} 10dS)OH
S|

708
aoue]su| 18b4e] ajenjean3

208 JUSAT SAI999Y

U.S. Patent Aug. 4, 2015 Sheet 8 of 21 US 9,098,328 B2

Retrieve Event from
Queue 902

Thread Hot
Spot for Target
Instance”?
904

900a

»

Process Event 906

Send to Hot Spot Thread

l?
Thread Hot Spot*” 910

908

Thread
Hot Spot for Other

Instance?
912

Return Event to VM
Conductor 914

~<

N

Process Event 916

Fig. 9A

U.S. Patent Aug. 4, 2015 Sheet 9 of 21 US 9,098,328 B2

Process N Events for
Hotspot Instance from 900b

Queue 918
’/

Retrieve Event for Other
Instance from Queue, if
Any 920

Other
Thread Hot Spot

for Instance?
922

Y Send to Hot Spot Thread
924
N
Return Event to VM
Conductor 926

Fig. 9B

U.S. Patent Aug. 4, 2015 Sheet 10 of 21 US 9,098,328 B2

1000a
Upstream
1002 P/

Updater
1004

Downstream

1008 Fig. 10A

Upstream
1002
1000b
1006a
Update
1004a
— =
-
1006b
Update
1004b
——— =
--.______________________________..--'

Update “

1004¢

Downstream

Aggregator
1008

1010

Fig. 10B 08

U.S. Patent Aug. 4, 2015 Sheet 11 of 21 US 9,098,328 B2

Evaluate Event Load v.
Clear Rate for Updater 11003

Instance 1102 ’/

N Update Slate per Update
Instance 1106

Overload
Condition?
1104

Y

Assoclate Events with
Partial Slates 1108

Update Partial Slates per
Events 1110

Report States of Partial
Slates 1112

Aggregate States of
Partial Slates 1114

Update Slate per
Aggregated States 1116

Fig. 1A

U.S. Patent Aug. 4, 2015 Sheet 12 of 21 US 9,098,328 B2

Evaluate Event Load v.
Clear Rate for Updater
Instance 1118 1100b

Excess _ _
Ca)p()acity’? \ Accumulate in Partial
1120 Slates 1122
Y
Report State of a Partial
Slate 1128

Update Slate per Report
1130

Aggregate States of
Partial Slates in Key
Slate 1124

Update Slate per

Aggregated States 1126

Eliminate Partial Slate
1132

Fig. 11B

U.S. Patent Aug. 4, 2015 Sheet 13 of 21 US 9,098,328 B2

Evaluate Event Load v.
Clear Rate for Upqater
Instance 1202

120032

4

A Update Slate per Update
Instance 1206

Overload
Condition?
1204

Y

Spread Events AcCross
Sub-Instances 1208

Update Partial Slates in
Sub-Instances 1210

Publish Partial Slate
States for Sub-Instances
to Output Streams 1212

Receive Published
Partial Slate States 1214

Update Slate per Partial
Slate States 1216
[Publish Slate State]
1218

Fig. 12A

U.S. Patent Aug. 4, 2015 Sheet 14 of 21 US 9,098,328 B2

Evaluate Event Load v.

Clear Rate for Updater

Instance 1220 1200b

4

Excess
Capacity?
1222

N Accumulate in Partial
Slates 1224

Y
Aggregate States of
Publish State of Partial Partial Slates in Slate
Slate for Sub-Instance 1226
1228

Update Slate per
Published State 1230
Eliminate Sub-Instance
1232

One
Sub-Instance
Left?

1234

Y

End

Merge Last Partial Slate
and Slate 1236

Fig. 12B

U.S. Patent Aug. 4, 2015 Sheet 15 of 21 US 9,098,328 B2

Evaluate Event Load v.
Clear Rate for Instance 1300
1302

Overload
Condition?
1304

Publish Event to Output

Process Portion of Stream 1308

N Process Events per
Orignal Function 1306

Events per Degraded
Function 1310

Publish Events from
Degraded Function to
Qutput Stream 1312

Process Portion of
Events per Original
Function 1314

Publish Events from
Original Function to
Output Stream 1316

Fig. 13

U.S. Patent

Aug. 4, 2015 Sheet 16 of 21
Evaluate Thread Loads
1400a

y

Evaluate Node Loads
1404
Over_lpad N Continue Event
Condition? o o 1408
1406 rocessing
Y
Select Instance 1410
Node %
Transfer Instance 1414

Transfter?
1412

Modify Global Hash

Function 1416

Modify VM Hash
Function(s) 1418

1400b

Transfer Events to New
Node/Thread 1424
Process Event 1426

Fig. 14A

US 9,098,328 B2

Retrieve Event from
Thread Queue 1420

arget
nstance for Event
Transferred?
1422

Fig. 14B

U.S. Patent Aug. 4, 2015 Sheet 17 of 21 US 9,098,328 B2

Memory Space 1500

Instance Store 1502

Slate Cache 1504

Slate Objects 1506
Serialized Slates 1508

Fig. 15

Receive Event for
Updater Instance 1602 1600

»

Slate
Object In Cache?
1604

N Retrieve Slate from
Serialized Slate
Cache 1606

Deserialize Slate
1608

Y
Retrieve Slate Object
From Cache 1610
Perform Update
Function 1612

Store Updated Slate
Object in Cache 1614

Flag Serialized Slate as
Stale 1616

Fig. 16

U.S. Patent Aug. 4, 2015 Sheet 18 of 21 US 9,098,328 B2

Receive Request for
1700 Serialized Slate 1702

Serialized
Slate Stale?
1704

Retrieve Slate Obj. From
Cache 1706

Serialize Slate Obj. 1708

Return Slate from
Serialized Slate Cache
1710

Fig. 17

U.S. Patent Aug. 4, 2015 Sheet 19 of 21 US 9,098,328 B2

HTTP Server 1806¢
Slate Cache 1810c¢

Fig. 18

Node 1804b
VM 1808b

S
G0 &
A 0,
e +~—
D

a %
D

2 n
e,

5 2
o L
all)

HTTP Server 1806b
Slate Cache 1810b

Node 1804a
HTTP Server 1806a
Slate Cache 1810a

U.S. Patent Aug. 4, 2015 Sheet 20 of 21 US 9,098,328 B2

Recelve Request for
Slate Data 1902
Assign Request to Node
1904

n N ldentify Corresponding
Node 1908

Slate Cache?
1906
Request Slate Data from
Corresponding Node
1910

1900

4

Retrieve Requested
Slate from Cache 1914

Receive Slate Data 1912

Format HT TP Response
with Slate Data 1916

Return HTTP Response
1918

Fig. 19

U.S. Patent Aug. 4, 2015 Sheet 21 of 21 US 9,098,328 B2

Recelve Request for
Slate Data 2002
2000

ldentify Slate from
Request 2004

ldentify Node per Global
Hash Function 2006

Assign Request to
ldentified Node 2008

Retrieve Slate 2010

Format HT TP Response
with Slate Data 2012

Return HT TP Response
2014

Fig. 20

US 9,098,328 B2

1

SYSTEMS AND METHODS FOR EVENT
STREAM PROCESSING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/664,638, filed Jun. 26,2012, which 1s
hereby incorporated herein by reference 1n 1ts entirety. This

application 1s related to U.S. application Ser. No. 13/553,629,
filed Jul. 19,2012, U.S. application Ser. No. 13/553,606, filed 10

Jul. 19, 2012, U.S. application Ser. No. 13/553,651 filed Jul.
19,2012, and U.S. application Ser. No. 13/553,6352, filed Jul.
19, 2012. All applications are incorporated herein by refer-
ence for all purposes.

15
BACKGROUND

1. Field of the Invention

This invention relates to systems and methods for process-
ing a stream of events. 20

2. Background of the Invention

MapReduce has emerged as a popular method for process-
ing large data sets or “big data.” Using MapReduce, a devel-
oper simply writes a map function and a reduce function. The
system automatically distributes the workload over a cluster 25
of commodity machines, monitors the execution, and handles
failures. In the past few years, however, not just big data, but
fast data, 1.e., high-speed real-time and near-real-time data
streams, has also exploded in volume and availability. Prime
examples include sensor data streams, real-time stock market 30
data, and social-media feeds such as Twitter, Facebook, You-
Tube, Foursquare, and Flickr. The emergence of social media
in particular has greatly fueled the growth of fast data, with
well over 4000 tweets per second (400 million tweets per
day), 3 billion Facebook likes and comments per day, and 5 35
million Foursquare checkins per day.

Numerous applications that deal with these and similar
data streams must process fast data, often with minimal
latency and high scalability. For example, an application that
monitors the Twitter Firehose for an ongoing earthquake may 40
want to report relevant information within a few seconds of
when a tweet appears, and must handle drastic spikes 1n the
tweet volumes.

MapReduce 1s not particularly suited for fast data. First,
MapReduce runs on a static snapshot of a data set, while 45
stream computations proceed over an evolving data stream. In
MapReduce, the input data set does not (and cannot) change
between the start of the computation and its finish, and no
reducer’s iput 1s ready to run until all mappers have finished.

In stream computations, the data 1s changing all the time; 50
there 1s no such thing as working with a “snapshot™ of a
stream. Second, every MapReduce computation has a “start”
and a “finish.” In contrast, stream computations never end—
the data stream goes on forever. In the MapReduce model, the
reduce step needs to see a key and all the values associated 55
with the key; this 1s impossible in a streaming model.

Accordingly, what 1s needed 1s an improved method for
performing a map-reduce type operation for streaming data

with very low latency.
60

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe- 65
cific embodiments illustrated imn the appended drawings.
Understanding that these drawings depict only typical

2

embodiments of the mvention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:

FIG. 1 1s a block diagram of a computing device suitable
for implementing embodiments of the present invention;

FIG. 2 1s a block diagram of an environment suitable for
implementing embodiments of the present invention;

FIGS. 3A and 3B are schematic block diagram of map and
update classes 1n accordance with an embodiment of the
present 1nvention.

FIG. 4 1s a schematic block diagram of a map-update
network 1n accordance with an embodiment of the present
imnvention;

FIGS. 5A and 5B are schematic block diagrams of a map
and update operations in accordance with an embodiment of
the present invention;

FIG. 6 1s a schematic block diagram of an architecture for
implementing a map-update application in accordance with
an embodiment of the present invention;

FIG. 7 1s process flow diagram illustrating event assign-
ment 1n a map-update architecture in accordance with an
embodiment of the present invention;

FIG. 8 1s a process flow diagram of a method for enqueuing,
an event in accordance with an embodiment of the present
invention;

FIGS. 9A and 9B are process flow diagram of methods for
processing events with awareness of hotspots 1n accordance
with an embodiment of the present invention;

FIGS. 10A and 10B 1llustrate data structures for splitting
an event queue 1n accordance with an embodiment of the
present invention;

FIGS. 11 A and 11B are process flow diagrams of methods
for splitting and consolidating event queues 1n accordance
with an embodiment of the present invention;

FIGS. 12A and 12B 1illustrate alternative methods for split-
ting and consolidating event queues 1n accordance with an
embodiment of the present invention;

FIG. 13 1s a process tlow diagram of a method for selec-
tively processing events according to a degraded function to
reduce overloading 1n accordance with an embodiment of the
present invention;

FIGS. 14A and 14B are process flow diagrams of methods
for transferring event-processing instances between threads
and nodes 1n accordance with an embodiment of the present
imnvention;

FIG. 15 1s a schematic block diagram of data structures 1n
a memory space of a node 1n a map-update network 1n accor-
dance with an embodiment of the present invention;

FIG. 16 1s a process flow diagram of a method for updating
cached serialized slates and slate objects 1n accordance with
an embodiment of the present invention;

FIG. 17 1s aprocess tlow diagram ot a method for retrieving,
a slate from a cache 1n accordance with an embodiment of the
present invention;

FIG. 18 1s a schematic block diagram of an environment for
responding to HTTP requests for slate data in accordance
with an embodiment of the present invention;

FIG. 19 1s a process flow diagram of a method for respond-
ing to H1TP requests for slate data in accordance with an
embodiment of the present invention; and

FIG. 20 1s a process flow diagram of an alternative method
for responding to HT'TP requests for slate data in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and 1llustrated 1n the

US 9,098,328 B2

3

Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the mvention, as
represented 1n the Figures, 1s not intended to limit the scope of
the mvention, as claimed, but 1s merely representative of
certain examples of presently contemplated embodiments 1n
accordance with the invention. The presently described
embodiments will be best understood by reference to the
drawings, wherein like parts are designated by like numerals
throughout.

The mmvention has been developed in response to the
present state of the art and, 1n particular, 1n response to the
problems and needs in the art that have not yet been fully
solved by currently available apparatus and methods.

Systems and methods are disclosed herein for processing
events 1n an event stream using a map-update application. The
events may be embodied as a key—attribute pair. In embodi-
ments disclosed herein, an event embodied as a
key—attribute pair may also be replaced with, or otherwise
embodied, as a key—opaque value pair as might be used 1n a
MapReduce application as known 1n the art. An event is
processed by one or more 1nstances implementing either a
map or an update function. A map function receives an input
event from the event stream and publishes one or more events
to the event stream. An update function recerves an event and
updates a corresponding slate and publishes zero or more
events.

Systems and methods are also disclosed herein for imple-
menting a map-update application 1n a multithreaded archi-
tecture and preventing overloading of a particular thread.
Also disclosed are other methods for dealing with overload-
ing due to large event volumes.

Embodiments 1n accordance with the present invention
may be embodied as an apparatus, method, or computer pro-
gram product. Accordingly, the present invention may take
the form of an entirely hardware embodiment, an entirely
soltware embodiment (including firmware, resident software,
micro-code, etc.), or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “module” or “system.” Furthermore, the present imnven-
tion may take the form of a computer program product
embodied in any tangible medium of expression having com-
puter-usable program code embodied 1n the medium.

Any combination of one or more computer-usable or com-
puter-readable media may be utilized. For example, a com-
puter-readable medium may include one or more of a portable
computer diskette, a hard disk, a random access memory
(RAM) device, a read-only memory (ROM) device, an eras-
able programmable read-only memory (EPROM or Flash
memory) device, a portable compact disc read-only memory
(CDROM), an optical storage device, and a magnetic storage
device. In selected embodiments, a computer-readable
medium may comprise any non-transitory medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or 1n connection with the mstruction execus-
tion system, apparatus, or device.

Computer program code for carrying out operations of the
present invention may be written 1n any combination of one or
more programming languages, including an object-oriented
programming language such as Java, Smalltalk, C++, or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on a
computer system as a stand-alone software package, on a
stand-alone hardware unit, partly on a remote computer
spaced some distance from the computer, or entirely on a
remote computer or server. In the latter scenario, the remote

5

10

15

20

25

30

35

40

45

50

55

60

65

4

computer may be connected to the computer through any type
of network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer ({or example, through the Internet using an
Internet Service Provider).

The present invention 1s described below with reference to
flowchart 1illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart i1llustrations and/or block
diagrams, and combinations of blocks 1n the flowchart 1llus-
trations and/or block diagrams, can be implemented by com-
puter program instructions or code. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified 1n the flowchart and/or block diagram block or
blocks.

These computer program mstructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function 1n
a particular manner, such that the instructions stored 1n the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the tlowchart and/or block diagram
block or blocks.

Embodiments can also be implemented in cloud comput-
ing environments. In this description and the following
claims, “cloud computing™ 1s defined as a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) thatcan be
rapidly provisioned via virtualization and released with mini-
mal management effort or service provider interaction, and
then scaled accordingly. A cloud model can be composed of
various characteristics (e.g., on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured
service, etc.), service models (e.g., Software as a Service
(“SaaS™), Platform as a Service (“PaaS”), Infrastructure as a
Service (“laaS™), and deployment models (e.g., private cloud,
community cloud, public cloud, hybrid cloud, etc.).

FIG. 1 1s a block diagram 1illustrating an example comput-
ing device 100. Computing device 100 may be used to per-
form various procedures, such as those discussed herein.
Computing device 100 can function as a server, a client, or
any other computing entity. Computing device can perform
various monitoring functions as discussed herein, and can
execute one or more application programs, such as the appli-
cation programs described herein. Computing device 100 can
be any ol a wide variety of computing devices, such as a
desktop computer, a notebook computer, a server computer, a
handheld computer, tablet computer and the like.

Computing device 100 includes one or more processor(s)
102, one or more memory device(s) 104, one or more inter-
tace(s) 106, one or more mass storage device(s) 108, one or

US 9,098,328 B2

S

more Input/Output (I/0) device(s) 110, and a display device
130 all of which are coupled to a bus 112. Processor(s) 102
include one or more processors or controllers that execute
instructions stored 1n memory device(s) 104 and/or mass
storage device(s) 108. Processor(s) 102 may also include
various types ol computer-readable media, such as cache
memory.

Memory device(s) 104 include various computer-readable
media, such as volatile memory (e.g., random access memory
(RAM) 114) and/or nonvolatile memory (e.g., read-only
memory (ROM) 116). Memory device(s) 104 may also
include rewritable ROM, such as Flash memory.

Mass storage device(s) 108 include various computer read-
able media, such as magnetic tapes, magnetic disks, optical
disks, solid-state memory (e.g., Flash memory), and so forth.
As shown 1n FIG. 1, a particular mass storage device 1s a hard
disk drive 124. Various drives may also be included 1n mass
storage device(s) 108 to enable reading from and/or writing to
the various computer readable media. Mass storage device(s)
108 include removable media 126 and/or non-removable
media.

I/0O device(s) 110 include various devices that allow data
and/or other information to be input to or retrieved from
computing device 100. Example I/O device(s) 110 include
cursor control devices, keyboards, keypads, microphones,
monitors or other display devices, speakers, printers, network
interface cards, modems, lenses, CCDs or other 1mage cap-
ture devices, and the like.

Display device 130 includes any type of device capable of
displaying information to one or more users ol computing
device 100. Examples of display device 130 include a moni-
tor, display terminal, video projection device, and the like.

Interface(s) 106 include various interfaces that allow com-
puting device 100 to interact with other systems, devices, or
computing environments. Example interface(s) 106 include
any number of different network interfaces 120, such as inter-
faces to local area networks (LLANs), wide area
networks (WANSs), wireless networks, and the Internet. Other
interface(s) iclude user interface 118 and peripheral device
interface 122. The interface(s) 106 may also include one or
more user intertace elements 118. The interface(s) 106 may
also 1include one or more peripheral interfaces such as inter-
faces for printers, pointing devices (mice, track pad, etc.),
keyboards, and the like.

Bus 112 allows processor(s) 102, memory device(s) 104,
interface(s) 106, mass storage device(s) 108, and /O
device(s) 110 to communicate with one another, as well as
other devices or components coupled to bus 112. Bus 112
represents one or more of several types of bus structures, such
as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so
torth.

For purposes of 1llustration, programs and other executable
program components are shown herein as discrete blocks,
although 1t 1s understood that such programs and components
may reside at various times in different storage components
of computing device 100, and are executed by processor(s)
102. Alternatively, the systems and procedures described
herein can be implemented 1n hardware, or a combination of
hardware, soitware, and/or firmware. For example, one or
more application specific integrated circuits (ASICs) can be
programmed to carry out one or more ol the systems and
procedures described herein.

FI1G. 2 illustrates an example of a computing environment
200 suitable for implementing a map-update application. The
computing environment may include one or more servers 202
and a worker node network 204. The worker node network
204 may include one or more worker nodes 206a-206¢. A

10

15

20

25

30

35

40

45

50

55

60

65

6

worker node 206a may also couple one or more other worker
nodes 206d, 206¢ to the server 202 or to other worker nodes
206a-206¢. The worker nodes 206a-206¢ may access a data-
base 208 storing data resulting from operation of the map-
update application. As discussed hereinbelow, the database
208 may include a persistent slate store.

A developer or admimistrator may access the server 202
and/or any worker node 206a-206¢ by means of a workstation
210, which may be embodied as a general purpose computer,
tablet computer, smart phone, or the like. The server may be
connected to a network 212 such as a local area network
(LAN), wide area network (WAN), or the Internet. A user may
also access data from the server 202, worker nodes 206a-
206¢, or database 208 by means of a user workstation 214.
The user workstation may likewise be embodied as a general-
purpose computer, tablet computer, smart phone or the like.
Any of the devices of the computing environment 200 may
include some or all of the components of the computing

device 100.

Retferring to FIG. 3A, a map-update application may
implemented including one or more nstances of an updater
class 300. An updater class 300 may include attributes 302
including subscriptions, publications, and at least one slate. A
subscription may be an identifier of an input event stream. An
event stream, such as an input event stream, may be embodied
as key and value pairings having a common key. An event
stream may be all events having the same key value. Accord-
ingly, a subscription attribute may include one or more key
values. In some embodiments an mput event stream may
include a grouping of events having different keys. Likewise,
an output event stream may include a grouping of events
having different keys

A publication attribute may 1dentify an output event stream
for the updater class 300. In some applications some or all
update functions do not publish events to an output event
stream. As for the mput event stream, an output event stream
may be one or more events including key and value pairings.
Accordingly, a publication attribute may include one or more
key values used to 1dentity the output streams for an instance
of an updater class.

An 1nstance of an updater class 300 may maintain a state
from the processing of one event to the next. This state may be
maintained using a slate. A slate may be any data structure and
may be identified by a unique slate key. Accordingly, an
updater class 300 may have as an attribute a slate key 1denti-
tying a slate. A slate may store any type of data. For example,
data stored 1n a slate may include any number of attribute and
value pairings.

The updater class 300 may additionally define methods
304. For example, a method for creating a slate may be
included. A slate creation method may take as an mnput an
event. For example, upon receiving an event for which a
corresponding slate does not exist, the updater may call the
slate creation method and pass it the corresponding event. The
slate creation method may then create a slate corresponding
to that event. The slate may also be 1nitialized according to an
initialization (1nit()) function that takes as an mput a slate,
such as, as identified using a slate identifier. The slate 1nitial-
1zation function may be operable to create a slate object or
otherwise define a slate within a memory.

The updater class 300 may additionally define one or more
update methods. The update method may take as inputs an
event and a slate, such as by means of a slate key. The update
method performs an update on the slate 1n accordance with
the method. A simple example 1s, for each event, embodied as
key-value pairing, the update method may include, for a given
event value, imncrementing a counter corresponding to that
value stored the slate. In this example, the slate may store an

US 9,098,328 B2

7

attribute-value pair including the event value as the attribute
and the current state of the counter as the value. Any operation
may be performed on a given event and any variable 1n a slate
may be updated in response to the event as defined by a
developer.

The methods 304 of the updater class 300 may additionally
include a publication method to publish events to an output
stream as defined using a publication attribute. The data pub-
lished to an output stream may likewise include key and
attribute pairings. In some embodiments, the data published
may correspond to one or both of a currently processed event
and a current state of the slate associated with an instance of
the updater class 300. For example, using the counter
example, the publication method may publish to an output
stream a <key,value> event embodied as an <event value,
counter state> pairing, wherein the “event value” 1s a possible
value for an event on the mput event stream and the counter
state 1s the current value of the counter counting the number
of occurrences of that value 1n the input event stream. Such an
output event may be produced for each event, for each N
events, or according to some other criteria. Other output
events may be generated according to the needs of the devel-
oper according to any computation desired using one or both
of input events and a state of the slate for the instance of the an
updater class 300.

The updater class 300 may additionally define one or both
of a subscription method allowing an instantiating function to
define the mput stream for an instance of the updater class.
Other methods may include a finalize method for reporting on
the final state of the slate for an 1instance of the updater class
300 and ending further updating of the slate. The slate may
persist in a slate store following finalization. In some embodi-
ments, a time to live (1'TL) may be defined for an instance of
an updater class 300 such that the instance will be finalized
after a TTL period following one of instantiation of the
instance or initiation of the slate according to the it()
function.

FIG. 3B illustrate an example of a mapper class 306, that
likewi1se includes attributes 308 and methods 310 to facilitate
processing mnput event streams and publishing output event
streams. The mapper class 306 may define subscription and
publication attributes that function the same as for the updater
class 300, that 1s they define one or more input event streams
(e.g. mputevent key(s)) and one or more output event streams
(e.g. output event key(s)).

The methods 310 may likewise include subscription and
publication methods. The subscription method enables an
instantiating or other function to define the mmput event
stream(s) (e.g. input event key(s)) that will be processed by a
given istance of the mapper class. A publication method may
publish an output even on an output event stream defined
according to the publication attribute. Instances of the mapper
class 306 may perform stateless computations that do not
depend on previous events. Accordingly, the publication
method may publish an output event based only on an event
being processed or immediately previously processed. The
output event may be generated according to a map function
defined 1n the methods 310. The mapping function may be
any function desired by a developer. An example mapping
function may include mapping the text of a particular tweet to
a one or more concepts 1 a taxonomy as discussed 1 U.S.
patent application Ser. No. 13/300,524, which 1s hereby
incorporated herein by reference in 1ts entirety. The 524
application additionally includes other examples of applica-
tions of a map-update application and methods for imple-

10

15

20

25

30

35

40

45

50

55

60

65

8

menting such an application, which may be used 1n combi-
nation with any and all of the systems and methods disclosed
herein.

FIG. 4 1llustrates an example logical arrangement of map-
per mstances 402a-4024 and updater instances 404a-404c.
As shown a mapper 402a may publish events that are input to
any number of other mappers 40256-402¢ or updaters 404q.
These mappers 40256-402¢ and updaters 404a may then pub-
lish events to one or more other updaters 4045-404¢ or map-
pers 4024 and so on. The arrangement of these instances may
be determined by a developer to achieve a desired logical
function. The illustrated arrangement may be a logical one. In
some 1mplementations each mapper or updater instance
receives events from the event stream and publishes zero or
more events to the event stream. However, the result of sub-
scriptions and publications of each particular instance may
result 1n a data flow hierarchy or network such as shown in
FIG. 4.

FIG. SA illustrates an example of operation of an instance
ol a mapper class or subclass. As shown, an input event 500
including a key and value pairing 500 1s recewved by the
mapper instance 502, which then outputs a second key and
value pairing 504 that may have a different key than the first
event 500. In some embodiments, a mapper may output zero,
one, or multiple output event streams. Each output event
stream may include published events having a key or a key
from a group of keys associated with the output stream. As
noted above, each event may also include a value. The output
event may be the result of processing of the input event 500.

FIG. 5B 1llustrates an example of operation of an instance
of an updater class. An mput event 506 including a key and
value pairing 1s input to an mstance 508 of the updater class.
The nstance 508 performs an update operation taking as
iputs a slate 510 and the event 506. The update operation
modifies the slate 510 which may be written to a cache or
persistent slate store. The update operation publishes zero or
more events 512 each including a key and value pairing,
where the key 1s typically different from the key for the first
event. In some embodiments, an updater may output zero,
one, or multiple output event streams. Fach output event
stream may include published events having a key or a key
from a group of keys associated with the output stream. As
noted above, each event may also include a value.

FIG. 6 1llustrates architecture 600 for implementing a map-
update application. The architecture 600 may include a global
conductor 602 for routing events to various worker nodes.
The global conductor 602 may implement a hash function
604 or hash table that maps events to one or more instances of
mapper or updater classes. The hash function 604 may map a
key from a key-value pairing of an event to a particular
instance. Accordingly, subscribing by an instance to an event
may include causing modification of the hash function 604 to
map an event to the instance. The conductor 602 may also
implement or access an event stream 606 that includes events
from external sources as well as events output from 1nstances
of mapper or updater classes.

One or more worker nodes 608 may be 1n data communi-
cation with the conductor 602. The global conductor 602 may
be hosted on a server that 1s distinct from any of the worker
nodes 608 or may be hosted on one or more worker nodes 608.
A worker node may host a virtual machine 610, such as a Java
Virtual Machine (JVM). The virtual machine 610 may imple-
ment a virtual machine (VM) conductor 612. The VM con-
ductor 612 may be programmed to route events recerved at the
node 608 to one or more threads. This may be accomplished
by means of a hash function that maps events to particular
instances and a particular event and 1nstance to one or more

US 9,098,328 B2

9

threads, as will be discussed 1n greater detail below. An event
may be mapped to multiple imnstances of mapper or updater
classes. Accordingly, a mapping of an event may include
mapping the event to both a thread and a specific instance.

In some embodiments, the global conductor 602 maps
events to a particular node 608 whereas the VM conductor
612 maps events to particular target instances. In some
embodiments, the global conductor 602 may also map an
event to a target instance.

The VM 610 may implement thread queues 614a-614c¢
cach associated with a thread 616a-616¢. A queue 614a-614c
may be embodied as a first-in-first-out queue. The entries in
the queues 614a-614¢c may include an event and instance
pairing as assigned by one or both of the VM conductor 612
and the global conductor 602.

Athread 616a-616b may have aslate 618a-618c¢ associated
therewith. The slate 618a-618¢ may correspond to an update
instance that 1s currently processing or recently concluded
processing ol an event in the thread 616a-6165H. In cases
where a mapper instance 1s processing an event 1n a thread
616a-616¢, the thread may not have a slate 618a-618¢ asso-
ciated therewith. Associating a slate 618a-618¢ with a thread
may include associating a lock on the slate 618a-618¢ 1ndi-
cating only that the thread 1s the only thread that may modity
or access the slate 618a-618c.

The threads 616a-616c may access a common memory
space 620 associated with the VM 610. The memory space
620 may include an instance store 622 that stores instances of
mapper and updater classes and may store corresponding
class definitions. A thread 616a4-616¢ may retrieve an
instance from the instance store 622 to process an event from
a corresponding thread queue 614a-614c.

The memory space 620 may additionally include a slate
cache 624 that stores slates that are being used, were previ-
ously used, or are likely to be used by a thread 616a-616¢. A
persistent copy of slates may be stored 1n a slate store 626 that
may be accessed by one or more worker nodes 608. Cache
consistency may be maintained between the slate caches 624
of the one or more worker nodes 608 and the persistent slate
store 626.

FIG. 7 1llustrates an example of data flow within the VM
610. An event 702 may be processed according to a global
hash function 704, which produces an output 706 that may
include a node 1dentifier for a worker node 608 and the event,
embodied as akey and value pairing. The output 706 may also
identily a target instance (mapper or updater) for the event.
The output 706 may be provided to the VM hash function 708
of the 1dentified node, which produces an output 710 includ-
ing one or more ol a primary thread identifier (PTID), sec-
ondary thread identifier (STID), an instance 1identifier, as well
as the event, embodied as a key and value pairing. In some
embodiments, only a single thread 1dentifier 1s output instead
of both primary and secondary thread identifiers. In other
embodiments, three or more thread identifiers may be output.

FIG. 8 illustrates a method 800 for assigning to a thread the
processing of an event using a specified instance. The method
800 may include recerving 802 an event assignment. As noted
above, an event assignment may 1dentily a target instance and
a primary thread and secondary thread. The target instance
may be evaluated 804. The method 800 may include deter-
mimng 806 whether one of the primary and secondary threads
identified 1n the assignment 1s a hot spot for the target
instance. This may include evaluating 806 whether either of
the primary and secondary threads 1s currently processing an
event for the target instance. It so, this thread may be deemed
a hotspot. In some embodiments, a thread 1s deemed a hotspot
if N of the previous M events processed were processed using

10

15

20

25

30

35

40

45

50

55

60

65

10

the target instance. Other evaluations of prior processing of a
thread may also be used to determine whether the thread 1s a
hotspot for a target instance. Hotspot detection may be par-
ticularly helpiul to avoid “slate contention” wherein one
thread 1s waiting for access to a slate while another thread
completes processing. Accordingly, in some embodiments,

the method 800 may be used to assign events to threads enly
where the target instance 1s an instance of an updater class,

whereas events with a target instance corresponding to a
mapper class may be assigned 1n a different manner, such as
using simple load balancing.

If one of the primary or secondary threads 1s found 806 to
be a hotspot for the target instance for an event, processing of
the event 1n the target instance may be assigned 808 to which-
ever thread 1s found 806 to be the hotspot. IT it 1s not found 806
that either of the primary and secondary threads 1s a hotspot,
then the thread queues for the primary and secondary thread
may be evaluated 810. If the size of the thread queue for the
primary thread 1s found 812 to be above a specified threshold,
or a threshold amount above the size of the secondary queue,
then processing of the received event 1n the target instance
may be added 814 to the queue of the secondary thread.
Otherwise, processing of the event using the target instance
thereol may be added 816 to the queue of the primary thread.

In some embodiments, an event and corresponding target
instance may be added to the primary queue unless the size of
the primary queue 1s a certain multiple of the size of the
secondary queue, such as 110 percent, 120 percent, or some
other multiple of the size of the secondary queue.

The method 800 may be operable to balance competing
interests within the VM 610. In order to take advantage of as
many processing cores as possible, it 1s advantageous to per-
form some sort of load balancing among available threads.
However, 1n order to avoid slate contention, 1t 1s advantageous
to assign all event processing 1n a target instance to the same
thread, particularly for instances of updater classes. Having a
primary and secondary thread for each target instance with a
bias toward assigning events for the target instance to the
primary thread provides means for balancing these interests.
The threshold at which events are assigned to the secondary
thread may be used to adjust the bias toward the primary
thread in order to balance these competing interests. The step
ol evaluating 806 which of the threads 1s a hotspot further
tacilitates the avoidance of slate contention.

Another concern 1s reducing the computation required 1n
assigning processing ol an event 1n a target instance to a
particular thread. As the number of cores 1n computer systems
increase, evaluating queues of all available threads adds
undue computational load. Accordingly, 1n some embodi-
ments, for each target instance only a primary and a secondary
thread are assignable, thereby reducing the amount of pro-
cessing needed 1n thread assignment.

FIG. 9A 1llustrates a method 900a for processing events
from a thread queue. The method 900 may be executed by a
thread 616a-616¢ or some other module of the VM 610. As
already noted, a thread queue may store both an event and an
identifier for a target instance for processing the event as
assigned by one or both of a global conductor 602 and VM
conductor 612.

The method 900aq may include retrieving 902 an event and
corresponding target instance from the thread queue for a
thread. The method 9004 may include evaluating 904 whether
the thread 1s a hotspot for the target instance for the event. IT
so, then the event may be processed 906 using the target
instance in the thread. Evaluating 904 whether the thread is a
hotspot may include evaluating whether the thread 1s cur-
rently processing an event or the same target instance or

US 9,098,328 B2

11

otherwise has a lock on a slate for the target instance. Evalu-
ating 904 whether the thread 1s a hotspot may include evalu-
ating whether the thread already has the slate loaded or oth-
erwise 1s the thread with current access to the slate to a greater
extent than the other of the pair of primary and secondary
threads for the target instance.

As noted above, the method 9004 may be executed for a
thread queue corresponding to a thread. If the thread 1s not
tound 904 to be a hotspot for the target instance of an event,
the method 900a may include evaluating 908 whether the
other thread of the primary-secondary thread pair for the
target instance 1s a hot spot. This may include evaluating 908
any of the criteria discussed hereimnabove for determining
whether a thread 1s a hotspot for a target instance. If so, then
the event may be sent 910 to this hotspot thread. This may
include adding the event to the thread queue for the hotspot
thread. The event may be added at the end of the queue or at
the beginning. The methods disclosed herein are particularly
applicable to processing of data streams where ordering of
processing of events 1s not critical. Accordingly, where the
event 1s added to the queue for the hotspot thread may be
unimportant.

If the neither of the primary and secondary threads 1s found
904, 908 to be a hotspot for the target instance of an event, the
method 9004 may include evaluating 912 whether the thread
corresponding to the queue from which an event was retrieved
902 1s actually a hotspot for a different target instance than the
target instance for the event. It so, then the event may be one
of returned 914 to the VM conductor for assignment to
another thread according to the methods described herein or
transierred to the other thread of the primary-secondary
thread pair to which the thread corresponding to the queue
belongs. If the thread corresponding to the queue 1s not found
912 to be hotspot for another target instance, then the event
retrieved 902 may be processed 916 using the specified target
instance for the event.

FI1G. 9B illustrates an alternative method 9005 for process-
ing events from a thread queue. The method 90056 may be
executed following detecting a thread to be a hotspot for a
target instance. This may include evaluating whether speci-
fied number N of the last M events processed were processed
in a target instance. Other methods may also be used, such as
if N consecutive events are for the same target instance, the
thread may be flagged as a hotspot for that instance. A thread
may be deemed a hotspot for an 1nstance simply because the
thread 1s currently processing an event in the instance or the
immediately preceding event before retrieving the next event
from an event queue was processed 1n the instance. Various
other methods may also be used depending on the needs of the
developer.

Accordingly, the method 9006 may include processing
918, from the queue for a thread, a specified number N of
events corresponding to the mstance for which the thread is a
hotspot. This may include processing N events corresponding,
to the hotspot instance regardless of the presence of events for
other target instances. After processing 918 N events, the
queue may be evaluated and one or more events for instances
other than the hotspot instance may be retrieved 920 and
evaluated 922. If an event for a target instances other than the
hotspot instance are for a target instance for which another
thread 1s a hotspot, the event may be sent 924 to that thread.
Otherwise, the event may be sent 926 to the VM conductor
612 for assignment to a different thread or otherwise trans-
terred to the queue of the other thread of the primary-second-
ary thread pair for the target instance of the event. In some
embodiment, 11 a thread 1s a hotspot for a target instance,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

events for other target instances are all sent to the VM con-
ductor 612 for assignment to a different thread.

The method 9005 may advantageously prioritize process-
ing of events for instances for which the thread 1s a hotspot.
By processing N events for the hotspot instance before check-
ing for events for other target instances, processing of events
for the hotspot instances will be processed more quickly
without overhead from processing other events for other tar-
get mstances.

FIGS. 10A and 10B illustrate a method for dealing with
overloading of a target instance with events. In particular, a
method for dealing with overloading of an instance of an
updater class with events.

In a first configuration 1000a, one or more upstream event
sources 1002, such as other mapper or updater instances or
external publishers of events, provide events to an updater
instance 1004 having a slate 1006 associated therewith. The
updater mstance 1004 may publish one or more events pro-
cessed by one or more downstream instances 1008, such as
other mapper or updater instances.

Upon detecting overloading of the updater instance 1004,
the first configuration may be modified to obtain the configu-
ration 10006 of FIG. 10B. In the configuration 1005, events
from the upstream event sources 1002 are distributed among
two or more partial updater imnstances 1004a-1004¢ each hav-
ing a corresponding partial slate 1006a-1006¢ associated
therewith. Distributing the events among the partial updater
instances 1004a-1004¢ may advantageously allow for pro-
cessing of events 1n multiple threads thereby allowing target
instances with large event loads to be adaptively assigned
more computing resources 1n order to achieve low latency.

Each of the partial updater instances 1004a-1004¢ per-
forms a partial update on the partial slates 10064-1006¢
according to events received. The update function performed
by the partial updater instances 1004a-1004¢ may be the
same as, or different from, the update function performed by
the updater instance 1004. The partial updater instances
10044-1004¢ may periodically publish events reflecting the
state of the partial slates 1006a-1006¢.

The events published from the partial updater instances
10044-1004¢c may be received by an aggregator instance 1010
that processes the events published by the partial updater
instances 1004a-1004c¢ 1n order to update the slate 1006. The
aggregator istance 1010 may publish events to the down-
stream 1nstances 1008. The events published by the aggrega-
tor instance 1010 may reflect the state of the slate 1006.

FIGS. 11 A and 11B 1illustrate examples of methods 1100a-
11005 for adaptively configuring partial updater instances in
response to overloading of an updater instance. The condition
that constitutes overloading may be determined by a devel-
oper. An example of an overload condition may include the
condition where events are being added to a thread queue
faster than they are being processed. Alternative or addition-
ally an overload condition may include a thread queue
exceeding a specified size. Where the thread 1s a hotspot for a
target instance, the overload condition may be evaluated with
respect to events for the hotspot target instance.

Reterring to FIG. 11 A, a method 1100aq may include evalu-
ating 1102 an event load versus a clear rate for a particular
update instance. The clear rate may be the rate at which events
are retrieved from the queue and processed. It the evaluation
1102 1s found 1104 to not indicate an overload condition, then
the event may be processed 1106 and slate updated in a
corresponding update instance according to methods dis-
closed herein.

If an overload condition 1s found 1104 to exist, then events
may be associated 1108 with two or more partial slates. The

US 9,098,328 B2

13

number of partial slates may correspond to the degree of
overloading of the update instance. The partial slates may
then be updated 1110 according to the events distributed
thereto, such as by performing an update function on the
partial slate according to one or both of a received event and
the current slate of the partial slate.

The state of the partial slates may be periodically reported
1112 such as by publishing events to one or more output
streams. The reported states of the partial slates may be aggre-
gated 1114. As an example, aggregating of the partial states
may be performed 1n any manner suitable for a developer. For
example, using the counter example, where the update opera-
tion updates a counter, the values for a partial count may be
maintained in the partial slates and then summed by the
aggregator to obtain a final count. In a more general case the
partial states may report any attribute and value pairing.
Events published reporting the states of the partial slates may
include a similar attribute and value pairing. Events from
different partial slates with the same attribute may have their
values aggregated as defined by a developer, which may
include any arbitrary function.

A slate may be updated 1116 according to the aggregation
of the reported states of the partial slates. In some embodi-
ments, the slate 1s the slate associated with the original
updater istance before division of the updater function into
partial updater instances and an aggregator instance.

The illustrated method 11004 may also be used for adding,
additional partial slates in cases where an overload condition
1s detected after events have already been associated with two
or more other partial slates in response to a previously
detected overload condition.

FIG. 11B illustrates a method 11006 for consolidating

partial updaters according to event loading. The method
11005 may 1nclude evaluating 1118 event load versus clear
rate for an updater instance. If an excess capacity 1s not found,
then processing may continue as described with respect to
1100a, which may include processing events and accumulat-
ing 1122 results of processing 1n partial slates, aggregating
1124 the states of the partial slates, and then updating 1126 a
slate according to the aggregated states of the partial slates.

If an excess capacity 1s found 1120 to be present, then the
method 110056 may include reporting 1128 a final state of at
least one partial slate, updating 1130 a slate according to the
reported partial slate, and then eliminating 1132 the partial
slate. This may include ceasing to distribute events for updat-
ing to the partial slate. I1 all partial slates are eliminated but
one, the state of the last partial slate may be reported and used
to update the slate and processing may revert to updating a
single slate using a single updater 1nstance according to the
methods described hereinabove.

FIGS. 12A-12C 1illustrate alternative methods for dealing
with overloaded updater instances. Referring to FIG. 12A, a
method 1200a may 1nclude evaluating 1202 an event load
versus a clear rate for an updater instance, such as performing,
the analysis of loading described hereinabove 1n connection
with the method 1100q. If an overload condition 1s found
1204 not to exist, then events may be processed and a slate
updated 1206 according to an original updater instance
according to the methods described herein.

If an overload condition 1s found 1204 to exist, then sub-
instances of the overloaded updater may be 1nstantiated. The
sub-instances may be based on an 1dentical class definition or
a similar but different definition for sub-instance-type updat-
ers. Events originally assigned to the overloaded updater may
then be spread 1208 to the sub-instances. In some embodi-
ments, the VM conductor 612 may be modified, such as by

10

15

20

25

30

35

40

45

50

55

60

65

14

modifying a hash function, to distribute events among the
sub-1nstances 1n a round-robin or other distribution scheme.

The sub-1nstances may also be initialized to subscribe to a
same mput stream as the overloaded updater. The subscrip-
tion scheme for the sub-instances may be different from that
outlined above inasmuch as each event in the mput event
stream will not be passed to each sub-instance. Instead, each
sub-instance will receive a portion of the events recerved on
the original input stream of the overloaded updater 1nstance.
In an alternative embodiment, new event streams may be
created and events for the original input event stream for the
overloaded updater instance may then be distributed to these
new event streams by the VM conductor. The sub-instances
may be 1nitialized to subscribe to these new event streams.

Each of the instantiated sub-instances may have a slate
associated therewith that may be considered a partial slate
inasmuch as each sub-instance only receives part of the events
for the original input event stream of the overloaded updater
instance. Accordingly, for each event received by a sub-1in-
stance, the partial slate may be updated 1210 according to the
event and the current state of the partial slate according to the
methods described herein. The sub-instances may then peri-
odically publish 1212 the state of the slate to an output event
stream. Inasmuch as the sub-instances are advantageously
used to reduce loading of a single updater 1nstance, the pub-
lished 1212 state of the slate may be output less frequently
than input events. For example, the state of the slate for a
sub-instance may be published after every N events pro-
cessed, where N 1s two or more events.

An aggregator imnstance may receive 1214 the events pub-
lished on the output event streams of the sub-instances. As
discussed above, this may be accomplished by subscribing
the aggregator to the output streams of the sub-instances. In
some embodiments, a developer may define for an updater
class an aggregation function to be used in 1nstances where
the functionality of an updater 1s distributed among sub-
instances. Accordingly, an aggregator may be an instance of
an updater class performing updates according to an aggre-
gator function. Likewise a developer may also define for an
updater class a partial-updater function to be used to update a
partial slate 1n cases where the functionality of an updater
class 1s distnbuted among sub-instances. In still other
embodiments, a default aggregator instance may be instanti-
ated that performs a generic aggregation of the output streams
of the sub-instances.

The aggregator instance of any of the foregoing embodi-
ments may update 1216 an aggregate slate according to the
received partial slate states received from the sub-instances.
The aggregate slate may be the original slate for the over-
loaded updater 1nstance prior to instantiation of the sub-1in-
stances as further updated according to published partial slate
states recerved from the sub-1nstances. Where the overloaded
function was operable to publish the slate state to an output
stream, the state of the aggregate slate may be published
1218.

The 1llustrated method 1200aq may also be used for adding,
sub-instances 1 cases where an overload condition 1s
detected after two or more sub-instances have already been
created 1n response to a previously detected overload condi-
tion.

Referring to FIG. 12B, the illustrated method 12006 may
be used to consolidate sub-instances 1n the event of excess
capacity. The method 12005 may include evaluating 1220 an
event load versus clear rate for an updater 1nstance as dis-
cussed hereinabove. If an excess capacity 1s not found 1220,
then processing may continue as described above with respect
to the method 1200q for multiple partial instances. This may

US 9,098,328 B2

15

include accumulating 1224 updates to partial slates and
aggregating 1226 published slate states for the partial slates 1n
an aggregate slate or original slate as described heremnabove.

If an excess capacity 1s found 1222, then a sub-instance
may be selected and the state of a partial slate corresponding,
thereto may be published 1228 and an aggregate slate updated

1230 according to the published state. The VM conductor 612
may then be eliminated 1232. This may include modifying
the VM conductor 612 to no longer route events to the elimi-
nated sub-instance and otherwise deleting the eliminated sub-
instance and its partial slate from memory.

If 1t 1s found 1234 that more than one sub-instance 1s left,

l

the method 1200¢ may end. If only one sub-instance 1s left,
then the method 12005 may include merging 1236 the partial
slate of the sub-instance with the aggregate slate and other-
wise eliminating the sub-instance. The operation of the origi-
nal single updater instance may be restored including the
receiving of events and updating the aggregate slate accord-
ing as described hereinabove. In some embodiments, the par-
tial slate may be merged with the aggregate slate and the
sub-instance may commence operation as the original
updater mstance and update the aggregate slate directly as an
updater according to functionality described heremnabove.

The methods described hereinabove with respect to FIGS.
10A through 12B have been described primarily with respect
to updaters. However mapper instances may also be subjectto
division into sub-instances upon detecting overloading of an
instance.

FIG. 13 1llustrates a method 1300 for dealing with over-
loading 1n a different manner. In some applications, 1t may be
better to process events 1n a less accurate or less effective
manner rather than to fail to process some events altogether.
Accordingly, a method 1300 may include evaluating 1302
loading of an 1instance, which may be a mapper or an updater
instance, such as according to methods described herein-
above for detecting overloading of an instance. IT an overload
condition 1s found 1304 not to exist, than events may be
processed 1306 according to an original function, whether a
mapping or an update function. Events may also be published
1308 to an original output stream as defined by an original
publication function.

If an overload condition 1s found 1304 to exist, then the
method 1300 may include processing 1310 a portion of events
for the target mnstance according to a degraded function and
publishing 1312 events from the degraded function to the
same output stream of the target instance. The method 1300
may additionally include processing 1314 a portion of events
for the target instance according to an original function and
publishing 1316 events to the output stream of the target
instance. In some embodiments, the degraded function may
publish events to zero or more different output streams than
the original function, depending on the preferences of a devel-
oper.

The portion of events 1n the mnput stream or streams of a
target instance that are processed according to the degraded
and original functions may be defined by a developer and may
be defined according to a function of loading of the target
instance. The degraded function typically requires less time
to complete and may additionally require fewer computing
resources such as memory and network access. In some
embodiments, the degraded function may simply be a bypass
that recerves events from an input stream and publishes them
to an output stream. In either case, the events processed using,
the degraded function are not lost and further processing on
the output stream of the target instance will include the 1ntlu-
ence of events processed using both types of functions.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments, the original function may require
network access that requires time to complete whereas this
access 1s omitted 1n the degraded function. For example, an
event embodied as a tweet may include a hyperlink that
should be accessed to determine the subject matter or con-
cepts associated with the tweet. In contrast a degraded func-
tion may evaluate only the text of the tweet with respect to a
taxonomy to determine one or more associated concepts. The
original and degraded functions may both be defined by a
class definition for a target instance and functionality of the
VM 610 may determine which function to imnvoke, and how to
divide events between the two functions, according to loading
of threads 1n the VM 610. In some embodiments, multiple
versions of a degraded function may be defined and invoked
according to loading.

In some embodiments, the degraded function may be
defined recursively. For example, an overloaded instance with
original function f may have a degraded function g that also
overloads. In this case, the events to g faced with imminent
discard may be configured to be routed to a degraded stream
s' that 1s subscribed by a degraded-function h for g. In this
circumstance, the event 1s still protected from discard and
processed by h. Additional levels of degraded functions may
also be defined for a function of 1 of an instance.

Various methods to deal with overloading are disclosed
herein, 1n addition to use of a degraded function to reduce
overloading of an instance. In some embodiments, an
upstream 1instance may be slowed down in order to prevent
overloading of a downstream instance. In such an approach,
events may be lost due to slowing of the upstream 1nstance. In
other embodiments, events are buflered to prevent loss.
Which mstances are such that dropping events 1s preferred to
overloading a downstream event may be specified by a devel-
oper or determined by the VM 610. For example, a developer
may specily a priority for an instance such that an upstream
instance ol lower priority i1s required to slow and fail to
process events 1 order to avoid overloading the higher prior-
ity downstream instance.

FIGS. 14A and 14B illustrates methods 1400a, 14005 for
reassigning instances ol updaters or mappers among nodes
and threads of an environment 600 1n order to avoid overload-
ing or for other purposes, such as dealing with a failed node.
Referring to FIG. 14A, a method 1400a may include evalu-
ating 1402 thread loading. Thread loading may be reported by
the threads to the VM 610 and indicate a status of the thread
queues of each thread. Alternatively, some other module or
function may evaluate the thread queues. Evaluating 1402
thread loading may include evaluating which thread 1s
heavily loaded and which threads are lightly loaded.

The method 14004 may further include evaluating 1404
node loads. Evaluating 1404 node loads may include calcu-
lating an aggregate load for a node according to a sum or other
combination of the loading of the threads of that node. These
aggregate loads may then be compared to determine the rela-
tive loading of various nodes 1n an environment 600. Other
methods known 1in the art to determine loading of a computing
system at the system or application level without information
regarding the internal state of the VMs 610 of the nodes may
also be used to determine node loading.

If an overload condition 1s not found 1406 to exist for any
nodes or threads, then event processing of events 1408 may
continue with a current assignments of mstances to threads
and nodes, such as, as defined according to a global hash
function 604 and a hash function of the VM conductor 612. If
an overload condition 1s found 1406 to exist, then one or more
instances may be selected 1410 for transter to another thread
in the case of a thread 1s found 1406 to be overloaded or to

US 9,098,328 B2

17

another node 1n the case that a node 1s found 1406 to be
overloaded. In some embodiments, instances selected to be
transierred 140 may be those that are not currently hotspots,
as defined and discussed hereinabove. The one or more
instances selected 1410 for transfer may be the most lightly
loaded, 1n terms of input events, for a thread or node.

If a node 1s found 1412 to be overloaded such that a node
transier 1s needed, then the selected instance may be trans-
terred 1414 to the new node. A global hash function may also
be modified 1416 to map the selected instance to a new node.
In some embodiments, the global hash function may be modi-
fied 1416 prior to transter 1414. The new node may preferably
be a node determined to be less loaded than the former node
for the selected nstance. This may include transferring an
instance object or merely attributes sufficient to define the
instance on the new node inasmuch as each node may have
access to all updater and mapper class definitions.

In the case of a node transter, the VM hash function of the
new node may be modified 1418 to map events to the selected
instance and, 1n particular, to map events for the target
instance to at least one thread, such as to a primary thread and
secondary thread as discussed hereinabove. In the case where
an 1nstance 1s reassigned to a new thread, then the VM hash
function may be modified 1418 to map events for the selected
instance to the new thread, new primary thread, or new pair of
primary and secondary threads. As for the node, the new
thread for the selected instance may preferably be less heavily
loaded than the former thread that was processing the selected
instance.

Referring to FIG. 14B, after a selected instance has been
assigned to one or both of anew node and a new thread, events
for the selected instance may still be present 1n the thread
queue of the former thread that was processing events accord-
ing to the selected mstance. Accordingly, the method 140056
may be executed for a period following reassignment. For
example, the size of the queue for the former thread from the
selected instance may be recorded at the time of reassign-
ment. The method 14005 may then be performed for anumber
of events equal to the recorded size.

The method 14005 may include retrieving 1420 an event
from the thread queue for the former thread and evaluating
1422 whether a target instance for the event has been trans-
ferred to a new thread or node. If so, then the event may be
transierred 1424 to one or both of a new thread and new node
for the target instance. This may include returning the eventto
one of the global conductor 602 or VM conductor 612 for
reassignment to the queue of the new thread for the target
instance. I the target instance for the event 1s not found 1422
to have been transierred, the event may be processed 1426 in
the former thread.

The method 14B avoids the need to evaluate all of the
events 1 a queue for the former thread at the expense of
ordering of processing of events in the new thread. However,
in many applications this 1s acceptable. In some applications
where order 1s important, processing ol events for the reas-
signed 1nstance may be delayed until all events have been
transierred from the queue for the former thread.

FIG. 15 illustrates a memory space 1500 that may be
accessed by threads of a VM 610. The memory space may
include an instance store 1502 that stores instantiations of
mapper and updater classes. The instance store 1502 may
additionally store the class definitions for mapper and updater
classes as well.

The memory space 1500 may also include a slate cache
1504 that stores copies of slates updated by updater instances
associated with the VM 610. As already noted, the slate cache
1504 may store copies of slates for which persistent copies are

10

15

20

25

30

35

40

45

50

55

60

65

18

stored 1n a persistent slate store 626. The slate cache 1504
may 1nclude two types of slates, slate object cache 1506 and
serialized slate cache 1508. Each of these types of slates may
include different forms of the same slates. A slate object cache
1506 may include objects that include more data than the raw
slate data. For example, a slate object may be a Java object
that includes attributes necessary to define such an object. In
contrast, a serialized slate may contain raw slate data that 1s
not readily accessed 1n an object-oriented application. How-
ever, the serialized slates may be suitable for transmission to
a slate store 626 for storage or for transmission over a net-
work.

Referring to FIG. 16, amethod 1600 may be used to reduce
processing time required to obtain slate objects for processing
within the threads of a VM 610. The method 1600 may
include recerving 1602 an event targeted to an updater
istance. The slate cache 1504 may be evaluated 1604 to
determine whether a slate object corresponding to the slate of
the updater 1nstance 1s stored 1n the cache. If the correspond-
ing slate object 1s not found 1604 to be 1n the slate cache, then
the slate may be retrieved 1606 from one of the serialized slate
cache 1508 or from a persistent slate store 626. The slate may
then be deserialized 1608, which may include creating slate
object corresponding to the serialized slate. The created slate
object may be stored 1n the slate object cache 1506 or simply
returned to the updater instance for performing an update
method. If a slate object corresponding to the slate 1s found
1604 to be 1n the slate object cache 1506, then the slate object
may be retrieved 1610 from the slate object cache 1506.

In either case, an update function 1s performed 1612 by the
updater instance on the slate object according to a received
event and the updated slate object 1s stored 1614 1n the slate
object cache 1506. The senalized slate 1n the serialized slate
cache 1508 may be tlagged 1616 as stale or otherwise invalid.
In some embodiments, the updated slate object may be
flagged as dirty or otherwise in need of flushing to the seral-
1zed slate cache 1508 and/or persistent slate store 626.

FIG. 17 1llustrates a method 1700 for retrieving a slate 1n
embodiments storing slates 1n a slate cache 1504 including
slate objects 1506 and senialized slates 1508. The method
1700 may be executed 1n a specialized thread or a thread that
1s not otherwise occupied with processing events in order to
avold slowing down threads that are hotspots for a particular
target instances. The method 1700 may include receiving
1702 a request for a serialized slate. The request may come
from any source. The slates accumulate information that may
be useful or interesting. In particular, slate data may be avail-
able for viewing on a website. Accordingly, the request for a
slate may be recerved 1n response to clicking a link or a
scheduled update of data presented on a website or other
soltware module for presenting slate information.

Themethod 1700 may include evaluating 1704 whether the
serialized slate 1n the slate cache 1504 1s stale or otherwise not
current. This may include evaluating whether a slate object
corresponding to the requested slate 1s flagged as dirty. It so,
the slate object corresponding to the requested slate may be
retrieved 1706 and serialized 1708 or otherwise converted to
a serialized representation of the slate. In either case, a seri-
alized slate 1s returned 1710 to a calling function or module,
such as over a network.

FIG. 18 1llustrates an environment 1800 for responding to
HTTP requests for slate data. The environment 1800 may
include a proxy server 1802. The proxy server 1802 may be
embodied as any proxy server known 1n the art for receiving
HTTP requests from a browser, forwarding these requests to
a web server, receiving a response from the web server, and
forwarding the response to a device that originated the HT'TP

US 9,098,328 B2

19

request. In some embodiments, the proxy server 1802 may be
caching proxy server. The proxy server 1802 may be hosted
by a worker node or some other device in data commumnication
with the worker nodes implementing a map-update applica-
tion as discussed herein.

The proxy server 1802 may be in data communication with
one or more worker nodes 1804a-1804c¢ at least a portion of
which host HIT'TP server 1806a-1806¢. As already noted,
worker nodes 1804a-1804¢ may include virtual machines
(VM) 1808a-1808¢ operating as described herein above to
process event streams 1n a multithreaded manner as dis-
cussed. As also already noted, each VM 1808a-1808¢ may
include or be associated with a slate cache 1810a-1810¢. The
slate caches 1810 may cache copy of slates and maintain
consistency with a slate store 1812.

The hosting of an HTTP server 18064-1806c may advan-
tageously enable request for slate from slate caches 1810a-
1810¢, which reduces time required to synchronize the slate
caches 1810a-1820¢ with the persistent slate store 1812. In
addition, the slate caches 1810a-1810¢ may be maintained 1n
volatile memory with a faster access time as compared to the
persistent slate store 1812.

FI1G. 19 illustrates a method 1900 for responding to HT'TP
requests for slate data. The method 1900 may include receiv-
ing 1902 arequest for slate data. The request may be recerved
by the proxy server 1802. The proxy server 1802 may assign
1904 the request to one of the nodes 18044a-1804¢, such as
according to a load balancing routine.

Upon receiving the request, the assigned node 1804a-
1804¢ may evaluate 1906 the request, and, 1n particular,
whether the slate data identified in the request 1s stored 1n its
slate cache 1810a-1810c¢. The request may 1dentify the slate
according to a slate key of the slate. I1 the requested slate 1s
found 1906 to not be 1n the slate cache for the assigned node,
the method 1900 may 1include identitying 1908 a node 1804 a-
1804¢ corresponding to the slate, 1.e., that has a copy of the
slate 1n 1ts slate cache 1810a-1810¢. This may include que-
rying a hash function stored in the assigned node, querying,
the other nodes 18104a-1810c¢, or some other means of discov-
ery. The slate1dentified 1n the HT'TP request may be requested
1910 by the assigned node from the 1dentified node storing the
slate 1n 1ts slate cache 18104-18105 and the slate may be
received 1912 1n response to the 1dentified node transmitting
the slate to the assigned node.

If the requested slate 1s found 1906 in the slate cache
1810a-1810¢ of the assigned node, the requested slate may be
retrieved 1914 from the slate cache 1810a-181056 thereof.
Retrieving the requested slate from the slate cache 1810a-
18105 may include performing the method 1700 discussed
above.

In e1ther case, the requested slate may be formatted 1916 or
otherwise encapsulated into an HTTP response and the HT'TP
response may be returned 1918 to a requesting device, which
may include routing the HI'TP response through the proxy
server 1802.

FI1G. 20 1llustrates an alternative method 2000 for respond-
ing to HI'TP requests in an environment 1800. The method
2000 may include receiving 2002 a request for slate data. As
for the method 1800 the request may reference, or be other-
wise mapped, to a specific slate, such as by referencing a slate
key. The method 2000 may additionally include identifying
2004 the requested slate reference by the request. Receiving
2002 the request and 1dentitying 2004 the requested slate may
be performed by the proxy server 1802.

The method 2000 may include identifying 2006 a node
18044-1804¢ having the requested slate and assigning 2008
servicing of the request to the identified node. Identitying

10

15

20

25

30

35

40

45

50

55

60

65

20

2006 the correct node may include referencing a hash tunc-
tion, hash table, or other data, describing the contents of the
slate caches 18104-1810c¢ of the various nodes 18044-1804c.

Upon recerving the request, the assigned node may retrieve
2010 the slate 2010 from the slate cache 1810a-1810¢ for the
assigned node. If 1n some circumstance, the slate 1s not
located 1n the slate cache, retrieving 2010 the slate may
include requesting and received the slate from the persistent
slate store 1812. The slate data, or arequested portion thereof,
may then be formatted 2012 nto an HTTP response and
returned 2014 to a requesting device, which may include
routing the HT'TP response through the proxy server 1802.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-
istics. The described embodiments are to be considered 1n all
respects only as 1llustrative, and not restrictive. The scope of
the mvention 1s, therefore, mdicated by the appended claims,
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. A method for performing event processing comprising;:

processing an event stream by an application executed by a

computer system, the application comprising a plurality
of event handlers, each event handler of the plurality of
event handlers having an event key uniquely associated
thereto and a slate object uniquely associated thereto,
cach event handler performing an event handling func-
tion with respect to events of the event stream having the
event key of the each event handler, the event handling
function including both of (a) updating a state of the slate
object according to processing of each event of the event
stream having the event key of the each event handler
such that the slate object accumulates results of process-
ing multiple events from the event stream having the
event key of the each event handler and (b) publishing
outputs to the event stream, the outputs indicating the
state of the slate object;

processing, by the computer system, using a particular

event handler of the plurality of event handlers, a first
portion of particular events of the event stream having
the event key of the particular event handler and updat-
ing the state of the slate object of the particular event
handler according to the first portion of the particular
cvents;

detecting an overload condition for the particular event

handler;

in response to detecting the overload condition, instantiat-

ing a plurality of partial handlers corresponding to the
particular event handler;

distributing a second portion of the particular events from

the event stream having the event key of the particular
event handler to the plurality of partial handlers;

processing the second portion of the particular events to (a)

update partial slate objects for each partial handler
according to the event handling function such that the
partial state object for each partial handler accumulates
results of processing multiple events having the event
key of the particular event handler and (b) generate
partial output streams indicating states of the partial
slate objects of each partial handler;

aggregating the partial output streams of the plurality of

partial handlers; and

according to the aggregation, updating the state of the slate

object of the particular event handler and publishing one
or more aggregate output events to an output stream of
the particular event handler, the one or more aggregate

US 9,098,328 B2

21

output events indicating the state of the slate object of
the particular event handler.

2. The method of claim 1, further comprising;

detecting an excess capacity corresponding to the particu-

lar event handler; and

in response to detecting the excess capacity, eliminating at

least one partial handler of the plurality of partial han-
dlers.

3. The method of claim 2, wherein the at least one partial
handler has at least one partial state associated therewith; and

wherein the eliminating the at least one partial handler

comprises reporting the state of the partial slate object of
the at least one partial handler to at least one partial
output stream corresponding to the at least one partial
handler of the plurality of partial handlers.

4. The method of claim 1, further comprising:

detecting an overload condition of the plurality of partial

handlers; and

in response to detecting the overload condition, adding at

least one partial handler to the plurality of partial han-
dlers.

5. The method of claim 1, wherein the event stream
includes a plurality of events each including an attribute and
value patir.

6. A system for performing event processing comprising
one or more processors and one or more memory devices
operably coupled to the one or more processors, the one or
more memory devices storing executable and operational
code effective to cause the one or more processors to:

process an event stream by an application executed by the

system, the application comprising a plurality of event
handlers, each event handler of the plurality of event
handlers having an event key uniquely associated
thereto and a slate object uniquely associated thereto,
cach event handler configured to process an event han-
dling function with respect to events of the event stream
having the event key of the each event handler, the event
handling function configured to both of (a) update a state
of the slate object according to processing of each event

ol the event stream having the event key of the each event

handler such that the slate object accumulates results of

processing multiple events from the event stream having
the event key of the each event handler and (b) publish
outputs to the event stream, the outputs indicating the
state of the slate object;

process using a particular event handler of the plurality of
event handlers a first portion of particular events of the
event stream having the event key of the particular event
handler and updating the state of the slate object of the
particular event handler according to the first portion of
the particular events;

detect an overload condition for the particular event han-
dler:

in response to detecting the overload condition, instantiate
a plurality of partial handlers corresponding to the par-
ticular event handler;
distribute a second portion of particular events from the
event stream having the event key of the particular event
handler to the plurality of partial handlers;

process the second portion of events 1n the plurality of
partial handlers to (a) update partial slate objects for
cach partial handler according to the event handling
function such that the partial state object for each partial
handler accumulates results of processing multiple
events having the event key of the particular event han-
dler and (b) generate partial output streams indicating
states of the partial slates of each partial handler;

10

15

20

25

30

35

40

45

50

55

60

65

22

aggregate the partial output streams of the plurality of

partial handlers; and

according to the aggregation, update the state of the slate

object of the particular event handler and publishing one
or more aggregate output events to an output stream of
the particular event handler, the aggregate output events
indicating the state of the slate object of the particular
event handler.

7. The system of claim 6, wherein the executable and
operational code are further effective to cause the one or more
Processors to;

detect an excess capacity corresponding to the particular

event handler; and

in response to detecting the excess capacity, eliminate at

least one partial handler of the plurality of partial han-
dlers.

8. The system of claim 7, wherein the at least one partial
handler has at least one partial state associated therewith; and

wherein the executable and operational code are further

elfective to cause the one or more processors to elimi-
nate the at least one partial handler by reporting the at
least one partial state to at least one partial output stream
corresponding to the at least one partial handler of the
plurality of partial handlers.

9. The system of claim 6, wherein the executable and
operational code are further effective to cause the one or more
processors to:

detect an overload condition of the plurality of partial event

handlers; and

in response to detecting the overload condition, add at least

one partial handler to the plurality of partial handlers.

10. The system of claim 6, wherein the event stream
includes a plurality of events each including an attribute and
value patr.

11. A computer program product for managing a transac-
tion, the computer program product being embodied 1n a
non-transitory computer readable storage medium and com-
prising computer mnstructions for:

processing an event stream by an application, the applica-

tion comprising a plurality of event handlers, each event
handler of the plurality of event handlers having an event
key uniquely associated thereto and a slate object
uniquely associated thereto, each event handler config-
ured to process an event handling function with respect
to events of the event stream having the event key of the

cach event handler, the event handling function config-
ured to both of (a) update a state of the slate object
according to processing of each event ol the event stream
having the event key of the each event handler such that
the slate object accumulates results of processing mul-
tiple events from the event stream having the event key
of the each event handler and (b) publish outputs to the
event stream, the outputs indicating the state of the slate
object;

processing using a particular event handler of the plurality
of event handlers a first portion of particular events of the
event stream having the event key of the particular event
handler and updating the state of the slate object of the
particular event handler according to the first portion of
the particular events;

detecting an overload condition for the particular event
handler;

in response to detecting the overload condition, instantiat-
ing a plurality of partial handlers corresponding to the
particular event handler;

US 9,098,328 B2

23 24
distributing a second portion of particular events from the detecting an excess capacity corresponding to the particu-
event stream having the event key of the particular event lar event handler; and
handler to the plurality of partial handlers; in response to detecting the excess capacity, eliminating at
processing the second portion of events in the plurality of least one partial handler ot the plurality ot partial han-
partial handlers to (a) update partial slate objects for ° dlers.
each partial handler according to the event handling 13. The computer program product of claim 12, wherein

the at least one partial handler has at least one partial state

associated therewith; and
wherein the eliminating the at least one partial handler

function such that the partial state object for each partial
handler accumulates results of processing multiple
events having the event key of the particular event han-

dler and (b) generate partial output streams indicating 10 COmMprises rep:orting the at least one partia}l state to at

states of the partial slates of each partial handler: least one part}al output stream correspondmg tt? the at

agoregating the partial output streams of the plurality of East one partial handler of the plurality of partial han-
ers.

partial handlers; and

according to the aggregation, updating the state of the slate
object of the particular event handler and publishing one
or more aggregate output events to an output stream of
the particular event handler, the aggregate output events
indicating the state of the slate object of the particular

14. The computer program product of claim 11, further
15 comprising computer instructions for:
detecting an overload condition of the plurality of partial
event handlers; and
in response to detecting the overload condition, adding at
ovent handler least one partial handler to the plurality of partial han-

12. The computer program product of claim 11, further dlers.
comprising computer nstructions for: £ % % ok ok

	Front Page
	Drawings
	Specification
	Claims

