US009098298B2
a2y United States Patent (10) Patent No.: US 9,098,298 B2
Ditu et al. 45) Date of Patent: Aug. 4, 2015
(54) OPTIMIZATION METHOD FOR COMPILER, 2003/0237080 A1* 12/2003 Thompson et al. 717/161
OPTIMIZER FOR A COMPILER AND %883// poaeL A) 1%888 IéudwigtetlaL ++++++++++++++++ %ﬁ o4
1 WCNL CL AL,ooiviiiiiiiinns
(Sj’I(‘)(]))IEAGE MEDIUM STORING OPTIMIZING 2009/0064112 Al1* 3/2009 Inagakietal. ... 717/140
(75) Inventors: Bogdan E. Ditu, Ploiest (RO); Dragos OLIHER PUBLICATIONS
Badea, Bucharest (RO) Nickerson, B. R. “Graph Coloring Register Allocation for Processors
(73) Assignee: Freescale Semiconductor, Inc., Austin, with Multi-Register Qpemﬂds"”’ In: Thfa ACM _SPGPLAN 1_990 con-
TX (US) ference on programming language design and implementation, New
York: ACM, 1990, pp. 40-52 (Nickerson, B.).
(*) Notice: Subject to any disclaimer, the term of this Kong, T. et al, “Precise Register Allocation for Irregular Architec-
patent is extended or adjusted under 35 tures”, In: the 31st annual ACM/IEEE international symposium on
U.S.C. 154(b) by 164 days. Microarchitecture, Los Alamitos: IEEE Computer Society Press, pp.
297-307 (Kong, T. et al).
(21) Appl. No.: 13/816,595 (Continued)
(22) PCT Filed: Aug. 26,2010
(86) PCT No.. PCT/IB2010/053851 Primary Examiner — Isaac T Tecklu
§ 371 (c)(1),
(2), (4) Date: Feb. 12, 2013 (57) ABSTRACT
(87) PCT Pub. No.: W02012/025792 The mvention pertains to an optimization method for a com-
| piler, comprising providing a model of inter-operand con-
PCT Pub. Date: Mar. 1, 2012 straints of physical registers of a target-platiorm of a compi-
(65) Prior Publication Data lation; and a) p‘rowd-mg an 111‘Fermedlate repre.sentatlor% of a
source code using virtual registers; b) grouping the virtual
US 2013/0139135 Al May 30, 2013 registers of the intermediate representation based on the
model of inter-operand constraints into two or more groups,
(51) Int. CL cach group comprising at least one virtual register; ¢) 1 for at
GO6L /45 (2006.01) least one group at least one interference of virtual registers
(52) U.S. Cl. within the group occurs, amending the intermediate represen-
C_PC . GOOF ‘_9/ 41 (_2013'01)5 GO6F 8/441 (2013.01) tation to resolve at least one interference and jumping to step
(58) Field of Classification Search b); otherwise d) providing a representation of a group inter-
None o | ference graph of interferences between the groups; and e)
See application file for complete search history. allocating virtual registers to physical registers using a colot-
_ ing scheme on the representation of the group interference
(56) References Cited graph. The invention also refers to a corresponding optimizer

5,530,866 A *
8,434,074 B2 *
8,713,547 B2 *

U.S. PATENT DOCUMENTS

6/1996 Koblenzetal. 717/1
4/2013 Janczaketal. 717/1
4/2014 Gschwind et al. 717/1

44
40
51

65

for a compiler and a computer-readable storage medium stor-
ing optimizing code.

20 Claims, 3 Drawing Sheets

o0

US 9,098,298 B2
Page 2

(56) References Cited Hack Sebastian et al, “Towards Register Allocation for Programs in
SSA-form”, In: citeseerx.ist.psu.edu, 2005, pp. 1-32.

OTHER PUBLICATIONS
International Search Report and Written Opinion correlating to PCT/

Runeson Johan et al: “Retargetable Graph-Coloring Register Alloca- [IB2010/053851 dated Apr. 28, 2011.
tion for Irregular Architectures”, Computer and Chemical Engineer-

ing, 2003, pp. 1-15. * cited by examiner

U.S. Patent Aug. 4, 2015 Sheet 1 of 3 US 9,098,298 B2

U.S. Patent Aug. 4, 2015 Sheet 2 of 3 US 9,098,298 B2

11) vR1.1 LOAD local var1
12) vR2.2 ADD vR1.1,

ocal var?

3) vR3.3 LOAD global var
4) vR4.4 ADD vR1.1, vR3.3
) vRO.5MUL vRZ.2, vR4.4
) vR6.6 ADD vRZ2.2, vR5.5
)

local var1 STORE vR6.6

group1:vR1.1/vR2.2/vR4.4/vR5.5/
vRG.6
group?: vR3.3

e

e T e e T e

110

LOAD / STORE / MOVE — no constraints
ADD - dest op same as source op1
MUL — dest op is the multiplication
register corresponding to the bank of
source op1 (some arbitrary constraint)

ADD — (RO, RO), (R1, R1), (R2, R2),
(R3, R3) ... (R15. R15)
MUL — (R8, R0), (R8, R1), (R9, R2),

(R9, R3), (R10, R4), (R10, R5), (R11,
R6), (R11, R7) 150 %

125

U.S. Patent Aug. 4, 2015

(11) vR1.1 LOAD local var1
(11") vR7.7 MOVE vR1.1

(12) vR2.2 ADD vR1.1, local var?2
3) vR3.3 LOAD global var

4) vR4.4 ADD vR7.7, vR3.3

5) vR5.5 MUL vR2.2,vR4.4

o) vRG6.6 ADD vR2.2, vRS8.5

7) local varl1 STORE vR6.6

(
(
(
(
(

coloring group1
vR1.1 —vR2.2 — vR6.6 => RO

vR5.5 => R8

coloring group3
vR7.7 —vR4 .4 => R1

coloring group2
vR3.3 => R2Z

210

Sheet 3 of 3

vR1.1 -11-12
VR2.2-12-16
vR3.3-13-14
vR4.4 - 14 - 15
vR5.5 - 1516
vR6.6 - 16 —17

vR7.7-11"-14

170

N

group?
200

vR7.7

polree] [res] [

US 9,098,298 B2

group1: vR1.1 / vR2.2/vR5.5/
vR6.6

group2: vR3.3
group3: vR7.7/vR4.4

N 180

-A

190

US 9,098,298 B2

1

OPTIMIZATION METHOD FOR COMPILER,
OPTIMIZER FOR A COMPILER AND
STORAGE MEDIUM STORING OPTIMIZING
CODE

FIELD OF THE INVENTION

This 1nvention relates to an optimization method for a
compiler, an optimizer for a compiler and a storage medium
storing optimizing code.

BACKGROUND OF THE INVENTION

A compiler 1s a computer program for translating a source
code written 1n a human-understandable programming lan-
guage as e.g. C; C++, FORTRAN, etc. into machine-readable
code. In most cases, a compiler provides a complete transla-
tion of a program in source code, which then may be run on a

computer system. Different computer systems, 1n particular
computer systems with different types of CPU (central pro-
cessing unit), usually have different sets of machine-readable
instructions and data structures. As an example, Intel x86-
based computer systems at machine level tend to store values
larger than 255 1n a different bytewise order than e.g. IBM
Power-based computer systems. Thus, for specific machines
a compiler has to provide a specific machine-readable code.
In addition, the operating system running on a computer
system may 1nfluence the compiled code intended to run on a
computer as well. A compiler easily reconfigurable to create
a compiler for a new target-architecture respectively a com-
piler able to produce code for different computer systems
respectively operating systems may be called retargetable. A
retargetable compiler may be used to compile on one com-
puter system a program which 1s supposed to run on a system
with different architecture, which 1s called cross-compiling.
A well-known retargetable compiler respectively compiler
collection 1s the GCC (Gnu Compiler Collection) developed
by the GNU project.

Modern compilers often provide optimization features,
which may improve a program’s performance significantly.
Such optimizations can be performed on different levels and
in different ways. One optimization approach deals with try-
ing to optimize the use of registers during the runtime of a
program. Registers may be provided independently of normal
memory, €.2. random access memory (RAM), e.g. on-chip
with a CPU or a memory management unit (MMU). Registers
are usually much faster to access for reading or writing data
than RAM, so that 1t 1s preferable to use registers for data
transier and manipulation as much as possible. However, the
differences 1n registers of different architectures make 1t dii-
ficult to effectively adopt generalized optimization strategies
for different target-platiforms.

Examples for register allocation methods for compiler
optimization are described 1n “Graph-Coloring Register Allo-
cation for Processors with Multi-Register Operands” by
Brian Nickerson 1n Proceedings of the ACM SIGPLAN’90

Conference on Programming Language Design and Imple-
mentation, White Plains, N.Y., Jun. 20-22, 1990 and 1n *“‘Pre-

cise Register Allocation for Irregular Architectures™ by Timo-
thy Kong and Kent D. Wllken, presented at the 31%

International Microarchitecture Conference, December
1998.

SUMMARY OF THE INVENTION

The present invention provides an optimization method for
a compiler, an optimizer for a compiler and a computer-
readable storage medium storing an optimizing code.

10

15

20

25

30

35

40

45

50

55

60

65

2

Specific embodiments of the invention are set forth in the
dependent claims.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinaftter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to
the drawings. In the drawings, like reference numbers are
used to identify like or functionally similar elements. Ele-
ments in the figures are 1llustrated for simplicity and clanty.

FIG. 1 schematically shows the overall setup of retar-
getable compiler.

FIG. 2 shows a compiler scheme for register allocation 1n
more detail.

FIG. 3 shows an example of technique for register alloca-
tion beginning with the allocation of live ranges.

FIG. 4 shows the continuation of the register allocation
started 1n FIG. 3.

DETAILED DESCRIPTION OF THE PR.
EMBODIMENTS

(L]
=]

ERRED

Because the illustrated embodiments of the present inven-
tion may for the most part be implemented using computer
systems and software known to those skilled in the art, details
will not be explained 1n any greater extent than that consid-
ered necessary as illustrated above, for the understanding and
appreciation of the underlying concepts of the present inven-
tion and in order not to obfuscate or distract from the teach-
ings of the present invention.

In the context of this specification a source code may be the
source code representing a complete program, or a part of a
program, €.g. a procedure, a function or a basic block. A basic
block may be considered to represent a program element with
one entry and one exit. A program or part of aprogram may be
represented 1n source code, machine-readable code or in a
so-called intermediate representation. A high-level interme-
diate representation (HLIR) may be provided by a front-end
of a compiler. A HLIR may be close to the original source
code. In particular, 1t may be considered that a HLIR repre-
sents an abstract form of code without taking into account a
specific mstruction set of a target computer system. It may be
considered that a HLLIR may describe a code representation
for any target-platform. For example, a precompiler may
provide a high-level intermediate representation. A low-level
intermediate representation (LLIR) may be considered to be
close to machine-readable code. In particular, a LLIR may be
based on respectively dertved from a HLIR. A LLIR may take
into account a target-platform specific set of mstructions. A
LLIR may be considered to be target-platform specific. In a
LLIR, variables may be assigned to virtual registers. It 1s
feasible to provide a LLIR 1n static single assignment form
(SSA), 1n which every variable, which may include virtual
registers, 1s assigned respectively defined exactly once. If a
variable has more than one assignment respectively definition
in the original representation, €.g. the source code, 1t may be
considered to provide different versions for each assignment
of a vaniable 1n SSA form, e.g. by providing differently num-
bered versions.

A target-platform may be a computer system with a spe-
cific hardware type, in particular a specific type of CPU
and/or MMU. It may be considered that a target-platform
refers to a combination of specific hardware and a specific
operating system. For a compilation or a compilation step, a

US 9,098,298 B2

3

target-platform may be defined or preset, e.g. by a corre-
sponding command or switch of a compiler call.

It may be contemplated that a virtual register represents
one or more variables of a source code 1n a HLIR and/or a
LLIR. A physical register may be a physical register of a >
specific hardware, 1n particular a specific target-platform. It
may be considered for the purpose of compilation, in particu-
lar for cross-compilation, that a physical register of a target-
platform 1s not physically available during compilation, but 1s
taken 1nto account for the purpose of compilation. Thus, it
may be possible to compile a source code on a system with n
available physical registers for a system having a different
number k of physical registers. The physical registers of a
target-platform may have characteristics and/or constraints
different from a platform the compilation 1s performed on.
The term register may generally refer to a virtual register
and/or a physical register. In a given representation of code, a
virtual register may be represented by a vanable.

It may be considered that there are defined target-platform ¢
specific operations or 1nstructions for a register or more than
one register. For example, there may be defined instructions
to load a value from a certain memory address 1nto a register,
or to add together certain register values and to store the result
at a certain address or register. The registers or memory 25
addresses referred to 1n an instruction may be considered to be
operands. A destination operand may be considered to be the
register or address the result of an operation 1s written to. A
source operand may be a register or address providing a value
or address for an operation to work on. An 1nstruction may 30
refer to more than one destination operand and/or more than
one source operand. For a given instruction, there may be
inter-operand constraints. An inter-operand constraint may
limit the type of operands to be used in an instruction to
certain registers and/or certain data structures. For example, 35
an 1struction ADD may have the constraint that the destina-
tion operand 1s the same as the first source operand. In that
case, an ADD instruction would read a first source operand,
may add one or more operands and write back the result into
the first operand, e.g. a register. A LOAD instruction e.g. may 40
simply read a value stored 1n a source operand and store 1t 1n
the destination operand. It 1s feasible that such a LOAD
instructions has no inter-operand constraint, thus any kind of
register and/or address may be used as source operand and
destination operand. There may be different inter-operand 45
constraints for different instructions and/or registers.

A varniable or register, in particular a virtual register, may be
considered to be live if 1t holds a value which may be used
later 1in the program or program part. For live range analysis,

a program may be represented by source code or any inter- 50
mediate representation. A live range may describe a range of
instructions during which a register or variable 1s live. Two
variables or registers which are live simultaneously may be
considered to imterfere. Two or more registers or variables
interfering may not use the same register resources. In par- 55
ticular, they 1t may be considered that interfering registers or
variables may not be allocated to the same physical register.
Spilling one or more registers to memory may refer to allo-
cating or assigning one or more registers, in particular virtual
registers, to memory instead of to a physical register. 60

An 1nterference graph may comprise nodes representing
registers or variables, or groups of registers or variables.
Connections respectively edges between nodes may indicate
interference between nodes. An interference graph pertaining
to groups may be referred to as group interference graph. An 65
interference graph, 1ts nodes and connections may be repre-
sented 1n any suitable way during optimization.

10

15

4

A coloring scheme may refer to a method to allocate virtual
registers to physical registers. According to a coloring
scheme, there may be allocated a given number of colors to
nodes of an interference graph or a group interference graph.
If the colors may be allocated to the nodes such that neigh-
boring nodes have different colors, a graph may be considered
to be colorable. In particular, a k-coloring scheme may be
utilized 1 which the number of colors may be determined by
the total number of registers available for the target-platform.
The coloring scheme may be represented 1n any suitable way
during optimization. In particular, an optimizer may use an
equivalent instead of actually using colors on nodes to per-
form a coloring scheme. A colorable graph shows a solution
to the register allocation problem in which all nodes with the
same color share the same physical register. A coloring
scheme may be a multi-coloring scheme using multi-color. A
multi-color may refer to a group of virtual registers being
allocated more than one color. Fach color may be allocated to
one or more virtual registers of the group. It may be contem-
plated that each color of a coloring scheme represents one
physical register of the target-platiorm.

In the following there i1s generally described an optimiza-
tion method for a compiler. There may be provided amodel of
inter-operand constraints of physical registers of a target-
platform of a compilation. The model may be based on an
ADL (Architecture Design Language) representation of the
target-platform respectively the inter-operand constraints of
the target-platform. It 1s feasible to provide an intermediate
representation of a source code using virtual registers. The
intermediate representation may be a LLIR using virtual reg-
isters. The LLIR may have SSA form or any other form
providing suitable low-level instructions on virtual registers.
Grouping of the virtual registers of the intermediate represen-
tation 1nto two or more groups based on the model of inter-
operand constraints may be performed. Each group may com-
prise at least one virtual register. If for at least one group at
least one interference of virtual registers within the group
occurs, the intermediate representation may be amended to
resolve at least one interference. In this case, a new grouping
of virtual registers based on the amended intermediate repre-
sentation may be provided as described above. If no interfer-
ence within a group occurs, a representation of a group inter-
ference graph of interferences between the groups may be
provided. A coloring scheme for allocating virtual registers to
physical registers based on the representation of the group
interference graph may be performed. A representation of a
group interference graphs may be provided by combiming the
interference information on the live ranges 1 each group. The
nodes of a group interference graph may be the groups.

It may be considered to detect live ranges of the virtual
registers ol the intermediate representation before grouping 1s
performed. It 1s feasible to check for interference based on
detected live ranges. Spilling to memory a part of one group
or one group 1f at least one interference between two or more
groups occurs after providing a representation of a group
interference graph may be performed. It may be checked
whether interference within a group and/or interference
between groups occurs.

Target-platform strategy information may be provided.
Target-platform strategy information may include mforma-
tion regarding register manipulation mstructions of the target
platform. It 1s feasible that target-platform strategy informa-
tion may include information on how to copy or move values
between registers. For example, target-platform strategy
information may include a MOVE 1nstruction as used by the
target-platform. Amending the intermediate representation
may be performed based on target-platform strategy informa-

US 9,098,298 B2

S

tion, e.g. by using information determinming a MOVE 1nstruc-
tion to include a corresponding command 1nto the intermedi-
ate representation to define a new virtual register to change
the live range of a given virtual register. It 1s feasible to
perform spilling to memory based on target-platiorm strategy
information. Target-specific strategies may provide informa-
tion regarding the coloring order to be used. The coloring
order may be based on the number of components, respec-
tively, registers 1n a group and/or on the number of inter-group
dependencies. The coloring order may be based on target-
specific aspects of the physical registers. Such specifics may
¢.g. determine which type of value may be held in register,
¢.g. an integer, real or double precision variable. The target-
plattorm strategy information may provide information
regarding a spilling strategy, 1.e. which group or groups
should be spilled and 1t they should be spilled partially or
totally. The spill target, 1.e. the memory range or memory
address of a group to be spilled partially or totally, may be
determined by target-platiorm strategy information.

The model of inter-operand constraints of physical regis-
ters may comprise an enumeration of combinations of physi-
cal registers allowed by the inter-operand constraints of the
target-platform.

Now referring to FIG. 1, there 1s schematically shown a
compiler scheme for a compiler with an optimizer for register
allocation. The compiler may be a retargetable compiler.

Reference numeral 10 refers to a HLIR of a source code
which may be provided by a front-end of a compiler, e.g. a
pre-compiler. A code generator 20 may translate the high
level intermediate representation into a low level intermediate
representation closer to machine code. The resulting LLIR 30
may assign virtual registers to variables. Based on the low
level intermediate representation 30, a SSA form generator
40 may provide a LLIR 50 with virtual register in SSA form.
The code generator 20 providing LLIR 30 and/or SSA form
generator 40 proving the LLIR 1n SSA form may be consid-
ered to be an intermediate representation component adapted
to provide and/or receive an intermediate representation of
the source code using virtual registers. A register allocator 60
may provide an allocated LLIR 70 with allocated physical
registers based on LLIR 50 in SS A form. Register allocator 60
may interact with or utilize a model of inter-operand con-
straints 63, to take into account inter-operands constraints of
the target-platform, which may be considered to be a model
component. The register allocator or optimizer 60 may be
considered to be an allocating component adapted to allocate
virtual registers to physical registers using a coloring scheme
on the representation of the group iterference graph. The
coloring scheme may be a multi-coloring scheme using
multi-color. A multi-color may refer to a group being allo-
cated more than one color. Each color may be allocated to one
or more virtual registers of the group. It may be contemplated
that each color represents one physical register of the target-
platiorm. The register allocator 60 may perform the alloca-
tion of virtual register to physical registers taking into account
on target-platiorm strategy information.

FIG. 2 shows a translation from the LLIR with virtual
registers in SSA form 30 to the allocated LLIR with allocated
physical registers 70 in more detail. In particular, based upon
the LLIR with virtual registers in SSA form 50, live ranges of
variables or virtual registers to be allocated may be detected
(S10) by a live range detection component. Live ranges may
be detected for a basic block of the program respectively
source code to be translated, or may be detected globally
and/or for one function or procedure. Based on the live
ranges, groups and classes of groups of virtual registers may
be constructed or defined 1n S20. For the definition of groups

10

15

20

25

30

35

40

45

50

55

60

65

6

and classes of groups (S20), a model of inter-operand con-
straints 63 of the target-platform may be utilized.

Based on the groups and/or group-classes, interferences
between live ranges may be detected. In particular, interter-
ences within a group, so-called intra-group interferences,
may be detected by an associated component adapted accord-
ingly (S30). In the case that at least one intra-group interfer-
ence 1n at least one of the groups 1s detected, the intermediate
representation, in this case LLIR 50, may be amended to
resolve the interference by a representation amending com-
ponent (S40). An interference within a group may e.g. be
fixed by spilling a virtual register and/or splitting the group
and/or adding fix-up code and/or providing a new instance for
a virtual register. For any fix of mtra-group interferences it
may be considered to branch back to detecting live ranges
(S10) based on the amended intermediate representation.
This step may be performed repeatedly on differing interme-
diate representations 1n one or more 1terations of the optimi-
zation method. The representation amending component may
be adapted to detect interference between live ranges respec-
tively virtual registers.

If no mtra-group interference occurred, 1t may be branched
into building a representation of a group 1nterference graph of
interferences between the groups (530). This may be per-
formed by a group interference graph component. After pro-
viding the groups interference graph, allocation of virtual
registers to physical registers may be performed based on the
group interference graph (S60) by an allocating component.
A k-coloring method may be used on the group interference
graph. If 1t 1s not possible to successiully color the group
interference graph, one or more live ranges, a group, part of a
group or corresponding virtual registers may be spilled
respectively assigned to memory. This step may be performed
repeatedly on differing groups 1n one or more iterations of the
optimization method. For coloring the group interference
graph, there may be provided a target-platform information
component 75 comprising target-platiorm specific strategy
information, which may be adapted to accommodate 1diosyn-
crasies of specific architectures respectively platiorms.

If live ranges, a virtual register or group or part thereof had
to be spilled to memory, 1t may be branched back to the step
of detecting live ranges to allocate (S10) and the intermediate
steps are performed again. If the coloring was successiul such
that no spill to memory was necessary, there may be provided
an allocated LLIR 70, 1n which virtual registers may be allo-
cated to physical registers of the target architecture or target-
platform.

An optimizer or register allocator 60 for a compiler may
comprise one or more of these components 1n any combina-
tion. The optimizer may be adapted to perform the optimizing,
method.

A component may be provided as a program, module,
plug-1n or as a routine of a program. It 1s feasible that units are
provided comprising one or more components. The compo-
nents respectively the optimizer may be included in a com-
piler program. The inter-operand model comprising informa-
tion regarding register constraints of a given target platform
and/or the target-platform information component may be
provided 1n the form of a plug-in. Thus, the method may
casily be adapted to different target platforms without having
to amend the overall allocation or optimizing method or the
corresponding code.

The model component may comprise templates for instruc-
tions of a target platform, respectively, a target definition
model. There may be provided models for more than one
target-platform. It 1s feasible that a suitable model 1s used for
a given target-platform. An nstruction template 1n a target

US 9,098,298 B2

7

definition model may have associated to i1t constraints
between 1ts operands. In an inter-operand constraints model,
constraints may be described as an enumeration of register
combinations allowable for a given instruction or operation.
A model may comprise all allowable combinations of regis-
ters for all instructions of a target-platform or a subset of
combinations respectively instructions. It may be envisioned
that no specific constraints are defined for individual combi-
nations of the enumeration.

Colors may be sorted according to group classes, respec-
tively, constraint levels of registers. If during the coloring
scheme, a node cannot recerve one of the colors, 1t may be
considered to partially or totally spill one of the groups. The
group unable to recerve the color or an interfering group may
be spilled. Partially spilling a group may comprise spilling
one or more virtual registers. Which group to spill partially or
totally may be determined based on target-platiorm strategy
information. In the case that during the coloring phase of the
group 1nterference graph no spilling has to be performed, the
graph may be considered to be fully colorable. In this case, no
variables have to be assigned to memory, as enough registers
are present to hold the variables respectively virtual registers.
Should spilling be performed, the method may return of the
step of detecting live ranges (S10), taking into consideration
the registers, respectively, groups spilled.

The target specific strategies may define ditferent alloca-
tion strategies or constraints, depending on a targeted archi-
tecture, respectively, platiorm. The model and/or the target-
specific strategy information respectively the corresponding
components may be seen as being configurable according to
a target-platform. The other components for register alloca-
tion may be seen as target-independent. This may provide a
clear separation between the background algorithm respon-
sible for optimizing register allocation and target-platiorm
dependent information.

FI1G. 3 schematically shows an example of register alloca-
tion. In block 110, an example of a LLIR 1s shown with virtual
registers in SSA form. Block 110 may provide a representa-
tion of the mstructions related to virtual registers used during,
a procedure or a basic block. The instructions may be listed 1n
an arrangement of numbered instructions 11 to I7. Virtual
registers vR1.1, vR2.2, vR3.3, vR4 .4, vR5.5 and vR6.6 may
be provided. Each numbered instruction may refer to at least
one virtual register used as an operand. In particular, a virtual
register may be used as source operand and/or destination
operand. Each virtual register may represent a variable
defined and used in the source code. An instruction which
may work on one or more operands 1s assigned to each virtual
register to provide a result which may be written into the
corresponding virtual register. Thus, e.g. the instruction
vR1.1 LOAD local_varl may represent an instruction to load
the value of a local variable local_varl into virtual register
vR1.1. Local variables local_varl and local_var2 may repre-
sent variables that may be defined locally, e.g. only for a
procedure or 1n a basic block. Global variable global_var may
represent a global variable, e.g. 1t may be defined for a whole
procedure or Tunction or for the whole program. Based on the
LLIR with virtual registers in SSA form of block 110, a live
range detection may be performed, which may result in a live
range allocation respectively live range description as shown
in block 120. Block 120 shows the ranges of numbered
instructions 1in which the virtual variables vR1.1 to vR6.6 are
live 1n respect to the intermediate code shown 1n block 110.
For example vR1.1 may be live from I1 to 14, whereas vR3.3
may be live from 13 to 14.

Block 125 below block 120 may define inter-operand con-
straints pertaining to physical registers of the target-platform.

[l

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Physical registers are indicated by R0, R1 . .. R15. At the top
of block 125, examples of constraints are shown. For

example, operations LOAD, STORE, MOVE may be defined

without constraints, €.g. any kind of value may be loaded into
a register. Operator ADD may show a constraint that the
destination operand dest_op 1s of the same type as the first
source operand source_opl. For example, 1n 12 of block 110,
the first source operand may be vR1.1 and the destination
operand may be vR2.2. For this instruction, vR1.1 and vR2.2
would have to be the same register. For operation MUL some
arbitrary constraints may be present, for example, that the
destination operator dest_op, €.g. vR5.5 1n I5, 1s the multipli-
cation register corresponding to the bank of the first source
operand, e.g. vR2.2 1n IS. These and other register constraints
may depend on the target-platform. An enumeration of
acceptable combinations of registers may be provided for
cach operation or instruction of the intermediate representa-
tion. These may be represented by n-tupels, wherein n 1s the
number of physical registers used as operands for a given
instruction. E.g., for operators ADD and MUL there are used
tupels having two physical registers. In this example, for
ADD the destination and first source operand have to be
equal, whereas no constraint applies to the second source
operand. Thus, allowed combinations for ADD may comprise
all tupels 1n which both components are the same, e.g. (RO,

R0), (R1, R1), etc. The tupels shown 1n block 125 may be

considered to be an incomplete example of allowed register
combinations.

Based on the live ranges to allocate as shown 1n block 120
and the model of constraints of block 125, there may be
defined groups respectively group classes of virtual registers

as shown 1n block 130. A first group named GROUP1 com-
prising the virtual registers vR1.1, vR2.2, vR4.4, vR5 5,
vR6.6 may be defined. This group may comprise all virtual
registers connected to vR1.1 via a constraint as given by the
enumeration of allowed register combinations of the model of
inter-operand constraints. It may be seen from block 110 that
vR1.1 may be connected to vR2.2 1n 12 and be constrained via

the ADD instruction. There may also be provided a constraint
relation to vR4.4 1n I4. To further define groupl, the con-

straints of vR2.2 and vR4.4 may be considered, which may
also have a constraining effect on vR1.1. Itmay be considered
to define a group to contain all virtual registers 1n an mnstruc-
tion list of interest which are related to each other via con-
straints. The exact form of constraint may not be considered
to be necessary, as the enumeration of allowable register
combinations provides suilicient information to group the
virtual registers. A second group GROUP2 may comprise a
virtual register vR3.3. As can be seen from block 110, vR3.3
may be independent from the other virtual registers, without
being 1n a constraint relation with another register as defined
by the enumeration of the constraint model.

In block 140, a live range interference graph 1s shown. In
the live range mterference graph, each node may represent an
individual virtual register. All registers for vR1.1 to vR6.6
may be seen 1n the interference graph, thus both groups are
drawn. The lines between the nodes may represent interier-
ences, 1.¢. they may indicate registers live at the same time.
Instead of one graph including both groups, there may be
provided one live register interference graph per group.

Based upon the live ranges interference graph, intra-group
interference may be determined, which may pertain to inter-
ferences mside one group. One example of such interference
1s an 1nterference between vR1.1 and vR2.2 of group

GROUP1, as shown 1n block 150. It may be seen from block

US 9,098,298 B2

9

120 that there may 1indeed be an interterence, as vR1.1 1s live
from I1 to 14, and vR2.2 1s live from 12 to 16, thus an overlap
of life ranges occurs.

FIG. 4 shows the continuation of the diagram 1n FIG. 3. To
resolve the interference detected 1n block 150, a fix-up code
may be inserted into the intermediate representation. The
code msertion may be performed by a representation amend-
ing component. In particular, a new virtual variable vR7.7
may be defined. In a new numbered instruction 11, the value
of vR1.1 may be moved into vR7.7. Based on this amended
intermediate representation i SSA form, a new live range
detection may be performed. By imserting the new virtual

register vR7.7, the live range of vR1.1 may change to reach
from I1 to 12 instead of from I1 to 14 as shown in block 110.
This change may be seen 1n block 170, which shows the new
live range allocation. Based on the new live range allocation,
a new grouping of virtual registers may be performed. The
constraints model of block 125 may be taken into account
when defining new groups. It should be noted that a new
istruction MOVE 1ntroduced 1n step I11' does not have any
constraints. Similar to the approach of grouping described
with regard to block 130, there may be defined groupl com-
prising vR1.1, vR2.2, vR3.5, vR6.6, group2 comprising
vR3.3 and group3 comprising vR7.7 and vR4.4 as shown in
block 180. Based on the allocated groups, a live range inter-
terence graph 190 may be produced for each group.

If no mterferences 1nside a group need to be fixed, a group
interference graph may be built based on the groups. The
group interference graph may show interferences between
groups, as indicated 1n block 200.

Coloring may be performed on this group interference
graph using a multi-color approach for the groups. The result
of the coloring 1s shown 1n block 210. A successiul coloring
leads to an allocation of real registers to virtual registers
without virtual registers being unassigned by the coloring. In
the example shown 1n FIGS. 3 and 4, the grouping and col-
oring leads to virtual registers vR1.1, vR2.2 and vR 6.6 being
allocated to register R0. The register vR3.5 1s allocated to
register R8. It should be noted that this 1s in line with the
constraints as defined in the target-platform constraints
model of block 125. For example, it may be seen that vRS.5 15
associated to a MUL operation for which certain constraints
exist. Accordingly, a combination of R8 for the destination
operand and the RO for the first source operand may be
accepted, as (R8, R0) 1s an allowed combination. From
group3, variables vR7.7 and vR4.4 are allocated to register
R1. From group2, virtual register vR3.3 may be allocated to
R2. Thus, the registers have been allocated, in this case with-
out spilling a virtual register, a group or a part thereof.

The method may be used to optimize a compiler and pro-
vides a basic algorithm which 1s target-independent. Via the
inter-operand constraints model and/or target-specific strate-
gies, the register allocation method may be adapted to target
platiorm specific characteristics. The method and the corre-
sponding optimizer are easily retargetable and provide
improved target-platform specific optimization.

There may be envisioned a computer-readable storage
medium storing code respectively instructions representing,
the optimizer and/or code to perform the optimizing method.

The mvention may also be implemented 1n a computer
program for running on a computer system, at least including,
code portions for performing steps of a method according to
the invention when run on a programmable apparatus, such as
a computer system or enabling a programmable apparatus to
perform functions of a device or system according to the
ivention.

10

15

20

25

30

35

40

45

50

55

60

65

10

A computer program 1s a list of instructions such as a
particular application program and/or an operating system.
The computer program may for instance include one or more
ol: a subroutine, a function, a procedure, an object method, an
object implementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy-
namic load library and/or other sequence of instructions
designed for execution on a computer system.

The computer program may be stored internally on com-
puter readable storage medium or transmitted to the computer
system via a computer readable transmission medium. All or
some of the computer program may be provided on computer
readable media permanently, removably or remotely coupled
to an information processing system. The computer readable
media may include, for example and without limitation, any
number of the following: magnetic storage media including
disk and tape storage media; optical storage media such as
compact disk media (e.g., CD-ROM, CD-R, etc.) and digital
video disk storage media; nonvolatile memory storage media
including semiconductor-based memory units such as

FLASH memory, EEPROM, EPROM, ROM; ferromagnetic

digital memories; MRAM; volatile storage media including
registers, bullers or caches, main memory, RAM, etc.; and
data transmission media including computer networks, point-
to-point telecommunication equipment, and carrier wave
transmission media, just to name a few.

A computer process typically includes an executing (run-
ning) program or portion of a program, current program val-
ues and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) 1s the software that manages the shar-
ing of the resources of a computer and provides programmers
with an interface used to access those resources. An operating
system processes system data and user input, and responds by
allocating and managing tasks and internal system resources
as a service to users and programs of the system.

The computer system may for instance include at least one
processing unit, associated memory and a number of 1input/
output (I/0) devices. When executing the computer program,
the computer system processes information according to the
computer program and produces resultant output information
via I/0 devices.

In the foregoing specification, the mmvention has been

described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that vari-
ous modifications and changes may be made therein without
departing from the broader spirit and scope of the invention as
set forth 1n the appended claims.

Those skilled 1n the art will recognize that the boundaries
between logic blocks are merely 1llustrative and that alterna-
tive embodiments may merge logic blocks or circuit elements
or impose an alternate decomposition of functionality upon
various logic blocks or circuit elements. Thus, 1t 1s to be
understood that the architectures depicted herein are merely
exemplary, and that 1n fact many other architectures can be
implemented which achieve the same functionality. For
example, the optimizer may be integrated 1n a compiler or
may be a separate module.

Any arrangement of components to achieve the same func-
tionality 1s effectively “associated” such that the desired func-
tionality 1s achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
“associated with” each other such that the desired function-
ality 1s achieved, irrespective of architectures or intermedial

components. Likewise, any two components so associated

US 9,098,298 B2

11

can also be viewed as being “operably connected,” or “oper-
ably coupled,” to each other to achieve the desired function-
ality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined 1nto a
single operation, a single operation may be distributed 1n
additional operations and operations may be executed at least
partially overlapping in time. Moreover, alternative embodi-
ments may include multiple mstances of a particular opera-
tion, and the order of operations may be altered 1n various
other embodiments.

Also for example, the examples, or portions thereof, may
implemented as soit or code representations of physical cir-
cuitry or of logical representations convertible into physical
circuitry, such as in a hardware description language of any
appropriate type.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded 1n an 1llustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising’ does not exclude the presence of other elements
or steps then those listed 1n a claim. Furthermore, the terms
“a” or “an,” as used herein, are defined as one or more than
one. Also, the use of introductory phrases such as “at least
one” and “one or more” 1n the claims should not be construed
to imply that the introduction of another claim element by the
indefinite articles “a” or “an” limits any particular claim
containing such itroduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an.” The same
holds true for the use of definite articles. Unless stated other-
wise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus,
these terms are not necessarily itended to indicate temporal
or other prioritization of such elements. The mere fact that
certain measures are recited in mutually different claims does
not indicate that a combination of these measures cannot be
used to advantage.

The mvention claimed 1s:

1. An optimization method for a compiler, comprising:
providing a model of inter-operand constraints of physical
registers of a target-platform of a compilation; and

a) providing an intermediate representation of a source
code using virtual registers;

b) grouping the virtual registers of the intermediate repre-
sentation based on the model of inter-operand con-
straints into two or more groups, each group comprising
at least one virtual register;

¢) if for at least one group at least one interference of virtual
registers within the group occurs, amending the inter-
mediate representation to resolve the at least one inter-
ference and jumping to step b); otherwise

d) providing a representation of a group 1nterierence graph
of interferences between the groups; and

¢) allocating virtual registers to physical registers using a
coloring scheme on the representation of the group inter-
ference graph.

2. The optimization method of claim 1, wherein b) further
comprises detecting live ranges of the virtual registers of the
intermediate representation before the grouping 1s per-
formed.

3. The optimization method of claim 1, wherein d) further
comprises spilling to memory a part of one group or one

10

15

20

25

30

35

40

45

50

55

60

65

12

group 11 at least one 1nterference between two or more groups
occurs aiter providing the representation of the group inter-
ference graph.

4. The optimization method according to claim 1, compris-
ing providing target-platform strategy information.

5. The optimization method according to one of claim 4,
wherein the target-platform strategy information includes
information regarding register manipulation instructions of
the target-platform.

6. The optimization method according to claim 4, wherein
amending the intermediate representation 1s performed based
on the target-platiorm strategy information.

7. The optimization method according to claim 3, wherein
spilling to memory 1s performed based on target-platform
strategy 1information.

8. The optimization method according to claim 1, wherein
the model of inter-operand constraints of physical registers
comprises an enumeration ol combinations of physical reg-
isters allowed by the inter-operand constraints of the target-
platform.

9. A tangible computer storage medium comprising an
optimizer for a compiler, the optimizer comprising:

a model component adapted to provide a model of a inter-
operand constraints of physical registers of a target-
platform of a compilation;

an intermediate representation component adapted to pro-
vide and/or receive an intermediate representation of
source code using virtual registers;

a grouping component adapted to group the virtual regis-
ters of the intermediate representation into two or more
groups based on the model of inter-operand constraints,
wherein each group comprises at least one virtual regis-
ter;

a representation amending component adapted to amend
the intermediate representation if for at least one group
at least one interference of virtual registers within the
group occurs to resolve the at least one interference;

a group interierence graph component adapted to provide a
representation of a group mterference graph of interter-
ences between the groups; and

an allocating component adapted to allocate virtual regis-
ters to physical registers using a coloring scheme on the
representation of the group interference graph.

10. The optimizer according to claim 9, further comprising

a live range detection component adapted to detect live ranges
of the virtual registers of the intermediate representation.

11. The optimizer according to claim 9, further comprising
a spilling component adapted to spill a group or part of a
group to memory.

12. The optimizer according to claim 9, further comprising
a target-platform information component adapted to provide
target-platform strategy information.

13. The optimizer according to claim 9, wherein the rep-
resentation amending component 1s adapted to amend the
intermediate representation based on the target-platiorm
strategy information and/or the spilling component 1s adapted
to spill a group or part of a group to memory based on the
target-platform strategy information.

14. The optimization method of claim 2, wherein d) further
comprises spilling to memory a part of one group or one
group 11 at least one interference between two or more groups
occurs alter providing the representation of the group inter-
ference graph.

15. The optimization method according to claim 2, com-
prising providing target-platform strategy imnformation.

16. The optimization method according to claim 3, com-
prising providing target-platform strategy imformation.

US 9,098,298 B2

13

17. The optimization method according to claim 2, wherein
the model of inter-operand constraints of physical registers
comprises an enumeration ol combinations of physical reg-
isters allowed by the inter-operand constraints of the target-
platform.

18. The optimization method according to claim 3, wherein
the model of inter-operand constraints of physical registers
comprises an enumeration ol combinations of physical reg-
isters allowed by the inter-operand constraints of the target-
platform.

19. The optimizer according to claim 10, further compris-
ing a spilling component adapted to spill a group or part of a
group to memory.

20. The optimizer according to claim 10, further compris-
ing a target-platform information component adapted to pro-
vide target-platiform strategy information.

¥ ¥ H ¥ K

10

15

14

	Front Page
	Drawings
	Specification
	Claims

