12 United States Patent

Surtani

US009092335B2

(10) Patent No.: US 9,092,335 B2
45) Date of Patent: Jul. 28, 2015

(54) REPRESENTING A TREE STRUCTURE ON A

(75)
(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

FLAT STRUCTURE

Inventor: Manik Surtani, London (GB)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 254 days.

Appl. No.: 12/732,530

Filed: Mar. 26, 2010

Prior Publication Data

Sep. 29, 2011

US 2011/0238916 Al

Int. CI.

GO6F 12/00
GO6l 13/00
GO6l 13/28
GO6l 12/08
GOol 17/30

U.S. CL

(2006.01
(2006.01
(2006.01
(2006.01

(2006.01

LS N N

CPC GO6F 12/0802 (2013.01); GO6F 17/30327

Field of Classification Search

None

(2013.01)

See application file for complete search history.

START

(56) References Cited
U.S. PATENT DOCUMENTS

5,752,243 A * 5/1998 Rerteretal.ooninl 1/1
5,787,430 A * 7/1998 Doeringeretal. 1/1
6,029,170 A * 2/2000 Gargeretal. 1/1
7,308,675 B2* 12/2007 Motoyamaetal. 717/106
7,730,101 B2 6/2010 Zhouetal. 707/797
2007/0174309 Al* 7/2007 Pettovelloco..... 707/100
2009/0228514 Al* 92009 Liuetal.coocoeveiininnn, 707/102
2009/0287660 Al* 11/2009 Shinjoetal.oooeiiil. 707/3
2009/0307241 Al* 12/2009 Schimuneketal. 707/100
OTHER PUBLICATIONS

Surtani et al. JBoss Cache Users’ Guide. Oct. 2008. http://docs.jboss.

org/jbosscache/3.0.3.GA/userguide_en/html__single/index.html.*
Robert I. Pitts, Trie, BU CAS CS, archive.org date Mar. 21 2003,
http://www.cs.bu.edu/teaching/c/tree/trie/.*

* cited by examiner

Primary Examiner — Yaima Rigol
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

An apparatus and a method for accessing data at a server node
ol a data grid system with distributed cache 1s described. The
server recerves a request to access a logical tree structure of
cache nodes at a tree structure interface module of the server.
The tree structure interface operates on a flat map structure of
the cache nodes corresponding to the logical tree structure,
transparent to the request. Each cache node 1s defined and
operated on using a two-dimensional coordinate including a
tully qualified name and a type.

9 Claims, 2 Drawing Sheets

302

RECEIVE A COMMAND CONFIGURED

FOR A TREE STRUCTURE OF NODES

304

ACCESS A FLAT MAP CONTAINER
TRANSPARENT TO THE USE IN

RESPONSE TO THE COMMAND

END

U.S. Patent Jul. 28, 2015 Sheet 1 of 2 US 9,092,335 B2

S \

FIG. 1

202

CLIENT

204

206

TREE

STRUCTURE
API

U.S. Patent Jul. 28, 2015 Sheet 2 of 2 US 9,092,335 B2

START
302
RECEIVE A COMMAND CONFIGURED
FOR A TREE STRUCTURE OF NODES

304

ACCESS A FLAT MAP CONTAINER
TRANSPARENT TO THE USE IN

RESPONSE TO THE COMMAND

END

US 9,092,335 B2

1

REPRESENTING A TREE STRUCTURE ON A
FLAT STRUCTURE

TECHNICAL FIELD

Embodiments of the present invention relate to computing,
systems, and more particularly, to networked memory.

BACKGROUND

.

Data grid oflfer ease of accessibility to data by exposing a
simple data structure—a Cache—in which objects can be
stored. In a distributed mode where caches cluster together,
and a large memory heap can be exposed. This 15 more pow-
erful than simple replication in that 1t distributes a fixed
number of replicas of each entry—providing resilience to
server faillure—as well as scalability since the work done to
store each entry 1s fixed in relation to cluster size.

Data 1s typically represented 1n a logical tree structure.
However, operation on the tree structure can aftect CPU and
memory performance.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and 1n which:

FI1G. 1 1s a block diagram 1llustrating one embodiment of a
tree structure of cache nodes.

FI1G. 2 1s a block diagram 1llustrating one embodiment of a
system for transparently representing a tree structure on a tlat
structure of data from cache nodes.

FI1G. 3 1s a flow diagram illustrating one embodiment of a
method for transparently representing a tree structure on a flat
structure of data from cache nodes.

DETAILED DESCRIPTION

Described herein 1s an apparatus and a method for access-
ing data at a server node of a data grid system with distributed
cache 1s described. The server receives a request to access a
logical tree structure of a cache nodes at a tree structure
interface module of the server. The tree structure interface
operates on a flat map structure of the cache nodes corre-
sponding to the logical tree structure, transparent to the
request. Each cache node 1s defined and operated on using a
two-dimensional coordinate including a fully qualified name
and a type.

FI1G. 1 1s a block diagram 1llustrating one embodiment of a
logical data tree structure of cache nodes of a data grid plat-
form. A cache node 1s a stmple data structure 1n which objects
are stored. While the data grid platform can be run 1n local
mode, its real value 1s 1n distributed mode where caches
cluster together, and expose a large memory heap. This 1s
more powerful than simple replication in that it distributes a
fixed number of replicas of each entry—providing resilience
to server fallure—as well as scalability since the work done to
store each entry 1s fixed 1n relation to cluster size.

The logical data tree structure includes a root node ‘a’ with
chuldren ‘b’ and °c’. The particular location of a cache node 1s
identified therefore 1n reference to each preceding cache node
in the tree structure. For example, cache node { may be 1den-
tified 1n a directory as follows “a/c/1”.

FI1G. 2 1s a block diagram 1llustrating one embodiment of a
system for transparently representing a tree structure on a tlat
structure of data from cache nodes. A client 102 communi-
cates a request to access the data grid in server 206 via a

10

15

20

25

30

35

40

45

50

55

60

65

2

communication network 204 (e.g. the Internet). In one
embodiment, client 102 includes a computing device config-
ured to access the data from cache nodes stored 1n a logical
tree structure manner. In other words, client 102 sees the
cache nodes 1n a storage device 210 of server 206 as a logical
data tree structure as previously illustrated 1n FIG. 1.

In one embodiment, server 206 includes a logical tree data
structure API 208 coupled to storage device 210. Logical tree
data structure API 208 1s configured to receive a request to
access a logical tree structure of the cache nodes in storage
device 210 from client 202. Storage device 210 stores data
from cache nodes 1n a flat map structure (e.g. two dimensional

structure) for more efficient processing. Tree data structure
API 208 transparently operates on the flat map structure of the
cache nodes 1n storage device 210 corresponding to the logi-
cal tree structure from the request of client 202. In other
words, by using this two-entry system per node, one can
navigate a logical tree structure, find arbitrary nodes with
O(1) complexity (one could not that with a “real” tree) and all
of this complexity 1s hidden from the user by using a Tree
facade (e.g. Tree structure interface API 208) so to the user, 1t
looks and feels like a real tree structure even though the
tacade 208 translates the tree structure to this flat map struc-
ture and back.

In one embodiment, each cache node 1s defined and oper-
ated on using a two-entry-per-node system. Given a tree
structure of nodes (a mathematical tree) where each node has
a single parent and multiple attributes (key/value pairs), this 1s
modeled using a structure called a NodeKey, which contains
two elements.

The two elements are a fully qualified name (a “path™ to the
node) and a type. The type determines that the entry 1s either
a data entry (containing the node’s attributes) or a structural
entry (containing pointers to the node’s parent and all of the
node’s children).

In another embodiment, tree structure API operates/ac-
cesses the data 1n a flat map structure by computing a hash
value associated with each node using the two-dimensional
coordinate.

The following 1llustrates an example of a code for forming,
a NodeKey class:

package org.infinispan.tree;
import static org.nfinispan.tree.NodeKey.Type. DATA;

import static org.infinispan.tree.NodeKey. Type. STRUCTURE;
import java.i0.JOException;

import java.10.0ObjectInput;

import java.10.ObjectOutput;

import org.nfinispan.marshall.lds;

import org.infinispan.marshall.Marshallable;

import org.nfinispan.util. Util;

/=I===E=

* A class that represents the key to a node
b

*/
Marshallable(externalizer = NodeKey.Externalizer.class, 1d =
Ids.NODE_KEY)
public class NodeKey {
final Fgn ign;
final Type contents;

public static enum Type {
DATA, STRUCTURE
h

public NodeKey(Fqn fgn, Type contents) {
this.contents = contents;

this.fqn = fgn;

h

public Fqn getFqn() {
return fqn;

h

US 9,092,335 B2

3

-continued

public Type getContents() {
return contents;
h

public boolean equals(Object o) {
if (this == o) return true;
if (0 == null || getClass() != o.getClass()) return false;
NodeKey key = (NodeKey) o;
if (contents != key.contents) return false;
if (!Util.sateEquals(fgn, key.fgn)) return false;
return true;
h
public int hashCode() {
int h = fqn != null 7 fgn.hashCode() : 1;
h += ~(h << 9);
h = (h>>> 14);
h += (h << 4);
h = (h >>>10);
return h;

)

public String toString() {
return “NodeKey{” +
“contents="" + contents +
“ fgqn="+ ign +

r.}:
h

public static class Externalizer implements
org.infinispan.marshall. Externalizer {
private static final byte DATA__ BYTE = 1;
private static final byte STRUCTURE_ BYTE = 2;
public void writeObject(ObjectOutput output, Object object)
throws IOException {
NodeKey key = (NodeKey) object;
output.writeObject(key.fqn);
byte type = 0;
switch (key.contents) {
case DATA:
type = DATA__BY'TE;
break;
case STRUCTURE:
type = STRUCTURE__BYTE;
break;

h
output.write(type);

h

public Object readObject(ObjectInput input) throws
IOException, ClassNotFoundException {
Fagn ign = (Fgn) mput.readObject();
int typeb = input.readUnsignedByte();
NodeKey. Type type = null;

switch (typeb) {
case DATA BY'TE:

type = DATA;
break;

case STRUCTURE__BYTE:
type = STRUCTURE;
break;

h

return new NodeKey(iqn, type);

Server 206 1s an example of a computing system config-
ured to represent a tree structure on a flat structure of cache
nodes. In alternative embodiments, the machine may be con-
nected (e.g., networked) to other machines 1n a LAN, an
intranet, an extranet, or the Internet. The machine may oper-
ate 1n the capacity of a server or a client machine 1n client-
server network environment, or as a peer machine in a peer-
to-peer (or distributed) network environment. The machine
may be a personal computer (PC), a tablet PC, a set-top box
(STB), a Personal Digital Assistant (PDA), a cellular tele-
phone, a web appliance, a server, a network router, switch or
bridge, or any machine capable of executing a set of mnstruc-
tions (sequential or otherwise) that specily actions to be taken
by that machine. Further, while only a single machine 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly execute
a set (or multiple sets) of 1nstructions to perform any one or
more of the methodologies discussed herein.

The exemplary computer system 206 includes a processing
device, a storage device 210, and a tree structure interface API
208.

Processing device represents one or more general-purpose
processing devices such as a microprocessor, central process-
ing unit, or the like. More particularly, the processing device
may be complex instruction set computing (CISC) micropro-
cessor, reduced 1nstruction set computing (RISC) micropro-
cessor, very long instruction word (VLIW) microprocessor,
or processor implementing other instruction sets, or proces-
sors implementing a combination of instruction sets. Process-
ing device may also be one or more special-purpose process-
ing devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processing device 1s configured to execute the operations and
steps discussed herein. In one embodiment, the modules may
be include hardware or software or a combination of both.

The computer system 206 may further include a network
interface device. While the computer-accessible storage
medium 210 1s shown 1n an exemplary embodiment to be a
single medium, the term “computer-accessible storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “computer-accessible
storage medium” shall also be taken to include any medium
that 1s capable of storing, encoding or carrying a set ol instruc-
tions for execution by the machine and that cause the machine
to perform any one or more of the methodologies of the
present invention. The term “computer-accessible storage
medium™ shall accordingly be taken to include, but not be
limited to, solid-state memories, optical and magnetic media.

FIG. 3 1s a flow diagram 1llustrating one embodiment of a
method for transparently representing a tree structure on a flat
structure of data from cache nodes. At 302, a server receive a
request to access a logical tree structure of a cache nodes at a
tree structure mterface module of the server. At 304, a flat map
structure of the cache nodes corresponding to the logical tree
structure 1s accessed on 1n response to the request. The access
to the flat map structure 1s transparent to the request. In one
embodiment, each cache node 1s defined and operated on
using a two-dimensional coordinate including a fully quali-
fied name and a type.

A two-dimensional coordinate attribute 1s associated with
each cache node. In one embodiment, the two-dimensional
coordinate attribute include a NodeKey. The fully qualified
name includes a path to a cache node on the logical tree
structure. The type includes a data entry containing a cache
node attribute or a structural entry containing pointers to a
cache node’s parent and all of the cache node’s children.

In one embodiment, a hash value associated with each node
1s computed using the two-dimensional coordinate. The flat
map structure 1s accessed using the hash values of the corre-
sponding cache nodes.

In one embodiment, the logical tree structure includes a
plurality of cache nodes organized 1n a tree structure under-
neath a root cache node. Each cache node contains a key
attribute and a value attribute of data.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled 1n the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices

US 9,092,335 B2

S

are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

Some portions of the detailed descriptions above are pre-
sented 1 terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled 1n the data processing arts to most
cifectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transierred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent {from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mimng” or “displaying” or the like, refer to the action and
processes ol a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or 1t may comprise a
general purpose computer selectively activated or recontig-
ured by a computer program stored in the computer. Such a
computer program may be stored imn a computer readable
storage medium, such as, but is not limited to, any type of disk
including tloppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random

access memories (RAMs), EPROMs, EEPROMSs, magnetic

or optical cards, or any type of media suitable for storing
clectronic instructions, and each coupled to a computer sys-
tem bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention 1s not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the ivention as described
herein.

It 1s to be understood that the above description 1s intended
to be 1illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading,
and understanding the above description. The scope of the
invention should, theretore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

5

10

15

20

25

30

35

40

45

50

55

60

65

What 1s claimed 1s:
1. A method comprising:
storing a flat map structure that corresponds to a plurality of
cache nodes 1n a logical tree structure distributed 1n a
data grid system, wherein the data grid system com-
prises a plurality of storage devices at a plurality of
servers, wherein each of the plurality of cache nodes
below a root node 1n the logical tree structure has one
parent node and 1s configurable to have zero or more
child nodes, wherein each of the plurality of cache nodes
stores multiple attributes, wherein the flat map structure
comprises a plurality of pairs of entries, wherein each
cache node 1n the plurality of cache nodes corresponds
to a pair of entries in the plurality of pairs of entries,
wherein each entry 1n the pair of entries comprises a type
and a fully qualified name, wherein the fully qualified
name comprises a path to the cache node within the
logical tree structure, wherein the type identifies a first
one of the pair of entries as a data entry and a second one
of the pair of entries as a structural entry, wherein the
data entry stores a key and value pair for each of the
multiple attributes of the cache node, and wherein the
structural entry stores one or more pointers to the parent
node and the zero or more child nodes of the cache node:

receving a request to access at least one cache node 1n the
plurality of cache nodes using the logical tree structure;
and

1in response to receiving the request and transparent to the

logical tree structure of the request, accessing, by a
processing device, at least one pair of entries in the
plurality of pairs of entries 1n the flat map structure
corresponding to the at least one cache node 1n the logi-
cal tree structure of the request using a hash value of the
fully qualified name of the at least one cache node cor-
responding to the at least one pair of entries.

2. The method of claim 1 further comprising;:

associating a two-dimensional coordinate in the flat map

with each cache node in the plurality of cache nodes,
wherein the two-dimensional coordinate 1n the tlat map
comprises an entry from the plurality of pairs of entries.

3. The method of claim 1 wherein the fully qualified name
of each entry 1n the plurality of pairs of entries 1s stored 1n the
flat map structure as the hash value to access the entry within
the flat map structure.

4. A non-transitory computer-readable storage medium
having instructions stored therein that, when executed by a
processing device, cause the processing device to:

store a tlat map structure that corresponds to a plurality of

cache nodes 1n a logical tree structure distributed 1n a
data grid system, wherein the data grid system com-
prises a plurality of storage devices at a plurality of
servers, wherein each of the plurality of cache nodes
below a root node 1n the logical tree structure has one
parent node and 1s configurable to have zero or more
child nodes, wherein each of the plurality of cache nodes
stores multiple attributes, wherein the flat map structure
comprises a plurality of pairs of entries, wherein each
cache node 1n the plurality of cache nodes corresponds
to a pair of entries in the plurality of pairs of entries,
wherein each entry in the pair of entries comprises a type
and a fully qualified name, wherein the fully qualified
name comprises a path to the cache node within the
logical tree structure, wherein the type identifies a first
one of the pair of entries as a data entry and a second one
of the pair of entries as a structural entry, wherein the
data entry stores a key and value pair for each of the
multiple attributes of the cache node, and wherein the

US 9,092,335 B2

7

structural entry stores one or more pointers to the parent
node and the zero or more child nodes of the cache node;

receive a request to access at least one cache node 1n the
plurality of cache nodes using the logical tree structure;
and

in response to the receipt of the request and transparent to
the logical tree structure of the request, access, by the
processing device, at least one pair of entries 1n the
plurality of pairs of entries 1n the flat map structure
corresponding to the at least one cache node 1n the logi-
cal tree structure of the request using a hash value of the
fully qualified name of the at least one cache node cor-
responding to the at least one pair of entries.

5. The non-transitory computer—readable storage medium

of claim 4 wherein the processing device 1s further to:
associate a two-dimensional coordinate 1n the flat map with
cach cache node 1n the plurality of cache nodes, wherein
the two-dimensional coordinate in the flat map com-
prises an entry from the plurality of pairs of entries.

6. The non-transitory computer-readable storage medium
of claim 4, wherein the fully qualified name of each entry 1n
the plurality of pairs of entries 1s stored 1n the flat map struc-
ture as the hash value to access the entry within the tlat map
structure.

7. A computer system comprising:

a storage device to store a flat map structure that corre-
sponds to a plurality of cache nodes 1n a logical tree
structure distributed in a data grid system, wherein the
data grid system comprises a plurality of storage devices
at a plurality of servers, wherein each of the plurality of
cache nodes below a root node 1n the logical tree struc-
ture has one parent node and 1s configurable to have zero
or more child nodes, wherein each of the plurality of
cache nodes stores multiple attributes, wherein the flat
map structure comprises a plurality of pairs of entries,
wherein each cache node 1n the plurality of cache nodes

10

15

20

25

30

35

8

corresponds to a pair of entries 1n the plurality of pairs of
entries, wherein each entry in the pair of entries com-
prises a type and a fully qualified name, wherein the
tully qualified name comprises a path to the cache node
within the logical tree structure, wherein the type 1den-
tifies a first one of the pair of entries as a data entry and
a second one of the pair of entries as a structural entry,
wherein the data entry stores a key and value pair for
cach of the multiple attributes of the cache node, and
wherein the structural entry stores one or more pointers
to the parent node and the zero or more child nodes of the
cache node;

an mterface to receive a request to access at least one cache

node 1n the plurality of cache nodes using the logical tree
structure; and

a processing device operatively coupled to and to commu-

nicate with the storage device and the interface to, 1n
response to the receipt of the request and transparent to
the logical tree structure of the request, access at least
one pair of entries in the plurality of pairs of entries in the
flat map structure corresponding to the at least one cache
node 1n the logical tree structure of the request using a
hash value of the fully qualified name of the at least one
cache node corresponding to the at least one pair of
entries.

8. The computer system of claim 7, wherein the processing,
device 1s further to associate a two-dimensional coordinate 1n
the flat map with each cache node in the plurality of cache
nodes, wherein the two-dimensional coordinate in the flat
map comprises an entry from the plurality of pairs of entries.

9. The computer system of claim 7, wherein the fully
qualified name of each entry 1n the plurality of pairs of entries
1s stored 1n the flat map structure as the hash value to access
the entry within the flat map structure.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

