US009087150B2
a2y United States Patent (10) Patent No.: US 9,087,150 B2
Biberstein et al. 45) Date of Patent: Jul. 21, 2015
(54) PERFORMANCE ANALYSIS SYSTEM FOR 7,765,094 B2 7/2010 Bodden et al.
ANAILYZING INTER-THREAD 7,802,236 B2 9/2010 Calder et al.
2006/0282839 Al* 12/2006 Hankins etal. 719/318
COMMUNICATIONS TO ENHANCE 2008/0163240 Al* 7/2008 Aguilar etal. 718/107
PERFORMANCE IN MULITTHREADED 2008/0209433 Al* 82008 McKenney ... 718/104
SYSTEM 2008/0216098 Al 9/2008 Agarwal et al.
2009/0177642 Al 7/2009 Chung et al.
(75) Inventors: Marina Biberstein, Haifa (IL); Andre %883? 8;%33‘11 i nggg I}‘;/Iunsthllet al.
. :) : : 1 an et al.
Heilper, Haila (IL); Javier Merino, 2010/0153966 Al* 6/2010 Arimilli et al. 718/105
Cantabria (ES) 2011/0231854 Al* 9/2011 Augenstein etal. 718/103
2011/0264410 A1 10/2011 Biberstein et al.

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS

Tam et al., “Thread Clustering: Sharing- Aware Scheduling on SMP-

(*) Notice: Subject to any disclaimer, the term of this _ |
CMP-SMT Multiprocessors”, In Proceedings of the EuroSys Con-

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 686 days. ference, pp. 47-58, 2007.
(21) Appl. No.: 13/310,815 * cited by examiner
(22) Filed: Dec. 5, 2011 Primary Examiner — Abdullah Al Kawsar
Assistant Examiner — James J Lee
(65) Prior Publication Data (74) Attorney, Agent, or Firm — David M. Qunn; Suzanne
US 2013/0145369 Al Jun. 6, 2013 Erez
(51) Int.Cl. (57) ABSTRACT
Gool 9/46 (2006.01) Systems and methods for enhancing performance in a multi-
GO6E 11/34 (2006.01) threaded computing system are provided. The method com-
(52) U.S. Cl prises receiving a plurality of values associated with a perfor-
CPC . GOoF 11/3466 (2013.01); GO6F 11/3409 mance characteristic common to a plurality of threads;
_ _ _ (2013.01) clusterizing the plurality of threads based on the performance
(38) Field of Classification Search characteristic; analyzing an inter-thread communication
CpPC e GO6F 11/3409; GQ6F 11/3466 between the plurality of threads for identifying a plurality of
See application file for complete search history. threads adversely affecting the performance of different parts

_ of the multithreaded program; calculating a performance fac-
(56) References Cited tor corresponding to the performance characteristic to deter-

U.S. PATENT DOCUMENTS mine a type of performance improvement activity to be per-
o formed on the plurality of threads.

5,745,778 A 4/1998 Alfieri
7,409,679 B2 8/2008 Chedgey et al. 15 Claims, 6 Drawing Sheets

Receive values of performance characteristic
corresponding to mukiiple threads

Clusterize multiple threads

P330~]

Analyze infer-thread communication

P34[3N\

Calculate a performance Tactor for the
performance characteristic

P350 |
N Cutput an mdication of performance factor

U.S. Patent Jul. 21, 2015 Sheet 1 of 6 US 9,087,150 B2

100\

: TARGET SYSTEM

1 1 N
Performance
Analysis System
135

130~

FilG. 1

U.S. Patent Jul. 21, 2015 Sheet 2 of 6 US 9,087,150 B2

i H}m\

Performance Analysis System

21
Performance Calculator
215
Thread Clusterizer
220

Performance Factor Generatimg Graph Module

b3
N2
LA

Thread Aggregator

120

U.S. Patent Jul. 21, 2015 Sheet 3 of 6 US 9,087,150 B2

P310 m . L
Receive values of performance characieristic
correspondimg to multiple threads
#3200~
Clustenze multiple threads
P330~
Analyze mter-thread communication
P340~ .. h .,
Calculate a performance factor for the
performance characteristic
P350

Cutput an mdication of performance factor

U.S. Patent Jul. 21, 2015 Sheet 4 of 6 US 9,087,150 B2

400
\ P416

Collect program counter hits profile

and system call profile

razi Normalize program counter hits profile
and system call profile

P430~ |

Compute stimilarity measures
P44~

Combine stmilarity measurcs
P450~

Estimate application bottienccks

P460

(Juantity dependencies

P464~

[dentify number of | | ldentify number of |
threads runrung in | | threads contnbuting §
an individual cluster | {0 a root cause |

Ageoregate threads

{Calculate performance factor

Yes 7 Performance™
. factor =02#

Performance | :
| Improvement may be |

acheived

improvement not
needed

VS "OIA

US 9,087,150 B2

3011 LOT] 9011 COLI

B N N N N N N N N N N NN N R N N N O NN ok kb b ok k ok ok kb bk bk ok ok k kb ok bk ok k k kb ok ok kot * ok ok k ok ok ok kb k k k k kb ok ok F ok ok ok k ok ok ok ok ko ok ok kb bk ok ok kb bk b bk ok ok ko ok ok ok ok ok k k kb ok ok ok kot *
O R I R I S T S R T T R R S S R T S N S S S L I S R B R I S N R I T S I I R e
R BE R R R R R R R R R R R R L T T R e JHE R TR Rk kR R
+ - + + + -

+ + + + +

* . + +

+ + + + +

+ - + + + -

+ + + + +

+ - + + + -

+ + + + +

* . + +

+ + + + +

+ - + + + -

* + * + *

+ - + + + -

+ + + + +

* . + +

+ + + + + ™
+ - + + + -

* + * + *

+ - + + + -

+ + . . + . . + +

* . + +

+ + + + +

+ - + + + -

* + * + *

+ - + + + -

+ + + + +

* . + + . .
+ + + + +

+ - + + + -

* + * + *

+ - + + + -

+ + + + +

* . + +

+ + 0 0 - - 0 0 + + +

+ - + + + -

*oE e *F

+ + L i + + +

+ - + + + -

+ + + + +

+ - + + + -

* + * + *

+ - + + + -

+ + + + +

* . + +

+ + + + +

+ - + + + -

* + * + *

0011 >0

Jul. 21, 2015

+ o+ F o+ o+ ok F ko P O N N N N OO NN O NN + ok F o+ b+ F At b d o+ + 4+t kA + o+ F
L N N R N I) I N N L N N N L O N N N L N) I I R I)
L T R T L R R L T R e R T T T N T R R A O T T TR R R LI T T T i L I R
+ - + + +
+ * + *
+ - + + +
+ + + + +
* - + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
* - + +
+ + + + +
+ - + + +
+ * + *
+ - . . + + +
+ + + + +
* - + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + + . .
+ - + + +
+ + + + +
+ - + + +
+ * + *
+ - + + +
+ + + + +
* - + +
+ + + + +
+ - + + +
+ . * + *
+ - + + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
+ - + + +
+ + + + +
* - + +
+ + + + +
+ - + + +

POL1 ¢0l1 cOll 1011

R OL1] JUSWIUOIIAUT dABMPIBH

U.S. Patent

S. Patent ul. 21, 2015 Sheet 6 of 6 US 9.087.150 B2

+ + + + + + + ¥+ + + ¥ +F + ¥ +
+* + + F F F FFFFFFFF

+

+
+

+
+

+
+

+ + F F F F ok FFFF A F A FF A+
+ + + + + ++ ++ ++F+F A+ttt
+ + + + + + ¥+ + + ¥+ + + ¥+ + +

+
+

+ + + + + + + + + F+ +
+ + + + + RS

+
+

+
+

+
+

+
+

+
+

+ + + + + + + +
+ + + + + + + +

+
+

Application
Software

+
+

+ + + + + + + + + + + +
+ + + + + + + + + + + +

+
+

FlG. 5B

+
+

+ + + + + + + + + + F++ +F+F++FF + + + +
+ + + + + + + F + F A+ FFFFFFFEFFFEFEE A

+
+

+ + + +
++++++++++++++++++++++++++++++++++++'I-++++++++++'I-+++++++++++++++++++++++++++H

+
+

Software Environment 1120 —\‘

US 9,087,150 B2

1

PERFORMANCE ANALYSIS SYSTEM FOR
ANALYZING INTER-THREAD
COMMUNICATIONS TO ENHANCE
PERFORMANCE IN MULTITHREADED
SYSTEM

COPYRIGHT & TRADEMARK NOTICES

A portion of the disclosure of this patent document may
contain material, which 1s subject to copyright protection.
The owner has no objection to the facsimile reproduction by
any one of the patent document or the patent disclosure, as 1t
appears 1n the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.

Certain marks referenced herein may be common law or
registered trademarks of the applicant, the assignee or third
parties afliliated or unaffiliated with the applicant or the
assignee. Use of these marks 1s for providing an enabling
disclosure by way of example and shall not be construed to
exclusively limit the scope of the disclosed subject matter to
material associated with such marks.

TECHNICAL FIELD

The disclosed subject matter relates generally to a perior-
mance analysis of multithreaded systems in a computing
environment, and more particularly to a system and method
for aggregating threads and analyzing inter-communication
between threads.

BACKGROUND

In multi-processing environments, 1t may be desirable to
enhance the overall performance of a multithreaded system or
program. In a massively multithreaded system, determining,
the appropriate optimization approach may become very dif-
ficult and cumbersome due to the variations in the perfor-
mance characteristics of individual applications and the large
number of threads that are concurrently executed. Indeed,
individual analysis of each single thread will be a daunting
task.

Instead of analyzing each thread individually, the analysis
may be performed collectively (1.e., by way of aggregated
analysis). An aggregation approach, however, does not
always yield a proper solution because important data that 1s
applicable to individual threads may be abstracted away. For
example, 11 a relatively large number of secondary threads are
underperforming, due to problems associated with an 1ndi-
vidual primary thread that services them, an aggregated
analysis would reflect that the multitudes of secondary
threads are slightly underperforming, while obscuring sig-
nificant underperformance associated with the primary
thread.

In the above example, 1f the underperformance of the pri-
mary thread goes undetected, then a human operator, such as
a system administrator, will mistakenly focus on optimizing
the secondary threads instead, a prospective solution that
would not lead to an improvement of the overall performance
of the system. As such, one would appreciate that in a mas-
stvely multithreaded environment, 1t 1s important to identily
and select the appropnate threads for optimization.

Furthermore, the modern computing systems are so com-
plex that substantial time and extensive understanding of the
involved software, hardware, and the relevant tools are essen-
tial to performing a proper analysis of all system aspects that
possibly affect performance, and the degree in which such
factors atfect performance. Therefore, 1t 1s desirable to have a

10

15

20

25

30

35

40

45

50

55

60

65

2

tool that can help automatically focus the optimization etfforts
in a more promising direction.

SUMMARY

For purposes of summarizing, certain aspects, advantages,
and novel features have been described herein. It 1s to be
understood that not all such advantages may be achieved in
accordance with any one particular embodiment. Thus, the
disclosed subject matter may be embodied or carried out1n a
manner that achieves or optimizes one advantage or group of
advantages without achieving all advantages as may be taught
or suggested herein.

Systems and methods for enhancing performance 1n a mul-
tithreaded computing system are provided. The method com-
prises receiving a plurality of values associated with a perfor-
mance characteristic common to a plurality of threads;
clusterizing the plurality of threads based on the performance
characteristic; analyzing an inter-thread communication
between the plurality of threads for identifying a plurality of
threads adversely affecting the performance of different parts
of the multithreaded program; calculating a performance fac-
tor corresponding to the performance characteristic to deter-
mine a type of performance improvement activity to be per-
formed on the plurality of threads.

In accordance with one or more embodiments, a system
comprising one or more logic units 1s provided. The one or
more logic units are configured to perform the functions and
operations associated with the above-disclosed methods. In
yet another embodiment, a computer program product com-
prising a computer readable storage medium having a com-
puter readable program 1s provided. The computer readable
program when executed on a computer causes the computer
to perform the functions and operations associated with the
above-disclosed methods.

One or more of the above-disclosed embodiments 1n addi-
tion to certain alternatives are provided in further detail below
with reference to the attached figures. The disclosed subject
matter 1s not, however, limited to any particular embodiment
disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed embodiments may be better understood by
referring to the figures 1n the attached drawings, as provided
below.

FIG. 1 1llustrates a multithreaded environment 1n which a
target system 1s optimized, 1n accordance with one or more
embodiments.

FIG. 2 1s a block diagram of an performance analysis
system, 1n accordance with one embodiment.

FIG. 3 15 a flow diagram of a method of analyzing perfor-
mance of a target system in a multithreaded environment, in
accordance with one embodiment.

FIG. 4 1s a flow diagram of a method of optimizing a target
system 1n a multithreaded environment, 1n accordance with
one embodiment.

FIGS. SA and 5B are block diagrams of hardware and
soltware environments 1n which the disclosed systems and
methods may operate, in accordance with one or more
embodiments.

Features, elements, and aspects that are referenced by the
same numerals 1n different figures represent the same, equiva-
lent, or similar features, elements, or aspects, 1n accordance
with one or more embodiments.

US 9,087,150 B2

3

DETAILED DESCRIPTION OF
EMBODIMENTS

EXAMPL.

(L]

In the following, numerous specific details are set forth to
provide a thorough description of various embodiments. Cer-
tain embodiments may be practiced without these specific
details or with some variations 1n detail. In some 1nstances,
certain features are described in less detail so as not to obscure
other aspects. The level of detail associated with each of the
clements or features should not be construed to quality the
novelty or importance of one feature over the others.

Referring FIG. 1, a multithreaded computing environment
100 1s illustrated 1n which an performance analysis system
110 1s configured to analyze the performance of a target
system 140 and optionally optimize components (e.g.,
threads) in the target system 140 that may be underperform-
ing. The target system 140, depending on implementation,
may comprise one or more servers, clients, multi-core pro-
cessors, multi processor computers or the like (not shown 1n
FIG. 1).

The performance analysis system 110 may receirve data
from profiling tools 120 to determine performance character-
istics and performance values for various components 1n the
target system 140. Exemplary profiling tools include operat-
ing system commands (e.g., Unix “sar” command) used to
report on various system loads, processor activity, memory,
paging, device load, network bandwidth, etc. Other com-
mands (e.g., Unix “ps” command) may be used to detect the
actively executing threads or processes. System tools (e.g.,
Linux “OProfile”) may be also used to sample and count
cache misses, stalls, memory fetches, interrupts, etc.

According to one embodiment, the performance analysis
system 110 utilizes the performance values or performance
characteristics collected from the profiling tools 120 to deter-
mine performance factors that may help enhance the perfor-
mance of the target system 140 1n, for example, a massively
multithreaded environment. A human or an automated
machine operator (e.g., a user 130) may use an interface 135
to view the performance factors determined by the perfor-
mance analysis system 110 and accordingly decide to
improve the performance of the target system 140 as needed.

Referring to FIG. 2, performance analysis system 110 may
be configured to determine the performance factors corre-
sponding to the threads 1n the target system 140. For example,
performance analysis system 140 may include a performance
calculator 210 to calculate the performance characteristics 1in
a multithreaded environment. The performance characteris-
tics of individual threads may include 1nstructions per cycle
or the amount of time spent 1n blocking input/output (1/0),
which may differ across threads.

In accordance with one embodiment, the performance
analysis system 110 may further include a thread clusterizer
215 configured to clusterize a plurality of threads 1n the target
system 140. As provided in further detail below, averaging the
threads followed by the clusterization helps discover the rela-
tionships and dependencies among the multiple threads and
keeps the number of threads manageable as well as limiting
the possibility of abstracting away important parts or details
of the performance behavior for individual threads.

The performance analysis system 110 may further include
a performance factor generating graph module 220 config-
ured to visually quantity the discovered dependencies among,
the threads by way of, for example, generating one or more
graphs. The generated graphs may include a directed acyclic
graph that helps quantily the dependencies that identity the
strongly connected components and aggregate (e.g., collapse
or unity) components that are closely related. In this manner,

10

15

20

25

30

35

40

45

50

55

60

65

4

the cyclical dependencies among multiple threads and the
inter-dependencies among thread clusters may be i1dentified.

In accordance with one implementation, the performance
analysis system 110 further includes a thread aggregator 225
configured to aggregate a group of threads running in an
individual cluster or a group of threads contributing to a root
cause 1n a cluster. Aggregation ol multiple related threads 1n
one or more groups helps determine the common pertor-
mance factors for the threads collectively so that a perfor-
mance improvement activity may be performed on the target
system 140 as provided in further detail below.

A processor 202 and an I/'O module 205 may be included 1n
the performance analysis system 110 to respectively process
and receive, retrieve or otherwise obtain values of one or more
performance characteristics provided by a profiling tool 120.
The I/O module 205 may be utilized to provide an output that
includes the calculated performance factor associated with a
performance characteristic. The output may include a sugges-
tion on which performance improvement activity 1s to be
performed.

Referring to FIGS. 1 through 3, a method 300 in accor-
dance with one embodiment 1s provided to analyze the per-
formance of a target system 140 1n a multithreaded environ-
ment 100. The I/O module 205 may be utilized to receive from
the profiling tool 120 values of performance characteristics
that correspond to multiple threads executed over target sys-
tem 140 (P310). The multiple threads may be then clusterized
by thread clusterizer 215 based on the performance charac-
teristics associated with the threads of the target system 140
(P320).

An inter-thread communication analysis may be per-
formed by the performance factor calculator 210 to 1dentily
threads that are affecting performance (e.g., delaying the
generation of data associated with other parts of a multi-
threaded program) of the target system 140 (P330). The per-
formance factor calculator 210 may also calculate the perfor-
mance factors associated with the performance
characteristics provided by the profiling tool 120 to determine
the type of performance improvement activity that 1s to be
performed on the threads under analysis (P340).

Accordingly, an indication of the performance factors 1s
outputted by way of I/O module 205 (P350). The pertor-
mance factors report performance characteristics and values
that, for example, may include suggestions on how to improve
performance. In some exemplary embodiments, performance
improvement activities may be selected based on one or more
calculated performance factors. The selected performance
improvement activity may be performed and the target sys-
tem 140 may be modified accordingly. Further modifications
may be suggested or performed as new performance charac-
teristics are collected for the modified system.

Referring to FIG. 4, a method 400 for improving system
performance, 1n accordance with one embodiment, 1s pro-
vided. To clusterize the plurality of threads, the I/O module
2035 may be utilized to collect the program counter hits profile
and the system call profile for each thread from the profiling
tool 120 (P410). The program counter hits profile and the
system call profile for a plurality of threads are normalized
and the similarity measures for two or more threads 1s com-
puted by the thread clusterizer 215 (P420, P430).

For example, assume that P(1,t) 1s a function that provides
the normalized number of hits by thread t at location 1. The
similarity measure for exemplary threads t1 and t2 would be
the sum over the locations 1 having 2 vectors, such that a
vector represents the address space along with an indication
of how many times a thread while being actively executed by

US 9,087,150 B2

S

a processor has accessed an address 1n the address space. For
example P(0,t1) indicates how many times address zero was
visited by thread t1.

The above function helps to distinguish between the
threads. Based on the above function i1 two threads represent
the same behavior (e.g., have visited an address 1n the address
space approximately the same number of times) then, option-
ally, one of the two threads 1s used for the purpose of cluster-
ing (1.e., the two threads are collapsed together). The similar-
ity ol behavior among threads may depend on the similarity
measures chosen. For example, 11 the value of abs(P(1,t1)-P
(1,12)), 11 abs(P(1,t1)-P(1,12))>min(P(1,t1), P(1,t2)), then false
similarities are filtered out when a commonly or frequently
visited address (1.e., hotspot) for one thread 1s also visited by
another thread. I1 so the similarity measure may be deemed to
be zero, for example.

Once the similarity measures for the threads 1s computed,
the similarity measures corresponding to selected threads 1s
combined (P440). The computed similarity measures may
provide an estimate for the bottlenecks associated with one or
more threads 1n a cluster (P4350). The estimation of the bottle-
necks may be performed by monitoring thread interaction,
recording the number of threads waiting on a type of resource
in the target system 140 or recording the number of threads
enabled to free up a type of resource. The momitoring and the
recording may provide data that helps display the communi-
cation flow between the threads and the clusters 1n the form of
one or more dependency graphs.

A visual quantification of the observed dependencies may
be performed by the performance factor generating graph
module 220 (P460). Such quantification may help identity the
number of threads running in an individual cluster or the
number of threads contributing to a root cause 1n a cluster
(P464, P466). The performance factor generating graph mod-
ule may generate one or more graphs that may include a
directed acyclic graph. The directed acyclic graph helps to
identify the strongly connected components and collapse
components that are related.

Accordingly, the number of threads running 1n an ndi-
vidual cluster and the number of threads contributing to a root
cause 1n the cluster may be aggregated by, for example, thread
aggregator 225 (P470). Further, the performance factor cal-
culator 210 may be used to calculate the performance factor
(P480) or the performance characteristics corresponding to
the threads 1n the target system 140 for the aggregated number
of threads in one or more clusters 1n the target system 140.
Calculation of the performance factor may include attaching
weight factors to the aggregated number of threads.

Depending on the value of the calculated performance
factor (e.g., 1f the performance factor i1s equal to zero), an
indication of the calculated performance factor or the perfor-
mance characteristics may be provided to the user 130 by way
of I/O module 205 (P490). For example, 1f the performance
factor meets a certain threshold, then the output provided may
indicate that the system or a thread 1s not 1n need of perfor-
mance improvement (P494) or otherwise indicate that a cer-
tain performance improvement activity may lead to improved
performance for an 1dentified thread (P496).

References 1n this specification to “an embodiment”, “one
embodiment”, “one or more embodiments” or the like, mean
that the particular element, feature, structure or characteristic
being described 1s included 1n at least one embodiment of the
disclosed subject matter. Occurrences of such phrases in this
specification should not be particularly construed as referring
to the same embodiment, nor should such phrases be inter-
preted as referring to embodiments that are mutually exclu-
stve with respect to the discussed features or elements.

10

15

20

25

30

35

40

45

50

55

60

65

6

In different embodiments, the claimed subject matter may
be implemented as a combination of both hardware and soft-
ware elements, or alternatively either entirely 1n the form of
hardware or entirely in the form of software. Further, com-
puting systems and program software disclosed herein may
comprise a controlled computing environment that may be
presented in terms of hardware components or logic code
executed to perform methods and processes that achieve the
results contemplated heremn. Said methods and processes,
when performed by a general purpose computing system or
machine, convert the general purpose machine to a specific
purpose machine.

Referring to FIGS. 5A and 5B, a computing system envi-
ronment 1n accordance with an exemplary embodiment may
be composed of a hardware environment 1110 and a software
environment 1120. The hardware environment 1110 may
comprise logic units, circuits or other machinery and equip-
ments that provide an execution environment for the compo-
nents of software environment 1120. In turn, the software
environment 1120 may provide the execution instructions,
including the underlying operational settings and configura-
tions, for the various components of hardware environment
1110.

Referring to FIG. 5A, the application software and logic
code disclosed herein may be implemented 1n the form of
machine readable code executed over one or more computing
systems represented by the exemplary hardware environment
1110. As illustrated, hardware environment 110 may com-
prise a processor 1101 coupled to one or more storage ele-
ments by way of a system bus 1100. The storage elements, for
example, may comprise local memory 1102, storage media
1106, cache memory 1104 or other machine-usable or com-
puter readable media. Within the context of this disclosure, a
machine usable or computer readable storage medium may
include any recordable article that may be utilized to contain,
store, communicate, propagate or transport program code.

A computer readable storage medium may be an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor medium, system, apparatus or device. The com-
puter readable storage medium may also be implemented in a
propagation medium, without limitation, to the extent that
such 1mplementation 1s deemed statutory subject matter.
Examples of a computer readable storage medium may
include a semiconductor or solid-state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk, an optical disk, or a carrier wave, where appropri-
ate. Current examples of optical disks include compact disk,
read only memory (CD-ROM), compact disk read/write (CD-
R/W), digital video disk (DVD), high definition video disk
(HD-DVD) or Blue-ray™ disk.

In one embodiment, processor 1101 loads executable code
from storage media 1106 to local memory 1102. Cache
memory 1104 optimizes processing time by providing tem-
porary storage that helps reduce the number of times code 1s
loaded for execution. One or more user interface devices 1105
(e.g., keyboard, pointing device, etc.) and a display screen
1107 may be coupled to the other elements 1n the hardware
environment 1110 either directly or through an intervening
I/O controller 1103, for example. A communication interface
umt 1108, such as a network adapter, may be provided to
enable the hardware environment 1110 to communicate with
local or remotely located computing systems, printers and
storage devices via intervening private or public networks
(e.g., the Internet). Wired or wireless modems and Ethernet
cards are a few of the exemplary types of network adapters.

US 9,087,150 B2

7

It 1s noteworthy that hardware environment 1110, in certain
implementations, may not include some or all the above com-
ponents, or may comprise additional components to provide
supplemental functionality or utility. Depending on the con-
templated use and configuration, hardware environment 1110
may be a machine such as a desktop or a laptop computer, or
other computing device optionally embodied 1n an embedded
system such as a set-top box, a personal digital assistant
(PDA), a personal media player, a mobile communication
unit (e.g., a wireless phone), or other similar hardware plat-
forms that have information processing or data storage capa-
bilities.

In some embodiments, communication interface 1108 acts
as a data communication port to provide means of communi-
cation with one or more computing systems by sending and
receiving digital, electrical, electromagnetic or optical sig-
nals that carry analog or digital data streams representing
various types ol information, including program code. The
communication may be established by way of a local or a
remote network, or alternatively by way of transmission over
the air or other medium, mcluding without limitation propa-
gation over a carrier wave.

As provided here, the disclosed software elements that are
executed on the illustrated hardware elements are defined
according to logical or functional relationships that are exem-
plary in nature. It should be noted, however, that the respec-
tive methods that are implemented by way of said exemplary
soltware elements may be also encoded in said hardware
clements by way of configured and programmed processors,
application specific mtegrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs) and digital signal processors
(DSPs), for example.

Referring to FI1G. 5B, software environment 1120 may be
generally divided into two classes comprising system sofit-
ware 1121 and application software 1122 as executed on one
or more hardware environments 1110. In one embodiment,
the methods and processes disclosed here may be imple-
mented as system software 1121, application software 1122,
or a combination thereof. System software 1121 may com-
prise control programs, such as an operating system (OS) or
an information management system, that instruct one or more
processors 1101 (e.g., microcontrollers) in the hardware envi-
ronment 1110 on how to function and process information.
Application software 1122 may comprise but 1s not limited to
program code, data structures, firmware, resident software,
microcode or any other form of information or routine that
may be read, analyzed or executed by a processor 1101.

In other words, application software 1122 may be imple-
mented as program code embedded 1n a computer program
product 1n form of a machine-usable or computer readable
storage medium that provides program code for use by, or 1n
connection with, a machine, a computer or any instruction
execution system. Moreover, application software 1122 may
comprise one or more computer programs that are executed
on top of system software 1121 after being loaded from
storage media 1106 into local memory 1102. In a client-
server architecture, application software 1122 may comprise
client software and server software. For example, in one
embodiment, client software may be executed on a client
computing system that 1s distinct and separable from a server
computing system on which server software 1s executed.

Software environment 1120 may also comprise browser
software 1126 for accessing data available over local or
remote computing networks. Further, software environment
1120 may comprise a user imterface 1124 (e.g., a graphical
user intertace (GUI)) for receiving user commands and data.
It 1s worthy to repeat that the hardware and software archi-

10

15

20

25

30

35

40

45

50

55

60

65

8

tectures and environments described above are for purposes
of example. As such, one or more embodiments may be
implemented over any type of system architecture, functional
or logical platform or processing environment.

It should also be understood that the logic code, programs,
modules, processes, methods and the order in which the
respective processes ol each method are performed are purely
exemplary. Depending on implementation, the processes or
any underlying sub-processes and methods may be per-
formed 1n any order or concurrently, unless 1ndicated other-
wise 1n the present disclosure. Further, unless stated other-
wise with specificity, the definition of logic code within the
context of this disclosure 1s not related or limited to any
particular programming language, and may comprise one or
more modules that may be executed on one or more proces-
sors 1n distributed, non-distributed, single or multiprocessing
environments.

As will be appreciated by one skilled 1n the art, a software
embodiment may include firmware, resident software, micro-
code, etc. Certain components including software or hard-
ware or combining soitware and hardware aspects may gen-
erally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the subject matter disclosed may be
implemented as a computer program product embodied 1n
one or more computer readable storage medium(s) having
computer readable program code embodied thereon. Any
combination of one or more computer readable storage medi-
um(s) may be utilized. The computer readable storage
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
clectronic, magnetic, optical, electromagnetic, inirared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing.

In the context of this document, a computer readable stor-
age medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device. A computer readable
signal medium may include a propagated data signal with
computer readable program code embodied therein, for
example, 1n baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, includ-
ing, but not limited to, electro-magnetic, optical, or any suit-
able combination thereof. A computer readable signal
medium may be any computer readable medium that 1s not a
computer readable storage medium and that can communi-
cate, propagate, or transport a program for use by or 1n con-
nection with an instruction execution system, apparatus, or
device.

Program code embodied on a computer readable storage
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out the disclosed opera-
tions may be written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages.

The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or

US 9,087,150 B2

9

the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Certain embodiments are disclosed with reference to flow-
chart illustrations or block diagrams of methods, apparatus
(systems) and computer program products according to
embodiments. It will be understood that each block of the
flowchart 1llustrations or block diagrams, and combinations
of blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, a special purpose
machinery, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions or acts specified in the tflowchart or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable storage medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions
which implement the function or act specified in the flowchart
or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer or machine imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions or acts specified 1n the
flowchart or block diagram block or blocks.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
cach block 1n the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable 1nstructions for implementing the speci-
fied logical functions. It should also be noted that, 1n some
alternative implementations, the functions noted 1n the block
may occur in any order or out of the order noted 1n the figures.

For example, two blocks shown 1n succession may, 1n fact,
be executed substantially concurrently, or the blocks may
sometimes be executed 1n the reverse order, depending upon
the functionality involved. It will also be noted that each block
of the block diagrams or flowchart illustration, and combina-
tions of blocks 1n the block diagrams or flowchart 1llustration,
may be implemented by special purpose hardware-based sys-
tems that perform the specified functions or acts, or combi-
nations of special purpose hardware and computer instruc-
tions.

The claimed subject matter has been provided here with
reference to one or more features or embodiments. Those
skilled 1n the art will recognize and appreciate that, despite of
the detailed nature of the exemplary embodiments provided
here, changes and modifications may be applied to said
embodiments without limiting or departing from the gener-
ally intended scope. These and various other adaptations and
combinations of the embodiments provided here are within
the scope of the disclosed subject matter as defined by the
claims and their full set of equivalents.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

What 1s claimed 1s:

1. A computer implemented method for enhancing perfor-
mance i1n a multithreaded computing system, the method
comprising:

receving a plurality of values associated with a perfor-
mance characteristic common to a plurality of threads in
a multithreaded computing system, wherein the perfor-
mance characteristic of the plurality of threads 1s based,
at least 1n part, on number of instructions per cycle, and
wherein the performance characteristic 1s determined
utilizing a profiling tool;

clusterizing the plurality of threads based on the perfor-
mance characteristic to group the plurality of threads,
wherein the performance characteristic indicates that the
plurality of threads represent an address space access
behavior:;

analyzing inter-thread communication between the plural-
ity of threads to identily threads that are adversely
affecting performance 1n the multithreaded computing,
system:

providing one or more dependency graphs for analyzing
inter-thread communication;

calculating a performance factor corresponding to the per-
formance characteristic to determine a type of perior-
mance 1mprovement activity to be performed on the
plurality of threads; and

performing the type of performance improvement activity
to enhance performance of the multithreaded computing
system.

2. The method of claim 1 further comprising combining a
plurality of similarity measures obtained from a pair of
threads among the plurality of threads.

3. The method of claim 1 further comprising estimating the
plurality of threads constituting an application bottleneck.

4. The method of claim 3 further comprising;:

monitoring an interaction between the plurality of threads;

recording number of the plurality of threads waiting on a
type of resource; and

recording number of the plurality of threads enabled to free
up the type of resource.

5. The method of claim 1 turther comprising quantifying a
plurality of dependencies among the plurality of threads by
way of the one or more dependency graphs.

6. The method of claim 3 further comprising collapsing a
plurality of dependencies in to a single node 1n the one or
more dependency graphs.

7. The method of claim 1, wherein calculating a perfor-
mance factor comprises 1dentitying a number of threads run-
ning 1n an individual cluster.

8. The method of claim 1, wherein calculating a perfor-
mance factor further comprises identifying a number of
threads contributing to a root cause.

9. The method of claim 1, wherein calculating a perfor-
mance factor comprises aggregating the number of threads
running 1n an individual cluster and the number of threads
contributing to a root cause.

10. A system to enhance performance of a multithreaded
program, the system comprising:

one or more computer processors;

a receiver configured to recerve one or more values asso-
ciated with a performance characteristic for a plurality
of threads in a multithreaded program, wherein the per-
formance characteristic for the plurality of threads is
based, at least 1n part, on number of 1nstructions per
cycle, and wherein the performance characteristic 1s
determined utilizing a profiling tool;

US 9,087,150 B2

11

a component configured to clusterize the plurality of
threads into a group based on the performance charac-
teristic to group the plurality of threads, wherein the
performance characteristic indicates that the plurality of
threads represent an address space access behavior;

a performance factor calculator configured to analyze
inter-thread communication between the plurality of
threads to i1dentily threads that are adversely atfecting
performance 1n the multithreaded program;

a performance factor generating graph module configured
to provide one or more dependency graphs for analyzing
inter-thread communication;

the performance factor calculator further configured to
calculate a performance factor corresponding to the per-
formance characteristic common to the plurality of
threads and to determine, based on the performance
factor, a type of performance improvement activity to be
performed on the plurality of threads;

an output module configured to provide an indication of the

performance factor; and

the one or more processors configured to perform the type

of performance improvement activity to enhance perfor-
mance of the multithreaded program.

11. The system of claim 10, wherein the receiver 1s enabled
to utilize the profiling tool.

12. The system of claim 11, wherein the profiling tool 1s
configured to determine a value corresponding to the perfor-
mance characteristic.

13. The system of claim 10, wherein the performance fac-
tor calculator further comprises the performance factor gen-
erating graph module.

5

10

15

20

25

30

12

14. The system of claim 13, wherein the performance fac-
tor generating graph module 1s enabled to quantily a plurality
of dependencies among the plurality of threads.
15. A computer program product comprising logic code
embedded 1n a non-transitory data storage medium, wherein
execution of the logic code on a computing system causes the
computing system to:
recetve a plurality of values associated with a performance
characteristic common to a plurality of threads 1n a mul-
tithreaded computing system, wherein the performance
characteristic of the plurality of threads 1s based, at least
in part, on number of instructions per cycle, and wherein
the performance characteristic 1s determined utilizing a
profiling tool;
clusterize the plurality of threads based on the performance
characteristic to group the plurality of threads, wherein
the performance characteristics indicates that the plural-
ity of threads represent an address space access behav-
1071

analyze inter-thread communication between the plurality
of threads to 1dentity threads that are adversely aflecting
performance 1n the multithreaded computing system:;

provide one or more dependency graphs for analyzing
inter-thread communication;

calculate a performance factor corresponding to the per-

formance characteristic to determine a type of perfor-
mance improvement activity to be performed on the
plurality of threads; and

perform the type of performance improvement activity to

enhance performance of the multithreaded computing
system.

	Front Page
	Drawings
	Specification
	Claims

