12 United States Patent

Rehman

et al.

US009083765B2

US 9,083,765 B2
Jul. 14, 2015

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS OF OFFLINE
PROCESSING

(75)

(73)

(%)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

Inventors: Samuelson Rehman, San Francisco, CA
(US); Anit Chakraborty, Burlingame,
CA (US); Hui Li, Fremont, CA (US)

Assignee:

Notice:

Appl. No.:

Filed:

Int. CL.

Oracle International Corporation,
Redwood Shores, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 2840 days.

10/884,077

Jul. 2, 2004

Prior Publication Data

US 2006/0004927 Al

GO6F 15/16
HO4L 29/08
GO6F 17/30
HO4L 29/06

U.S. CL
CPC

CPC

Jan. 5, 2006

(2006.0°
(2006.0°
(2006.0°
(2006.0°

)
)
)
)

HO4L 67/327 (2013.01); GO6F 17/30861
(2013.01); HO4L 67/24 (2013.01)

Field of Classification Search

GO6F 17/30861

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,832,218 A
5,893,116 A
0,072,490 A
6,457,879 Bl
6,460,060 Bl

11/1998
4/1999
6/2000

10/2002

10/2002

(1bbs et al.
Simmonds et al.
Bates et al.
Thurlow et al.

Maddalozzo, Jr. et al.

/’

6,591,288 B1* 7/2003 Edwardsetal. 709/203
6,931,439 Bl 8/2005 Hanmann et al.
6,990,534 B2* 1/2006 Mikhailovetal. 709/250
7,167,705 B2* 1/2007 Maesc.coovviiniinnn, 455/432.1
7,349,943 B2 3/2008 Linetal.coovvvvnnin.. 709/203

2003/0074204 Al 4/2003 Krothapalli et al.

2003/0184582 A1 10/2005 Cohen

2003/0208559 A1 11/2003 Velline et al.

2003/0233404 A1 12/2003 Hopkins

2004/0003031 Al 1/2004 Brown et al.

2004/0064570 Al 4/2004 Tock

2004/0205068 Al* 10/2004 Iyeretal.cocooeeeeeiinn, 707/10

2005/0091340 Al 4/2005 Facemire et al.

2005/0102370 A1* 5/2005 Linetal. ..cocoovvvvevinnnnn, 709/217

2005/0165735 Al 7/2005 Lin et al.

2005/0262302 Al1* 11/2005 Fulleretal. 711/119

OTHER PUBLICATIONS

U.S. Office Action dated Nov. 1, 2007, for U.S. Appl. No.
10/977,741, filed Oct. 29, 2004.
Internetsoft Corp, “Offline Navigator 1.05”, SoftwArea.Com/oflline.
htm, 2003, pp. 1-3.

(Continued)

Primary Examiner — Wen-Tai Lin
(74) Attorney, Agent, or Firm — Kraguljac Law Group, LLC

(57) ABSTRACT

Systems, methodologies, media, and other embodiments
associated with offline processing are described. One exem-
plary system embodiment can include a link detection logic
configured to determine a link status of the network connec-
tion where the link status includes an online state and an
offline state. An offline logic can be configured to allow the
application to continue operating when the network connec-
tion 1s 1n the offline state by redirecting network communi-
cations sent from the application and storing the network
communications in a post data store. The offline logic can be
configured to submit the network communications from the
post data store to the remote device when the link status
changes to the online state.

41 Claims, 8 Drawing Sheets

Client : Network
Side ! Side

Rendering 225
Processorf Event .
Broweer Processor
Controlley
\ XForms j 218
Processor 220 /‘ i /2
HTTP
DOM h_ s {Communication [« ;
230 Manager | Server
Post Doc !
zuu"f'
205 —~_| Offline
Logic
Source Link Post ‘
Data Store Detection Data Store SMt
Doc 1 Logic Data | Logie
Dec 2 350 ~ Datz 2 S 260
Doc 3 Data 3

US 9,083,765 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Oracle Corporation, “Oracle Application Server Wireless Client FAQ
Questions”, otn.oracle.com, Feb. 24, 2004, pp. 1-5, Oracle Corpora-

tion.

J. Wang, M. Scardina, “Making XML Technology Easier to Use”,
Oracle White Paper, Aug. 2003, pp. 1-17, Oracle Corporation.

Oracle Corporation, “Oracle Application Server Wireless 10g-Wire-
less Client”, Oracle Datasheet, Jan. 22, 2004, pp. 1-4, Oracle Corp.
Oracle Corporation, “Oracle Application Server 10g Wireless Cli-
ent—User’s Guide”, OTN Preview Release, Nov. 2003, pp. 1-37,

Oracle Corp.
U.S. Office Action dated Apr. 30, 2008, for U.S. Appl. No.

10/977,741, filed Oct. 29, 2004.

* cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 8 US 9,083,765 B2

Computing Device 105

110 ~ 130 120 115
L Communication @ | Remote Device

Application Logic
L]
-
Application
Offline Logic 100 125
135
Source Post Submit
Data Store | | Data Store Logic
160 \ 150 Posted Data
Link Detection Logic “~

140

Figure 1

U.S. Patent Jul. 14, 2015 Sheet 2 of 8 US 9,083,765 B2

- Client | Network
Side ! Side
Browser
230
Rendenng 225
Processor/ Event | _/
Browser Processor
Controller
XForms 215
Processor 220 _/ 210
HTTP

DOM N_ 40 Communication
Manager —
I Post Doc
200/
l
205

Source Iink Post
Data Store Detection Data Store Submit

Al o A Al i shie e e s Ee wr ar wr e s miy Gl ok A A A R Wl A O A R B B B e B B iy sl e e E e EE EE EE e e ae s wly e e e . . -— e =i dlr i SR IR JEE A A A G e e e i e ke Al whie sl ol ale ol Al Al ol Al e e A Al iy iy e ww e b dr alk wle e AR AR S OIS A G

] [.ooi
Doc 1 Logic Data 1 o8l
Doc 2 250 Data 2 260
Doc 3 Data 3
245 265

Figure 2

U.S. Patent Jul. 14, 2015 Sheet 3 of 8 US 9,083,765 B2

‘ Document

305
\INext Pagel

310 320
N
Back | Submit I

310) 305
| Back | lNext Pagel

GotoPage: 1 2 3

Form 1 Form 2 E

E 315 i
Input1 [| Table Input3 | |
| Input2 [} i E Input4 []
i i Inputs [|

Figure 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 8 US 9,083,765 B2

400 \

Start

Receive One or More 405
Forms from Remote Device
Store the Forms Locally 410

To Computing Device

When Offline, Provide Simulated Online 415
State By Allowing User To

Navigate Stored Forms

In Response To One Or More Requests 420
To Post Data, Transparently Redirect
The Requests And Store Locally

In Response To The Communication Link 425

Changing To An Online State, Transmitting
The Data To The Remote Device

End

Figure 4

U.S. Patent Jul. 14, 2015 Sheet 5 of 8 US 9,083,765 B2

500 \

Start

505

Store One or More

Forms from Web-Application

Detect If Network Connectivity 510
Is Online Or Offline

If Offline, 515

Intercept Data;
Store Data In Post Data Store;
Allow User To Continue

520

If network changes to online,
Retrieve date from post data store;
Transmit data to web-application

End

Figure 5

U.S. Patent Jul. 14, 2015 Sheet 6 of 8 US 9,083,765 B2

600 ~__

Start
605

Detect Link Connection

615 610

Set

Link Status No
To Offline

Yes
Set Link Status
To Online

Data in
Post Data
Store?

620

625

No

Yes

Initiate Submit: 630
Retrieve Data In Sequence

635
Figure 6

Post Data To Destination

Is Post
Data Store
Empty?

640

Yes

End

U.S. Patent Jul. 14, 2015 Sheet 7 of 8 US 9,083,765 B2

700 \

Start

Recetving One Or More 705
Pages Including Page
Navigation Functions

Store the pages with page 710
Navigation properties

If Ofﬂine, 715
Intercept network communications
Associated with page
navigation functions

720

Process the selected page navigation

Function locally

End

Figure 7

U.S. Patent Jul. 14, 2015 Sheet 8 of 8 US 9,083,765 B2

814 816

Process Data

1

Computer 800

Processor 802 l Memory 804 i

Bus 808 |

| _ I/O
Oftline Logic 830 Controllers 840

I/O
Interfaces 818
I/O Ports 810

Network
Devices 82()

Disk 80

h

Figure 8

US 9,083,765 B2

1

SYSTEMS AND METHODS OF OFFLINE
PROCESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application
entitled, “Parameter Passing in Web Based Systems™, Ser. No.

10/977,741 filed Oct. 29, 2004, inventors: Rehman et al.,
which 1s also assigned to the present assignee.

BACKGROUND

Many computing devices, including mobile computing
devices, are capable of communicating to remote devices
over a network like the Internet. In one example, a client-side
computing device can allow a user to receive data from and
provide data to a web-based application provided by a server.
If the web-based application includes XHTML/XFORMS
documents, data submissions are performed while an on-line
connection 1s available. For example, posting of instance data
using an XFORM from the computing device to the server
requires the network connection and/or the server to be avail-
able at the time when the post operation 1s requested. If any
part of the network 1s not available at the time of the request,
the post operation will fail and the data may be lost. Examples
of the network being unavailable include if a wireless network
has no signal, a local area network 1s disconnected, the server
1s either busy or temporarily down, and the like.

When the computing device loses 1t’s communication with
the server, the user can not continue working with the web-
based application until the server and/or the network resumes
operation. Additionally, if the user selects an option such as a
“next page” button and the network connection 1s oftline, the
server will not be available to respond to the selected option
and, thus, cannot 1dentity the next page. An error may be
issued and the user will not be able to navigate between
web-pages until the system becomes online.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
example systems, methods, and so on that illustrate various
example embodiments of aspects of the invention. It will be
appreciated that the illustrated element boundaries (e.g.,
boxes, groups of boxes, or other shapes) 1n the figures repre-
sent one example of the boundaries. One of ordinary skill 1n
the art will appreciate that one element may be designed as
multiple elements or that multiple elements may be designed
as one element. An element shown as an internal component
of another element may be implemented as an external com-
ponent and vice versa.

FIG. 1 illustrates an example system diagram of an
example offline logic.

FIG. 2 1llustrates an example offline processing system
capable of processing XForms-compatible documents.

FIG. 3 1llustrates an example logical representation of an
clectronic document that includes multiple forms/pages.

FIG. 4 1llustrates an example methodology that can be
associated with providing oitline processing to a client-side
device.

FIG. 35 1llustrates an example methodology that can be
associated with providing offline processing.

FIG. 6 1illustrates an example methodology that can be
associated with detecting a status of a link connection and
submitting data to a remote destination.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 illustrates an example methodology that can be
associated with providing offline processing of page naviga-
tion functions.

FIG. 8 illustrates an example computing environment 1n
which example systems and methods illustrated herein can be
implemented and/or can operate within.

DETAILED DESCRIPTION

In one example, a system can be configured to provide
olif-line processing of network communications that allows a
user operating a computing device to continue working when
network connectivity between the computing device and a
remote device 1s lost or 1s temporarily unavailable. One
example environment where the network connection can be
intermittent includes a wireless connection that can periodi-
cally change between being online and ofiline.

Suppose the user 1s interacting with an online web appli-
cation and 1s inputting data through, for example, one or more
forms provided by the web application. At various times, the
user may submit the inputted data to the web application,
which will be referred to a submit request. This may occur, for
example, when a button 1s clicked on the screen that would
initiate a network operation such as an HT'TP “post” opera-
tion, a “get” operation, or other network communication
operation, 1f programmed as such. Various types of buttons
can include a “submit” button, a “finished” button, or other
type of selectable object that 1s programmed to submit data to
the web application. It will also be appreciated that a submait
request can occur programmatically without the user having
to click a button.

However, 1f the network connection 1s offline at the time of
the submit request, one example offline system described
herein can allow the user to continue working as though the
submit request was successiul. If additional submit requests
are made while the network connection 1s offline, the example
system can be configured to preserve the submitted data until
the network becomes available. Once the network 1s avail-
able, the preserved submitted data can then be posted to the
web application 1n an appropriate sequence to create a syn-
chronized state between the data on the web application and
the data on the computing device. In one example, the offline
system can operate as a background task that 1s transparent to
the user.

It will be appreciated that the term “offline” or “offline
state” will be used to refer to any of a variety of conditions that
can result 1n a non-responsive network. For example, the
conditions may 1nclude, but are not limited to: when a wire-
less commumnication link loses 1t’s signal, when a physical
connection 1s disconnected, when a server or other network
component 1s busy, temporarily unavailable, and/or discon-
nected from the network, and the like.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions even when only a
singular term 1s used.

As used 1 this application, the term “computer compo-
nent” refers to a computer-related entity, either hardware,
firmware, software, a combination thereotf, or software in
execution. For example, a computer component can be, but is
not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and a computer. By way of 1illustration, both an
application running on a server and the server can be com-

US 9,083,765 B2

3

puter components. One or more computer components can
reside within a process and/or thread of execution and a
computer component can be localized on one computer and/
or distributed between two or more computers.

“Computer communication” or “network communica-
tion”, as used herein, refers to a communication between two
or more computing devices (e.g., computer, personal digital
assistant, cellular telephone) and can be, for example, a net-
work transier, a file transfer, an applet transfer, an email, a
hypertext transfer protocol (HTTP) transfer, and so on. A
computer communication can occur across, for example, a
wireless system (e.g., IEEE 802.11), an Ethernet system (e.g.,
IEEE 802.3), a token ring system (e.g., IEEE 802.5), a local
arca network (LAN), a wide area network (WAN), a point-
to-point system, a circuit switching system, a packet switch-
ing system, and so on.

Computer-readable medium’, as used herein, refers to a
medium that participates 1n directly or indirectly providing
signals, 1nstructions and/or data. A computer-readable
medium may take forms, including, but not limited to, non-
volatile media, and volatile media. Non-volatile media may
include, for example, optical or magnetic disks and so on.
Volatile media may Include, for example, optical or magnetic
disks, dynamic memory and the like. Common forms of a
computer-readable medium include, but are not limited to, a
floppy disk, a flexible disk, a hard disk, a magnetic tape, other
magnetic medium, a CD-ROM, other optical medium, other
physical medium with patterns of holes, a RAM, a ROM, an
EPROM, a FLASH-EPROM, or other memory chip orcard, a
memory stick, and other media from which a computer, a
processor or other electronic device can read.

“Data store”, as used herein, refers to a physical and/or
logical entity that can store data. A data store may be, for
example, a database, a table, a {ile, a list, a queue, a heap, a
memory, a register, and so on. A data store may reside 1n one
logical and/or physical entity and/or may be distributed
between two or more logical and/or physical entities.

“Logic”, as used herein, includes but i1s not limited to
hardware, firmware, software and/or combinations of each to
perform a function(s) or an action(s), and/or to cause a func-
tion or action from another logic, method, and/or system. For
example, based on a desired application or needs, logic may
include a software controlled microprocessor, discrete logic
like an application specific integrated circuit (ASIC), a pro-
grammed logic device like a field programmable gate array
(FPGA), amemory device containing instructions, combina-
tions of logic devices, or the like. Logic may include one or
more gates, combinations of gates, or other circuit compo-
nents. Logic may also be fully embodied as software. Where
multiple logical logics are described, 1t may be possible to
incorporate the multiple logical logics into one physical logic.
Similarly, where a single logical logic 1s described, 1t may be
possible to distribute that single logical logic between mul-
tiple physical logics.

Network Communication Protocol examples include net-
work communications between a client computer and a server
that may take place using one of several network protocols,
such as hypertext transter protocol (HT'TP), file transfer pro-
tocol (F'TP), Common Internet File System (CIFS) protocol,
Gopher, other available protocol, or a custom protocol. For
purposes of simplicity, the examples described herein will be
generally described with respect to HITP.

An “operable connection”, or a connection by which enti-
ties are “operably connected”, 1s one 1n which signals, physi-
cal communications, and/or logical communications may be
sent and/or recewved. Typically, an operable connection
includes a physical interface, an electrical interface, and/or a

10

15

20

25

30

35

40

45

50

55

60

65

4

data interface, but 1t 1s to be noted that an operable connection
may include differing combinations of these or other types of
connections suflicient to allow operable control. For
example, two entities can be operably connected by being
able to communicate signals to each other directly or through
one or more ntermediate entities like a processor, operating
system, a logic, software, or other entity. In the context of a
network connection, an operable connection may be created
though one or more computing devices and network compo-
nents. Logical and/or physical communication channels can
be used to create an operable connection.

“Signal”, as used herein, includes but 1s not limited to one
or more electrical or optical signals, analog or digital signals,
a bit or bit stream, and/or other means that can be received,
transmitted and/or detected. A signal can also take other
forms such as data, one or more computer or processor
istructions, messages, and the like.

“Software”, as used herein, includes but 1s not limited to,
one or more computer or processor instructions that can be
read, interpreted, compiled, and/or executed and that cause a
computer, processor, or other electronic device to perform
functions, actions and/or behave 1n a desired manner. The
instructions may be embodied 1n various forms like routines,
algorithms, modules, methods, threads, and/or programs
including separate applications or code from dynamically
linked libraries. Software may also be implemented 1n a vari-
ety of executable and/or loadable forms including, but not
limited to, a stand-alone program, a function call (local and/or
remote), a servelet, an applet, mnstructions stored 1n a memory,
part ol an operating system or other types of executable
instructions. It will be appreciated by one of ordinary skill 1in
the art that the form of software may be dependent on, for
example, requirements ol a desired application, the environ-
ment 1n which it runs, and/or the desires of a designer/pro-
grammer or the like. It will also be appreciated that computer-
readable and/or executable instructions can be located i one
logic and/or distributed between two or more communicat-
ing, co-operating, and/or parallel processing logics and thus
can be loaded and/or executed 1n serial, parallel, massively
parallel and other manners.

Suitable software for implementing the various compo-
nents of the example systems and methods described herein
include programming languages and tools like Java, Pascal,
C#, C++, C, CGl, Perl, SQL, APIs, SDKs, assembly, firm-
ware, microcode, and/or other languages and tools. Software,
whether an entire system or a component of a system, may be
embodied as an article of manufacture and maintained or
provided as part of a computer-readable medium as defined
previously. Another form of the software may include signals
that transmit program code of the software to a recipient over
a network or other communication medium. Thus, 1n one
example, a computer-readable medium has a form of signals
that represent the software/firmware as 1t 1s downloaded from
a web server to a user. In another example, the computer-
readable medium has a form of the software/firmware as 1t 1s
maintained on the web server. Other forms may also be used.

“User”, as used herein, includes but 1s not limited to one or
more persons, software, computers or other devices, or com-
binations of these.

Some portions of the detailed descriptions that follow are
presented 1n terms of methods, algorithms, and/or symbolic
representations ol operations on data bits within a memory.
These algorithmic descriptions and representations are the
means used by those skilled in the art to convey the substance
of their work to others. An algorithm 1s here, and generally,
conceived to be a sequence of operations that produce a result.
The operations may 1include physical manipulations of physi-

US 9,083,765 B2

S

cal quantities. Usually, though not necessarily, the physical
quantities take the form of electrical or magnetic signals
capable of being stored, transiferred, combined, compared,
and otherwise manipulated 1n a logic and the like.

It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, ele-
ments, symbols, characters, terms, numbers, or the like. It
should be borne 1n mind, however, that these and similar
terms are to be associated with the appropriate physical quan-
tities and are merely convenient labels applied to these quan-
tities. Unless specifically stated otherwise, it 1s appreciated
that throughout the description, terms like processing, inter-
cepting, storing, redirecting, detecting, determining, display-
ing, or the like, refer to actions and processes of a computer
system, logic, processor, or similar electronic device that
manipulates and/or transforms data represented as physical
(electronic) quantities.

[lustrated 1n FIG. 1 1s one example of an offline processing
system such as an ofthne logic 100 that i1s configured to
operate within a computing device 105. The offline logic 100
can be applicable to operate with a variety ol computing
devices 105 such as a computer, a mobile computer, a hand-
held computing device, a cellular device, and the like. The
computing device 105 can include a software application 110
that 1s configured to communicate with a remote device 115
using a network connection over a network 120. The remote
device 115 can include one or more servers that can provide
one or more web applications 125 that can be accessed by a
user operating the computing device 105. The network 120
can include one or more networks such as a local area net-
work, wireless network, cellular network, intranet, Internet,
and/or combinations of networks.

To facilitate network connectivity, the computing device
105 can 1include a communication logic 130 that can be con-
figured as a network interface to the network 120. The com-
munication logic 130 can be configured to operate with a
variety of network communication protocols. Examples of
network interfaces that can be used are described with refer-
ence to FIG. 8.

The application 110 can be, for example, a browser that
allows a user to interact with the web application 125 once a
network connection 1s established. The browser can include,
for example, Netscape communicator, Microsoit’s Internet
explorer, or any other software application that may be used to
interpret and process a markup language, such as HTML,
SGML, DHTML, XML, XHTML, XFORMS, orthe like. The
browser also may include software plug-in applications that
allow the browser to interpret, process, and present different
types of information. The browser may include any number of
application tools, such as, for example, Java, Active X, Java-
Script, and Flash. The application 110 can control the display
of web pages that may be provided by the web application 1235
as the user navigates through the web application 125 (e.g.
through web pages and links).

In one example, the web application 125 may include one
or more forms that include one or more input fields that allow
a user to enter data and submit the data to the web application
125. Example forms may include a questionnaire, a purchase
order, a user profile, modifiable account information, and the
like. As the user enters data into the forms of the web appli-
cation 1235, input data 135 1s created locally on the computing
device 105.

At various points 1n time, the user may submit the 1nput
data 135 to the web application 125 as previously described
(e.g. by selecting a submait button/object). Transmission of the
input data 135 and/or other types of signals from the comput-
ing device 105 to the remote device 115 will be generally

5

10

15

20

25

30

35

40

45

50

55

60

65

6

referred to as “network communications.” Input data 135 that
1s successiully recerved by the web application 125 1s repre-
sented by posted data 140. The posted data 140 may be used
to create and/or modity data 1n a database or other type of data
store that 1s used by the web application 125. A successiul
transmission assumes that the network connection between

the computing device 105 and the remote device 115 15 1n an
online state.

If, however, the network connection 1s 1n an offline state
when a submit request 1s made, the offline logic 100 1s con-
figured to process the submit request and allow the applica-
tion 110 to continue operating. For example, the offline logic
100 can be configured to redirect network communications
sent from the application 110 and store the network commu-
nications in a post data store 145 rather than prohibiting the
submit request and returning an error message to the appli-
cation 110. From the point of view of the application 110
and/or the user, the network connection can appear as being
online and the submit request can appear as being success-
tully processed. As long as the network connection is ofiline,
network communications can be redirected to the post data
store 143.

In response to the network connection becoming online,
the offline logic 100 can then submit the network communi-
cations from the post data store 145 to the remote device 115.
In one example, the offline logic 100 can be configured to
submit the network communications from the post data store
145 1n a first 1n, first out sequence. A submit logic 150 can be
provided as part of the offline logic 100 to handle the submis-
sion of data from the post data store 145. For example, the
submit logic 150 can be configured to execute as a back-
ground thread that retrieves each entry from the post data
store 145 and 1nitiates an HT TP Post, an HTTP Get, or other
suitable operation to transmit the data from each entry to the
remote device 115. In this manner, the application 110 can
resume 1ts state as though the submitted data was successtully
transmitted 1n the first place.

To determine whether the network connection 1s in an
online state or offline state (e.g. a link status), a link detection
logic 155 can be provided. In one example, the link detection
logic 155 can be configured to periodically and automatically
determine the link status while the application 110 1s func-
tioning. In another example, the link detection logic 155 may
also be programmed to be 1mtiated 1n response to a user
request. The link detection logic 155 can perform one or more
tests to recerve iformation about the network connection
and/or network interface. The tests can include, but are not
limited to, querying an operating system of the computing
device 1035, determining whether an IP address 1s present,
querying one or more network components, pinging a gate-
way server, getting a response from the remote device 115,
and the like. Certain tests can be programmed to execute more
frequently than others depending on how much time, cost, or
resources they require.

In one example, the offline logic 100, and any of its com-
ponents, can be configured as processor executable instruc-
tions provided by a computer-readable medium. The proces-
sor executable instructions can execute as one or more
background tasks within the computing device 105. The one
or more background tasks can included threads. In another
example, the oftline logic 100 can be configured as a browser
or software configured to commumnicate with a browser, and
may be part of the application 110 or software that commu-
nicates with the application 110. Other forms of software will
be readily appreciated. Additionally, the oftline logic 100 can
be configured to process network communications that are

US 9,083,765 B2

7

compatible with one or more formats like XForms, XHTML,
HTML, gif, MIME (Multipurpose Internet Mail Extensions)
compatible communications.

The ofiline logic 100 can also allocate a source data store
160 configured to maintain source documents from the web
application 125. For example, the web application 125 might
include an online employment application that may include
five displayable web pages. When a user of the computing
device 105 accesses the web pages of the web application
125, the oftline logic 100 can be configured to recetve one or
more documents that define the pages of the employment
application in advance (e.g. preload the documents). The
pages can be stored in the source data store 160. The preload
can be performed to prepare the computing device 105 in case
ol a lost network connection.

In the event that the network connection changes to an
offline state, the offline logic 100 can allow the application
110 and the user to continue navigating the pages of the
employment application by retrieving them from the source
data store 160. For example, suppose a user 1s currently
entering data on page I of the employment application and the
network connection 1s lost. IT the user selects a “next page”™
button or other type of page navigation function, a network
communication will be generated for response by the remote
device 115. However, the remote device 115 will not be
available to identily what the next page 1s since the system 1s
offline. In this situation, the offline logic 100 can be config-
ured to redirect the network communications from the appli-
cation 110 when the system 1s offline and process the navi-
gation requests using the source data store 160. If page 2 1s
available in the source data store 160, 1t can be retrieved and
displayed to the user and allow the user to continue working.
In this manner, the offline logic 100 can simulate an online
state. More detailed examples will be described with refer-
ence to the example system of FIG. 2.

[lustrated 1n FI1G. 2 1s an example offline processing sys-
tem 200 that can operate with a client-side computing device.
The oftline processing system 200 can include an oftline logic
205 that 1s configured to process network communications
that may be generated by the client-side computing device
and directed to a server 210. It will be appreciated that one or
more network components can exist between a network inter-
face of the client-side device (e.g. a network communication
manager 215) and the server 205, which are not shown 1n FIG.
2.

The example offline processing system 200 will be
described as a system configured to process XForms.
“XForms” refers to a specification of web forms that can be
used with a wide variety of platforms. The XForms specifi-
cation as well as other related information 1s described by the
W3C (the World Wide Web Consortium.) at www.w3.org.
XForms 1s an XML application that represents the next gen-
eration of forms for the Web. By splitting traditional XHTML
forms 1nto three parts: an XForms model, instance data, and
user interface, XForms separates presentation from content,
allows reuse, gives strong typing, reduces the number of
communication round-trips to a server, as well as offering
device independence and a reduced need for scripting.

The oftline logic 200 can be part of a run-time environment
including an engine that can process XForms, process XPath
(XML Path language), and render XHTML. The run-time
environment can be configured for any desired platform such
as a JAVA-based platform, a Microsoit-based platiorm, or the
like. In one example, the processing system 200 can include
the offline logic 203, the network communication manager
215, an XForms processor 220, an event routing processor
225, and a rendering processor/browser controller 230. The

10

15

20

25

30

35

40

45

50

55

60

65

8

processing system 200 can be configured as a client-side
stack that plugs into a browser 235 and enables the browser
235 to process XForms and other application logic. The sys-
tem 200 can be configured using any type of logic such as
processor executable instructions provided by a computer-
readable medium.

The components of the system 200 can be generally
described as follows. The network communication manager
215 can be configured to process network communications
between the system 200 and a remote device like the server
210 over a network communication link. Once the commu-
nication link 1s established, the network communication man-
ager 215 can recerve one or more documents from the server
210 that represent one or more web pages that display infor-
mation and/or allow information to be inputted based on
XForms. In one example, the recetved documents may be in
a serialized format that will be reformatted to 1t’s original
form.

The XForms processor 220 1s a software application or
program that implements and conforms to the XForms speci-
fication. The XForms processor 220 can be configured to
perform the reformatting function by parsing the serialized
document data, and generating a run-time DOM 240 (docu-
ment object module). The document object module 1s a rep-
resentation of the components, attributes, formats, and other
properties of the document into objects. The DOM 240
becomes an application programming interface for HIML
and XML documents. The DOM 240 defines the logical
structure of documents and the way a document 1s accessed
and manipulated. Using the document object module 240,
programmers can build documents, navigate their structure,
and add, modity, or delete elements and content.

A “containing document”, as referred to herein as a docu-
ment, can be an XHTML document, 1n which one or more
model elements are found. XForms processing places no
limits on the number of individual forms that can be placed 1n
a single contaiming document. When a single document con-
tains multiple forms, each form will have a separate model
clement, each with an 1dentification attribute so that they can
be referenced from other portions in the containing docu-
ment. An XForms Application Deployment file (.xad) 1s used
to define a list of required resources for an application and can
be searched to determine properties ol a document.

One example of a document 1s illustrated in FIG. 3. The
document 300 1s shown with multiple forms such as three
separate displayable pages represented by form 1, 2, and 3.
The forms 1-3 can be programmatically defined with
attributes and linked together so as to allow a user to navigate
the pages through displayed page navigation options. For
example, a “next page” button 305 when selected can cause
the next sequential page/form to be displayed. Similarly, a
“back™ button 310 will cause the previous form to be dis-
played. Another type of page navigation option can include a
“Go to Page” option that allows a user to jump to a selected
page from an available set of pages. Each form may present
information to a user such as table 315 and/or one or more
data mput fields like inputs 1-5.

When the user completes entering data 1n one or more of
the mput fields 1-5, a submit button 320 may be selected that
can 1nitiate an operation to transfer the inputted data to the
server 210. This may be performed, for example, using an
HTTP post or get operation, or other type of transmission
operation. In general, XForms 1s designed to gather instance
data, serialize it into an external representation, and submit
the data with a communication protocol to the server 210.

With reference again to FIG. 2 and the processing system
200, once a recerved document 1s parsed and i1s ready to

US 9,083,765 B2

9

display, the document 1s sent from the XForms processor 220
to the rendering processor 230. The rendering processor 230
1s configured to translate the document from an mternal rep-
resentation (e.g. the DOM 240) to a format that the browser
235 understands. The browser 235 then displays the docu-
ment. In one example style sheets can be used to help render
the document. At this point, one page from the document 1s
displayed. The document may allow a user to enter informa-
tion through one or more data entry fields. As described in
previous examples, the documents received from the server
210 can be forms that can be completed by a user and sub-
mitted back to the server 210. Examples of forms may include
a purchase order, a questionnaire, or other type ol document
that can include data entry fields.

Additionally, once the document 1s recerved by the network
communication manager 215, the document can be processed
by the offline logic 205 and stored 1n a source data store 245.
The source data store 245 can be allocated and configured to
maintain received documents. The stored documents (and
theirr multiple forms) can then be used to allow a user to
continue processing the documents 11 the network connection
1s lost (e.g., an offline state). This will be described 1n greater
detail with reference to page navigation examples.

As previously explained, an offline status can be caused by
a variety of conditions that include, but are not limited to, a
lost communication signal, non-responsive network compo-
nents, busy or non-responsive server 210, and the like. In one
example, the offline logic 205 can also be configured to peri-
odically determine the status of the communication link to
detect whether the status 1s online or offline. To determine the
status of the network connection, a link detection logic 250
can be provided. The link detection logic 250 can be config-
ured to perform a sequence of status tests that can include
checking local network interfaces, network components, the
server 210, and/or other components that may be part of the
network communication channel.

Page Navigation Example

In response to the link status changing to an offline state,
the offline logic 205 can be configured to mtercept and redi-
rect network communications from the system 200 to be
processed locally by the system 200. For example, it the
browser 235 1s currently displaying “form 1 from document
300 shown 1n FIG. 3, and the user selects the next page button
305, the server 210 would not be available to identify what the
next page 1s. Rather, the offline logic 205 can be configured to
determine what the next page 1s by using the source data store
245. By reviewing attributes of the current page (e.g. form 1)
stored 1n the data store 245, the next page can be determined
(e.g. form 2). If the next page 1s available 1n the source data
store 245, the oftline logic 205 can process the “next page”
request locally by retrieving and providing “form 2 to the
XForms processor 220 as though “form 27 was recerved from
the server 210. The user can thus continue working i1n an
oltline state with no interruption. In another example, a mini-
mal interruption may occur if the offline logic 205 1s config-
ured to provide a message to the user indicating that the
system 1s now 1n an oftline state. As long as the source data
store 245 contains forms that are associated to a web appli-
cation, the user of the system 200 can navigate the forms 1n an
olfline state as though the system were online.

The oftline logic 205 can also be configured to maintain
forms from multiple web applications since a user might
access different web pages that may activate different web-
based applications. Documents recerved from each different
web application can be stored in the source data store 245
with appropriate attributes that identify 1t’s corresponding
web application. Other attributes can also be stored such as to

10

15

20

25

30

35

40

45

50

55

60

65

10

identily navigation properties of each document. Example
navigation properties for a selected page/form can include
identifiers for document name, next page, previous page, or
other desired attribute. Thus, when the system 200 1s 1n an
offline state and the browser 235 1s currently displaying a
selected form, the oftline logic 205 can provide the appropri-
ate document navigation based on the attributes of each form
stored 1n the source data store 245. In this manner, the offline
logic 205 can provide a simulated online state that can be
transparently performed to the user.

Data Submission Example

In the event that a submit request 1s initiated to submit
instance data from a form to the server 210, the offline logic
205 can check the link status of the network connection
and/or the submit request can be attempted to determine the
link status. I the link status 1s offline, the offline logic 205 can
be configured to 1ntercept the associated network communi-
cations (e.g. including the data to be submitted) to the web
application on the server 210. The data can then be stored 1n
a post data store 255 until the link status becomes online and
the data can be posted to the server 210. In one example, the
post data store 255 can be configured as a first 1n, first out
queue. Each submitted data (e.g., data 1-3, etc.) can be stored
in separate entries 1 the post data store 255 along with
desired state information. From the browser’s point of view
(and the user’s), it will appear as though the data submaitted by
the user was successiully posted to the web-based application
on the server 210. The system, thus, can allow the user to
continue accessing and processing the one or more forms
from the source data store 2435 and continue working rather
than having to stop processing due to a networking error.

In response to the link status changing to the online status,
which can be detected by the link detection logic 250, the data
stored 1n the post data store 255 can then be sequentially
transmitted and posted to the server 210. A submait logic 260
can be configured to perform the submission process as a
background task that 1s transparent to the user. The data from
the post data store 255 can be posted to the server 210 1n
separate operations and 1n a predetermined sequence that
preserves the state of the data. For example, the data can be
submitted 1n a first 1n, first out sequence. Thus using the
offline logic 205, a simulated online state can be provided
during an actual offhine state that allows a user to continue
working and reduces or prevents data from being lost dueto a
tailed network connection.

It will be appreciated that the offline logic 203, the link
detection logic 250, and the submit logic 260 can be embod-
1ied as processor executable structions provided by a com-
puter-readable medium. The computer-readable medium can
be configured as a plug-in for the browser 235, or can be
configured as part of the browser 235. It will be appreciated
that one or more, and any combination of the illustrated
components of system 200 can be implemented together as
soltware provided by a computer-readable medium.

Example methods may be better appreciated with refer-
ence to the flow diagrams of FIGS. 3-7. While for purposes of
simplicity of explanation, the 1llustrated methodologies are
shown and described as a series of blocks, 1t 1s to be appreci-
ated that the methodologies are not limited by the order of the
blocks, as some blocks can occur 1n different orders, occur at
different times, and/or occur concurrently with other blocks
from that shown and described. Moreover, less than all the
illustrated blocks may be required to implement an example
methodology. Furthermore, additional and/or alternative
methodologies can employ additional, not illustrated blocks.

In the flow diagrams, blocks denote “processing blocks”
that may be implemented with logic. In the case where the

US 9,083,765 B2

11

logic may be software, a tlow diagram does not depict syntax
for any particular programming language, methodology, or
style (e.g., procedural, object-oriented). Rather, a flow dia-
gram 1illustrates functional information one skilled 1n the art
may employ to develop logic to perform the 1llustrated pro-
cessing. It will be appreciated that in some examples, pro-
gram elements like temporary variables, routine loops, and so
on are not shown. It will be further appreciated that electronic
and software logic may mmvolve dynamic and flexible pro-
cesses so that the 1llustrated blocks can be performed 1n other
sequences that are different from those shown and/or that
blocks may be combined or separated 1into multiple compo-
nents. It will be appreciated that the processes may be imple-
mented using various programming approaches like machine
language, procedural, object oriented and/or artificial itelli-
gence techniques.

Each methodology can be embodied by a computer-read-
able medium that provides processor-executable instructions
that are operable with a computing device. The processor
executable instructions can be configured to be operable to
perform each respective methodology and it’s equivalents.
The foregoing applies to all methodologies herein.

[lustrated i FIG. 4 1s an example methodology 400 that
can be associated with processing a submit operation from a
client-side computing device when network connectivity 1s 1n
an oftline state. The example methodology 400 can initiate by
receiving one or more forms from a remote device over a
communication link (Block 405). The one or more forms can
be part of documents that are transmitted from a web-based
application that 1s accessed by the user operating a computing
device. The one or more forms can allow data to be processed
online by the user such as by inputting data within data entry
fields. The one or more forms can then be stored locally to the
computing device 1n preparation for an oitline state (Block
410). Block 410 can include pre-loading the forms from the
remote device prior to the user accessing all of the forms
through the web-based application. For example, 1f a user
accesses page 1 from a group of forms having ten web pages,
some or all of the ten pages can be pre-loaded prior to the user
visiting each of the pages.

In response to the communication link changing from an
online state to an offline state, a simulated online state can be
provided by allowing the user to navigate the one or more
forms that are stored (Block 415). In response to one or more
requests to post data from the one or more forms to the remote
device while the communication link 1s 1in the offline state, the
data to be posted 1s locally stored 1n a sequence (Block 420).
In one example, the sequence can be a first 1n, first out
sequence by storing the data 1n a queue. The user can continue
working with the forms stored locally while the network
communication link 1s 1n an oftline state.

It will be appreciated that the requests to post data or to
navigate pages can trigger operations that imitiate network
communications to be transmitted from the computing device
to the remote device, and thus to the web-based application.
For example, when a user selects a “submit button” that may
be present on a displayed page, the “submit button” may be
programmed to trigger an event that causes a network com-
munication to be transmitted to the web-based application.
An example network communication can be an HT1'TP Post or
Get operation.

To provide a simulated online state during an offline state,
these and other network communications generated from the
computing device can be intercepted and redirected for local
processing on the computing device. In one example, this can
be performed transparent to the user. In this manner, the
“submit button™ and similar options do not have to be repro-

10

15

20

25

30

35

40

45

50

55

60

65

12

grammed 1n the web-application 1n order to function 1n an
offline state. Rather, the web application that provides the
“submit button™ can function as normal by 1nitiating a net-
work communication 1n response to the “submit button”, but
the generated network communications will be redirected and
processed locally unknown to the web application.

With further reference to FIG. 4, 1n response to the com-
munication link changing from the oitline state to an online
state, the methodology 400 can retrieve the data to be posted
based on the stored sequence and transmit the data to the
remote device (Block 425). In one example, Block 425 can be
performed transparent to the user such as by executing a
background thread or other process within the computing
device. Likewise, Block 420 can also be performed as a
background process while allowing the user to continue
accessing the one or more forms.

With reference to Block 415, the methodology can include
redirecting a network communication associated with a navi-
gation request to the locally stored data. Similar to the “sub-
mit button” example described above, a navigation request
can be associated with a programmed option such as a “next
page” button, a “previous page” button, and/or other page
navigation options. An example navigation request 1s one that
1s programmed to 1nitiate a network communication to the
web application where the web application will identity the
next page to be transmitted to the user and displayed. It will be
appreciated that this type of navigation request differs from
the typical “back™ or “previous” functions provided by a
browser. These browser functions allow a user to view previ-
ously visited web pages that are locally stored and thus, do not
initiate or require a network communication to the web appli-
cation 1 order to i1dentify the next or previous page. The
“back’ and “previous” functions are not active functions of a
web application.

To provide oftline page navigation, in another example, the
methodology 400 can include determining a page structure of
the one or more forms that are recerved from the remote
device. The page structure can be determined by parsing and
analyzing attributes of each form and storing each form with
it’s associated attributes. Examples of attributes can include,
but are not limited to, an application name of the web appli-
cation from which the form originated, a document name
associated with the form, and/or associations to other forms
that are accessible from the current form. The user can then be
allowed to navigate through the one or more forms while 1n
the oftline state using the page structure. In one example,
processing for the one or more forms can be provided based

on XHTML/XForms documents.

To determine the status of the communication link, and
thus to determine whether ofthine processing should be 1niti-
ated, the status can be periodically determined. For example,
the status can be automatically determined by a program-
matic process and/or can be triggered by a user.

[llustrated i FIG. 5 1s one example of a methodology 500
that can be associated with providing offline processing. The
following example will be described with reference to a cli-
ent-side computing device that has established network con-
nectivity to a web-based application during an online session.

The methodology 500 can include storing one or more
forms that are from the web-based application as a user navi-
gates the web-based application (Block 5035). The forms can
be stored 1n a local data store. At any desired time throughout
the methodology, the process can detect 11 the network con-
nectivity 1s 1n an online state or 1n an oitline state (Block 510).
If the network connectivity changes to the offline state, offline
processing can be mitiated. The oiffline processing can
include intercepting data submitted by the user to the web-

US 9,083,765 B2

13

based application (Block 520). As described in other
examples, submitting data would trigger a network commu-
nication to the web-based application. Since the network
connectivity 1s oithine, the network communication cannot be
successtully processed. Rather, the network communication
1s 1ntercepted and the data to be submitted 1s stored 1n a post
data store. The user can then be allowed to continue accessing
the one or more forms from the local data store as though the
data submitted was successtully posted to the web-based
application. Data that 1s subsequently submitted by the user
can be stored 1n a sequence like a first 1n, first out sequence. If
the network connectivity changes to the online state, the data
from the post data store can be retrieved and transmitted to the
web-based application 1n a pre-determined sequence (Block
520).

In another example, the methodology 500 can allow the
user to navigate the one or more forms from the local data
store to simulate network connectivity 11 the network connec-
tivity changes to the oftline state. For example, the method-
ology can locally process a selected page navigation opera-
tion that would result 1n a network communication 1f the
network connectivity were 1n the online state. The page navi-
gation operation can be initiated from selectable options such
as “next page”, “previous page’’, “page go to”’, and other types
of page navigation functions that may be provided by the
web-based application. The methodology 300 may also pre-
load the one or more forms from the web-based application to
the local data store so that the forms can be available should
an oitline state occur. The one or more forms can also be
parsed to at least determine a page structure of each of the
forms so that page navigation can be processed during the
ollline state.

In one example, the computer-readable medium can be

configured to provide software that 1s a browser or a plug-in
for a browser. The one or more forms can include one or more
data types including XForms-based documents, XHTML
documents, HITML documents, mark-up language docu-
ments, and MIME-type documents.

[lustrated i FIG. 6 1s an example methodology 600 that
can be associated with detecting a status of a network com-
munication link and submitting data to a web application
when the communication link changes from an oftline state to
an online state. In one example, the methodology 600 can be
configured as one or more background processes such as
executable threads that can function transparently to a user
and/or client-side application. The example method 600 can
be viewed and/or configured as multiple processes. For
example, Blocks 605-625 can be associated with a link detec-
tion process and Blocks 630-640 can be associated with a data
submission process.

The link detection process can be periodically initiated and
executed from programmatic commands and/or from a user
command. The term “periodically” 1s also intended to include
a configuration where the process 1s continuously active.
Detecting the link connection 1s represented at Block 605.
One or more sequences of tests can be performed to determine
whether the link connection 1s 1n an online state or an offline
state as described 1n previous examples. If the link connection
1s oifline at Block 610, a link status signal can be set to
represent the offline state (Block 615). The link status signal
can be used, for example, to 1mtiate offline processing of
network commumnications as described 1n any one of the pre-
vious examples.

If the link connection 1s 1n an online state at Block 610, the
link status signal 1s set to an online state (Block 620). In a
situation where a computing device was in an ofthne state and
has changed to an online state, meaning that network com-

10

15

20

25

30

35

40

45

50

55

60

65

14

munication has been re-established, oftline processing of data
may have occurred. For example, 1f one or more submit
operations occurred during the offline state, data that was
intended to be posted to the web application would have been
redirected to a post data store as previously explained. At
Block 625, a determination 1s made whether data exists in the
post data store. If no data exists, then no further action 1s taken
and the process can return to detecting the link connection

periodically (Block 605).

I1 data exists in the post data store, then a submuit operation
can be mitiated (Block 630). Data in the post data queue can
then be retrieved according to a pre-determined sequence in
which 1t was stored. The data can then be posted or otherwise
transmitted to a network destination (e.g., a web application
associated with the data) (Block 635). Once the submission 1s
successiul, a check can be made to see 1f additional data exists
in the data store (Block 640). If there 1s more data to submiut,
the process returns to Block 630 where the next data in the
sequence 1s retrieved and the process 1s repeated. Once the
post data store 1s empty, the submit process can be terminated.

Ilustrated 1n FIG. 7 1s an example methodology 700 that
can be associated with providing oflline processing of page
navigation functions. An example will be described that 1s
operable with a client-side computing device capable of inter-
acting with an online application using a network connection.
The methodology can begin when one or more pages are
received from an online application (e.g., a web-based appli-
cation) (Block 705). The one or more pages can include one or
more page navigation functions that are selectable by a user.
When a selected page navigation function i1s initiated, the
function will generate network communications to be trans-
mitted to the online application in order to respond to the page
navigation function. As previously described, examples of
page navigation functions include buttons, objects, and/or
links that allow a user to actively move between web pages of
the online application. These may include a next page button,
a previous page button, page number links from a list of
pages, a “page go to” command, and the like. As a general
example, a page navigation function can include a function
that requests the online application to change a currently
displayed page to a different page.

The pages are then stored 1n a source data store along with
page navigation relationships that are defined between the
web pages (Block 710). In one example, the one or more web
pages are recetved 1 a format compatible with XForms and/
or other type of mark-up language. Each page can be analyzed
such as by parsing 1t’s attributes to determine the page navi-
gation relationships. Blocks 705 and 710 can be performed
repeatably as new pages are received from the online appli-
cation.

When 1t 1s detected that the network connection changes to
an offline state, network communications that may be gener-
ated that are associated with a selected page navigation func-
tion are intercepted (Block 715). The selected page naviga-
tion function can then be processed locally using the source
data store and the page navigation relationships to determine
the next page (Block 720). The next page can then be dis-
played on the client device. In this manner, a simulated online
state can be provided rather than prohibiting the user from
working on the online application.

In one example, the intercepting Block 715 can include
redirecting the network communications so that the network
communications are responded to locally by the client device.
In another example, the intercepting can include prohibiting
the network communications from being transmitted over the
network connection, which 1s currently not responding.

[,

US 9,083,765 B2

15

FIG. 8 illustrates an example computing device in which
example systems and methods described herein, and equiva-
lents, can operate. The example computing device may be a
computer 800 that includes a processor 802, a memory 804,
and mput/output ports 810 operably connected by a bus 808.
The computer 800 can be amobile device, a cellular device, or
other electronic device that can process data. In one example,
the computer 800 may include an offline logic 830 configured
to facilitate offline processing when a network connection 1s
lost. The oftline logic 830 can be implemented similar to the
other example offline logics 100, 205 described 1n FIGS. 1
and 2, respectively, and/or the other systems and methods
described. The offline logic 830 can be configured to provide
the previously described ofiline submit operations and/or the
olfline page navigation operations.

Generally describing an example configuration of the com-
puter 800, the processor 802 can be a variety of various
processors including dual microprocessor and other multi-
processor architectures. The memory 804 can include volatile
memory and/or non-volatile memory. The non-volatile
memory can include, but 1s not limited to, ROM, PROM,
EPROM, EEPROM, and the like. Volatile memory can
include, for example, RAM, synchronous RAM (SRAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM),
double data rate SDRAM (DDR SDRAM), and direct RAM
bus RAM (DRRAM).

A disk 806 may be operably connected to the computer 800
via, for example, an mnput/output interface (e.g., card, device)
818 and an mnput/output port 810. The disk 806 can include,
but 1s not limited to, devices like a magnetic disk drive, a solid
state disk drive, a floppy disk drive, a tape drive, a Zip drive,

a flash memory card, and/or a memory stick. Furthermore, the
disk 806 can include optical drives like a CD-ROM, a CD

recordable drive (CD-R drive), a CD rewriteable drive (CD-
RW drive), and/or a digital video ROM drive (DVD ROM).
The memory 804 can store processes 814 and/or data 816, for
example. The disk 806 and/or memory 804 can store an
operating system that controls and allocates resources of the
computer 800.

The bus 808 can be a single internal bus interconnect archi-
tecture and/or other bus or mesh architectures. While a single
bus 1s 1llustrated, 1t 1s to be appreciated that computer 800 may
communicate with various devices, logics, and peripherals
using other busses that are not 1llustrated (e.g., PCIE, SATA,
Infiniband, 1394, USB, Ethernet). The bus 808 can be of a
variety of types including, but not limited to, a memory bus or
memory controller, a peripheral bus or external bus, a cross-
bar switch, and/or alocal bus. The local bus can be of varieties
including, but not limited to, an industrial standard architec-
ture (ISA) bus, a microchannel architecture (MSA) bus, an
extended ISA (EISA) bus, a peripheral component intercon-
nect (PCI) bus, a universal serial (USB) bus, and a small
computer systems interface (SCSI) bus.

The computer 800 may interact with input/output devices
via 1/o mterfaces 818 and input/output ports 810. Input/output
devices can include, but are not limited to, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, disk 806, network devices 820, and the like.
The input/output ports 810 can include but are not limited to,
serial ports, parallel ports, and USB ports.

The computer 800 can be configured to operate 1n a net-
work environment and thus may be connected to network
devices 820 via the 170 devices 818, and/or the 1/0 ports 810.
Through the network devices 820, the computer 800 may
establish a communication link and interact with a network.
Through the network, the computer 800 may be logically
connected to remote computers. The networks with which the

10

15

20

25

30

35

40

45

50

55

60

65

16

computer 800 may interact include, but are not limited to, a
local area network (LAN), a wide area network (WAN), and
other networks. The network devices 820 can connect to LAN
technologies including, but not limited to, fiber distributed
data interface (FDDI), copper distributed data interface
(CDDI), Ethernet (IEEE 802.3), token rnng (IEEE 802.3),
wireless computer communication (IEEE 802.11 and other
versions), Bluetooth (IEEE 802.15.1 and other versions),
radio frequency and/or cellular based protocols, and the like.
Similarly, the network devices 820 can connect to WAN tech-
nologies including, but not limited to, point to point links,
circuit switching networks like integrated services digital
networks (ISDN), packet switching networks, and digital
subscriber lines (DSL).

While example systems, methods, and so on have been
illustrated by describing examples, and while the examples
have been described 1n considerable detail, it 1s not the inten-
tion of the applicants to restrict or 1n any way limit the scope
of the appended claims to such detail. It 1s, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the sys-
tems, methods, and so on described herein. Additional advan-
tages and modifications will readily appear to those skilled in
the art. Therefore, the invention 1s not limited to the specific
details, the representative apparatus, and 1llustrative
examples shown and described. Thus, this application 1is
intended to embrace alterations, modifications, and variations
that fall within the scope of the appended claims. Further-
more, the preceding description 1s not meant to limit the scope
of the invention. Rather, the scope of the invention 1s to be
determined by the appended claims and their equivalents.

To the extent that the term “includes” or “including” 1s
employed in the detailed description or the claims, it 1s
intended to be inclusive in a manner similar to the term
“comprising”’ as that term 1s interpreted when employed as a
transitional word 1n a claim. Furthermore, to the extent that
the term “or” 1s employed in the detailed description or claims
(e.g., AorB)itis mtended to mean “A or B or both”. When the
applicants intend to indicate “only A or B but not both™ then
the term “only A or B but not both™ will be employed. Thus,
use of the term “or” herein i1s the inclusive, and not the
exclusive use. See, Bryan A. Garner, A Dictionary of Modemn

Legal Usage 624 (2d. Ed. 1995).

What 1s claimed 1s:

1. A system configured to operate within a computing
device where the computing device includes an application
configured to communicate with a remote device using a
network connection, the system comprising:

a source data store within the computing device that stores

a plurality of forms recerved from the remote device

during execution of the application, where the plurality

of forms include a plurality of data input fields to recerve
data for submission to the remote device;

a link detection logic configured to determine a link
status of the network connection where the link status
includes an online state and an offline state;

an oltline logic configured to allow the application to
continue operating when the network connection 1s 1n
the oftline state by providing a simulated online state
by allowing a user of the computing device to navigate
between pages of the plurality of forms that are stored
in accordance with a page structure relationship deter-
mined between the plurality of forms, by allowing
data to be inputted to the plurality of data input fields
while 1n the oftline state, and to allow the plurality of
forms to generate network communications to be sent

US 9,083,765 B2

17

to the remote device, responsive to user interaction
with the plurality of forms;
where the oflline logic 1s configured to 1dentify naviga-
tion options associated with the plurality of forms to
determine page structure relationships between the
plurality of forms, where a navigation option 1s an
option that 1s programmed in a form to initiate a
network communication to the remote device to cause
the remote device to determine a next page in the
plurality of forms; and
redirecting the network communications and storing the
network communications and the data from the plu-
rality of data input fields 1n a post data store; and
the offline logic being configured to submit the network
communications and the data from the plurality of
data input fields from the post data store to the remote
device when the link status changes to the online state.
2. The system of claim 1 where the link detection logic 1s
configured to periodically determine the link status.
3. The system of claim 1 where the offline logic 1s config-
ured to submit the network communications from the post
data store 1n a first 1n, first out sequence.
4. The system of claim 1 where the system 1s configured as
processor executable istructions that execute as one or more
background tasks within the computing device.
5. The system of claim 4 where the one or more background
tasks include threads.
6. The system of claim 1 where the network communica-
tions are based on XForms.
7. The system of claim 1 where the network communica-
tions include one or more of: XForms, XHTML, HTML, gif,
and mime compatible communications.
8. The system of claim 1 where the network connection
includes a wireless connection.
9. The system of claim 1 where the offline logic 1s config-
ured to operate transparently to a user of the application.
10. The system of claim 1 where the system 1s embodied 1n
a non-transitory computer-readable medium including stored
processor executable mstructions that implement at least the
link detection logic and the offline logic and 1s configured as
one of: a browser, or a software plug-in for a browser.
11. A method, comprising:
receiving a plurality of forms from a remote device over a
communication link, where the plurality of forms are
programmatically interconnected as a sequence of pages
and allow data to be processed online by a user;

storing the plurality of forms 1n a memory local to a com-
puting device, where the plurality of forms include a
plurality of data mput fields to receive data for submis-
sion to the remote device:

analyzing the plurality of forms to generate page structure

relationships between the plurality of forms to deter-
mine the sequence of pages;

in response to the communication link changing from an

online state to an oflline state, determining the sequence
of pages of the plurality of forms and providing a simu-
lated online state by allowing the user to navigate
between the sequence of pages of the plurality of forms
that are stored 1n accordance with the page structure
relationships, and allowing data to be inputted to the
plurality of data input fields while in the offline state;
1n response to one or more requests to post data from the
plurality of data input fields from the plurality of forms
to the remote device while the communication link is in
the offline state, transparently redirecting the one or
more requests and locally storing the data from the plu-
rality of data input fields to be posted 1n a sequence; and

10

15

20

25

30

35

40

45

50

55

60

65

18

in response to the communication link changing from the
oitline state to an online state, retrieving the data input-
ted to plurality of data input fields to be posted based on
the sequence and transmitting the data to the remote
device.

12. The method of claim 11 further comprising:

1dentilying navigation options associated with the plurality

of forms to determine the page structure relationships
between the plurality of forms, where a navigation
option 1s a navigation request that 1s programmed 1n a
form to 1nitiate a network communication to the remote
device to cause the remote device to determine a next
page in the plurality of forms; and

where allowing the user to navigate includes redirecting

the network communication associated with the naviga-
tion request to the locally stored data.

13. The method of claim 11 further including periodically
determining the status of the commumnication link.

14. The method of claim 11 where the step of storing the
data includes storing state information for the data to be
posted.

15. The method of claim 11 where the steps of retrieving
and posting are performed transparent to the user.

16. The method of claim 11 where transparently redirect-
ing and storing the data 1s performed as a background task
while allowing the user to continue accessing the plurality of
forms.

17. The method of claim 11 where analyzing the plurality
of forms to generate the page structure relationships includes
identifving attributes from the plurality of forms to determine
sequence associations between pages of the plurality of
forms; and

allowing the user to navigate through the plurality of forms

while 1n the offline state using the page structure rela-
tionships.

18. The method of claim 11 where locally storing the data
1s stored 1n the sequence based on a first 1n, first out sequence.

19. The method of claim 11 further including providing
processing for the plurality of forms being based on XHTML/
XFORMS documents.

20. A system for an electronic device having an application
that can communicate with a web-based application over a
communication link, the device having an online state and an
offline state, the system comprising:

means for providing oflline processing of network commu-

nications sent from the electronic device icluding:
means for storing a plurality of forms 1n a memory local to
the electronic device;

means for processing the plurality of forms compatible

with at least XForms;

means for parsing the plurality of forms to identily page

navigation functions programmed within the plurality of
forms where a page navigation function causes the web-
based application to determine and display anext page in
the plurality of forms, and for generating page naviga-
tion relationships between the plurality of forms using
the 1dentified page navigation functions;

means for providing a simulated online state by allowing

the plurality of stored forms to be navigated 1n the offline
state by processing the page navigation functions in
accordance with the page navigation relationships,
where network communications to the web-based appli-
cation are generated from the forms;

means for redirecting the network communications when

the communication link becomes offline;

US 9,083,765 B2

19

means for storing the network communications i a post
data store to simulate a successtul submission of data to
the web-based application; and
means for submitting the network communications from
the post data store to the web-based application when the
communication link becomes online.
21. The system of claim 20 where the plurality of forms
include a plurality of data input fields to receive data for
submission to the remote device; and

where the means for providing a simulated online state
further allows data to be inputted to the plurality of data
input fields while 1n an offline state.
22. The system of claim 20 further including means for
detecting whether the communication link 1s in the online
state or the offline state.
23. The system of claim 20 where the network communi-
cations include communications that are initiated from a
selection within the application.
24. The system of claim 20 where the means for submitting,
synchronizes a state of the application and a state of the
web-based application after submitting the network commu-
nications.
25. The system of claim 20 where the system includes
processor executable mstructions stored on a computer-read-
able medium.
26. A non-transitory computer-readable medium including
executable 1nstructions that when executed by at least a pro-
cessor of a computing device cause the computing device to
perform a method, the executable instructions comprising
instructions for:
receiving a plurality of forms from a remote device over a
communication link, where the plurality of forms are
programmatically interconnected as a sequence of pages
and allow data to be processed online by a user;

storing the plurality of forms 1n a memory local to the
computing device, where the plurality of forms 1nclude
a plurality of data input fields to receive data for submis-
sion to the remote device:

analyzing the plurality of forms to generate page structure

relationships between the plurality of forms to deter-
mine the sequence of pages;
in response to the communication link changing from an
online state to an oilline state, determining the sequence
of pages of the plurality of forms and providing a simu-
lated online state by allowing the user to navigate
between the sequence of pages of the plurality of forms
that are stored 1n accordance with the page structure
relationships, and allowing data to be inputted to the
plurality of data input fields while in the offline state;

in response to one or more requests to post data from the
plurality of data input fields from the plurality of forms
to the remote device while the communication link is in
the offline state, transparently redirecting the one or
more requests and locally storing the data from the plu-
rality of data input fields to be posted 1n a sequence; and

in response to the communication link changing from the
olfline state to an online state, retrieving the data mput-
ted to plurality of data input fields to be posted based on
the sequence and transmitting the data to the remote
device.

27. The non-transitory computer-readable medium of
claim 26 further comprising instructions for identifying navi-
gation options associated with the plurality of forms to deter-
mine the page structure relationships between the plurality of
forms, wherein a navigation option 1s a navigation request
that 1s programmed 1n a form to 1nitiate a network communi-

10

15

20

25

30

35

40

45

50

55

60

65

20

cation to the remote device to cause the remote device to
determine a next page 1n the plurality of forms; and
wherein allowing the user to navigate includes redirecting
the network communication associated with the naviga-
tion request to the locally stored data.

28. The non-transitory computer-readable medium of
claiam 26 further comprising instructions for periodically
determining a state of the communication link.

29. The non-transitory computer-readable medium of
claim 26 further comprising instructions for performing the
transparently redirecting and the locally storing of the data as
a background task i1n the computing device.

30. The non-transitory computer-readable medium of
claim 26 wherein the instructions for analyzing the plurality
of forms to generate the page structure relationships include
instructions for:

identifying attributes from the plurality of forms to deter-

mine sequence associations between pages of the plu-
rality of forms; and

allowing the user to navigate through the plurality of forms

while 1n the oftline state using the page structure rela-
tionships.

31. A method performed by an electronic device having an
application that can communicate with a web-based applica-
tion over a communication link, the electronic device having
an online state and an offline state, the method comprising:

providing ofiline processing of network communications

sent from the electronic device including:

storing a plurality of forms 1n a memory local to the
electronic device;

processing the plurality of forms compatible with at
least XForms:

parsing the plurality of forms to identify page navigation
functions programmed within the plurality of forms
where a page navigation function causes the web-
based application to determine and display a next
page 1n the plurality of forms, and generating page
navigation relationships between the plurality of
forms using the identified page navigation functions;

providing a simulated online state by allowing the plu-
rality of stored forms to be navigated in the oifline
state by processing the page navigation functions 1n
accordance with the page navigation relationships,
where network communications to the web-based
application are generated from the forms;

redirecting the network communications when the com-
munication link becomes offline;

storing the network communications in a post data store
to simulate a successful submission of data to the
web-based application; and

submitting the network communications from the post
data store to the web-based application when the com-
munication link becomes online.

32. The method of claim 31 wherein the plurality of forms
include a plurality of data input fields to receive data for
submission to the remote device; wherein the method further
comprises providing a simulated online state that allows data
to be mputted to the plurality of data input fields while 1n an
ollline state.

33. The method of claim 31 further comprising detecting,
whether the communication link 1s in the online state or the
olffline state.

34. The method of claim 31 wherein the network commu-
nications mclude communications that are mitiated from a
selection within the application.

US 9,083,765 B2

21

35. The method of claim 31 wherein the submitting com-
prises synchronizing a state of the application and a state of
the web-based application after submitting the network com-
munications.

36. The method of claim 31 wherein the method 1s per-
tormed by at least a processor 1n the electronic device execut-
ing processor executable mstructions stored on a non-transi-
tory computer-readable medium.

37. A method implemented by a computing device where
the computing device includes an application configured to
communicate with a remote device using a network connec-
tion, the method comprising:
storing a plurality of forms recerved from the remote device
during execution of the application, wherein the plural-
ity of forms include a plurality of data mput fields to
recetrve data for submission to the remote device;

determining a link status of the network connection where
the link status includes an online state and an oiffline
state;

allowing the application to continue operating when the

network connection 1s 1n the offline state by providing a
simulated online state by allowing a user of the comput-
ing device to navigate between pages of the plurality of
forms that are stored 1n accordance with a page structure
relationship determined between the plurality of forms,
by allowing data to be mnputted to the plurality of data
input fields while 1n the offline state, and allowing the
plurality of forms to generate network communications

10

15

20

25

22

to be sent to the remote device, responsive to user inter-
action with the plurality of forms;

1dentilying navigation options associated with the plurality

of forms to determine page structure relationships
between the plurality of forms, where a navigation
option 1s an option that 1s programmed 1n a form to
initiate a network communication to the remote device
to cause the remote device to determine a next page in
the plurality of forms; and

redirecting the network communications and storing the

network communications and the data from the plurality
of data mput fields 1n a post data store; and

submitting the network communications and the data from

the plurality of data input fields from the post data store
to the remote device when the link status changes to the
online state.

38. The method of claim 37 further comprising periodi-
cally determining the link status.

39. The method of claim 37 wherein the submitting com-
prises submitting the network communications from the post
data store 1n a first 1n, first out sequence.

40. The method of claim 37 wherein one or more actions of
the method are performed as one or more background tasks
within the computing device.

41. The method of claim 37 further comprising processing,
the network communications that include: XForms,
XHTML, HTML, gif, or mime compatible communications.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,083,765 B2 Page 1 of 1
APPLICATION NO. . 10/884077

DATED July 14, 2015

INVENTOR(S) . Rehman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In column 3, line 17, delete “Computer-readable medium',” and insert -- “Computer-readable
medium”, --, therefor.

In column 3, line 23, delete “Include,” and 1nsert -- include, --, therefor.

In column 4, line 29, delete “servelet,” and 1nsert -- servlet, --, therefor.

In column 7, line 21, after “page” delete “I” and insert -- 1 --, therefor.

In column 15, line 55, delete “1/0” and 1nsert -- I/O --, therefor.

In column 15, line 63, before “devices” delete “1/0” and sert -- /O --, therefor.

In column 15, line 63, betfore “ports™ delete “1/0” and 1nsert -- I/O --, therefor.

Signed and Sealed this
Twenty-first Day of June, 2016

e cbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

