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NETWORK INFORMATION METHODS
DEVICES AND SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/567,518 filed Dec. 6, 2011, the content of

which 1s hereby incorporated by reference 1n 1ts entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

The present invention was made with government support
under grant numbers N66001-09-C-0080 awarded by the

Department of Homeland Security (DHS) and 11S-1117631
by the National Science Foundation (NSF). The U.S. govern-

ment has certain rights 1n the imvention.

BACKGROUND

Many real-world networks are described by both connec-
tivity information and features for every node. Many social
networks are of this form; on services such as Facebook,
Twitter, or LinkedIn, there are profiles which describe each
person. In addition, participants communicate and transact
with each other as well. Other examples such as etsy.com in
which buyers find small vendors 1n a large framework are
similar to social media. Sites such as reddit.com allow users
to find links to medial or comments, providing a framework
that could be improved by allowing users to find material they
find most interesting. The proliferation of social networks on
the web has spurred interest in the development of recom-
mender systems to increase the value derved by participants.
There exist challenges 1n making recommendations based on
user information and their activities because people form
relationships for a variety of reasons. For example, 1n Face-
book perhaps they share similar parts of their profile such as
their school or major, or perhaps they have completely ditter-
ent profiles. There 1s an on-going need for improvements 1n
this area. In addition there are many systems, such as reddit
and etsy, which provide a decent framework that are suscep-
tible to improvement by providing a good recommendation
system.

SUMMARY

Embodiments of the disclosed subject matter include sys-
tems, devices, and methods that employ existing network data
including node features and structural characteristics (links)
ol a network, to predict desired, expected, most preferred,
recommended, likelihood of new links. For example, a net-
work of friendships, each may define a link 1n a population
and the characteristics of the individuals such as height, pre-
terred sport, gender, age, etc. would form a feature set. These
feature sets and links may be used to train a machine learning
engine that can then predict, for an individual characterized
by a new feature set, one or more fnendships (“links™) that
would be desired by him, expected to arise, most preferred by
the individuals were they to beiriend, recommended by the
individuals, or likelihood). Essentially, the link information is
used as a latent measure of the value of the pairings embodied
by the pairings. In the presently disclosed subject matter, the
value of the pairings may incorporate latent factors that
involve pairings that are not just local to the individual pair
and the features at each end of the link defined by the pair.
That 1s, there may be latent values expressed in the extended
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network, the neighborhood or the entire network that should
aifect the prediction of a new link as they atfect the existence
of the link 1n the network used to train the machine learning
prediction engine. Thus, there 1s information the network
outside the pair that should affects a prediction engine’s esti-
mate of a desired, expected, most preferred, recommended,
likelihood or value of a friendship forming between a given
pair of individuals. Networks to which such a prediction may
be applied are varied but could include networks of products
linked with purchasers, social media sites, dating sites, Twit-
ter, Facebook, LinkedIn, an orientation service for transterees
or new students for a school, etc.

In the examples and other networks, the disclosed subject
matter provides a prediction engine that applies a distance
metric that 1s learned from one or more example networks
with established links and nodes characterized by feature
vectors. Systems and methods for estimating distance metrics
for a network, which network 1s characterized by connectivity
information and features for each node, are described. The
systems and methods permit link prediction using both the
node features and existing network connections. The method
employs a structure-preserving predictor, by which it 1s meant
that given an 1mput network having unique nodes, a set of
distance metrics between the nodes may be generated which
completely preserves the structural (link) information in the
network. Thus, the distance metric data can be used to recon-
struct the network substantially or, depending on resource
cost considerations or other factors, perfectly. The extraction
of such data from an existing network 1s called structure
preserving metric learning or SPML. The extraction of pre-
dicted links from an SPML from an existing network which
include limiting to an actual degree of connectivity (i.e.,
connectivity of the tramning network 1s also preserved or
recovered Irom the node feature data) i1s identified here as
degree distribution metric learning or DDMUL. In DDML, 1n
addition to learning a structure preserving distance metric, a
degree prediction function is also learned that can predict the
number of links a node 1s likely to, or should have based on
node features. In a friendship network, for example, the rec-
ommender 1s enabled not only to measure the goodness of
various possible new friendships, but also, for a given person,
how many friendships should ultimately attach to a given
person.

In embodiments, methods for SPML and SML/DDML
combine linear constraints that require graph structure to be
preserved with a Frobenius norm regularizer on a distance
metric and a regularization parameter to create a semidefinite
program (SDP) that learns the distance metric, which is struc-
ture preserving. Preserving graph topology may be done by
enforcing linear constraints on distances between nodes. The
linear structure preserving constraints for metric learning
used by SPML/DDML enforce that neighbors of each node
are closer than most others. Given an mput network having
unmique nodes, SPML/DDML learns a distance metric
between nodes that preserve the structural information in the
network.

Methods disclosed herein can improve the efficiency of
SPML/DDML by optimizing the method based on stochastic
gradient descent (SGD) which removes the running-time
dependency on the size of the network and allows the method
to easily scale to networks of thousands of nodes and millions
of edges. In addition the methods disclosed herein may be
suitable for parallelization and cloud-computing implemen-
tation.

The disclosed subject matter can be used 1n systems for
providing improved prediction of new connections to users of
social networking services, including internet based services
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(e.g. Facebook, LinkedIn, and Twitter). The disclosed subject
matter can be used 1n systems for providing improved link
prediction for documents included 1n an online document
collection, such as a wiki online service (e.g. Wikipedia). The
disclosed subject matter can also improve related product
predictions provided by online retailers to users that have
viewed a product’s webpage.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will hereinafter be described 1n detail below
with reference to the accompanying drawings, wherein like
reference numerals represent like elements. The accompany-
ing drawings have notnecessarily been drawn to scale. Where
applicable, some features may not be illustrated to assist 1in
the description of underlying features.

FIG. 1A 1s ablock diagram of an exemplary embodiment of
a structure preserving metric learning (SPML/DDML) link
prediction system according to some embodiments of the
disclosed subject matter.

FIG. 1B 1s a flowchart showing an exemplary embodiment
of a structure preserving metric learning (SPML/DDML) link
prediction method according to some embodiments of the
disclosed subject matter.

FI1G. 2 1s a flowchart showing an exemplary embodiment of
a structure preserving metric learning (SPML/DDML) con-
nection prediction method according to some embodiments
of the disclosed subject matter.

FIG. 3 1s a diagram of an exemplary embodiment of a
structure preserving metric learning (SPML/DDML) predic-
tion system according to some embodiments of the disclosed
subject matter.

FIG. 4 1s a flowchart showing an exemplary method of
SPML/DDML link prediction according to some embodi-

ments of the disclosed subject matter.
FIG. 5 1s a flowchart showing an exemplary method of

SPML/DDML link prediction according to some embodi-

ments of the disclosed subject matter.

FIG. 6 1s a flowchart showing an exemplary method of
DDML link degree prediction according to some embodi-
ments of the disclosed subject matter.

FIG. 7 1s a flowchart showing an exemplary method of
SPML/DDML link prediction using network partitioning
according to some embodiments of the disclosed subject mat-
ter.

FI1G. 8 1s a block diagram of an exemplary embodiment of
a distributed structure preserving metric learning (SPML/
DDML) link prediction system according to some embodi-
ments of the disclosed subject matter.

FI1G. 9 1s a block diagram of a system for predicting friend-
ships to new users of a social network using SPML/DDML
according to some embodiments of the disclosed subject mat-
ter.

FIG. 10 1s a block diagram of a system for predicting
friendships between users of a social network using SPML/
DDML according to some embodiments of the disclosed
subject matter.

FIG. 11 1s a block diagram of a system for predicting links
to new documents added to an information network using
SPML/DDML according to some embodiments of the dis-
closed subject matter.

FI1G. 12 1s a block diagram of a system for predicting links
between documents 1n an information network using SPML/
DDML according to some embodiments of the disclosed
subject matter.
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FIG. 13 1s a block diagram of a system for predicting
connections to new members joining a dating service using

SPML/DDML according to some embodiments of the dis-
closed subject matter.

FIG. 14 1s a block diagram of a system for predicting
connections between members 1 a dating service using
SPML/DDML according to some embodiments of the dis-
closed subject matter.

FIG. 15 1s a block diagram of a system for recommending,
products to new users of a shopping service using SPML/
DDML according to some embodiments of the disclosed
subject matter.

FIG. 16 1s a block diagram of a system for recommending,
products to users of a shopping service using SPML/DDML
according to some embodiments of the disclosed subject mat-
ter.

FIG. 17 1s a block diagram of an exemplary embodiment of
a structure preserving distance-metric learning link predic-
tion system according to some embodiments of the disclosed
subject matter.

FIG. 18 illustrates synthetic SPML experiment results.

FIG. 19 illustrates Wikipedia and Facebook experiment
results.

FIG. 20 provides a comparison of Facebook social net-
works from four schools 1n terms of feature importance com-
puted from the learned structure preserving metric.

FIG. 21 illustrates a ROC curve for various algorithms on
the “philosophy concepts™ category.

FIG. 22 illustrates the performance of low-rank SPML on

training data varying the rank parameter, run on a single
Facebook school.

DETAILED DESCRIPTION OF THE DRAWINGS
AND EMBODIMENTS

Embodiments of the disclosed subject matter relate gener-
ally to methods and systems for distance-metric learning
using a network described by both connectivity information
and features for each node and for link prediction using node
features and the learned distance metric. In embodiments a
degree prediction function 1s also learned to predict, based on
node features, the number of links a node 1s likely to have.

The proliferation of social networks on the web has spurred
many significant advances i modeling networks. However,
while many efforts have been focused on modeling networks
as weighted or unweighted graphs, or constructing features
from links to describe the nodes 1n a network, few techniques
have focused on real-world network data which consists of
both node features in addition to connectivity information.
Many social networks are of this form; on services such as
Facebook, Twitter, or Linkedln, there are profiles which
describe each person, as well as the connections they make.
Therelationship between anode’s features and connections 1s
often not explicit. For example, people “Iriend” each other on
Facebook for a variety of reasons: perhaps they share similar
parts of their profile such as their school or major, or perhaps
they have completely different profiles. Various embodiments
of the disclosed subject matter can learn the relationship
between profiles and links from massive social networks such
that these embodiments can better predict who 1s likely to
connect. To model this relationship, one could simply model
cach link independently, where one simply learns what char-
acteristics of two profiles imply a possible link. However, this
approach 1gnores the structural characteristics of the links 1n
the network. Modeling independent links likely 1s insudfi-
cient, and in order to better model these networks one should
account for the inherent topology of the network as well as the
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interactions between the features of nodes. Various embodi-
ments of the disclosed subject matter therefore perform struc-
ture preserving metric learning (SPML) and/or degree distri-
bution metric learning (DDML), methods for learning a
distance metric between nodes that preserves the structural
network of data used to learn the metric.

Some known metric learning algorithms, applied to super-
vised learning tasks such as classification, first build a k-near-
est neighbors (KINN) graph from training data with a fixed k,
and then optimize a metric to generate a class label for a new
point by a majority vote of nearby points. The metric 1s
optimized based on the goal of keeping connected points with
similar labels (same or similar class) close while pushing
away those of different class—<class impostors. Points which
are connected but which belong to different classes may be
pushed away. Fundamentally, these supervised methods aim
to learn a distance metric such that applying a connectivity
algorithm (for instance, k-nearest neighbors) under the metric
will produce a graph where no point 1s connected to others
with different class labels. In practice, these constraints are
enforced with slack. Once the metric i1s learned, the class label
for a new data point can be predicted by the majority vote of
nearby points under the learned metric.

Unfortunately, some of these metric learning algorithms
are not easily applied when a network 1s given as input instead
of class labels for each point. Under such a regime, SPML and
DDML learn a metric such that points connected in the net-
work are close and points which are unconnected are more
distant. Intuitively, certain features or groups of features
should 1nfluence how nodes connect, and thus it should be
possible to learn amapping from features to connectivity such
that the mapping respects the underlying topological struc-
ture of the network. Like some previous metric learning meth-
ods, SPML and DDML learn a metric which reconciles the
input features with some auxiliary information such as class
labels. In this case, instead of pushing away class impostors,
SPML and DDML push away graph impostors—points
which are close 1n terms of distance but which should remain
unconnected—ultimately preserving the topology of the net-
work. Thus SPML and DDML learn a metric where the
learned distances are inherently tied to the original 1nput
connectivity.

Preserving graph topology 1s possible by enforcing simple
linear constraints on distances between nodes. By adapting
the constraints from the graph embedding technique structure
preserving embedding, various embodiments of the disclosed
subject matter formulate simple linear structure preserving
constraints for metric learning that enforce that neighbors of
each node are closer than all others. Furthermore, various
embodiments of the disclosed subject matter adapt these con-
straints for an online setting similar to PEGASOS and
OASIS, such that SPML and/or DDML can be applied to
large networks by optimizing with stochastic gradient

descent (SGD).

Structure Preserving Metric Learning (SPML)

FIRF

Given as iput an adjacency matrix Ae i and node

features XeR "  structure preserving metric learning
(SPML) learns a Mahalanobis distance metric parameterized

by a positive semidefinite (PSD) matrix MeR ¢, where
M=0. The distance between two points under the metric 1s

defined as

Iy e xj) :(xi_xj) M (‘xi_xj) (1)
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When the metric given by the identity M=1¢, DM(X.. X;)
represents the squared Euclidean distance between the 1 th
and j th points. Learning M 1s equivalent to learning a linear

scaling on the input features X where M=L, L and LeR ¥
SPML learns an M which 1s structure preserving, as defined in
Definition 1. Given a connectivity algorithm G, SPML learns
a metric such that applying G to the mput data using the
learned metric produces the input adjacency matrix exactly
(G 1s interchangeably used herein to denote the set of feasible
graphs and the algorithm used to find the optimal connectivity
within the set of feasible graphs). Possible choices for G
include, for example, maximum weight b-matching, k-near-
est neighbors, e-neighborhoods, or maximum weight span-
ning tree.

Definition 1: Given a graph with adjacency matrix A, a

distance metric parameterized by MeR *?is structure reserv-
ing with respect to a connectivity algorithm G, 11 G(X, M)=A.

Preserving Graph Topology with Linear Constraints

To preserve graph topology, the same linear constraints as
structure preserving embedding (SPE) are used, but they are
applied to M, which parameterizes the distances between
points. A useful tool for defining distances as linear con-
straints on M 1s the transformation

_ T T T T
Dy fx,x)=x, Mx+x;" Mx~x; Mx—x;" Mx,

(2)

which allows linear constraints on the distances to be written
as linear constraints on the M matrix. For different connec-
tivity schemes below, linear constraints are presented which
enforce graph structure preservation.

Nearest Neighbor Graphs

The k-nearest neighbor algorithm (k-nn) connects each
node to the k neighbors to which the node has the shortest
distance, where k 1s an input parameter, therefore, setting k to
the true degree for each node, the distances to all disconnected
nodes must be larger than the distance to the farthest con-
nected neighbor:

DM@:‘:%‘)}( 1 _Ag)mﬂXE(AﬁDM(xf:xf)):VfJ (3)

Similarly, preserving an e-neighborhood graph obeys linear
constraints on

M:Dy(x,x)<€,V{ijl4,~1}, and

Dy (x,x)=e,V{i jl4,~0} (4)

if for each node the connected distances are less than the
unconnected distances (or some E), 1.e., the metric obeys the
above linear constraints, Definition 1 1s satisfied, and thus the
connectivity computed under the learned metric M 1s exactly

A.

Maximum Weight Subgraphs

Unlike nearest neighbor algorithms, which select edges
greedily for each node, maximum weight subgraph algo-
rithms select edges from a weighted graph to produce a sub-
graph which has total maximal weight. Given a metric param-
cterized by M, let the weight between two points (1, 1) be the
negated pairwise distance between them:

(6)

For example, maximum weight b-matching finds the maxi-
mum weight subgraph while also enforcing that every node
has a fixed degree b1 for each 1th node. The formulation for

B _ T
sz ==1) M(xpx j) T (‘x i _xj ) Mi (xf_xj )
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maximum weight spanning tree 1s similar. Unfortunately,
preserving structure for these algorithms requires enforcing
many linear constraints of the form:

(2 et ZP AN AeG (7)

This reveals one critical difference between structure pre-
serving constraints of these algorithms and those of nearest-
neighbor graphs: there are exponentially many linear con-
straints. To avoid an exponential enumeration, the most
violated mequalities can be mtroduced sequentially using a
cutting-plane approach as shown 1n the next section.

Algorithm Derivation

By combiming the linear constraints from the previous
section with a Frobenius norm (denoted ||-||») regularizer on M
and regularization parameter A, we have a simple semidefinite
program (SDP) which learns an M that1s structure preserving,
and has minimal complexity. Algorithm 1 summarizes the
naive implementation of SPML when the connectivity algo-
rithm 1s k-nearest neighbors, which 1s optimized by a standard
SDP solver. For maximum weight subgraph connectivity
(e.g., b-matching), a cutting-plane method can be used, 1tera-
tively finding the worst violating constraint and adding 1t to a
working-set. The most violated constraint at each iteration
can be found by computing the adjacency matrix A that
maximizes tr(ZA) s.t. AeG, which can be done using various
published methods. See for example, C. Fremuth-Paeger and
D. Jungnickel, Balanced network flows, a unitying frame-
work for design and analysis of matching algorithms. Net-
works, 33(1):1-28, 1999; B. Huang and T. Jebara, Loopy
beliel propagation for bipartite maximum weight b-match-
ing, Proc. 11th Intl. Cont. on Artificial Intelligence and Sta-
tistics; and/or B. Huang and T. Jebara, Fast b-matching via
sufficient selection belief propagation; Proc. of the 14” Intl
Cont. on Artificial Intelligence and Statistics, 2011.

Each added constraint enforces that the total weight along
the edges of the true graph 1s greater than total weight of any
other graph by some margin. Algorithm 2 shows the steps for
SPML with cutting-plane constraints.

Algorithm 1: Structure preserving metric learning with nearest
neighbor constraints

Input: A € B" X € 95" and parameter A

1: K = {M > 0: DM (Xf: Xj) = (1 - Ay) mMax; (AI'EDM (Xi: XE)) +1- Evfaf}
2: _ A

M « argming i §||M||§ + & {Found via SDP}

3: retum M

Algorithm 2: Structure preserving metric learning with cutting-plane
constraints

Input: A € B" ™ X € B“*" connectivity algorithm {, and
parameters A, K
2: repeat

3: . A
M « argming ¢ > ||M||% + ¢ {Found via SDP}

7 < 2X™MX - diag(X™™MX)17 - 1diag(X"™MX)T
A < argmax jr(?f A) s.t. A € & {Find worst violator’
if Itr(Z*A) — tr(Z*A)l = k then )
add constraint to K : tr(ZfA) - tn(ZTA)> 1 - &
end 1f
until [tr(Z7A ) - tr(ZTA) s x
return M

SOXHAD R

For networks larger than a few hundred nodes or for high-
dimensional features, these SDPs may not scale well. The
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complexity of the SDP may scale with the number of vari-
ables and constraints, yielding a worst-case time of O(d’*+C?)
where C=0(n®). By temporarily omitting the PSD require-
ment on M, Algorithm 2 becomes equivalent to a one-class
structural support vector machine (structural SVM). Stochas-
tic SVM algorithms have been recently developed that have
convergence time with no dependence on 1nput size. There-
fore, a large-scale algorithm based on projected stochastic
subgradient descent 1s developed. The proposed adaptation
removes the dependence on n, where each iteration of the
algorithm is O(d*), sampling one random constraint at a time.
The optimization can be rewritten as unconstrained over an
objective function with a hinge-loss on the structure preserv-
ing constraints:

A 1 8
f(M) = EIIMII% — ©)

m Z max(Du (X, xj) — Dp (x5, %) + 1.0)

(i, 1,k)eS

Here the constraints have been written 1n terms of hinge-
losses over triplets, each consisting of anode, 1ts neighbor and
its non-neighbor. The set of all such triplets is S={(i, j.
k)IA,=1,A,=0}. Using the distance transformation in Equa-
tion 1, each of the |S| constraints can be written using a sparse
matrix CY®,  where C W9=1,C U=]1,C, W7H=],
C,\"9=-1,C,"7=-1,C,,"""=-1, and whose other entries
are zero. By construction, sparse matrix multiplication of
CY7® indexes the proper elements related to nodes 1, j, and k,
such that tr(CY7YX*MX) is equal to D,/(X,, X,)-DyAX;, Xp).
The subgradient of T at M 1s then

VioAM+— )

5 > xch T

(i, /.k)eS

where

Sy =AU L K Dy (g, x7) — Dag (x5, %) + 1 > 0} (10)

If for all triplets this quantity 1s negative, there exists no
unconnected neighbor of a point which is closer than apoint’s
tarthest connected neighbor—precisely the structure preserv-
ing criterion for nearest neighbor algorithms. In some
embodiments this objective function 1s optimized via sto-
chastic subgradient descent. These embodiments sample a
batch of triplets, replacing S 1n the objective function with a
random subset of S of size B. If a true metric 1s necessary,
various embodiments mtermittently project M onto the PSD
cone. Full details about constructing the constraint matrices
and minimizing the objective are shown 1n Algorithm 3.

Algorithm 3: Structure preserving metric learning with

nearest neighbor constraints and optimization with projected
stochastic subgradient descent

Input: A € B X € B and parameters A, T, B

1: M; <1,

2: fortfromltoT-1do

3: 1

Hr < X

4. C=0,,

3: forb from 1 to B do

6: (i, ], k) <= Sample random triplet from S = {(i, j, k) |A;=1,A; =0}

7: i Dyy (X5 X;) = Dag, (X5, %) +1 > 0 then

8: Cie=C;+1,Cp—=Cy+1,C; < Cp+ 1
10: end 1f
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-continued
11: end for
12:  V,« XCXT+ MM,
13: Mr+1 = Mr - Tlrvr
14:  Optional: M,, | = [M,,,]" {Project onto the PSD cone}
15: end for
16: return MY

Analysis

In this section, analysis for the scaling behavior of SPML
using SGD 1s provided. A significant insight 1s that, since
Algorithm 3 regularizes with the L, norm and penalizes with
hinge-loss, omitting the positive semidefinite requirement for
M and vectorizing M makes the algorithm equivalent to a
one-class, linear support vector machine with O(n’) input
vectors. Thus, the stochastic optimization 1s an instance of the
PEGAGOS algorithm, albeit a cleverly constructed one. The
running time of PEGASOS does not depend on the input size,
and 1nstead scales with the dimensionality, the desired opti-
mization error on the objective function € and the regulariza-

tion parameter A. The optimization error € 1s defined as the
difference between the found objective value and the true
optimal objective value, f(M)-min,, f(M).
Theorem 1: Assume that the data 1s bounded such that
Max,; ; es| XCYX?|*<R, and Rz1. During Algo-
rithm 3 at iteration T, with A<V4, and batch-size B=1, let

be the average M so far. Then, with probability of at least
1-9,
P 84R%In(T/S) (11)
f(M)=minf(M) < VA

Consequently, the number of iterations necessary to reach
an optimization error of € 1s

(x)

Proof (Theorem 1): The theorem 1s proven by realizing that
Algorithm 3 1s an 1mnstance of PEGASOS without a pro-
jection step on one-class data, since Corollary 2 in [S.
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter.

Pegasos: Primal estimated sub-gradient solver for SVM.

Mathematical Programming. March 2011, Volume 127,

Issue 1, pp 3-30] proves this same bound for traditional

SVM put, also without a projection step. The input to
the SVM is the set of all dxd matrices XC"7**X” for each
triplet (1, 7, K)eS.

Note that the large size of set S plays no role 1n the running
time; each iteration requires O(d*) work. Assuming the node
feature vectors are of bounded norm, the radius of the mnput
data R 1s constant with respect to n, since each is constructed
using the feature vectors of three nodes. In practice, as in the
PEGASOS algorithm, various embodiments use M as the
output instead of the average, as doing so may perform better
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on real data, but an averaging version can be implemented by
storing a running sum of M matrices and dividing by T before
returning.

Graph 2(b) shows the training and testing prediction per-
formance on one of the experiments described 1n detail below
as stochastic SPML converges. The area under the recerver
operator characteristic (ROC) curve 1s measured, which 1s
related to the structure preserving hinge loss, and the plot
shows fast convergence and quickly diminishing returns at
higher 1teration counts.

Variations of SPML

While stochastic SPML does not scale with the size of the

input graph, evaluating distances using a full M matrix
requires O(d*) work. Thus, for high-dimensional data, one
exemplary approach 1s to use principal component analysis or
random projections to first reduce dimensionality. It has been
shown that n points can be mapped 1nto a space of dimen-
sionality O(log n/e®) such that distances are distorted by no
more than a factor of (1ze). Another exemplary approach 1s to
limit M to be nonzero only along the diagonal. Diagonalizing
M reduces the amount of work to O(d).
If modeling cross-feature interactions i1s necessary, another
option for reducing the computational cost 1s to perform
SPML using a low-rank factorization of M. In this case, all
references to M can be replaced with L“L, thus inducing a true
metric without projection. The updated gradient with respect
to L 1s simply

V,<2XCX'L+)\L, (12)

Using a factorization also allows replacing the regularizer
with the Frobenius norm of the L. matrix, which 1s equivalent
to the nuclear norm of M. Using this formulation causes the
objective to no longer be convex, but seems to work well 1n
practice. Finally, when predicting links of new nodes, SPML
does not know how many connections to predict. To address
this uncertainty, a variant to SPML called degree distribu-
tional metric learning (DDML) can be used, which simulta-
neously learns the metric as well as parameters for the con-
nectivity algorithm. Details on DDML and low-rank SPML

are discussed below.

Degree Distributional Metric Learning (DDML)

While SPML using k-nearest neighbors learns a structure
preserving metric, one of 1ts limitations 1s in predicting full
graphs 1n an out-of-sample setting. On training data, the
degree of each node 1s known, so the connectivity algorithm
connects the exact number of neighbors as necessary to
reconstruct the input graph. On a new set of nodes, however,
the target degree 1s unknown. One method to address this 1s to
learn a non-stationary degree preference function over node
features that relates the features of a node to 1ts target degree.

As one possible variant to structure preserving metric
learning (SPML), degree distributional metric learning
(DDML) simultaneously and/or concurrently learns a metric
while also learning a parameterized, non-stationary degree
preference function used to compute the connectivity of
nodes. This extension can be understood as SPML with an
adaptive connectivity algorithm, rather than the default
k-nearest neighbors.

The connectivity algorithm uses a degree preference func-
tion g, which takes a node’s feature vector x and a target

degree k, and is parameterized by matrix SeRR . The score
1s then computed via
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K (13)
gik|x; 8 = Z xrsk;.

k=1

The score of a graph A 1s then the sum of all edge distances
and the degree preference functions for each node

F(A|X;M,S)=ZAHDM(XMJ)_Z(§(ZAH xf;S]. (14)
i - F

The objective for DDML 1s otherwise analogous to that of
SPML.:

f(M) = %llMlF — (1)

> max(F(A|X; M, S)- F(A| X; M, S)+A[A, A), 0),

EE[BH}{H

where A denotes Hamming distance. In some embodiments,
this objective 1s solvable via the cutting-plane style optimi-
zation by iteratively finding the worst-violating A and adding
it to a constraint set. For concave degree preference functions,
the worst-violated constraint can be found by converting the
problem to a maximum weight b-matching on an augmented
graph, thus an additional concavity constraint on g 1s added to

the optimization.

In various embodiments, a stmilar approach to the stochas-
tic SPML algorithm 1s also possible to perform DDML much
faster, and, by parameterizing the degree preference function
only up to a fixed maximum degree, also eliminates the
dependence of the runming time on the size of the graph. As in
stochastic SPML, a DDML objective can be written 1n terms
of triplets of nodes 1, neighbor j, disconnected node triplets k.
Let AY® denote the false graph produced by toggling the
edge between nodes 1 and 1 and the edge between nodes 1 and
k. The DDML objective using the triplet-style constraints 1s

Fees ) = SIMIP - )
1

5 Z max(F(A | X; M, S)— F(A%9 | X; M, )+ 1, 0).

(1,1 0)ES

The difference 1n scores decomposes 1nto four scalar val-
ues, since the only differences changing A to AY”* are that
A% s missing edge (i.j), gains edge (i, k), the degree of
node j decreases by one and the degree of node k increases by
one. Thus, the difference can be computed by evaluating the
distance from node 1 to node j, the distance from node 1 to
node k, the change in degree preference score from the degree
of node j to 1ts degree minus one, and the change in degree
preference from the degree of node k from its degree plus one.
Let the degrees of all nodes be stored 1n array ¢, such that the
degree of node 7 1s ¢[j]. The difference 1s then computable as

F(AIX;M,S)-F(A4%5 XM, S) =D gX;,%,) =D X% 1)+
T T

XS (e[1- 1%k S(e[k]+1) (17)

This formulation eliminates the need for the expensive
separation oracle and allows stochastic optimization. The
gradient update for the metric parameter M 1s the same as 1n
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SPML. The gradient with respect to s_.;,_;, 18 X; and the
gradient with respect to s 1,1, 18 (=X,).

To retain coherence between the different degree func-
tions, a requirement that the resulting degree preference func-
tion for each node 1s concave can be added. In some embodi-
ments concavity 1s enforced by stochastically sampling a
node i per iteration, and projecting S such that entries in x,”S

are 1n decreasing order. The pseudocode for stochastic
DDML 1s 1n Algorithm 4.

Algorithm 4 Stochastic degree distributional metric learning

Input: A € B**" X € B4 and parameters A, T, B
1t My <158, <04,
2: Compute degree array ¢ s.t. ¢[1] =2; A
3: fortfrom1toT-1do
4

1

< -

At
C<0,,
S'<— AS
for b from 1 to B do
(i, j, k) < Sample random triplet from S = {(i,j, k) |A;=1,A; =0}
if FAIX; M, S) - F(A%“/®IX; M, S) + 1 >0 then
Cie=C;+1,Cp—=Cy+1,C <= Cp+ 1
C,ie=Cy—-1,C=C;; - 1,Cp <= Cp - 1

) _Ji"I
Sei] < Sep) T X

2 V1

1j?

Sc[;c]' Sy~ Xk
end 1f
end for
V,«— XCXT + 1M,
Mr+1 = Mr - Tlrv
S.=f+1 Nl Sr - TIrSI
19: 1 <— Sample random 1ndex
20:

3

00 -1 O\ h I W) PO — O D 00— O h

Project S so xS is monotonically nonincreasing
21:  Optional: M,,; < [M,, ,]" {Project onto the PSD cone}
22: end for

23: return M,

Low-Rank Structure Preserving Metric Learning

The low-rank variant of SPML computes all distances

using a factorization LeR ™ of M=L“L, eliminating the need
to compute a dxd matrix. Some existing metric learning algo-
rithms use similar low-rank factorizations. Low-rank SPML
has an additional parameter r, which limits the rank of M by
explicitly determining the size of L. The optional projection
onto the PSD cone is no longer necessary because L”L always
forms a valid metric by construction. This optimization 1s not
convex, but 1itial experimental results seem to show that the
stochastic optimization avoids local minima in practice.
Algorithm 5 details the steps of low-rank SPML.
Algorithm 5 Low-rank structure preserving metric learn-
ing with nearest neighbor constraints and optimization
with projected stochastic subgradient descent

Input: A € B**" X & BY"" and parameters A, T, B, r
1: L, < rand(r,d) {Initialize L}
2: fortfromltoT-1do

3: 1

N < 7!
4: C=0,,
5: for b from 1 to B do
6: (i, ], k) <= Sample random triplet from S = {(i, j, k) |A;=1,A; =0}
7: if |Lx; — L.,f}sfj\|2 — |ILx; - Lx][* + 1 >0 then
8: Cie=C;+1,Cp—=Cy+1,C; < Cpy + 1
9: C,i«<C,-1,C,«C;; - 1,Cpp == Cpp - 1
10: end 1f
11: end for
12: V,<2XCX'LS+ AL,
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-continued
13: L.=f+1 Lr _ Tlrvr
14: end for
15: return L,
SPML Experiments

A variety of synthetic and real-world experiments are
described below that elucidate the behavior of SPML. SPML
performance 1s shown on a simple synthetic dataset that 1s
casily visualized i1n two dimensions and which we believe
mimics many traditional network datasets. Favorable perior-
mance for SPML 1s also shown in predicting links of the
Wikipedia document network and the Facebook social net-
work.

Synthetic Example

To better understand the behavior of SPML, consider the
tollowing synthetic experiment. First n points are sampled
from a d-dimensional uniform distribution. These vectors

represent the true features for the n nodes XeR “”. An adja-
cency matrix 1s computed by performing a mimimum-dis-
tance b-matching on X. Next, the true features are scrambled
by applying a random linear transformation: RX where Re

R “*? Given RX and A, the goal of SPML is to learn a metric
M that undoes the linear scrambling, so that when b-matching
1s applied to RX using the learned distance metric, 1t produces
the input adjacency matrix.

FIG. 18 illustrates the results of the above experiment for
d=2, n=50, and b=4. In FI1G. 18(a), we see an embedding of
the graph using the true features for each node as coordinates,
and connectivity generated from b-matching. In FIG. 18(5),
the random linear transformation has been applied. We posit
that many real-world datasets resemble plot 1(5), with seem-
ingly incongruous feature and connectivity information.
Applying b-matching to the scrambled data produces connec-
tions shown in FIG. 18(¢). Finally, by learning M via SPML
(Algorithm 2) and computing L. by Cholesky decomposition
of M, features LRX can berecovered (FIG. 18(d)) that respect
the structure i the target adjacency matrix and thus more
closely resemble the true features used to generate the data.

FI1G. 18 1llustrates that 1n this synthetic experiment, SPML
finds a metric that inverts the random transformation applied
to the features (b), such that under the learned metric (d) the
implied connectivity 1s identical to the original connectivity
(a) as opposed to inducing a different connectivity (c).

[.ink Prediction

SPML can be compared to a variety of methods for pre-
dicting links from node features: Euclidean distances, rela-
tional topic models (RTM), and traditional support vector
machines (SVM). A simple baseline for comparison 1s how
well the Euclidean distance metric performs at ranking pos-
sible connections. Relational topic models learn a link prob-
ability function in addition to latent topic mixtures describing
cach node. For the SVM, training examples are constructed
consisting of the pairwise differences between node features.
Training examples are labeled positive if there exists an edge
between the corresponding pair of nodes, and negative 1f there
is no edge. Because there are potentially O(n”) possible
examples, and the graphs are sparse, we subsample the nega-

tive examples so that we include a randomly chosen equal
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number of negative examples as positive edges. Without sub-
sampling, the SVM 1s unable to run the experiments in a

reasonable time. The SVMPert implementation for SVM 1n
T. Joachims. Traiming linear SVMs 1n linear time. In ACM
SIG International Conterence On Knowledge Discovery and
Data Mining (KDD), pages 217-226, 2006, and the authors’
code for RTM 1n J. Chang and D. Ble1. Hierarchical relational
models for document networks. Annals of Applied Statistics,
4:124-150, 2010 were used.

Interestingly, an SVM with these inputs can be interpreted
as an instance of SPML using diagonal M and the f-neigh-
borhood connectivity algorithm, which connects points based
on their distance, completely independently of the rest of the
graph structure. Therefore, SPML 1s expected to product bet-
ter performance 1n cases where the structure 1s important. The
RTM approach may be appropriate for data that consists of
counts, and 1s a generative model which recovers a set of
topics in addition to link predictions. Despite the generality of
the model, RTM does not seem to perform as well as discrimi-
native methods 1n our experiments, especially 1n the Face-
book experiment where the data 1s quite different from bag-
of-words features. For SPML, the stochastic algorithm 1s run
with batch size 10. The PSD projection step 1s skipped, since
these experiments are only concerned with prediction, and
obtaining a true metric 1s not necessary. SPML 1s imple-
mented 1n MATLAB and requires only a few minutes to
converge for each of the experiments below.

FIG. 19 1llustrates the average ROC performance for the
“oraph theory topics” Wikipedia experiment (leit) shows a
strong lift for SPML over competing methods. We see that
SPML converges quickly with diminishing returns after
many iterations (right).

Wikipedia Articles

SPML 1s applied to predicting links on Wikipedia pages.
Imagine the scenario where an author writes a new Wikipedia
entry and then, by analyzing the word counts on the newly
written page, a prediction system 1s able to suggest which
other Wikipedia pages 1t should link to. First, a few subnet-
works are created consisting of all the pages 1n a given cat-
egory, their bag-of-words features, and their connections.
Three categories are chosen: “graph theory topics”, “philoso-
phy concepts™, and “‘search engines”. A word dictionary of
common words 1s used with stop-words removed. For each
network, the data 1s split 80/20 for training and testing, where
20% of the nodes are held out for evaluation. On the remain-
ing 80% the test cross-validates (five folds) over the param-
eters for each algorithm (RTM, SVM, SPML), and trains a
model using the best-scoring regularization parameter. For
SPML, the diagonal variant of Algorithm 3 1s used, since the
high-dimensionality of the input features reduces the benefit
ol cross-feature weights. On the held-out nodes, each algo-
rithm 1s tasked to rank the unknown edges according to dis-
tance (or another measure of link likelihood), and compare
the accuracy of the rankings using receiver operator charac-
teristic (ROC) curves. Table 1 lists the statistics of each cat-
egory and the average area under the curve (AUC) over three
train/test splits for each algorithm. A ROC curve for the
“oraph theory category 1s shown in FIG. 19(a). For “graph
theory” and “search engines”, SPML provides a distinct
advantage over other methods, while no method has a par-
ticular advantage on “philosophy concepts”. One possible
explanation for why the SVM 1s unable to gain performance
over Buclidean distance 1s that the wide range of degrees for
nodes 1n these graphs may make 1t difficult to find a single
threshold that separates edges from non-edges. In particular,
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the “search engines” category had an extremely skewed
degree distribution, and 1s where SPML shows the greatest
improvement.

SPML 1s also applied to a larger subset of the Wikipedia
network, by collecting word counts and connections of 100,
000 articles 1n a breadth-first search rooted at the article
“Philosophy”. The experimental setup is the same as previous
experiments, but a 0.5% sample of the nodes 1s used for
testing. The final training algorithm ran for 50,000 1terations,
taking approximately ten minutes on a desktop computer. The
resulting AUC on the edges of the held-out nodes 1s listed in
Table 1 as the “Philosophy Crawl” dataset. The SVM and
RTM do not scale to data of this size, whereas SPML offers a
clear advantage over using Euclidean distance for predicting

links.

Facebook Social Networks

Applying SPML to social network data allows prediction
systems to more accurately predict who will become friends
based on the profile information for those users. The Face-
book data used includes a small subset of anonymized profile
information for each student of a university, as well as friend-
ship information. The profile information consists of gender,
status (meamng student, stail, or faculty), dorm, major, and
class year. Similarly to the Wikipedia experiments in the
previous section, SPML 1s compared to Euclidean, RTM, and
SVM. For SPML, a full M 1is learned via Algorithm 3. For
cach person, a sparse feature vector 1s constructed where
there 1s one feature corresponding to every possible dorm,
major, etc. for each feature type. Only people who have indi-
cated all five feature types on their profiles are selected. Table
1 shows details of the Facebook networks for the four schools
we consider: Harvard, MIT, Stanford, and Columbia. A sepa-
rate experiment 1s performed for each school, randomly split-
ting the data 80/20 for training and testing. The training data
1s used to select parameters via five-fold cross validation, and
train a model. The AUC performance on the held-out edges 1s
also listed 1n Table 1. It 1s clear from the quantitative results
that structural information 1s contributing to higher perfor-
mance for SPML as compared to other methods.

TABLE 1
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tant features. A possible explanation for this difference is that
MIT 1s the only school 1n the list that makes it easy for

students to stay in a residence for all four years of their
undergraduate program, and therefore which dorm one lives
in may affect more strongly the people they connect to.

These SPML experiments demonstrate a fast convex opti-
mization for learning a distance metric from a network such
that the distances are tied to the network’s inherent topologi-
cal structure. The structure preserving distance metrics intro-
duced 1n this article allow us to better model and predict the
behavior of large real-world networks. Furthermore, these
metrics are as lightweight as independent pairwise models,
but capture structural dependency from features making them
casy to use 1n practice for link-prediction. SPML’s lack of
dependence on graph size can be used to learn a structure
preserving metric on massive-scale graphs, e.g., the entire
Wikipedia site. Since each iteration requires only sampling a
random node, following a link to a neighbor, and sampling a
non-neighbor, this can all be done 1n an online fashion as the
algorithm crawls a network such as the worldwide web, learn-
ing a metric that may gradually change over time.

DDML Experiments

Using DDML on the same Wikipedia experiments
described above, DDML scores comparable AUC to SPML.
On “graph theory”, “philosophy concepts™, and “search
engines’, DDML scores AUCs of 0.691, 0.746, and 0.725.
While these scores are quite close to those of SPML, the
DDML variant provides a tradeoil between running time and
model richness. In the case of the Wikipedia category “phi-
losophy concepts”, DDML even provides a performance
improvement, which may indicate a clear signal in degree
preference learnable from the word counts.

FIG. 21 illustrates a ROC curve for various algorithms on
the “philosophy concepts™ category.

Low Rank SPML Experiments

Low-rank SPML 1s run on the Harvard Facebook data,
fixing A=1e-35 and varying the rank parameter r. The ROC

Wikipedia (top), Facebook (bottom) dataset and experiment information. Shown below:
number of nodes n, number of edges m, dimensionality d, and AUC performance.

| m d Fuclidean RTM
Graph Theory 223 917 6695 0.624 0.591
Philosophy Concepts 303 921 6695 0.705 0.571
Search Engines 269 332 6695 0.662 0.487
Philosophy Crawl 100,000 4,489,166 7702 0.547 —
Harvard 1937 48,980 193 0.764 0.562
MIT 2128 95,322 173 0.702 0.494
Stanford 3014 147,516 270 0.718 0.532
Columbia 3050 118,838 251 0.717 0.519

SVM  SPML
0.610 0.722
0,708  0.707
0.611 0.742

— 0.601
0.839  0.854
0.784 0.801
0.784  0.808
0.796 0.818

FIG. 20 provides a comparison of Facebook social net-
works from four schools 1n terms of feature importance com-
puted from the learned structure preserving metric.

By looking at the weight of the diagonal values 1n M
normalized by the total weight, 1t can be determined which
teature diflerences are most important for determining con-
nectivity. FIG. 20 shows the normalized weights averaged by
teature types for Facebook data. FIG. 20 shows the feature
types compared across four schools. For all schools except
MIT, the graduating year 1s most important for determining
distance between people. For MIT, dorms are the most impor-

60

65

curves and AUC scores using training data for different ranks
are 1n Graph 5. With greater rank, SPML has more flexibility
to construct a metric that fits the training data, but lower rank
provides a tradeoil between elficiency and reconstruction
quality. It 1s clear from this dataset that a rank of r=5 1s
suificient to represent the structure preserving metric, while
reducing the number of parameters from d*=37,249 to
dxr=965. Training fewer parameters requires less time, and
allows low-rank SPML to handle large-scale networks with
many nodes and high-dimensional features.
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FI1G. 22 illustrates the performance of low-rank SPML on
training data varying the rank parameter, run on a single
Facebook school. The results imply that a significantly
smaller rank than the true feature dimensionality 1s suificient
to fit the training data.

In summary, DDML 1s an extension of SPML that learns
degree preference functions, which are used 1n addition to the
learned distances to predict a graph. DDML aims to learn a
richer model than SPML, yet uses a comparable learning
algorithm which also can learn from large-scale mput.

FI1G. 1A 1s ablock diagram of an exemplary embodiment of
a network system 150 with an SPML/DDML link prediction
system 1352 according to some embodiments of the disclosed
subject matter. System 150 can include an SPML/DDML link

prediction system 152 and network data 156. The network
data 156 can include a plurality of nodes 166 and 188, cach of
which can include features (or properties) 170 and 172, and

node links/connections 164. The SPML/DDML link predic-

tion system 152 can receive data from and transmait data to a
user terminal 154.

In operation, the SPML/DDML link recommender com-
ponent 152 can recetve link prediction requests from and
transmit link predictions to the user terminal 134 according to
the processes shown in FIGS. 1B and 2-7.

It will be appreciated that the network data 156 can be
stored 1n a database system connected to the SPML/DDML
link prediction system 152 via a network. Optionally, the
network data 156 can be stored locally 1n memory attached to
the prediction processing component 152.

FIG. 1B 1s a flowchart showing an exemplary method for
using structure preserving metric learmng (SPML) connec-
tion prediction 1n a network recommender process. Process-
ing begins at 102 and continued to 104.

At 104, a connection (also often characterized as a “link™)
prediction request 1s recetved from a prediction requestor.
The connection prediction request can include information
pertaining to a node 114 for which predicted connections are
requested. The connection prediction request can, for
example, be a request from a user of a social network system
that has requested the social network system to recommend a
l1st of new connections for the user, as shown 1n FIGS. 9 and
10. In another example, a link prediction request can be a
request from a user of a document network system that has
requested a list of new links between the user’s document and
other relevant documents, as shown in FIGS. 11 and 12.
Additionally, the connection prediction request can, for
example, be a request from a user of a dating service system
that has requested the dating service system to recommend a
list of new connections for the user, as shown in FIGS. 13 and
14. In another example, the connection prediction request can
be arequest from a user of a shopping service system that has
requested the shopping service system to recommend a list of
recommended products for the user. In each of these
examples, the connection prediction request can be 1nitiated
by a user of the systems, and/or the connection prediction
request can be 1nitiated by the systems with or without inter-
action from a user. For example, a component of a social
network system can generate, without interaction from the
user, a connection prediction request for one or more users of
the social network system to provide new connection predic-
tions (or recommendations) to the user unsolicited by the
user. In another example, a component of a social network
system can generate a connection prediction request in
response to a user registering to join, logging nto the social
network system, and/or changing their profile information in
the social network system, and provide the new connection
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predictions to the user without the user directly requesting
new connection predictions. Processing continues to 106.

At 106, SPML or DDML processing 1s performed to gen-
erate an output 124 that can include a list of predicted con-
nections, or links, 126. SPML or DDML processing 1s per-
formed based the mput 112 that can include the node 114
indicated 1n the recerved request and a network 118 of which
the node 114 1s a member or the node 114 can be a new node
that 1s not currently a member. The network 118 can include
nodes 120 (each node having properties or features that char-
acterize each node respectively) and connections (links)
between them 122.

As indicated at 116, the node data includes property data
(or features) 116 that provides characteristics of the node, for
example, characteristics of a social network user. In a social
networking system the node 114 represents the user and the
node features 116 can include many characteristics of the
including butnot limited to the user’s age, sex, status, college,
college major, college dorm, college graduation year, etc. In
the document network example, the node 114 can represent
the document for which new links have been requested and
the node features 116 can include but not limited to word
counts, bag-of-words features, and other document charac-
teristics. Processing continues to 108.

At 108 the predicted connections, or links, 126 are trans-
mitted to the prediction requestor. The predicted connections
can be transmitted to the prediction requestor 1n a ranked list
such that the first predicted connection 1s, using the learned
structure preserving distance metric, closer to the input node
than the second predicted connection and so on. Optionally,
class information can be transmitted to the prediction
requestor 1dentifying the class or some other correlation that
ex1sts between the input node and each predicted connection
which resulted 1n the connection being predicted. Processing
continues to 110, where processing ends.

FI1G. 2 1s aflowchart showing an exemplary embodiment of
a structure preserving metric learning (SPML) connection
prediction method 200 according to some embodiments of
the disclosed subject matter. Processing begins at 202 and
continues to 204.

At 204, a connection prediction request 1s recerved from a
prediction requestor such as a social network user in conjunc-
tion with a social network service provider. The connection
prediction request can indicate a node 214 for which pre-
dicted connections are requested. A connection prediction
request can, for example, be a request from a user of a social
network system that has requested the social network system
to recommend a list of new connections for the user. In
another example, a link prediction request can be a request
from a user of a document network system that has requested
a list of new links to other relevant documents. Processing
continues to 206.

At 206, processing 1s performed based on an iput 212 to
generate an output 224 that can include a list of predicted
connections, or links, 226. The mput 212 can include a struc-
ture preserving distance metric 218 and the node 214 for
which predicted connections were requested. The node 214
can belong to a network of nodes and connections, and SPML
can be used to learn the structure preserving distance metric
218 between the nodes of the network. The node 214 can
include node features 216. The structure preserving distance
metric 218, the node 214, and the node features 216 can be
used to generate the list of predicted connections, or links,
226. Processing continues to 208.

At 208 the predicted connections, or links, 226 are trans-
mitted to the prediction requestor. The predicted connections
can be transmitted to the prediction requestor 1n a ranked list
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such that the first predicted connection 1s, using the learned
structure preserving distance metric, closer to the input node
than the second predicted connection and so on. Optionally,
class information can be transmitted to the prediction
requestor 1dentifying the class or some other correlation that
ex1sts between the input node and each predicted connection
which resulted 1n the connection being predicted. Processing,
continues to 210, where processing ends.

FIG. 3 1s a diagram of an exemplary embodiment of a
structure preserving metric learning (SPML) prediction sys-
tem according to some embodiments of the disclosed subject
matter. System 300 can include a laptop user computer 302, a
desktop user computer 304, a smartphone user computer 306
and a web server 310. The laptop user computer 302, desktop
user computer 304, and smartphone user computer 406 can
transmit data to and/or recerve data from the web server 310
via a network 308.

In operation, a user operating the laptop user computer
302, desktop user computer 404, and/or smartphone user
computer 306 can, via a web browser, send a request to the
web server 310.

The user request can, for example, include a request to join
a social networking site and receive a list of recommended
connections, or a request for an existing user of the social
networking site to recetve a list of recommended new con-
nections. In this example, the web server 310 can, given the
user’s profile information and/or features, generate a list of
predicted new connections for the user according to the
SPML or DDML methods provided herein. The SPML/
DDML enabled web server 310 can, 1n this example, transmit
the list of predicted new connections to the requesting user via
the network 308.

In another example the request can include a request to
submit a new document to an online document network and
recerve a list of recommended links for the new article, or a
request to receive recommended new links for an existing
document 1n the document network. In this example, the web
server 310 can, given the document’s word count, bag-oi-
words, and/or document features, generate a list of predicted
new links relevant to the document according to the SPML or
DDML methods provided herein. The web server 310 can, 1n
this example, transmit the list of predicted new links to the
requesting user via the network 308.

FIG. 4 1s a flowchart showing an exemplary method of
SPML/DDML link prediction 400 according to some
embodiments of the disclosed subject matter. Processing
begins at 402 and continues to 404.

At 404, network data including node properties and node
links 1s stored on a data store accessible by a link prediction
processor. For example, the network data can be stored 1n a
database server and the link prediction processor can be a
computer network server that can, for example, access the
database server via a network. The network data can, for
example, represent social networks such as Facebook, MyS-
pace, and similar networks, dating service networks such as
c¢Harmony, Match.com, and similar networks, document net-
works such as Wikipedia, and similar networks, and shopping
networks such as Amazon.com and similar networks, as
described 1n FIGS. 9-16. Processing continues to 406 or
optionally continues concurrently or sequentially to 406 and
408.

At 406, the link prediction processor learns a structure
preserving distance metric by performing a structure preserv-
ing metric learning process such as one of the SPML or
DDML mmplementations discussed above, such as, but not
limited to, Stochastic DDML or cutting plane DDML.

10

15

20

25

30

35

40

45

50

55

60

65

20

Optionally, processing can concurrently or sequentially
continue to 408 where the link prediction processor can learn
a degree prediction function. For example, the link prediction
server can perform 406 and 408 concurrently by performing
one of the DDML implementations to learn a structure pre-
serving distance metric and a degree prediction function con-
currently.

Processing continues to 410. At 410, a request for new link
predictions for a specified node with node properties 1s
received from a link prediction requestor. The specified node
can be a new node not already represented 1n the network data
or an existing node. Processing continues to 412.

At 412, new links are predicted for the node specified in the
request based on the requested node properties, the learned
structure preserving distance metric, and optionally the
learned degree prediction function. It 408 1s not performed
and the degree prediction function 1s not learned, a predeter-
mined number of new links can be predicted for each
requested node. The predicted new links can be transmitted to
the link prediction requestor in a ranked list such that the first
predicted new link node 1s, under the learned structure pre-
serving distance metric, closer to the specified node than the
second predicted new link node and so on. Optionally, class
information can be transmitted to the link prediction
requestor 1dentifying the class and/or some other correlation
that exists between the specified node and each predicted new
link which resulted 1n the connection being predicted. Pro-
cessing continues to 414.

At 414, the predicted new links are transmitted to the link
prediction requestor. Processing continues to 416 where pro-
cessing ends.

It will be appreciated that the link prediction requestor can,
for example, be an end user of a social network service, a
document network service, a dating service, or a shopping
service, or any other similar service. It will also be appreci-
ated that the link prediction requestor can, for example, be an
internal component of any of these services that can request
link predictions for any of its users and provide the predicted
links to its users with or without a user having to mitiate such
a request. For example, any of these services can include a
registration component that upon a new user registering for
the service automatically submits a new link prediction
request and presents the new link predictions to the user
without the user having to submit a request (see, for example,
FIGS. 9, 11, 13, and 15). In another example, any of these
services can periodically or upon a change 1n node properties
(e.g. user profile change 1n a social network or document edits
applied 1n a document network service) submit a new link
prediction request and transmit the new link predictions to the
user without the user having to submit a request. In these
examples, the user can recerve link predictions from the ser-
vices and submit a request for new link predictions via, for
example, a website and the new link prediction results can be
provided to the user through the website or via an electronic
messaging service such as e-mail or instant messaging.

It will also be appreciated that the method can be repeated
in whole or 1n part. For example, 406 and optionally 408 can
be repeated to maintain current learned distance metrics and
degree prediction functions as changes to the stored network
data occur over time (such as node properties and node links
changing over time, such as, for example, when a user 1n a
social network service updates their profile or adds/removes
friends).

FIG. 5 1s a flowchart showing an exemplary method of
SPML/DDML link prediction 500 according to some
embodiments of the disclosed subject matter. Processing
begins at 502 and continues to 504.
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At 504, network data, similar to that described 1in FIG. 4
above, 1s provided including node properties and node links.
Processing continues to 506.

At 506, a learned structure preserving distance metric and
optionally a learned degree preference function are provided.
Processing continues to 508.

At 508, a request for new link predictions for a specified
node with node properties 1s received from a link prediction
requestor. The specified node can be a new node not already
represented 1n the network data or an existing node. Process-
ing continues to 510.

At510, new links are predicted for the node specified in the
request based on the requested node properties, the learned
structure preserving distance metric, and optionally the
learned degree prediction tunction. If the degree prediction
function 1s not provided, a predetermined number of new
links can be predicted for each requested node. Processing
continues to 512.

At 512, the predicted new links are transmitted to the link
prediction requestor. The predicted new links can be trans-
mitted to the link prediction requestor in a ranked list such
that the first predicted new link node i1s, under the learned
structure preserving distance metric, closer to the specified
node than the second predicted new link node and so on.
Optionally, class information can be transmitted to the link
prediction requestor identifving the class and/or some other
correlation that exists between the specified node and each
predicted new link which resulted in the connection being
predicted. Processing continues to 514 where processing
ends.

FIG. 6 1s a flowchart showing an exemplary method of
DDML link degree prediction 600 according to some
embodiments of the disclosed subject matter. Processing
begins at 602 and continues to 604.

At 604, network data including node properties and node
links 1s stored on a data store accessible by a link prediction
processor, as described above in FIG. 4. Processing continues
to 606.

At 606, a degree prediction function i1s learned for the
network data according to one of the DDML processes
described above, such as, for example, Stochastic DDML or
cutting plane DDML. Processing continue to 608.

At 608, a request to predict the degree of a specified node
given 1ts node properties 1s received from degree prediction
requestor. Processing continues to 610.

At 610, a predicted degree for the specified node 1s gener-
ated based on the specified node’s properties using the
learned degree preference function according to one of the
DDML processes described above. The predicted degree can,
for example, be 1n the form of a probability that the specified
node will have a specified degree. Processing continues to
612.

At 612, the predicted degree 1s transmitted to the degree
prediction requestor. Processing continues to 614 where pro-
cessing ends.

It will be appreciated that the method 600 can be repeated
in whole or 1n part to, for example, maintain a current learned
degree preference function as changes occur 1n the network
data (such as changes 1n the node properties or node links
changing, for example, when a user of a social network ser-
vice updates their profile or adds/removes iriends). For
example, 606 can be repeated periodically or upon a change 1n
the network data to maintain a current learned degree prefer-
ence function.

FIG. 7 1s a flowchart showing an exemplary method of
SPML/DDML link prediction using network partitioning 700
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according to some embodiments of the disclosed subject mat-
ter. Processing begins at 702 and continues to 704.

At 704, network data including node properties and node
links 1s stored on a data store accessible by a link prediction
processor, as described above 1n FIGS. 4 and 6. Processing
continues to 606.

At 706, the network data 1s partitioned. Partitioning the
network data can, for example, be performed to allow SPML/
DDML processes, such as the DDML cutting plane optimi-
zation, to be run on smaller segments, or partitions, of the
network, so that these processes can be utilized with large
networks. In this example, by partitioning large networks into
smaller segments, SPML/DDML processes described above,
such as the cutting plane optimization can be performed on
the smaller network partitions. As indicated elsewhere, natu-
ral partitions may arise due to barriers to linking, for example,
training data from different schools. Processing continues

708.

At 708, a structure preserving distance metric 1s learned by
performing a structure preserving metric learning process,
such as one of the SPML or DDML implementations
described above (e.g. the DDML cutting plane optimization),
for each of the partitions created 1n 706. Optionally, a degree
preference function can be learned for each partition. For
example, when using the DDML cutting plane optimization
on each partition a structure preserving distance metric and
degree preference function can be learned concurrently for
cach partition. Processing continues to 710.

At 710, a request for new link predictions for a specified
node with node properties 1s received from a link prediction
requestor. The specified node can be a new node not already
represented 1n the network data or an existing node. Process-
ing continues to 412.

At 712, at least one of the partitions created mn 706 1s
selected based on the specified node’s properties. Partition
selection can also account for the specified node’s existing
links 11 the specified node 1s an existing node 1n the network
data. Processing continues to 714.

At 714, new links are predicted for the node specified in the
request based on the partitions selected 1n 712, the requested
node properties, the learned structure preserving distance
metric, and optionally the learned degree prediction function.
If the degree prediction function i1s not learned, a predeter-
mined number of new links can, for example, be predicted for
cach requested node. Processing continues to 716.

At 716, the predicted new links are transmitted to the link
prediction requestor. The predicted new links can be trans-
mitted to the link prediction requestor in a ranked list such
that the first predicted new link node 1s, under the learned
structure preserving distance metric, closer to the specified
node than the second predicted new link node and so on.
Optionally, class information can be transmitted to the link
prediction requestor identifying the class and/or some other
correlation that exists between the specified node and each
predicted new link which resulted in the connection being
predicted (which can include an indication of the partition
used for link prediction). Processing continues to 718 where
processing ends.

It will be appreciated that the partitioning of the network
data can be performed 1n various ways depending on the type
of network represented by the network data. For example, 1n
a data service network, the network data can, for example, be
partitioned geographically under the premise that those users
in the same geographic area are more likely to be linked and
recommended for dates than those that are geographically
remote.
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It will also be appreciated that partitioming the network
allows for parallelization of the learning performed at 708,
and learming across each partition can be distributed across
link prediction processor components, as described in FIG. 8.

It will also be appreciated that the link prediction request
described above 1n FIGS. 4, 6, and 7 can, 1n some embodi-
ments, specily a plurality of nodes. In such embodiments,
links can be predicted among only the specified nodes to
create a new network among those nodes, or links can be
predicted among the specified nodes and the existing nodes in
the network data.

FI1G. 8 1s a block diagram of an exemplary embodiment of
a distributed structure preserving metric learning (SPML/
DDML) link prediction system 800 according to some
embodiments of the disclosed subject matter. System 800 can
include network data 804 that can be partitioned into a plu-
rality of network partitions 826, 828, and 830, and a link
prediction processor 802 which can include a plurality of link
prediction processing components 808, 810, and 812. Fach
network partition can include nodes with properties 832, 836,
and 840, and node links 834, 838, an 842. System 800 can also
include a link prediction requestor 806 that can transmit data
to and receive data from the link prediction processor 802.
The link prediction processor 802 can transmit data to and
receive data from the plurality of link prediction processing,
components 808, 810, and 812, each of which can be config-
ured to access a partition of the network data 826, 828, and
830.

In operation, the plurality of link prediction processing
components 808, 810, and 812 can learn concurrently or 1n
parallel a structure preserving metric from their respective
network partitions 826, 828, and/or 830, according to the
method described 1 FIG. 7. The link prediction processor
802 can recerve a link prediction request from the link pre-
diction requestor 806, process the request to predict links for
the specified node(s)/user(s), and transmit the predicted links
to the link prediction requestor 806, according to the method
described above 1n FIG. 7.

FI1G. 9 1s a block diagram of a system for predicting friend-
ships to new users of a social network using SPML/DDML
according to some embodiments of the disclosed subject mat-
ter. In particular, the system 900 includes a social network
service provider 902 that 1s coupled to an SPML/DDML link
prediction system that can include a structure preserving dis-
tance-metric learming component 903 and a degree prediction
function learning component 926. The social network service
provider 902 1s also coupled to an electronic data storage
having stored therein data representing a plurality of social
network members (906-908) each having a respective set of
properties/features or profile information (910-912) and a
respective set of friendship information (920-922). The social
network provider 902 receives the profile information (910-
912) and triendship information (920-922) from one or more
respective users (906-908). In response to the recerved profile
information (910-912) and friendship information (920-922),
the social network provider 902 performs SPML/DDML link
prediction using the SPML/DDML link prediction system
924 including the structure preserving distance-metric leamn-
ing component 903 and the degree prediction function leamn-
ing component 926 to predict friendships for users based on
their profile information. The SPML/DDML link prediction
system 924 can, for example, learn a structure preserving
distance metric using the structure preserving distance-metric
learning component 903 and learn a degree prediction func-
tion using the degree prediction function learning component
926, as described 1n FIGS. 4-7 where the profile information
(910-912) 1s treated as node properties and the friendship
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information (920-922) as node links. For example, a new user
928 can register to join the social network and the social
network provider 902 receives the new user 928 and the new
user’s profile mformation 930. In response to the new user
928, the social network provider 902 can predict friendships
to the new user 928 based on the new user’s profile informa-

tion 930 using the SPML/DDML link prediction system 924.
The predicted new Iriendships can be communicated to the
user for their approval (e.g., each user may receive an email
listing the new predicted friendships or be directed to a web
page listing the new predicted friendships). For example, a
results set 932 (e.g., 1n an email or displayed on the user’s

page at the social network site) can be provided for the new
member 928. Within the results are listed the new links 934
selected to match the new member 928. The predicted new
links 934 can be provided to the new user in a ranked list such
that the first predicted new link node 1s, under the learned
structure preserving distance metric, closer to the new user
than the second predicted new link node and so on. Option-
ally, class information can be transmitted to the new user
identifying the class and/or some other correlation that exists
between the new user and each predicted new link which
resulted in the connection being predicted.

In this example and in the example provided in FI1G. 10, the
nodes of the network data include the members of the social
network service. The node properties include member profile
information and the links include friendships between mem-
bers of the social network service.

It will be appreciated that the social network provider 902
can, 1n addition to providing new user 928 with the list of
predicted new friends 934, also provide the new user 928 as a
predicted new Inend to those existing users 1n the list of
predicted new friends 934, for example, via an email message
or through a message on the social network website.

FIG. 10 1s a block diagram of a system for predicting
friendships between users of a social network using SPML/
DDML according to some embodiments of the disclosed
subject matter. In particular, the system 1000 includes the
social network service provider 902, SPML/DDML link pre-
diction system 924, structure preserving distance-metric
learning component 903, degree prediction function learning
component 926, clectronic data storage, plurality of social
network members (906-908) cach having a respective set of
properties/features or profile information (910-912) and a
respective set of Iriendship information (920-922), as
described above i FIG. 9. System 1000 also includes for two
users of the social network site, x and vy, predicted friendship
results 1002-1004 that each include a plurality of predicted
friendships. The social network provider 902 receives
updates from users to modily their social network member
data such as their profile information and existing friendships,
when, for example, a user adds a new iriend or changes their
profile information. In response to these changes, the social
network provider 902 can perform SPML/DDML link pre-
diction using the SPML/DDML link prediction system 924 to
predict new Iriendships for users based on their changed
profile information. For example, the social network provider
902 can create predicted new Iriendships 1006 and 1008
when users X and y update their profile information and/or
add/drop Iriends and provide the results 1002 and 1004 to
users X and v (e.g, in an email or displayed on the user’s page
at the social network site).

In another example the social network provider 902 can
perform SPML/DDML link prediction using the SPML/
DDML link prediction system 924 to predict new friendships
for users periodically or on-demand.
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FIG. 11 1s a block diagram of a system for predicting links
to new documents added to an information network using
SPML/DDML according to some embodiments of the dis-
closed subject matter. In particular, the system 1100 includes
an mformation network service provider 1102 that 1s coupled
to an SPML/DDML link prediction system 1124 that can
include a structure preserving distance-metric learning com-
ponent 1103 and a degree prediction function learning com-
ponent 1126. The information network service provider 1102
1s also coupled to an electronic data storage having stored
therein data representing a plurality of information network
documents (1106-1108) cach having a respective set of docu-
ment properties (1110-1112) including bag-of-words con-
taining words occurring in the document and a respective set
of citation and/or link information (1120-1122). The infor-
mation network provider 1102 receives the document prop-
erties (1110-1112) and citation and/or link information
(1120-1122) from one or more respective documents (1106-
1108). In response to the recerved document properties
(1110-1112) and citation and/or link information (1120-
1122), the mnformation network provider 1102 performs
SPML/DDML link prediction using the SPML/DDML link
prediction system 1124 including the structure preserving
distance-metric learning component 1103 and the degree pre-
diction function learning component 1126 to predict cita-
tions/links for documents based on their document properties
including bag-of-words information. The SPML/DDML link
prediction system 1124 can, for example, learn a structure
preserving distance metric using the structure preserving dis-
tance-metric learning component 1103 and learn a degree
prediction function using the degree prediction function
learning component 1126, as described in FIGS. 4-7 where
the document properties (1110-1112) 1s treated as node prop-
erties and the citation and/or link information (1120-1122) as
node links. For example, a new document 1128 can be sub-
mitted to the information network and the information net-
work provider 1102 recerves the new document 1128 and the
new document’s properties 1130. In response to the new
document 1128, the information network provider 1102 can
predict links/citations to other relevant documents for the new
document 1128 based on the new document’s properties 1130
including 1ts bag-of-words using the SPML/DDML link pre-
diction system 1124. The predicted new links/citations can be
communicated to the author or submitter of the new docu-
ment 1128 for their approval (e.g., each user may receive an
email listing the new predicted links/citations or be directed
to a web page listing the new predicted links/citations). For
example, a results set 1116 (e.g., in an email or displayed on
the author’s or submitter’s page at the information network
site) can be provided for the new document 1128. Within the
results are listed the new links/citations 934 predicted to
match the new document 1128.

In this example and in the example provided in F1G. 12, the
nodes of the network data include the documents in the infor-
mation network service. The node properties include docu-
ment properties including bag-of-words and the links include
links/citations between documents of the mmformation net-
work service.

It will be appreciated that the information network provider
1102 can, 1 addition to providing new user 1128 with the list
of predicted new Iriends 1118, also provide the new user 1128
as a predicted new Iriend to those existing users in the list of
predicted new Iriends 1118, via, for example, an email mes-
sage or a message on the information network website.

FI1G. 12 1s a block diagram of a system for predicting links
between documents 1n an information network using SPML/
DDML according to some embodiments of the disclosed
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subject matter. In particular, the system 1200 includes the
information network service provider 1102, SPML/DDML
link prediction system 1124, structure preserving distance-
metric learning component 1103, degree prediction function
learning component 1126, electronic data storage, plurality of
information network documents (1106-1108) cach having a
respective set of document properties (1110-1112) and a
respective set of links/citations mformation (1120-1122), as
described above in FIG. 11. System 1200 also includes for
two documents of the mformation network site, x and v,
predicted links/citations results 1204-1206 that each include
a plurality of predicted links/citations 1202, 1208. The infor-
mation network provider 1102 receives updates from users/
authors to modity their document data such as document
properties and existing links/citations, when, for example, a
document adds a new link/citation or modifies the content of
the document. In response to these changes, the information
network provider 1102 can perform SPML/DDML link pre-
diction using the SPML/DDML link prediction system 1124
to predict new links/citation for documents based on their
modified document properties. For example, the information
network provider 1102 can create predicted new links/cita-
tions 1202 and 1208 when the content of documents x and y
are modified, when their document properties are modified,
when links/citations for the documents are added/removed,
and/or for some other event, and provide the results 1206 and
1204 to users X and vy (e.g, 1n an email or displayed on the
user’s page at the information network site).

FIG. 13 1s a block diagram of a system for predicting
connections to new members joining a dating service using
SPML/DDML according to some embodiments of the dis-
closed subject matter. In particular, the system 1300 1includes
a dating service provider 1302 that 1s coupled to an SPML/
DDML link prediction system 1324 that can include a struc-
ture preserving distance-metric learming component 1303 and
a degree prediction function learning component 1326. The
social network service provider 1302 is also coupled to an
clectronic data storage having stored therein data represent-
ing a plurality of dating service members (1306-1308) each
having a respective set of properties/features or profile infor-
mation (1310-1312) and a respective set of positive connec-
tion information (1320-1322). The dating service provider
902 recerves the profile information (1310-1312) and positive
connection information (920-922) from one or more respec-
tive users (1306-1308). The positive connection information
(920-922) can include communications imtiated by a user
with another user, or any other positive iteraction between
users such as dates, communications, or the like. In response
to the recerved profile information (1310-1312) and positive
connection information (1320-1322), the dating service pro-
vider 1302 performs SPML/DDML link prediction using the
SPML/DDML link prediction system 1324 including the
structure preserving distance-metric learning component
1303 and the degree prediction function learning component
1326 to predict new connections for users based on their
profile information. The SPML/DDML link prediction sys-
tem 1324 can, for example, learn a structure preserving dis-
tance metric using the structure preserving distance-metric
learning component 1303 and learn a degree prediction func-
tion using the degree prediction function learning component
1326, as described 1n FIGS. 4-7 where the profile information
(1310-1312) 1s treated as node properties and the positive
connection information (1320-1322) as node links. For
example, a new user 1328 can register to join the dating
service and the dating service provider 1302 receives the new
user 1328 and the new user’s profile information 1330. In
response to the new user 1328, the dating service provider
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1302 can predict new connections to the new user 1328 based
on the new user’s profile information 1330 using the SPML/
DDML link prediction system 1324. The predicted new con-
nections can be communicated to the user for their review
(e.g., cach user may receive an email listing the new predicted
connections or be directed to a web page listing the new
predicted connections). For example, a results set 1316 (e.g.,
in an email or displayed on the user’s page at the dating
service website) can be provided for the new member 1328.
Within the results are listed the new links 1334 selected to
match the new member 1328.

In this example and in the example provided in FI1G. 14, the
nodes of the network data include the members of the dating,
service. The node properties include member profile infor-
mation and the links include positive connections established
between members of the dating service.

It will be appreciated that the dating service provider 1302
can, 1n addition to providing new user 1328 with the list of
predicted new connections 1318, also provide the new user
1328 as a predicted new connections to those existing users 1n
the list of predicted new Iriends 1318, via, for example, an
email message or a portion of the dating service website.

FIG. 14 1s a block diagram of a system for predicting
connections between members 1 a dating service using
SPML/DDML according to some embodiments of the dis-
closed subject matter. In particular, the system 1400 includes
the dating service provider 1302, SPML/DDML link predic-
tion system 1324, structure preserving distance-metric learn-
ing component 1303, degree prediction function learning
component 1326, clectronic data storage, plurality of dating
service members (1306-1308) each having a respective set of
profile information (1310-1312) and a respective set of con-
nections (1320-1322), as described above 1n FIG. 13. System
1400 also includes for two members of the dating service site,
x and y, predicted new connections results (1402-1404) that
cach include a plurality of predicted new connections (1406-
1408). Various events can trigger the dating service provider
1302 to predict new connections, such as when the dating
service provider 1302 recerves updates from members to
modily their profile imformation and/or when members
update their connection information, and/or other dating ser-
vice events. In response to these changes, the dating service

provider 1302 can perform SPML/DDML link prediction
using the SPML/DDML link prediction system 1324 to pre-
dict new connections for members based on, for example,
therr modified profile information or connections. For
example, the dating service provider 1302 can create pre-
dicted new connections 1406 and 1408 when the profile infor-
mation of members x and y are modified, and/or when con-
nections for the members are added/removed, and provide the
results 1406 and 1404 to users x and y (e.g, 1n an email or
displayed on the user’s page at the dating service website).
FIG. 15 15 a block diagram of a system for recommending,
products to new users of a shopping service using SPML/
DDML according to some embodiments of the disclosed
subject matter. In particular, the system 1500 includes a shop-
ping service provider 1502 that 1s coupled to an SPML/
DDML link prediction system 1524 that can include a struc-
ture preserving distance-metric learning component 1503 and
a degree prediction function learning component 1526. The
shopping service provider 1502 1s also coupled to an elec-
tronic data storage having stored therein data representing a
plurality of shopping service users (1506-1508) each having,
arespective set of properties/Teatures or user profile and activ-
ity/browsing history (1510-1512) and a respective set of links
to products based on past purchase events (1520-1522). The
data storage also having stored therein data representing a
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plurality of shopping service products (1532-1534) each hav-
ing a respective set of product features (1536-1538) and a
respective set of links to users based on past purchase events
(1540-1542). The shopping service provider 1502 recetrves
the user profile and activity/browsing history (1510-1512)
and links to products based on past purchase events (1520-
1522) from one or more respective users (1506-1508). In
response to the user profile and activity/browsing history
(1510-1512) and links to products based on past purchase
events (1520-1522), the shopping service provider 1502 per-
tforms SPML/DDML link prediction using the SPML/DDML
link prediction system 1524 including the structure preserv-
ing distance-metric learning component 1503 and the degree
prediction function learning component 1526 to recommend
products for users based on their user profile and/or activity/
browsing history. The SPML/DDML link prediction system
1524 can, for example, learn a structure preserving distance
metric using the structure preserving distance-metric learning,
component 1503 and learn a degree prediction function using
the degree prediction function learning component 1526, as
described i FIGS. 4-7 where the user profile and activity/
browsing history (1510-1512) and product features (1536-
1538) are treated as node properties and the links to products
based on past purchase events (1520-1522) and links to users
based on past purchase events (1540-1542) are treated as
node links. For example, a new user 1528 can register to join
shopping network and the shopping service provider 1502
receives the new user 1528 and the new user’s profile 1nfor-
mation 1530. In response to the new user 1528, the shopping
service provider 1502 can recommend products to the new
user 1528 based on the new user’s profile and/or activity/
browsing history 1530 using the SPML/DDML link predic-
tion system 1524. The recommended products can be com-
municated to the user for possible purchase (e.g., each user
may receive an email listing the recommended products or be
directed to a web page listing the recommended products).
For example, a results set 1516 (e.g., in an email or displayed
on the user’s page at the shopping service website) can be
provided for the new user 1528. Within the results are listed
the recommended products 1518 selected to match the new
user 1528.

In this example and 1n the example provided in FIG. 16, the
nodes of the network data include the users and products of
the shopping network service. The node properties include
user profile (e.g. gender, age, address, etc.) and activity/
browsing history and product features. The node links are
between users and products and are determined by purchase
events.

FIG. 16 15 a block diagram of a system for recommending,
products to users of a shopping service using SPML/DDML
according to some embodiments of the disclosed subject mat-
ter. In particular, the system 1600 includes the dating service
provider 1502, SPML/DDML link prediction system 1524,
structure preserving distance-metric learning component
1503, degree prediction function learning component 1526,
clectronic data storage, plurality of shopping service mem-
bers (1506-1508) each having a respective set of profile and
activity/browsing history (1510-1512) and a respective set of
links to products based on past purchases (1520-1522), and a
plurality of shopping service products (1532-1534) each hav-
ing a respective set of product features (1536-1538) and a
respective set of links to users based on past purchases (1540-
1542), as described above 1n FIG. 15, System 1600 also
includes for two users of the shopping service site, x and v,
recommended new product results (1602-1604) that each
include a plurality of recommended products (1606-1608).
Various events can trigger the shopping service provider 1502
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to predict new links between users and products, such as when
a user’s user activity/browser history has changed, and/or
when purchases are made, and/or other shopping service
events. In response to these changes, the shopping service
provider 1502 can perform SPML/DDML link prediction
using the SPML/DDML link prediction system 1524 to pre-

dict new product recommendations for members based on,
for example, their modified profile information or purchases.
For example, the shopping service provider 1502 can recom-
mend new products 1606 and 1608 when the profile informa-
tion of members x and y are modified, when their user activ-
ity/browser history 1s modified, and/or when purchases are
made, and provide the results 1602 and 1604 to users x and y
(e.g, 1n an email or displayed on the user’s page at the shop-
ping service website).

It will be appreciated that each of the social network, dating,
service, information network, and shopping service discussed
above can be Internet based and provide a website for inter-
action between the service and 1ts users/members. Users can
connect to the servers over any type of network device includ-
ing but not limited to a desktop computer, a laptop computer,
a tablet, a web enabled cell phone, etc.

FIG. 17 1s a block diagram of an exemplary embodiment of
a structure preserving distance-metric learning link predic-
tion system 1700 according to some embodiments of the
disclosed subject matter. System 1700 can include a computer
1702 that can include a processor 1704 and a memory 1706.
The computer 1702 can transmit data to and recerve data from
a data store 1708. The computer 1702 can transmit data to and
receive data from a link prediction requestor 1708.

In operation, the processor 1704 will execute instructions
stored on the memory 1706 that cause the computer 1702 to
access network data from the data store 1708 to perform
SPML/DDML link prediction in response to receiving a link
prediction request from the link prediction requestor 1710
according to the processes shown 1 FIGS. 1B and 2-7.

Note that network data may include points that are mnevi-
tably disconnected from other points. For example, network
may be available representing friend networks for different
schools. In such data, the lack of links between points 1n
different schools lacks information for training the distance
metric. However, both sets may be used to train a single
metric. Thus, 1t will be apparent how the above algorithms
may be modified to account for this disconnectedness 1n the
training data. Further, networks may contain inherent resis-
tances or amplifiers that atfect the likelihood of a link being,
realized. In addition, some links may indicate a stronger
ailinity than others. For example, links formed across incon-
venient geographic distances or which endure for longer peri-
ods of time may be weighted more strongly 1n the optimiza-
tion of the distance metric.

In any of the above-described, or the below-claimed
embodiments, 1n addition to generating recommended or pro-
posed links (relationships, connections, friendships, transac-
tions, depending on the type of network) the method or sys-
tem may also store the proposed link and use that new link 1n
turther processing for new nodes or proposed nodes. For
example, when a social network system recommends a
friendship and a transaction 1s detected confirming the rela-
tionship, such as the detection of a transaction such as an
email exchange, the method or system may incorporate the
new link into the network and do additional processing based
on the presence of the link. The incorporation of the link 1n the
network may include the storage of new profile data 11 the link
1s associated with a new node.
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It will be appreciated that the data store 1708 may be
attached to the system using any network connection type, or
alternatively the network data store 1710 can directly
attached to the system.

In any of the disclosed embodiments, including the claims,
where a single computer or processor 1s recited, 1n alternative
embodiments more than one computer or processor may be
used, for example to process data 1n parallel. In the foregoing
embodiments and 1n the claims, the term learning 1dentifies
training process, for example, one ivolving optimization of
a distance metric based on link data. In any of the embodi-
ments, the link terms such as link, relationship, transaction,
are used 1n the various embodiments to identily of connec-
tions between object, persons, entities, or other things, and
which may be represented as a network 1n a computer data
store.

It will be appreciated that according to the above-de-
scribed, or the below-claimed embodiments a trained (or
learned) metric allows for the generation of a ranked list of
predicted connections between one or more new or target
nodes to other nodes, the ranking being by distance as mea-
sured by the learned metric. In some embodiments where the
degree preference function 1s not provided, a predetermined
value may be used to determine the number of predicted
connections to provide from the ranked list. Alternatively, 1n
some other embodiments where the degree preference func-
tion 1s not provided, the number of predicted connections
provided may be specified by the user (e.g. the user can
specily how many predicted connection to provide) or deter-
mined according to a rule responsive to the new or target node
properties (e.g. profile data) or inferred from other data 1ndi-
cating user activity on other networks (e.g. when a user joins
one social network such as Facebook, the number of links to
be predicted could be determined based on the user’s prop-
erties and/or links existing 1n other social network such as
Google+, which the social network being joined could access
using public data without needing the new user’s authoriza-
tion or using the authorization of the user the social network
being joined could access the user’s private profile and/or link
data in the other social network).

It will also be appreciated that the modules, processes,
components, systems, and sections described above can be
implemented 1n hardware, hardware programmed by soft-
ware, software instruction stored on a non-transitory com-
puter readable medium or a combination of the above. For
example, a method for indicating a maintenance operation
can be implemented, for example, using a processor coniig-
ured to execute a sequence of programmed instructions stored
on a non-transitory computer readable medium. For example,
the processor can include, but not be limited to, a personal
computer or workstation or other such computing system that
includes a processor, microprocessor, microcontroller device,
or 1s comprised of control logic including integrated circuits
such as, for example, an Application Specific Integrated Cir-
cuit (ASIC). The instructions can be compiled from source
code 1nstructions provided in accordance with a program-
ming language such as Java, C++, C#.net or the like. The
instructions can also comprise code and data objects provided
in accordance with, for example, the Visual Basic™ lan-
guage, LabVIEW, or another structured or object-oriented
programming language. The sequence of programmed
instructions and data associated therewith can be stored 1n a
non-transitory computer-readable medium such as a com-
puter memory or storage device which may be any suitable
memory apparatus, such as, but not limited to read-only
memory (ROM), programmable read-only memory (PROM),
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clectrically erasable programmable read-only memory (EE-
PROM), random-access memory (RAM), flash memory, disk
drive and the like.

Furthermore, the modules, processes, systems, and sec-
tions can be implemented as a single processor or as a dis-
tributed processor. Further, it should be appreciated that the
steps mentioned above may be performed on a single or
distributed processor (single and/or multi-core). Also, the
processes, modules, and sub-modules described 1n the vari-
ous figures of and for embodiments above may be distributed
across multiple computers or systems or may be co-located 1in
a single processor or system. Exemplary structural embodi-
ment alternatives suitable for implementing the modules, sec-
tions, systems, means, or processes described herein are pro-
vided below.

The modules, processors or systems described above can
be implemented as a programmed general purpose computer,
an electronic device programmed with microcode, a hard-
wired analog logic circuit, software stored on a computer-
readable medium or signal, an optical computing device, a
networked system of electronic and/or optical devices, a spe-
cial purpose computing device, an integrated circuit device, a
semiconductor chip, and a software module or object stored
on a computer-readable medium or signal, for example.

Embodiments of the method and system (or their sub-
components or modules), may be implemented on a general-
purpose computer, a special-purpose computer, a pro-
grammed microprocessor or microcontroller and peripheral
integrated circuit element, an ASIC or other integrated circuit,
a digital signal processor, a hardwired electronic or logic
circuit such as a discrete element circuit, a programmed logic
circuit such as a programmable logic device (PLD), program-
mable logic array (PLA), field-programmable gate array
(FPGA), programmable array logic (PAL) device, or the like.
In general, any process capable of implementing the func-
tions or steps described herein can be used to implement
embodiments of the method, system, or a computer program
product (software program stored on a non-transitory com-
puter readable medium).

Furthermore, embodiments of the disclosed method, sys-
tem, and computer program product may be readily imple-
mented, fully or partially, in software using, for example,
object or object-oriented software development environ-
ments that provide portable source code that can be used on a
variety of computer platforms. Alternatively, embodiments of
the disclosed method, system, and computer program product
can be implemented partially or fully in hardware using, for
example, standard logic circuits or a very-large-scale integra-
tion (VLSI) design. Other hardware or software can be used to
implement embodiments depending on the speed and/or eifi-
ciency requirements of the systems, the particular function,
and/or particular software or hardware system, microproces-
sor, or microcomputer being utilized. Embodiments of the
method, system, and computer program product can be
implemented in hardware and/or software using any known
or later developed systems or structures, devices and/or sofit-
ware by those of ordinary skill 1n the applicable art from the
tfunction description provided herein and with a general basic
knowledge of ventilation control and/or computer program-
ming arts.

Moreover, embodiments of the disclosed method, system,
and computer program product can be implemented 1n soit-
ware executed on a programmed general purpose computer, a
special purpose computer, a microprocessor, or the like.

It 1s, thus, apparent that there 1s provided, in accordance
with the present disclosure, systems, methods, and devices
for enhancing the value of network based systems. Many
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alternatives, modifications, and variations are enabled by the
present disclosure. Features of the disclosed embodiments
can be combined, rearranged, omitted, etc., within the scope
ol the invention to produce additional embodiments. Further-
more, certain features may sometimes be used to advantage
without a corresponding use of other features. Accordingly,
Applicants intend to embrace all such alternatives, modifica-
tions, equivalents, and variations that are within the spirit and
scope of the present invention.

Embodiments of the disclosed subject matter can include a
method for generating proposed recommendations (or pre-
dictions) for new relationships (or links) in a social network
and directing an output from at least one computer network
server to a terminal connected thereto by a computer network.
Node properties (or profiles) and links can be stored on a data
store accessible by the at least one computer network server.
Each profile can be a data set containing characteristics of a
respective one of a plurality of persons and each link can be a
data set that corresponds to a relationship of a predefined type
between one of the plurality of persons to linked one of the
plurality of persons such that some of the plurality of persons
are linked to first persons and unlinked to second persons,
whereby each link corresponds to a linked pair of persons.
The totality of links can define a network. The method can
include, using at least one computer network server, program-
matically training a classifier based on distance metrics, each
distance metric characterizing a respective one of the linked
pairs. The distance metric can be responsive to outside links
which are links other than the respective one of the linked
pairs, such that the totality of links can be derived from the
classifier based on the profiles without the links. Data corre-
sponding to a new person not linked to any other persons links
in the network can be received and a new profile representing
the new person can be generated. This data can be received
when a new user registers to join the social network and the
social network can recommend/predict to the new user con-
nection to existing users. The method can include, using the
classifier, generating predicted links responsively to the new
profile and outputting data responsive to the predicted links.

In some such embodiments the method can also include
receiving relationship data from the plurality of persons and
generating a new link responsive thereto, wherein the rela-
tionship data include data indicating at least one communi-
cation event between persons joined by the new link. For
example, when users of a dating service network communi-
cate with each other.

In some such embodiments the method can also include
receiving relationship data from the plurality of persons and
generating a new link responsive thereto, wherein the rela-
tionship data include data indicating a command received
from a respective one of the plurality of persons to be con-
nected to another of the plurality of persons. For example,
when users of a social network “friend” each other to form a
connection or link.

In some such embodiments the method can also include
receiving relationship data from the plurality of persons and
generating a new link responsive thereto, wherein the rela-
tionship data include data indicating a common class to which
persons joined by the new link belong. The common class can
include any or all of a family, a school class, membership 1n a
club, a common employer, common vocation or hobby, a
geographic distance between residences of the persons joined
by the new link. The common class can be responsive to
transaction data received by the at least one computer net-
work server, and the transactions can represent transactions
between persons joined by the new link. The transactions can
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include communication transactions and commercial trans-
actions between persons joined by the new link.

Embodiments of the disclosed subject matter can include
computer readable mediums each containing program
instructions for causing the at least one computer network
server and/or a processor to implement one or more of any of
the various methods described herein.

Embodiments of the disclosed subject matter can include a
method for recommending a new relationship for network
members. The method can include storing profile data char-
acterizing each of the network members according to pre-
defined features of the each of the members. The method can
also include storing relationship data that defines the presence
of predefined relationships among the network members
based on data indicating transactions between the network
members and/or data provided a prior1 to indicate the exist-
ence of a relationship, the relationship thereby defining links
between the network members. A request can be received, at
a network server, from a client of the network server, for a
prediction for a target member of a new relationship that 1s not
present in the relationship data. The method can include, at
the network server, predicting, for the target member, the new
relationship, responsively to profile data characterizing the
target member and responsively to relationship (or link) data
defining relationships (or links) among network members.

Embodiments of the disclosed subject matter can include a
method for generating product recommendations. The
method can include receiving, at a computer network server,
profile data, and transaction data indicating transactions of
shoppers using a shopping web site. The profile data can
characterize features of the shoppers (such as but not limited
to age, gender, address, etc.). The profile data can also 1includ-
ing features of products offered by shopping web site. The
method can include storing link data representing links, each
link defining an association between a respective one of the
shoppers and a product with respect to which the shopper
performed a transaction (such as a purchase and/or adding the
product to the user’s shopping cart or a wish list indicating an
interest 1n the product). A classifier can be trained (or learned)
based on the link data and new product recommendation data
can be generated for current shoppers using the shopping site
based on the classifier and profile data characterizing the
teatures of the current shoppers.

Embodiments of the disclosed subject matter can include a
method for generating proposed link recommendations for
output to requesting processes running on one or more pro-
cessor devices connected to at least one computer network
server through a connecting computer network. The method
can include storing, on a data store that 1s accessible by the at
least one computer network server, profiles and links, each
profile of the profiles being a data set containing characteris-
tics of a respective one of a plurality of entities, each link of
the links being a data set that corresponds to a relationship of
a predefined type between one of the plurality of enfities to
linked one of the plurality of entities such that some of the
plurality of enfities are linked to respective first entities and
not linked to second entities, whereby each link corresponds
to a linked pair of enfities, the totality of links defining an
relationship network. A classifier can be programmatically
trained (or learned) based on distance metrics, each distance
metric characterizing a respective one of the linked pairs,
wherein the distance metric 1s responsive to links other than
ones corresponding to the linked pair; the classifier being
such that at least a substantial extent of a totality of the links
can be dertved from the classifier responsively to the profiles
without the information content of the links, whereby the
trained (or learned) classifier contains all the structural infor-
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mation of the extent of the relationship network. The method
can also include receiving a profile corresponding to a new
entity and generating at least one link representing the new
entity.

In some such embodiments the generating can include,
using the classifier to estimate a structure of a new network
that includes the new entity including predicting a number of
the at least one link. For example, by using SPLLM or DDML
to learn a structure preserving classifier and, optionally, a
degree preference function.

Embodiments of the disclosed subject matter can include a
computerized method for predicting links between nodes 1n a
network using a computing device. The method can include
storing data representing node properties 1n a data storage
device accessible by a processor. Links between the nodes
can be stored 1n the data storage device. Each node property
can represent a characteristic of a person, a document, an
event, web site, or other thing. Each link can represent a
relationship between nodes, whereby the links define a rela-
tionship network. A classifier can be generated (or learned)
from the relationship links and the node properties using a
structure preserving method adapted to, when so-generated
(or learned), reproduce substantially all of the links from the
node properties, whereby the classifier substantially pre-
serves a structure defined by the links. A link prediction
request can be recerved from a prediction requestor, the link
prediction request specifying an input node having input node
properties. A plurality of new links can be predicted for the
input node responsively to the input node properties and the
learned distance metric. The method can also include trans-
mitting the predicted plurality of new links to the prediction
requestor.

Embodiments of the disclosed subject matter can include a
computerized method for predicting the degree of anode 1n a
network using a computing device. The method can include
storing network data representing node properties and links
between the nodes 1n a data storage device accessible by a
processor, each node property representing a characteristic of
a person, a document, an event, web site, or other thing, and
cach link representing a relationship between nodes, the
aggregate properties and links defining a network. A degree
prediction function can be generated (or learned) from the
network data including the node properties and the links
between the nodes using a structure preserving process. The
degree prediction function can be substantially structure pre-
serving, and the degree prediction function can substantially
predict the degrees of the nodes based on the node properties.
A degree prediction request can be received from a prediction
requestor, the degree prediction request specilying an input
node having input node properties. A degree prediction can be
predicted for the input node responsively to the mnput node
properties and the degree prediction function. The method
can 1nclude transmitting the degree prediction to the predic-
tion requestor.

Embodiments of the disclosed subject matter can include a
computerized method for learning a structure preserving dis-
tance metric for an existing network to predict connectivity of
a new network using a computing device. The method can
include providing existing network data accessible by a pro-
cessor, the existing network data representing node properties
and links between the nodes. Fach node property can repre-
sent a characteristic of a person, a document, an event, web
site, or other thing, and each link can represent a relationship
between the thing represented by the node, the aggregate
properties and links defining an existing network. A learned
distance metric can be generated (or learned) from the exist-
ing network data including the node properties and the links
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between the nodes using a structure preserving process. The
learned distance metric can be substantially structure preserv-
ing; the learned distance metric can substantially recreate the
links between the nodes when used by a connectivity algo-
rithm to recreate links in the existing network based on the
node properties. A network prediction request can be recerved
from a prediction requestor, the network prediction request
specilying a set of input nodes, each having input node prop-
erties. A plurality of new links can be predicted between the
set of mput nodes responsively to the mput node properties
and the learned distance metric. The method can include
transmitting the predicted plurality of new links to the pre-
diction requestor.

Embodiments of the disclosed subject matter can include a
computerized method for predicting links between users 1 an
online social network using a computing device. The method
can 1nclude storing network data representing user properties
and links between the users 1n a data storage device accessible
by a processor. Each user property can represent a character-
istic of the user, and each link can represent a relationship
between users, the aggregate properties and links defining a
network. A learned distance metric and a degree predicting,
function can be generated (or learned) from the network data
including the user properties and the links between the users
using a structure preserving process. The learned distance
metric can be substantially structure preserving; the learned
distance metric and degree predicting function can substan-
tially recreate the links between the users when used by a
connectivity algorithm to recreate links 1n the network based
on the user properties. A link prediction request can be
received from a prediction requestor, the link prediction
request specilying an input user having input user properties.
A plurality of new links can be predicted for the mnput user
responsively to the mput user properties and the learned dis-
tance metric. The method can include transmitting the pre-
dicted plurality of new links to the prediction requestor.

Embodiments of the disclosed subject matter can include a
computerized method for learning a structure preserving dis-
tance metric and a degree predicting function from a network.
The method can include providing network data accessible by
a processor, the network data representing node properties
and observed links between the nodes. Each node property
can represent a characteristic of a person, a document, an
event, web site, or other thing, and each observed link can
represent a relationship between the thing represented by the
node, the aggregate properties and observed links defining a
network. The method can 1include generating (or learming) a
learned distance metric and degree predicting function from
the network data including the node properties and the
observed links using a structure preserving process. The
learned distance metric can be substantially structure preserv-
ing; the learned distance metric can substantially recreate the
observed links when used by a connectivity algorithm with
the degree predicting function to predict links in the network
based on the node properties.

Embodiments of the disclosed subject matter can include a
computerized method for predicting links between nodes 1n a
network using a computing device. The method can include
storing network data representing node properties and links
between the nodes 1n a data storage device accessible by a
processor, each node property representing a characteristic of
a person, a document, an event, web site, or other thing, and
cach link representing a relationship between the thing rep-
resented by the node, the aggregate properties and links defin-
ing a network. A learned distance metric can be generated (or
learned) from the network data including the node properties
and the links between the nodes using a structure preserving
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process. The learned distance metric can be substantially
structure preserving; the learned distance metric can substan-
tially recreate the links between the nodes when used with a
connectivity algorithm to recreate links 1n the network based
on the node properties. The method can include receiving a
link prediction request from a prediction requestor, the link
prediction request specifying an input node having input node
properties and a plurality of input node links. A plurality of
new links can be predicted for the input node responsively to
the node, the learned distance metric, and the learned degree
preference function. The method can include transmitting the
predicted plurality of new links to the prediction requestor.
Embodiments of the disclosed subject matter can include a
computerized method for predicting links between nodes 1n a
network using a computing device. The method can include
storing network data representing node properties and links
between the nodes 1n a data storage device accessible by a
processor, each node property representing a characteristic of
a person, a document, an event, web site, or other thing, and
cach link representing a relationship between the thing rep-
resented by the node, the aggregate properties and links defin-
ing a network. The method can also include providing a
distance metric learned from the network data including the
node properties and the links between the nodes using a
structure preserving process. The learned distance metric can
be substantially structure preserving; the learned distance
metric can substantially recreate the links between the nodes
when used with a connectivity algorithm to recreate links in
the network based on the node properties. A link prediction
request can be received from a prediction requestor, the link
prediction request specifying an input node having input node
properties and a plurality of input node links. The method can
include predicting a plurality of new links for the input node
responsively to the node, the learned distance metric, and the
learned degree preference function. The predicted plurality of
new links can be transmitted to the prediction requestor.
Embodiments of the disclosed subject matter can include a
computerized method for valuing relationships between enti-
ties according to their respective descriptions using a com-
puting device. The method can include storing a list of links
and feature vectors in a digital data store accessible to a
processor. A predictor can be trained (or learned), using the
processor, from a list of links and feature vectors, each char-
acterizing a node linked by the links, the predictor being a
trainable nonlinear classifier. The predictor can be effective
for generating a distance estimate from the feature vectors of
a pair ol nodes. The training can tune a metric so that 1t, based

on the respective feature vectors, estimates a shorter distance
for linked ones of the at least three and a further distance for
unlinked ones of the at least three feature vectors for all the
teature vectors to produce a trained predictor. The method can
include, using the trained predictor, estimating distances
between pairs of nodes at least one of whose nodes was not
used to train the link predictor. The method can also include
outputting selected ones of the estimated distances from the
estimating.

Embodiments of the disclosed subject matter can include a
computerized method for predicting new links 1n a network.
The network can be, for example, a social network, a dating
service network, a shopping network, or any other type of
network. The method can include accessing network data
from a data store. The network data can include nodes and
links, the nodes each having properties characterizing each
node and the links each representing a connection between
two of the nodes, the nodes and links comprising a network.
For example, the nodes can be users of a social network each
having profile information as node properties and each user
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establishing friendships or connections with other users of the
social network which can be represented by the links. The
method can include learning a classifier for predicting new
links 1n the network, which includes learning a Mahalanobis
distance metric M for the network and applying one or more
linear constraints on M. The linear constraints applied on M
can be configured to enforce the structure of the network to be
preserved i M. A link prediction request can be received
from a prediction requestor, the request indicating a target
node having target properties. For example, the link predic-
tion requestor can be a user registering for a social network for
the first time and requesting that the social network provide
predicted or recommended links to the user to establish
friendships or connection with other users of the social net-
work. In another example, the prediction requestor can be a
component of the network (e.g. social network) configured to
provide predicted links to its users at periodic intervals or in
response to certain user actions (such as a registering to join
the social network, changing their user profile, etc.). The
method can include predicting one or more new links for the
target node responsive to the target node properties by apply-
ing a connectivity algorithm to the target node and the net-
work nodes using the learned classifier including the learned
distance metric M. The method can also include transmitting
the one or more predicted new links to the prediction
requestor.

Embodiments of the disclosed subject matter can include a
computerized method for making recommendations to users.
The method can include receiving at a receiving computer,
from a requesting computer, a request indicative of a proposal
for a joining entity to join a network, the network representing
relationships between networked entities and defined by net-
work data stored 1n a computer accessible data store. The
network data can include feature data characterizing net-
worked entities and link data indicating relationships
between respective pairs of the networked entities. The rela-
tionships can include transactions, affimities, friendships,
common classes to which the entities including businesses or
other orgamizations, people, countries, types, animals or other
living things, or anything else that may be characterizable by
a network. The user can submit the request through a website
and the request can be 1n the form of an HTTP request. The
method can include accessing the network data at the receiv-
Ing computer or one or more processing computers 1 coms-
munication with the recerving computer and generating a
message responsive to a ranking of possible relationships
between the joining entity and the networked entities. The
ranking can be responsive to feature data characterizing the
joimng entity. The generating can be by a computational
process such that, 11 the joining entity feature data were 1den-
tical to the feature data of one of the networked entities, the
relationships of the one of the networked entities stored 1n the
network data would be of identical ranking. The responsive
message can include or be included within an HTTP response
provided to the user 1n response to the user’s HI'TP request.

What 1s claimed 1s:

1. A method for generating proposed recommendations for
new relationships 1n a social network and directing an output
from at least one computer network server to a terminal
connected thereto by a computer network, the method com-
prising:

storing, on a data store accessible by said at least one

computer network server, profiles and links, each profile
being a data set containing characteristics of arespective
one of a plurality of persons, each link being a data set
that corresponds to a relationship of a predefined type
between one of the plurality of persons to linked one of
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the plurality of persons such that some of said plurality
of persons are linked to first persons and unlinked to
second persons, whereby each link corresponds to a
linked pair of persons, the totality of links defining a
network;

using said at least one computer network server, program-

matically training a classifier based on distance metrics,
cach distance metric characterizing a respective one of
said linked pairs, wherein said distance metric 1s respon-
stve to outside links which are links other than said
respective one of said linked pairs, such that said totality
of links can be derved from said classifier based on said
profiles without said links;

recerving data corresponding to a new person not linked to

any other person’s links 1n the network and generating a
new profile representing the new person; and

using said classifier, generating predicted links respon-

stvely to said new profile and outputting data responsive
to said predicted links.

2. The method of claim 1, further comprising receiving
relationship data from said plurality of persons and generat-
ing a new link responsive thereto, wherein said relationship
data include data indicating at least one communication event
between persons joined by said new link.

3. The method of claim 1, further comprising receiving
relationship data from said plurality of persons and generat-
ing a new link responsive thereto, wherein said relationship
data include data indicating a command received from a
respective one of said plurality of persons to be connected to
another of said plurality of persons.

4. The method of claim 1, wherein said distance metric 1s a
Mahalanobis distance metric.

5. The method of claim 4, wherein the training includes
minimizing an objective function using a stochastic gradient
descent algorithm.

6. The method of claim 1, wherein the distance metric’s
dependence on said outside links 1s generated responsively to
the existence of said outside links and without referring to
classes to which persons linked by the outside links belong,
whereby structural information of said outside links 1s used in
said predicting.

7. A computerized method for predicting links between
nodes 1n a network using a computing device, the method
comprising:

storing data representing node properties 1n a data storage

device accessible by a processor;
storing links between the nodes 1n the data storage device;
cach node property representing a characteristic of a per-
son, a document, an event, web site, or other thing;

cach link representing a relationship between nodes,
whereby the links define a relationship network;

generating a classifier from said relationship links and said
node properties using a structure preserving method
adapted to, when so-generated, reproduce substantially
all of said links from said node properties, whereby said
classifier substantially preserves a structure defined by
said links;

recerving a link prediction request from a prediction

requestor, said link prediction request speciiying an
input node having iput node properties;

predicting a plurality of new links for said input node

responsively to said mput node properties and said
learned distance metric; and

transmitting said predicted plurality of new links to said

prediction requestor.

8. The method of claim 7, wherein said generating includes
modeling degree distributions embodied by said links.
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9. The method of claim 7, wherein said generating 1s opti-
mized using a cutting plane algorithm.
10. The method of claim 7, wherein said generating said
classifier includes optimizing an objective function using a
stochastic gradient descent method.
11. The method of claim 7, wherein said generating a
classifier includes:
iteratively comparing triplets of said nodes, each triplet
comprising a first node, a second node, and a third node,
wherein said second node 1s linked to said first node and
said third node 1s not linked to said first node; and

learning a distance metric generator in which for each said
triplet said third node 1s further from said first node than
said second node.

12. The method of claam 7, wherein said generating
includes:

iteratively comparing triplets of said nodes, each triplet
comprising a first node, a second node, and a third node,
wherein said second node 1s linked to said first node and
said third node 1s not linked to said first node; and

learming a distance metric in which for each said triplet said
third node 1s further from said first node than said second
node.

13. A computerized method for predicting new links 1n a

network, the method comprising:

accessing network data from a data store, said network data
including nodes and links, said nodes each having prop-
erties characterizing each node and said links each rep-
resenting a connection between two of said nodes, said
nodes and links comprising a network;

learming a classifier for predicting new links 1n said net-
work, said learning including learning a Mahalanobis
distance metric M for said network, said learning includ-
ing applying one or more linear constraints on M, said
constraints configured to enforce the structure of said
network to be preserved 1n M;
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recerving a link prediction request from a prediction
requestor, said request imndicating a target node having
target properties;

predicting one or more new links for said target node

responsive to said target node properties by applying a
connectivity algorithm to said target node and said net-
work nodes using said learned classifier including said
learned distance metric M; and

transmitting said one or more predicted new links to said

prediction requestor.

14. The method of claim 13, wherein said one or more
linear constraints includes a constraint that for each of said
nodes all connected nodes are closer than all unconnected
nodes.

15. The method of claim 13, wherein said one or more
linear constraints are enforced with slack.

16. The method of claim 13,

wherein learning a classifier for predicting new links 1n

said network includes learming a degree preference func-
tion, said degree preference function being parameter-
1zed and non-stationary, and

wherein predicting one or more new links for said target

node includes using said degree preference function to
determine the number of said one or more new links to
be predicted based on said target node properties.

17. The method of claim 16, wherein said learning a degree
preference function includes enforcing a requirement that the
resulting degree preference function for each node 1s concave.

18. The method of claim 13, wherein said connectivity
algorithm 1s one of: maximum weight b-matching, k-nearest
neighbors, e-neighborhoods, and maximum weight spanning
tree.

19. The method of claim 13, wherein said learning includes
applying a Frobenius norm regularizer on M.

20. The method of claim 13, wherein said target node 1s a

new node joining said network.
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