12 United States Patent

Gormish et al.

US009081987B2

US 9.081.987 B2
Jul. 14, 2015

(10) Patent No.:
45) Date of Patent:

(54) DOCUMENT IMAGE AUTHENTICATING
SERVER

(75) Inventors: Michael Gormish, Redwood City, CA

(US); Kevin Ridout, Campbell, CA (US)
(73)

(%)

Assignee: RICOH CO., LTD., Tokyo (IP)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1542 days.

Appl. No.: 11/692,834

(21)

(22) Filed: Mar. 28, 2007

Prior Publication Data

US 2008/0243898 Al Oct. 2, 2008

(65)

Int. CI.
GO6F 21/64
GO6F 7/00
GO6F 17/30
G06Q 10/10

U.S. CL
CPC

(51)
(2013.01
(2006.01
(2006.01

(2012.01

o A e ey

(52)
................ GOG6F 21/64 (2013.01); GO6Q 10/10
(2013.01); GO6F 2221/2101 (2013.01)

Field of Classification Search
CPC .. GO6F 21/64; GO6F 2221/2101; G60Q 10/10

USPC 7077758
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0260582 Al 12/2004 King
2005/0018840 Al1* 1/2005 Yungetal.oooone. 380/28
2005/0226473 Al 10/2005 Ramesh

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1622074 2/2006
JP 20053-143139 5/2003
(Continued)
OTHER PUBLICATIONS

Maniatis et al, “Secure History Preservation Through Timeline
Entanglement”, 2002.*

(Continued)

Primary Examiner — Brannon W Smith

(74) Attorney, Agent, or Firm — Blakely, Sokoloif, Taylor &
Zatman LLP

(57) ABSTRACT

A document 1mage authenticating server and method for
using the same are described. In one embodiment, the method
comprises a document recerving interface to capture images
of documents associated with one or more worktlows and tag
the collected document with worktlow information indicative
of 1ts associated worktlow; a first memory to store images of
documents captured by the document recerving interface and
metadata, the first memory being accessible for verification
operations performed with respect to the worktlow; a second
memory to store a log that includes entries with one or more
media 1dentifiers corresponding to the captured images, the
second memory being accessible for verification operations
performed with respect to the worktlow; a first unit to gener-
ate log data corresponding to the images associated with
workflows captured at the document recerving interface and

5978475 A 11/1999 Schneier : _ : :
735053933 Bl R 3/2009 Gutierrez et al ““““““““ 705/35 tO Store the log data 111 the log?‘ and d Secondunlt tO prOVIde
7.849.053 B2 12/2010 Wolff et al. information about the log to another application.
8,006,094 B2* 8§/2011 Savitzkyetal. ... 713/178
8,788,313 B2* 7/2014 Schaadcccccen..... 705/7.27 21 Claims, 7 Drawing Sheets
Document | |
Addition
PC —t |HtEFfEC? Workflow Log
(SCSEL;"M " Identification [~ | Generation T
Desktop, Image
/ Email) _OCR Analysis |
Scanner H H H Y\
711 712 e
701 -l 704
Image/ f
702 Metadata Lﬂg
Store _ 703 |
MFD /'
Workflow Update F I '
700 |
h J

Verification i‘

US 9,081,987 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0010095 Al 1/2006 Wollf et al.

2007/0156672 Al* 7/2007 Wolltfetal. 707/5
2008/0201580 Al* 8/2008 Savitzkyetal. 713/189
2009/0178144 Al1* 7/2009 Redlichetal. 726/27
2013/0276058 Al* 10/2013 Buldasetal. 726/2

FOREIGN PATENT DOCUMENTS

JP 2005148917 6/2005

WO WO 2006/028920 3/2006

WO WO 2006/127135 11/2006
OTHER PUBLICATTIONS

Chebotko et al, “Scientific Workflow Provenance Metadata Manage-
ment Using an RDBMS-based RDF Store”, 2007.*

European Search Report, Application No. 08153387.9-1238, Mailed
Sep. 29, 2008.

Toyoshima, Hisashi and Miyazaki, Kunihiko, “Hysteresis Signature
and Its Related Technologies to Maintain the digital Evidence for
Network Activities in Future Society”, Journal of the National Insti-
tute of Information and Communications Technology, vol. 52, Nos.
1/2, 2005, pp. 191-201.

Japanese Oflice Action for Japanese Patent Application 2008-
084943, (Mar. 27, 2012), 3 pages.

Kusaba, Nobuo, “The View of the J-Sox Law Measure”, Solution IT
vol. 18 No. 5, Japan, Ric Telecom, May 1, 2006, vol. 18 No. 5, pp.
59-63 (8 pages total).

Japanese Office Action for related Japanese Patent Application No.
2008-084943, Jun. 12, 2012, 2 pgs. *No translation provided™.

* cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 7 US 9,081,987 B2

1
2
3
n

MESSAGE AND CHECKSUM
GENERATOR

101

102 103

JEX
HASH
s
Mi+a '
APPLY

203

T e s o o 2D —

MESSAGE AND CHECKSUM
GENERATOR

201

FIG. 2

U.S. Patent Jul. 14, 2015 Sheet 2 of 7 US 9,081,987 B2

301

Store information, including a rolling
checksum of Log A, into Log B

Store information (e.g., server name of 302

Log B, file name of Log B, URL of Log B,
position in Log B where entanglement
occurred), possibly including a rolling

checksum of Log B, into Log A

FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 3 of 7 US 9,081,987 B2

Search all known logs for a message (or 401
message hash)

Verify rolling checksums following the 402
entry having the message
(or the message hash)
403

Add rolling hashes that appear after the
message (or hash) of interest to a list of
hashes and adds any logs referenced by
current log to alist of logs (optional)

Search for all hashes in the list of hashes 404
in one of the known logs
405

Does arolling No
hash appear in the log?

Yes

406

Add log to the list of logs supporting the

original message
_ , 407
Add rolling checksums that appear in the log

after the hash of interest to the hash list

408

Add any logs references by
that log to the log list

Yes 409

Any more known
logs to search?

NO
FIG. 4

m - 0—“— 1S17 HIWOLSND NI HFWOLSND MAIN 40 NOILVHLSIO3Y e

45Svaviva
T0H1NOD
110340

US 9,081,987 B2

d34SNVHL

43JSNVHL NOILYOI'1ddV SS300dd

0LNV ATIVa 10 mmm%w%gﬂ% TYNIDIHO dFFNAHVS -ANS AYIAITEA
-
I~
-
.4
Y 151 1 NdNI =[0) 211
= d3WO1SNDO 1S17 ¥3N0LSND 40 NOISIO3C
o d34SNVYL
& AIFRI LI038) =1 yg y Ag TYAQUddY
.4_-..,..
Yy
=
—_

NOILVOl'lddV ¥3aqyo
1S HdWNOLSNO

HOVO¥ddY
S3TVS

U.S. Patent

9 Ol =

<OC0 | p# eoueysy

<CI01 1 e#aouejsu)

US 9,081,987 B2

I~ MO|J¥JOMA
S
\r
.H
=P
> e
Aninl
74 80URSU|
=
= =
= <O | 1#9ouejsul

(1517) (sejonD)
(yoayp) (89l0AU)) (0d (1sanboy)
o# ui0g S#ulod Duiyoed) exulog z# Julod L4 U104 [01)UOD

. uio
01JU0N 10JJU0Y *_ww_wco% 10J)U0) 10J}U0)

U.S. Patent

US 9,081,987 B2

UOIJEDIJLIBA -

004
—
: adn
: 940]S
= BlepeloN
10.

m JAUUBDS
S (llews3
= ‘do)ysaQ
. oAl
E uole i usp| Julld ‘uedag)

MO{)IOM a0} Ja)u| Jd

UOHIPPY
JUS WNI0(]

U.S. Patent

U.S. Patent Jul. 14, 2015 Sheet 7 of 7 US 9,081,987 B2

STATIC
MEMORY MEMORY

MASS
STORAGE PROCESSOR

MEMORY 812
807

804 806

BUS

811
EXTERNAL CURSOR
NETWORK DISPLAY KEYBOARD CONTROL
INTERFACE 821 822 DEVICE

820 823

US 9,081,987 B2

1

DOCUMENT IMAGE AUTHENTICATING
SERVER

FIELD OF THE INVENTION

The present ivention relates to the field of digital object
distribution; more particularly, the present invention relates to
associating information using document logs for use 1n regu-
latory compliance and other regulatory settings.

BACKGROUND OF THE INVENTION

Sarbanes-Oxley and several other regulations require com-
pliance by businesses. These include, for example, HIPAA,
OSHA, SB 1386, NASD 2711, and Gramm-Leach-Bliley.

The traditional method of proving compliance with a busi-
ness procedure 1s to have a “paper trail.” For example, in order
to establish that an expense was “real,” a receipt 1s stored. In
order to justily a check to a vendor, there may be a signed
purchase request, quotes from other vendors, a purchase
order, a signed packing slip, and an invoice. These paper
records are typically organized in some fashion, stapled,
placed 1 folders, and organized in filing cabinets. If the
organizational method 1s good, the paper documents can be
later retrieved. Paper records can be filed in only one way, e.g.
by check number, or by vendor, but not both. Thus, their
retrieval by another method requires access to an index, €.g. a
paper or electronic record that connects check numbers with
payees.

Paper has a real advantage of being hard to duplicate. Even
with a high quality printer, 1t 1s difficult to duplicate the paper
stock and preprinted logos from an invoice for example. Like-
wise, 1t 15 difficult to duplicate a handwritten signature on a
packing-list. However, anyone with a modest amount of skall
with an 1image processing program like Adobe’s Photoshop™
can modily an electronic copy of a document. It 1s easy for
example to change the amount on an 1nvoice or copy a scan of
a signature from one document to another. Thus, tools that
verily the authenticity of an electronic document are valuable
in that they maintain or improve on the “trail” available with
paper.

The past prevalence of paper means that almost all business
processes are verified by some 1mage. Real paper may have
been replaced by an electronic PDF; however, 1t 1s still the
visual record that 1s of mterest. Even 1n the case where the
official document 1s an Excel spreadsheet, the compliance
“controls” are the values computed at various cells within the
worksheet, which are labeled so they may be interpreted
visually.

Electronic files (e.g., Word, Excel, PDF, etc.) may have
tformulas and other execution that alter the data and the pre-
sentation, e.g. different amounts can appear at different times
in a spreadsheet. There may be different presentations for
different devices or different users. Capturing, preserving,
and authenticating the actual image presented to the human
user (whether on paper or displayed on a monitor) 1s the only
way to know what information the human had.

Many document management systems have been proposed
and 1mplemented 1n the past. These document management
systems 1nclude systems that store documents and handle the
coordination of requests with responses. However, these sys-
tems do not cut across organizational boundaries and do not
perform the synchromization that 1s necessary.

Portals, Content Management systems, and Wikis handle
bit-map 1mages, allow search on tags, sometimes search on
recognized file types (e.g., power points slides, graphics, text
only).

10

15

20

25

30

35

40

45

50

55

60

65

2

Version control systems like ClearCase, SourceSate, CVS,
Subversion, and GIT detect changes 1n a family of documents
and keep track of the order of modification. The “GIT” system
uses hashes to identily changed files and directories. Some
version control systems are integrated with a “worktlow™ for
example to run a set of regression tests on the changed source
code. Such systems do not have a visual representation or
notion of control points.

Intrusion Detection systems like TripWire determine 1f any
of a set of files on a computer system has been changed using
cryptographic hashes.

A Web log 1s an online document management tool used to
record information. Web logs use a client-server framework
to permait the addition or subtraction of content from one or
more client locations to a server that hosts the web log.
Because one server hosts each web log, web logs are typically
anchored to a particular HI'TP location.

U.S. patent application Ser. No. 10/887,998, entitled “Syn-
chronizing distributed work through document logs,” filed
Jul. 9, 2004 by Wolll, Gregory J., et al., (Publication No.
200600100935) discloses synchronizing distributed work
through the use of document logs. As disclosed, metadata
entriecs are added to a set that 1s associated with a digital
object, such as a document. The metadata entries are accessed
using unique 1dentifiers that reference the metadata entries. In
one embodiment, each unique 1dentifier 1s based on the con-
tents of the metadata.

SUMMARY OF THE INVENTION

A document 1image authenticating server and method for
using the same are described. In one embodiment, the server
comprises a document recerving interface to capture images
of documents associated with one or more worktlows and tag
the collected document with workilow information indicative
of 1ts associated worktlow; a first memory to store images of
documents captured by the document recerving interface and
metadata, the first memory being accessible for verification
operations performed with respect to the worktlow; a second
memory to store a log that includes entries with one or more
media 1dentifiers corresponding to the captured images, the
second memory being accessible for verification operations
performed with respect to the worktlow; a first unit to gener-
ate log data corresponding to the images associated with
workflows captured at the document recerving interface and
to store the log data in the log; and a second unit to provide
information about the log to another application

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more tully from
the detailed description given below and from the accompa-
nying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention to
the specific embodiments, but are for explanation and under-
standing only.

FIG. 1 illustrates generating and storing an entry 1n a log;

FIG. 2 illustrates generating and storing a hash of media 1n
a log;

FIG. 3 15 a flow diagram of one embodiment of a process
for entangling a pair of logs.

FIG. 4 15 a flow diagram of one embodiment of a process
for performing entanglement detection.

FIG. 5 1s an example of a worktlow type for the “Sales
Credit Control”.

FIG. 6 1llustrates sample documents for a purchasing work-
tlow.

US 9,081,987 B2

3

FIG. 7 illustrates a block diagram of one embodiment of a
SOX server and associated systems.

FIG. 8 1s a block diagram of one embodiment of a computer
system.

DETAILED DESCRIPTION OF THE PR.
INVENTION

vs
oo

ENT

A method and apparatus for processing document 1mages
1s described. In one embodiment, the use of logs and the
logging technology disclosed herein may be used as a tool 1n
the regulatory environment, such as, for example, corporate
accounting. More specifically, in one embodiment, a server
assists corporations with compliance to Sarbanes-Oxley
regulations and other laws and regulations. In one embodi-
ment, assistance 1s provided with internal business proce-
dures. In particular, this server may be used when “auditing™
or “verifying compliance” with these procedures.

In one embodiment, the authenticating, or “SOX,” server
described herein accepts tagged document images from a
number of sources, stores a verifiable log of those documents,
exchanges information about 1ts status with one or more other
servers, and provides tools to verify the existence of docu-
ments at particular times.

In the following description, numerous details are set forth
to provide a more thorough explanation of the present inven-
tion. It will be apparent, however, to one skilled 1n the art, that
the present invention may be practiced without these specific
details. In other instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations ol operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
clfectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transiferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons ol common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropnate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mimng” or “displaying™ or the like, refer to the action and
processes ol a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or 1t may comprise a
general purpose computer selectively activated or recontig-
ured by a computer program stored in the computer. Such a

10

15

20

25

30

35

40

45

50

55

60

65

4

computer program may be stored in a computer readable
storage medium, such as, but 1s not limited to, any type ot disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMSs, magnetic
or optical cards, or any type of media suitable for storing
clectronic instructions, and each coupled to a computer sys-
tem bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

A machine-readable medium includes any mechanism for
storing or transmitting information 1n a form readable by a
machine (e.g., a computer). For example, a machine-readable
medium includes read only memory (“ROM”); random
access memory (“RAM”); magnetic disk storage media; opti-
cal storage media; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

An apparatus and infrastructure for capturing image data
from many sources, associating the images with the work-
flow, control point, and worktlow instance, capturing other
metadata (structured and unstructured), and logging and
authenticating the integrity and timing of all the data and
providing access to the data 1s described.

Media Identifiers, Sequential Logs, and Entangling
Media Identifiers for Physical and .

Electronic Items

Many of the inventions described here-in require the ability
to refer to a document, video, song, piece of paper, or elec-
tronic file by an 1dentifier. For purposes herein, the document,
video, song, piece ol paper, or electronic file 1s referred herein
to as the media. An identifier used to 1dentify the media 1s
called a media identifier and, 1n one embodiment, 1s a string of
bytes.

There are several properties of the association between the
media and the media identifier which are usetul 1n the mven-
tions: A) 1t 1s beneficial that anyone who has the media can
determine an 1dentical media identifier; B) it 1s beneficial that
it 1s difficult for anyone to find two distinct pieces of media
that have the same media identifier; C) it 1s beneficial that the
media identifier does not reveal anything about the content of
the media; and D) it 1s beneficial that any change to the media
would result 1n a different identifier.

There are multiple ways to assign an 1dentifier to a piece of
media. For an electronic file, in one embodiment, the 1denti-
fier 1s generated by applying a cryptographic hash function on
the bytes of the file. Cryptographic hash functions are well
known 1n the security literature and have been standardized in
various federal and international standards, and software
toolkits.

Cryptographic hash functions meet the properties
described above so well that we will sometimes refer to the
process of determining an 1dentifier for a piece of media as
“hashing” and sometimes refer to the media identifier as a
“hash,” even 1f a different techmique 1s used to form the
identifier.

There are other ways to assign identifiers to files. For

example, a server could keep a copy of every file and assign a

US 9,081,987 B2

S

previously unused string randomly to each new file. This
method works very well for properties B, C, and D, but only
meets property A 1f everyone can contact the server, and the
server cannot be changed, even 1f taken off-line by, for
example, by a denial of service attack.

It 1s also possible to use functions that are simpler than
cryptographic hashes to identify files. For example, a simple
checksum can be used on a file, and the result used as a media
identifier. This meets properties A and C, but not property B.
Some changes result 1n a different checksum but a few do not,
so property D 1s not always met. However, for some applica-
tions these properties may be less important. Also some appli-
cations may have very structured data, such that 1t 1s ditficult
to find two pieces of media that both have the same checksum
and follow the rules of the structured data.

Pieces of paper can be assigned an 1dentifier, for example,
by scanning the paper and computing a cryptographic hash of
the scanned file that results. However, because of noise in the
scanning process, different scans of the paper often lead to
different electronic files, and thus different identifiers. For
this reason it 1s sometimes convenient to aflix a barcode or
other machine readable 1dentifier (e.g., a RFID tag) to a piece
of paper or other physical device. Use of a machine readable
ID makes 1t easy for anyone to get the same 1dentifier; how-
ever, 1t 1s also possible to attach the same ID value to different
media, so property B 1s not well met 1n this case.

In one embodiment, to overcome the weakness of machine
readable ID’s, a form of “finger printing™ 1s used to 1dentily
physical media. Since finger printing associates values with
the physical device, 1t can be very hard or impossible to make
a new “finger” or piece of paper with the same finger print.
However, in many cases, the “linger print” reveals something
about the physical media, also 1t may be possible to change
the physical media slightly without changing the finger print.
Thus, 1 such a case, properties C and D might not be held
perfectly.

There may be multiple identifiers associated with a single
piece of media. For example, there could be an i1dentifier
tformed by using the SHAI1 cryptographic hash function on
the media, and an identifier formed by using the SHA256 or
MD35 cryptographic hashes on the same media. In one
embodiment, keyed-hash message authentication codes or
HMAC are used to compute media identifiers. These message
authentication codes like HMAC-MD3S5 or HMAC-SHAI can
be better than the underlying cryptographic hash functions
(MD3 and SHA1) for properties B, C, and D because they use
a key which can change. However, property A 1s more difficult
with message authentication codes because in order to com-
pute the same hash, all places computing 1t must have access
to the key.

There can be identifiers associated with different formats
of the same data. For example, the hash of a file, and the hash
of the same file compressed losslessly with ZIP, are different
identifiers, but they are associated with the same final data.

There can also be 1dentifiers formed for part of the media.
For example, 1n the case of video, there could be an 1dentifier
tormed for each different frame. Because of packet loss 1n a
network, two people watching the same video might not end
up with the same file, and thus they would be unable to
compute the same identifier. However, each person would
receive several identical frames of the video. So 11 they com-
puted a hash of each frame they received, they could deter-
mine that they were watching the same video because of the
large number of 1dentical hashes.

To continue the same example, two people watching the
same video might watch 1t at different resolutions, 1n this case
no two frames will have the same hash. However, i1f the video

[l

10

15

20

25

30

35

40

45

50

55

60

65

6

was stored 1n a scalable method, e.g. JPEG 2000 part 3, then
the lowest resolution portion of the video may be the same for
both viewers, and common hashes could be determined.

When video 1s not stored 1n a scalable format, a server
typically stores multiple versions of a video at different reso-
lutions. The server can thus compute a hash of all frames of all
resolutions it has stored, and thus any frame received com-
pletely by a client can be hashed and the hashes later com-
pared with those on the server to 1dentity the video.

In addition to video, there are other types ol media that may
be partially transmitted. For example, part of a large XML
document may be requested. The request may be, for
example, by an XPATH query. The portion of the document
received by the client 1s different from the whole document
available at the server. However, it 1s possible to compute
hashes for portions of the documents (e.g., subtrees of the
XML document) or even contents of particular nodes 1n the
XML document. A client with a subset of the XML document
can compute hashes on the subtrees and nodes that it recerves,
and these can be matched against a large list of hashes at the
Server.

For any particular media, relevant subsets of the data can
often be determined and these subsets can be hashed 1n addi-
tion to the hash of the complete media.

In some cases, the data 1s processed so that the portion
delivered does not actually appear in the data as a whole. For
example, a color image might be converted to grayscale and
then delivered, or the sum of entries 1n a spreadsheet might be
computed and reported. However, 11 the data exists at two
places (e.g. the server and client), then even 1f only modified
data 1s delivered, 1t 1s possible for both server and client to
record hashes of the modified data and the association
between the received data and i1t’s source can be made at a
later time.

In some cases, the “server” might not have the modified
data 1nitially. For example, if an intermediate processing
device performs the computation on the data. However, if the
type of computation 1s known, it could be later run on the
server to associate the original media with the recerved data.
For example, a server might send a high bit rate video, but due
to network congestion, this may be truncated by removing a
quality layer at an intermediate router. A client thus receives
a medium bit-rate video that can be hashed. In order to deter-
mine the same hashes, the server runs the hash on the high rate
video without the quality layer that the router discarded.
Sequential Logs

Many of the mnventions described herein involve recording,
a sequence of events. The record of events 1s referred to as a
“log” or “log-file,” similar to the relationship with a log book
used to record the events of a ship or aircraft, and the log files
used to record the actions taken on computer systems. In one
embodiment, the logs have a property that i1t 1s easy to add a
new record to the end, but difficult to change a record already
in the log without such a change being easily detected.

Unlike a traditional “log book™ or “log file”, in one
embodiment, 1t 1s desirable for the log not to disclose much
information about the event being recorded. In this way, the
log file may be made available to a large number of people or
systems so that some records can be checked, but the content
of most of the records can remain secret.

There are several possible implementations of a log which
have different levels of performance with respect to the goals
of easy to add, hard to change, and partial disclosure of
information.

A conceptually simple way to implement a log 1s a tamper
prool write once memory. Each record 1s written 1n order mnto
the memory. This meets the goal of easy to add and hard to

US 9,081,987 B2

7

modify, but 1t 1s difficult to remotely verily that the “tamper
prool” memory has not been changed.

One method of implementing a log 1s to create a sequence
ol records where each record includes a hash of some 1nfor-
mation from the previous record, and the contents of the
current record. For example, let the message portion of the 1th
record be called M, and a rolling checksum called r,. This
rolling checksum for the 1th record can be computed as:

r=hash(r,_ M)

where the message and the previous checksum are concat-
cnated (represented by the “””) and provided to the hash
function. The log 1n this case consists of a sequence of mes-
sages and checksums (M, r,). In one embodiment, an addition
to the log may be made by taking the last checksum and the
current message, concatenating the two, and computing the
hash. This 1s shown 1n FIG. 1. Referring to FIG. 1, to create a
new message and checksum pair, a message and checksum
generator 101 recerves a new message, M., ; and the check-
sum 1, -, of the last entry 1n log 110. A concatenation module
102 concatenates the previous checksum r,_ , with the mes-
sage M. ;. Hash module 103 applies a hash function, as
described herein, to produce the next checksumr,_,. Message
M., , and checksum r,_, are then stored in log 110. Note that
message and checksum generator 101 may comprise a pro-
cessing unit (e.g., amicroprocessor) with concatenation mod-
ule 102 and hash unit 103 being software modules of instruc-
tions that are executed by the processing unit. Alternatively,
these functions could be implemented 1n hardware.

If one of the messages 1n the log 1s modified, or one of the
checksums 1n the log 1s modified, then the subsequent check-
sum will be incorrect. Thus modifying a record would require
changing the message and all subsequent checksums. If one
of the checksums 1s copied and stored elsewhere, then any
modification prior to that checksum can be detected. If a
modification 1s made without updating the checksums, then
recomputing the hashes for the rolling checksums 1n the log
reveals the error. If the hashes are all changed so the log 1s self
consistent, then they won’t match the externally saved value.

As set forth above, the hash function could be a simple
checksum, be preferably 1s a cryptographic hash function.

This method meets most of the goals for the log, but there
are vaniations which provide additional benefits.

One modification 1s to store the hash of the message rather
than the message 1tself 1n the log. Thus, 1f m, 1s defined as:

m;=hash(M,),

then alog can be defined as a sequence of (im,, r,), with r, being,
a checksum of only the message hash and the previous check-
SUm:

r~=hash(z,_,m.,).

This 1s shown 1n FIG. 2. Referring to FI1G. 2, to create a new
message and checksum pair, a message and checksum gen-
erator 201 recerves a new message, M., , and the checksum
r,. ., of the last entry 1in log 210. A concatenation module 102
concatenates the previous checksum r, , with the message
M., ;. Hash module 103 applies a hash function, as described
herein, to produce the next checksum r,_ . Hash module 203
applies a hash function to message M., to produce hashed
message m__ ,. In one embodiment, the hash function applied
by hash module 203 1s the same as the hash function applied
by hash module 103; alternatively, the hash function applied
by hash module 203 is not the same as the hash function
applied by hash module 103. Hashed message m, , and
checksumr,_, are then stored 1n log 210. Message and check-

I+3

sum generator 101 may comprise a processing unit (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

8

microprocessor) with concatenation module 102, hash unit
103, hash unit 203 being software modules of instructions
that are executed by the processing umit. Alternatively, these
functions could be implemented 1n hardware.

This method has the advantage of producing fixed length
records provided that the hash function has a fixed length,
which 1s commonly true. This method has the further advan-
tage ol not having any message content 1n the log. Thus, 11 the
message was some customer information (e.g., a purchase
order with name, address, and order information), 1t would
not be desirable to publish the message. However, 1 the hash
used does not reveal information about the message, then the
entire sequence of (m,, r,) 1.e. the log, can be published with-
out publishing this information.

In some cases, 1t 1s desirable to have a log with more
information than solely the hash of the message. For example,
it 1s often usetul to have the time stored 1n the log or the type
of mformation of the log entry stored in the published log.
This makes 1t easier to search the log for specific records.
Thus, 1f the information 1n a record that 1s readable 1s defined
as the “plain text”, called t, then 1n one embodiment, the log
consists of a sequence of (t,, m,, r,), and each checksum, r, 1s
computed as:

r~=hash{r, t;-m;)

This format 1s quite general because the t, portion could con-
tain further structure (e.g., always a date and a type and a file
name) while the messages could also be structured. Of
course, the order of the previous rolling checksum, the current
message or message hash, and “plain text” information can be
changed, as long as the order 1s known to all applications
needing to generate or verily a checksum.

Another way to provide partial access to mnformation 1n a
log 1s to encrypt some of the information stored 1n the log.
Suppose the encrypted imnformation for a log 1s E,, and the
hashof'E, 1s e,. In one embodiment, either E, or e, can be stored
in the log. Thus, a log entry might consist of (t,, m,, E,, r,), 1.¢.
a plain text portion, a hash of the message, some encrypted
data and a hash of the previous hash 1n the log and concat-
enated with the hash ol the message. In general, there could be
a mix of times and a record might have several plain text
portions, several encrypted portions, and several hashes of
messages.

In one embodiment, the format for log entries 1s a set of
header “lines” and a body with data, e¢.g.

Author: gormish

SHATL: 1bii5d8¢cdal307b51313757¢cb25588a54ctb01cel
Content-Length: 567

567 bytes of DATA

In one embodiment, this type of format 1s used for http and
email. Thus, several well-known headers have been defined
and could be used 1n a log.

Different keys can be used for different encrypted entries or
different types of encrypted entries in the log. For example, all
entanglement information might be encrypted with one key,
all classification values with a different key. If the log is
associated with a single document and that document 1is
encrypted, then the entries in the log might be encrypted with
the same key as used for the document. That way, anyone with
access to the document 1s also granted access to the informa-
tion in the log.

In one embodiment, a log supports different multiple roll-
ing hashes or different types of hashes, 1.e. hashes computed
with different cryptographic hash functions. For example, in
one embodiment, the value r, 1s as follows:

r~=hash(r, 't m;)

US 9,081,987 B2

9

and the value of t, specifies which hash function was used
(e.g., MD5, SHAIL, SHA256, etc.). In one embodiment, a log
entry with two different rolling checksums has entries like:

(tz': m;, I; Sz’

I? ~17

where r; 1s computed as:
r=SHAl(r, ;t;m,)

and s, 1s computed as:
s—SHA256(s; t;m,)

This allows the same log to be used with systems that only
support one type of hash, and 11 one hash function is broken,
the other hash function may still be valid, and the combination
of both 1s likely to be even harder to break. Other arrange-
ments with logs using two or more hash functions would be
apparent to those skilled 1n the art.

It should be noted that log entries can be added which
retrospectively add new hash chains to a log. Suppose a log
consists of pairs of messages and rolling hashes (M., r;), with
r1=SHAI1(r1—1, M1), with 1 between 1 and N. New messages
can be added to the log which consists of the old messages and
a new rolling hash computed with a different hash function.
Thus, message N+1 could be the first message concatenated
with a rolling checksum computed using a new hash function.
In general:

My 1 =M;s;
where
s~SHA256(s;_;, M;)

This allows the later repair of logs whose hash functions have
been compromised, by adding a new hash covering the same
material. Any number of hash functions can be applied retro-
spectively 1n this fashion, as hash functions are compromised
and new functions are discovered.

In one embodiment, a second hash function makes use of
the first hash function 1n 1ts computation. For example,

s—SHA256(s, {t;m;7;)

or
s—SHA256(r, s, {1, ,m,)

Storage for a Log

In one embodiment, a log 1s stored sequentially 1n a single
file. This sort of log 1s very easy to create because the rolling
hash from the last entry 1s read, and new data 1s appended to
the end of the file. If the entries are fixed length, 1t 1s easy to
find a specific entry in the file. In many cases, a single file 1s
suificient especially 11 the log 1s for a single document that
does not have too many entries.

In some cases, the log may become very long, usually
because a record of a common event 1s being made. If a log 1s
used to accumulate data from multiple sources, there could be
several entries per second. In this case, it may be useful to
break a log into multiple files, for example, after every 10,000
entries.

In another embodiment, each log entry 1s stored 1n a sepa-
rate file. In this case, a pointer to the most recent entry 1s used
for fast access. In one embodiment, the record has a sequence
number 1nside 1t, and the most recent record can be deter-
mined by examining all record numbers. One technique is to
name the file with the rolling hash, and include the rolling
hash of the previous record in the file. In this way, 1t 1s possible
to go from the most recent entry back through all the entries
by following the pointer.

In another embodiment, each log entry 1s a record 1n a
database. This 1s quite useful to enable rapid search for a

10

15

20

25

30

35

40

45

50

55

60

65

10

particular message hash, rolling hash, range of times, plain
text, or whatever the rest of the content of the log entry
contains. A database implementation 1s useful when large
numbers of entries are being made 1n the log because data-
bases provide transactional integrity.

Write Once Memory

In addition to the mathematical methods of insuring that
events occur 1n sequence, in one embodiment, a physical
tamper proof device 1s used to store a sequence of events. In
one embodiment, the physical tamper proof device 1s a write
once memory that stores the hashes of messages in order.
Changing the entries 1n this sort of log would require chang-
ing the memory.

While write once memory 1s simple, it 1s hard to verily
remotely that 1t hasn’t been tampered with. Thus, 1n one
embodiment, a tamper prootf system provides digital signa-
tures or other authentication techmques for its content.
Entangling

Because 1t 1s relatively easy to modily a single log, 1n one
embodiment, information 1s exchanged between logs in such
away that modification of the entries 1n one log can be
detected by examining another log. It 1s important to store
information in the second log that depends on all of the
information 1n the first log. For the logs defined previously,
the rolling checksum has that property. Each checksum
depends on the previous checksum and the other data in the
log entry. Thus, 1f any part of a log entry 1s changed, the
rolling checksum changes, and the rolling checksums after
that point also change. Regardless of the computation func-
tion used for the “hash,” if the messages or records are longer
than the hash, there exist multiple messages or records that
have the same hash. However, 1f the function used for the
rolling checksums are well chosen, e.g. a cryptographic hash
function, 1t 1s extremely difficult to find these messages.

There are several ways to store information from one log in
another log. This process 1s called entangling because after
storing information from one log in another, all future rolling
checksums in the second log depend on the information in the
first log.

In one embodiment, the log being used 1s storing pairs of
message hashes and rolling hashes, 1.e. (m, r;), and the mes-
sage hash for an entry 1n the second log 1s replaced by the
rolling hash from the first log. Thus, all rolling hashes after
that entry 1n the second log depend on the rolling hash from
the first log.

While this 1s the simplest embodiment, the limited amount
of information stored when entangling, can make it difficult to
determine what the nature of the entanglement 1s. Thus, 1n one
embodiment, additional information 1s included in the log
entry used for entanglement. For example, those logs using a
type value can set the type to indicate that the data 1s not a
“regular message” but an “entanglement entry.” Further,
instead of using a rolling checksum directly 1n place of the
message hash, a message can be formed which contains the
rolling hash from the first log and the location of the first log
(e.g., a server name, a log name, a file name, URL, etc.). In
one embodiment, the location of the rolling hash 1n the first
log 1s included (e.g. a sequence number, date, etc.). This
embodiment allows a log to be followed backwards and
allows determination of the other logs on which the current
log depends.

In many case, 1t 1s desirable to determine which logs
depend on a first log. In order to facilitate this, information
can be stored in both logs when an entanglement 1s made.
FIG. 3 15 a flow diagram of one embodiment of a process for
entangling a pair of logs. The process 1s performed by pro-
cessing logic that may comprise hardware (circuitry, dedi-

US 9,081,987 B2

11

cated logic, etc.), software (such as 1s run on a general purpose
computer system or a dedicated machine), or a combination
of both.

Referring to FIG. 3, the process begins by processing logic
storing information, including the current rolling checksum
of log A into a log entry 1n log B (processing block 301).

Next, processing logic stores mnformation about log B 1n
log A (processing block 302). In one embodiment, the infor-
mation stored 1n log A about log B may include the server
name, file name, or URL of log B and the position in the log
where the entanglement 1s stored. In one embodiment, the
information stored 1n log A may also include a rolling check-
sum from log B. I1 this checksum 1s stored, the entanglement
1s both from log B to log A and from log A to log B.
Verification Procedure

In many situations, 1t 1s necessary to determine 1f a log has
been modified since it was created. This 1s best done by
soltware, computer systems, and people mdependent from
the log generation hardware, software, and people.

In one embodiment, to determine 1f a log 1s self consistent,
verification soitware (such as 1n a computer system of FI1G. 8
(or dedicated machine) recomputes the rolling hash for each
entry 1n the log. If the rolling hash computed by the verifica-
tion software matches the rolling hash stored 1n the log, then
that entry has not been changed unless the hash function has
been compromised. For purposes herein, the hash function
“being compromised” means two distinct sequences of bytes
have been found that yield the same hash.

To determine 11 entries 1n a log are consistent across mul-
tiple logs, the entries must be consistent from the message of
interest up to and including a rolling checksum that 1s stored
(entangled) 1n another log. The entries 1n the second log must
be self consistent before and after the entanglement entry.
An Example of an Entangling Detection Procedure

If a third party wishes to determine the validity of a mes-
sage stored 1n a log some time after the entry was made and
entangled with other logs, entanglement detection allows all
servers which have entries that are consistent with the mes-
sage to be determined. FIG. 4 1s a flow diagram of one
embodiment of a process for performing entanglement detec-
tion. The process 1s performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), software
(such as 1s run on a general purpose computer system or a
dedicated machine), or a combination of both.

Referring to FIG. 4, the process begins by processing logic
mitializing a list of servers that have evidence to the empty
set, iitializing the list of messages or hashes of interest to the
single message or hash desired and searching for the message
or message hash of interest on all known logs (processing
block 401). If the message or 1ts hash 1s not found anywhere,
no verification 1s possible and the process ends.

If a message or hash of interest 1s found, then the process-
ing logic verifies the rolling checksums following the entry
containing the message or hash, for every log where the
message or message hash 1s found (processing block 402). In
one embodiment, this 1s done by recomputing the checksums
r, for the log using the verification software.

Processing logic adds all rolling hashes that appear after
the hash of interest to a list of hashes, and adds any logs
referenced by the current log to a list of logs of interest
(processing block 403). Some logs will not list other logs, 1n
which case there 1s nothing to perform for this sub-step.

Processing logic searches for all hashes in the hashes of
interest list in one of the known logs that hasn’t been searched
(processing block 404). Afterwards, processing logic tests
whether a rolling hash appears in the log (processing block
405). I not, the process transitions to processing block 404

5

10

15

20

25

30

35

40

45

50

55

60

65

12

where the process continues. If a rolling hash appears 1n a log,
processing logic adds that log to the list of logs with evidence
about the original message or hash (processing block 406),
and adds all rolling checksums that appear in the log after the
hash of interest to the hash list (processing block 407) and
adds any logs referenced by that log the log list (processing
block 408).

Processing logic then checks whether there are any more
known logs to search (processing block 409). If not, the
process ends. If so, processing transitions to processing block
404 and repeats the process until no new hashes are added to
the list of hashes of interest, and no new logs are added to the
list logs.

In general, many logs may be stored on the same device,
same ollice, or same company. However, 1f a log 1s entangled
with logs on multiple physical devices, or with logs which are
under the control of different companies, then someone veri-
tying the logs will have more confidence that the log has not
changed. This benefit of entangling with different devices
means that the logs should be able to store addresses of
entangled logs that cross company and device boundaries.
One way to do this 1s to use a URL to 1dentily a log.

The python source code below determines logs that con-
firm the message hash 1n another log. This source code 1s
designed to work for a particular form of log that doesn’t
contain references to other logs. Thus, it only finds evidence
in the logs 1t in1tialized to check and new hashes are searched
for only 1n the known logs. The source code 1s designed to
access logs from multiple independent http servers. The
source implementation currently uses only one log per sever,
but the URLs could be modified to allow multiple logs per
SErver.

The following sample software may be used to determine
valid entanglements:

Program to examine a set of servers for a given hash or file, then look for
the hash chains leading from that document to other servers.
import sys
from Crypto.Hash import SHA256
import urllib
from optparse import OptionParser
parser = OptionParser()
parser.add__option(**-1”°, “--file”, dest="filename™,
help="Find servers who know about file”,
metavar="FILE")
parser.add__option(*“--hash™, dest="hash”,
help="Find servers who know about hash™)
parser.add__option(*-q”, “--quiet™,
action="store__ false”, dest=""verbose”, default=True,
help="don’t print status messages to stdout”)
(options, args) = parser.parse__args()
hashlist =]
if options.hash:
hashlist.append(options.hash)
if options.filename:
try:
f = open(options.filename, “rb™)
hf = SHA256.new()
blocksize = 32*1024
while True:
data = f.read(blocksize)
hf.update(data)
1f len(data) < blocksize:
break
hashlist.append(hf.hexdigest ())
except IOError:
print “Could not process file: %s” % options.filename
if lenthashlist) == 0:
print “No hash or file supplied”

US 9,081,987 B2

13

-continued

parser.print__help()

sys.exit()
unconnectedserverlist = [*http://localhost:9001/7,
“http://localhost:9002/°,
“http://localhost:9003/°,
‘http://localhost:9004/,
“http://localhost:9005/°]
serverstatus = { | # what is the condition observed on each server
#1L1st of servers that have a chain to the document 1n question
foundlist = []

#Evidence for each rolling hash

#Dictionary with rolling hash: key is hash, value 1s log entry that hashes to

that key evidencelist = { }
while(len(hashlist)> 0 and len{unconnectedserverlist) >0):
#For the next hash, search the unconnected servers
searchhash = hashlist.pop(0)
for server 1n unconnectedserverlist:
devicelog = SHA256.new(server).hexdigest()
url = server + ‘log?logUID=%s&messagehash=%s" %0
(devicelog,searchhash)
try:
1f options.verbose:
print “Trying url: ” + url
result = urllib.urlopen(url)
#want a sequence number so I can get stuff after this, or a way to
ask for all checksums after the found event
except IOError:
continue
line = result.readline() # we only check the first line which should
be lowest sequence number
if (line.find(*No Entries’) >= 0): #Depends on way empty results
are returned continue
#split into (type,message,rchecksum)
(seq,type,message,rchecksum) = line.split(*:’)
if (searchhash !'= message):

print “Error Server %s returned a match for %s that didn’t match.

Returned value: %s message %os lenl = %d len2 = %d” %
(server, searchhash, line,message.len(searchhash),len(message))
else:
1f options.verbose:
print “Adding found server: ” + server
foundlist.append((server,seq,message)) # Yea! # 1n the end we
may want the whole chain!
serverstatus[server] = “Found Document or Hash Chain to
Document”
unconnectedserverlist.remove(server)
we want to get a previous hash for confirmation
if int(seq) >0:
seq = str(int(seq) -1)
else:
print “Warning we will miss an item!”
url2 = server + “log?sequence=%s-&logUID=%s" %0
(seq, devicelog)
try:
if options.verbose:
print “Trying url: ” + url2
result?2 = urllib.urlopen(url2)
except IOError:
continue
#Add all rolling hashes from the message entanglement on to the
hash list (if they verify)
data = result2.readlines()
line2 = data[0]
data = data[1:]
(seq2,type2,message2 . rchecksum?) = line2.split(*:”)
prevchecksum = rchecksum?2[0:64]
for line2 1n data:
(seq2.type2,message?,rchecksum?2) = line2.split(*:’)
rchecksum?2 = rchecksum?2[0:64| # drop new line
test rchecksum?
testentry = prevchecksum + “\n’+ type2 + ;" + message2 + °’

confirmchecksum = SHA256.new(testentry).hexdigest()
if confirmchecksum != rchecksum?2:
print “Failed to confirm checksum on server %s, seq %s”
% (server, seq2)
print testentry,len(testentry),confirmchecksum,rchecksum?
serverstatus|server| = " ERROR IN HASH CHAIN’
break #do not add any checksums past the bad data
evidencelist[rchecksum?]| = testentry

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

prevchecksum = rchecksum?2
if options.verbose:
print “Adding hash to search for: ”” + rchecksum?
hashlist.append(rchecksum?)
if options.verbose:
print “n‘nFound a Log Chain to the following servers:”
print foundlist
print “‘nEvidence”™
print evidencelist
print “‘n'nServer reports for given hash™
for 1 1n serverstatus.keys():
print 1, serverstatus|i]

In general, the technique described above to verity logs can
involve a lot of operations. However, the complexity can be
reduced by keeping better track of hashes and logs that have
been previously searched. Complexity can also be reduced by
only considering log entries occurring before a certain time,
or searching certain logs first, for example 11 it 1s known that
certain logs are used for entangling more often these can be
searched earlier.

Authentication via Logs

The rolling checksum 1n a log can be used as part of an
authentication mechanism. For example, knowledge of the
most recent rolling checksum r,, could be used as permission
to write an additional entry to a log. A device keeping a log
could 1nsist that the most recent checksum be provided with
the new log entry. By doing so, 1f two other devices know the
current checksum, and both request to write to the log, only
one will succeed. The first device to provide a new log entry
will cause the checksum to change, and then the second
device will not have the correct checksum. This technique
provides a way to isure that new data 1s added to the log only
if the provider of the data has the most up-to-date information
about the log. Thus, the checksum can be used to as a form of
“lock’ on the log to prevent race conditions.

The above discusses using the rolling checksum to control
access to the log, but the rolling checksum can also be used to
prove that the same log 1s being used again. In this case, the
tull contents of the log should not be publicly available.
Someone could make a first interaction with a system using a
log, and store a message 1n that log, and provide the rolling
hash to the system (e.g., perhaps a message 1s stored when a
deposit 1s made to an account). Subsequently, when 1t 1s
desired to make a withdrawal from the account, the system
could ask for the rolling hash used to make the deposit. If
more security 1s desired, 1n one embodiment, the system asks
for information about that rolling hash (e.g., the hash of that
rolling hash and a challenge string). The system could ask for
several pieces of mformation about a previous interaction,
that could only be answered by someone in possession of the
log.

Authentication Via Logs

The rolling checksum 1n a log can be used as part of an
authentication mechanism. For example, knowledge of the
most recent rolling checksum r_N could be used as permis-
s1on to write an additional entry to a log. A device keeping a
log could 1nsist that the most recent checksum be provided
with the new log entry. By doing so, 1f two other devices
known the current checksum, and both request to write to the
log, only one will succeed. The first device to provide a new
log entry will cause the checksum to change, and then the
second device will not have the correct checksum. This tech-
nique provides a way to insure that new data 1s added to the
log only if the provider of the data has the most up-to-date

US 9,081,987 B2

15

information about the log. Thus, the checksum can be used to
as a form of “lock™ on the log to prevent race conditions.

The above discusses using the rolling checksum to control
access to the log, but the rolling checksum can also be used to
prove that the same log 1s being used again. In this case, the
tull contents of the log should not be publicly available.
Someone could make a first interaction with a system using a
log, and store a message 1n that log, and provide the rolling
hash to the system (e.g., perhaps a message 1s stored when a
deposit 1s made to an account). Subsequently, when 1t 1s
desired to make a withdrawal from the account, the system
could ask for the rolling hash used to make the deposit. If
more security 1s desired, 1n one embodiment, the system asks
for information about that rolling hash (e.g., the hash of that
rolling hash and a challenge string). The system could ask for
several pieces of information about a previous interaction,
that could only be answered by someone in possession of the
log.

Overview of Sarbanes-Oxley

Sarbanes-Oxley compliance can be roughly summarized
as requiring the following four steps: 1) document business
work processes; 2) identify risks; 3) implement control points
to limit risk; and 4) audit the implementation. For purposes
herein, all work processes are defined as a tlow chart or tlow
diagram and each business process with a different tlow chart
1s referred to as a different “worktlow type.” For example,
there could be workflows for each different business opera-
tion, such as, for example, Purchasing, Month End Close, and
Travel Requests. A sample workiflow type for the *“Sales
Credit Control” 1s shown 1n FIG. 5.

In one embodiment, each workflow may be used multiple
times. For example, the “Month End Close” worktlow 1s used
twelve times per year. A “Purchasing” flow might be used
hundreds of times per month, and at any given time different
instances ol the worktlow are 1n different states (e.g., waiting
for approval, waiting for delivery, waiting for the check to be
cut, etc.).

In one embodiment, each workflow has a set of one or more
control points. These control points are the 1tems that will be
checked 1n the audit. The control points for the “Sales Credit
Control” are shown as crosshatched dots on the flowchart 1n
FIG. 5. Each control point has some document image associ-
ated with 1t that verifies the control was implemented. The
type of this document 1mage depends on the worktlow type
and the step in the worktlow. In the case of a purchasing
workilow, the document type could be one of: Request,
Quote, PO, Packing-list, Invoice, or Check. For a month end
close, the types might be entries 1n the general ledger, or even
an email from the CFO saying the month end process is
complete.

In one embodiment, the documentation required to audit
the implementation 1s thus described by a triple consisting of
(the worktlow type, the worktlow instance, and the control
point). Note that because of loops 1n the workflow, there may
be more than one document associated with a particular
(workflow, instance, and control point) triple.

The following disclosure describes a set of interactions and
devices that make use of this understanding of business pro-
cesses to aid 1n auditing. In one embodiment, a “SOX server”
provides monitoring that may be useful for any governmental
regulation or mternal business policy that can be monitored
by tracking “document 1images.”

User Interaction

In one embodiment, there are two primary user interactions
with the SOX server: adding tagged document 1mages and
accessing document images and tags e.g. to verily compli-
ance with some regulation. In verification, 1t 1s possible to

10

15

20

25

30

35

40

45

50

55

60

65

16

obtain additional information about the “trustworthiness™ of a
particular document, 1.e. evidence that a document was not
changed, and/or was processed by the appropriate person.

In one embodiment, 1n addition to the main user interac-
tions, there 1s a configuration operation in which the work-
flows and the types of documents 1n the worktlow are defined.
Image and Metadata Capture from Many Sources

In one embodiment, the SOX server recetves 1mage and
metadata from a variety of sources. For purposes herein, an
clectronic source 1s no different from a paper source. Docu-
ments can be scanned, electronic files can be rendered to
bitmaps, and files can be accepted directly from a computer
via shared disks, email, itp, http, etc.

Using today’s network protocols on modern devices, a
document can be scanned and the electronic bitmap sent
directly to a disk or via email. In one embodiment, these
connections are made secure. Furthermore, the receipt of the
proper bitmap can be verified. For example, a multi-function
peripheral (MFP) may create a cryptographic hash of the
bitmap and save 1t. The server creates a hash and sends 1t back
as a receipt, and the MFP can compare and log both hashes.

In one embodiment, control of the image entry, the entry of
the work process, a check point, and instance, and entry of any
other metadata for association with the image are achieved
with one or more traditional interfaces. For example, data
could be entered on the front panel of the machine, or a
control or job sheet could be scanned together with the docu-
ment, or watermarks or barcodes on the source document can
be used to control the process.

With respect to printed documents, at print time, most
computer application programs send specific instructions on
how a document 1image should be rendered to a bitmap to the
printer driver. In one embodiment, the printer driver renders
these mstructions to a human viewable image. In one embodi-
ment, this system presents the image to the human user and
provides an interactive computer interface to gather the work
process, check point, and 1nstance, and necessary metadata.
In one embodiment, similar security and verification to the
scanned method 1s also provided.

In one embodiment, document and/or document 1mage can
be entered into the system via an HTTP server and a web
browser. In one embodiment, the SOX server serves a website
that would control the data entry and metadata collection.
This can also be a secure and verified transaction.

The document 1image can be sent 1n the body of an email or
as an attachment. In one embodiment, the control and meta-
data are sent 1n a structured way using the subject, body, and
other fields of an email. If the server does not receive the
correct data, a return email 1s sent asking for more informa-
tion. The user could respond with a properly formatted email,
respond to a number of links on the return email, respond to a
number of email addresses, launch an HI'TP interaction, or
some other response. This interaction can be secure and veri-
fied 1f the correct email client and/or configuration 1s used.

In one embodiment, this interaction 1s much the same as the
other computer entry method except that there 1s often no
interface with these protocols that allows the attachment of
metadata. In one embodiment, this 1s overcome by using
special directories 1n a hierarchy to control and add metadata.
Alternatively, files containing the metadata are associated
with some rule-based naming system. In yet another embodi-
ment, there 1s a special application program with the interface
for that data.

Access to Prove Compliance

In Sarbanes-Oxley regulations, for each worktlow, a num-
ber of random test instances 1s chosen based on the frequency
of usage of the worktlow. For example, a purchasing work-

US 9,081,987 B2

17

flow that 1s used 500 times per month must be tested many
times, while a “Month End Close” used only 12 times a year
must be tested only a few times.

In all cases, the “verification” 1s based on an instance of the
workflow and a determination of whether the controls were 5
implemented for that istance of the workflow. In the SOX
server, there 1s a visual record of each control point.

FI1G. 6 illustrates sample documents for a purchasing work-
flow. Referring to FIG. 6, there are 6 control points corre-
sponding to a request document, a quote, a purchase order, a 10
packing list, an invoice, and a check. For a different worktlow,
there would be different names for the controls points, and a
different number of control points, but there would still be
some visual representation of each control point. Vertically 1n
the FIG. 6, there are different workiflow instances, each cor- 15
responding to different purchase requests.

Note that a single request might yield multiple quotes,
multiple purchase orders, multiple invoices and multiple
checks. For particular control points i some workflow
instances, there might not be a document. As shown in FI1G. 6, 20
the second workflow 1nstance 1s missing a quote. Depending,
on the particular business policy, that omission could trigger
a larger audit. In other cases, it may be acceptable to be
missing a document (e.g., some requests for “standard™ 1items
do not require quotes). In some worktlows, there may be 25
multiple branches, and a control point might only be used if a
particular branch is used, e.g. purchases over $5000 require
additional approvals.

In one embodiment, the SOX server does not provide any
semantic checking of the documents provided for the control 30
points. It 1s possible to enter a blank page as the “Invoice” for
a particular workiflow. Thus, complete verification involves
human examination of the control point images. However,
such verification can be assisted by the server and metadata
indicating that a semantic check was done and who did it can 35
be recorded by the system, and later authenticated just as for
the document 1mages.

Document Authenticity

In one embodiment, the server does not provide any help
with the semantic understanding of the document content. 40
However, it provides evidence from external sources to help
in veritying the document. For any document, the time of
initial storage and the metadata associated with storage can be
provided. This can include information from the workilow
triple, but 1t can also include information like a user name, or 45
department, etc. In one embodiment, the server 1s configured
to exchange “cryptographic checksums” (e.g., hash values)
with other devices (e.g., servers, other logging devices, which
could include servers). This exchange allows proof that the
document was 1n existence by a particular time and that it has 50
not been modified since that time.

The information available to authenticate a document
includes any metadata entered when the document was
logged. This could include a digital signature done by a smart-
card from the scanner or a PIN from the printer driver. The 55
timing data available can be more complex. In one embodi-
ment, the timing data 1s a timestamp from the SOX server.
Such a timestamp might have been changed by someone with
access to the machine. Thus, 1t 1s possible to follow the chain
to other servers and retrieve their timestamp for the chain. By 60
using a hash chain, 1t 1s possible to authenticate any log entry
as occurring before a timestamp on the second server. For
example, the local server might assert that a document was
entered at 9:57 AM on Thursday Sep. 28, 2006 (PST). A
server that had an entangled log somewhat later could only 65
confirm that the document existed before 10:03 AM, and a
server that entangled with that server only once per day might

18

only be able to confirm that the document existed betore 5:00
PM. Assuming servers entangle at least once a day, the con-
fidence 1n the date of any particular document will be abso-
lute.

In one embodiment, the local SOX server provides the
information about the document authenticity. Alternatively, a
trusted application on a verification device e.g., an auditor’s
computer 1s used to query the witnessing servers, and verily
that they contain the entries claimed by the local SOX server.
SOX Server Implementation

FIG. 7 illustrates a block diagram of one embodiment of a
SOX server and associated systems. Each block represents
processing logic that may comprise hardware (circuitry, dedi-
cated logic, etc.), software (such as 1s run on a general purpose

computer system or a dedicated machine), or a combination
ol both.

Referring to FIG. 7, the SOX server 700 1tself 1s the large
central unit. Documents are acquired from personal comput-
ers (PCs), scanners, multifunction devices. Document receiv-
ing interface 701 tags the collected document with the work-
flow type, worktlow 1nstance, and control point. Documents
and metadata are saved 1n the image and metadata store 702,
they are also logged (e.g., ahash 1s generated) and saved in the
log 703, which 1s in memory 704.

Workflow 1dentifier 710 identifies the worktlow associated
with documents received by document recerving interface
701. In one embodiment, the user providing the document
indicate the worktlow, type, control point, and even workflow
instance. However, the user can be assisted by SOX server
700, for example 1f image analysis could determine the docu-
ment type, and use that information to reduce the number of
choices about workilows and instances to present to the user.
In one embodiment, workilow identifier 710 includes an opti-
cal character recognition (OCR) module 711 to perform opti-
cal character recognition and an 1image analysis module 712
to perform 1mage analysis on documents recerved by docu-
ment receving interface 701, both functions may be used to
associate a particular document with a worktlow, worktlow
instance, or control point, thus reducing the need for a user to
provide this information.

Log generator 705 interacts with other servers to exchange
checksum information. The workflow update item may
acquire information from other servers about document or
status and use that to update the image store and the collection
of workflow 1nstances.

In one embodiment, the verification module 706 1s inde-
pendent of the SOX server, because the verification process

needs to be able to detect 11 the SOX server 1s compromised.
The verification module 706 accesses information from the
SOX server and other servers with which the SOX server has
entangled. IT data has been changed on the local SOX server,
then eirther the local log will be inconsistent, or the copies of
entries 1 other servers will not match.

Document Logging,

In one embodiment, as each image 1s added to the SOX
server, the SOX server adds the hash value for the document
to a log and computes a rolling checksum that 1s stored in the
log as well. The workilow tags and other metadata and check-
sums from other servers are stored 1n the log as well. In one
embodiment, the SOX server stores a “log entry type” a
“Message hash” and a “rolling hash™ or checksum in the log,
where the message hashes and rolling hashes are twenty bytes
if SHA-1 1s used and 32 bytes if SHA-256 1s used. Thus, 1n
one embodiment, the imnformation contained in the log 1is
organized like the Table #1 below. Note that rather than 1tems
like “#17°, a 20 bytes binary value or 40 byte hexadecimal
value 1s stored.

US 9,081,987 B2

19
TABL,

(L]

1

Sample Information Stored in Log

1.2 Hash of 1.3 Rolling

1.1 Information Type Message Content Hash
Document #1 #1
Document Capture H2 #2
Data

Document Workflow #3 #3
Data

Entanglement Info 4 #4
Document #3 #3
Document Capture #6 #6
Data

Document Workflow #H7 #7
Data

Document HE HE
Document Capture HY #Y
Data

In one embodiment, the type information 1s stored in the
log. In an alternative embodiment, the type information is
determined from the message content. An advantage of stor-
ing the type information directly in the log 1s that 1t allows the
log to be used as an index to some of the content. In particular,
when determining the authenticity of a known document, the
“Document” entries are searched until the matching hash 1s
tound, then the log can be scanned until the next entry labeled
“Entanglement Info” 1s found. This entry provides the earliest
external server that may be used to establish a bound on the
existence of the document 1n question.

Information Stored i1n the Image/Metadata Store

Below, Table 2 illustrates an example of information stored
in the image/metadata store i one embodiment of the SOX
server. These entries correspond to the data in Table #1, and
could be located by using the hash values.

TABL

(L]

2

Information Stored in Image/Metadata store

1.4 Hash 1.5 Message Content

#1 Scanned Image (e.g. tiff, JPEG)

#2 Scanner ID, settings, user imnfo

#3 Workflow Type, Document Type,
Workflow Instance

1#4 Server location, Remote Hash #, Local
Hash #

fA Printed Image (e.g. Postscript, PDF)

#6 PC ID, settings, user info

#7 Workflow Type, Document Type,
Workflow Instance

#8 Web Document (e.g. HTML)

#9 RSS Feed, URL of source

#10 Workflow Type, Document Type,

Workflow Instance

In the above tables, the “document” 1s the visual record
required for a control point. It might be a scanned 1image, e.g.
a tiif or 1pg, 1t might be an electronic 1mage, e.g. postscript or
pdf or ascu1 email. The “capture data™ refers to information
associated with the document. This could 1include the device
it was printed on, scanned from, or emailed from, or 1t could
include a digital signature for the document captured by a
device. The SOX server provides this information as an out-
put to the verification device.

In one embodiment, the “Worktlow Data” 1s the metadata
triplet (workilow type, workilow instance, control point).

The “Entangling Information™ indicates from where the
log may be audited. In one embodiment, this includes a URL

10

15

20

25

30

35

40

45

50

55

60

65

20

ol another logging server, the index and value of the hash of
the local server that 1s verified by the remote server, and the
index and hash 1n that server that verily the entry. While this
information 1s not strictly needed, 1t vastly increases speed at
which verification can be done.

Entanglement Protocol

The SOX server exchanges rolling hashes with other log-
ging devices as described above. Verification 1s performed by
finding several other servers to authenticate the log for a
particular server.

In one embodiment, the SOX server 1s configured to
exchange hashes with specific servers, some of which are
outside of the control of the company that 1s employing the
SOX server for regulatory compliance. The log checksums
may be exchanged with servers in companies that already
have a business relationship with the company. It 1s advanta-
geous that these servers will be easy to find when 1t 1s time to
do a verification, and there 1s a high likelihood that these
servers will be around 1f verification 1s desired years later,
because of the nature of their businesses.

In one embodiment, the SOX server 1s also able to actively
acquire data. For example, some control point may be already
stored, €.g. on a company Wiki or Blog. In one embodiment,
the SOX server 1s able to use an RSS or ATOM feed to
determine 1f new information has been posted, access this
information, and log a visual record. For example, the SOX
server may request an RSS feed for a blog, and then access all
blog entries made 1n the last 24 hours. These entries could be
rendered to a visual representation and stored on the SOX
server. If the blog or wiki 1s suificiently structured, the infor-
mation about workflow instance, and control point may be
determined without additional user 1nteraction, e.g., tags on
the blog could indicate a document type like an invoice, or a
workflow, like purchasing, and content could be sufficient to
match the worktlow 1nstances (e.g., by using an invoice num-
ber).

Annotating Document Inputs

Various methods of acquiring data may be used to obtain
the triple (workilow type, worktlow instance, and control
point). In one embodiment, any document can be added to any
workilow instance and control point (even 1f there 1s already
a document for that control point). Indeed, this functionality
should be accessible at some level to provide corrections to
previously provided documents. In one embodiment, this
would not replace the original but be available 1n addition to
the previous data.

In one embodiment, given a worktlow type, the SOX server
provides a list of open workflow 1nstances and also offers to
start a new workilow. A user can associate the document with
a current instance or start a new one. If the SOX server knows
the document type (e.g., a packing list), then some workilow
instances can are not appropriate (1.e., those that already have
a packing list and those that don’t have a purchase order).
Likewise, 1f the SOX server knows the worktlow 1nstance,
then there 1s often a obvious next document type. In one
embodiment, for the case of correct previous entries, these
user assists may be overridden.

In some cases, an 1mage 1s available (from scanner or print
driver). In these cases, image analysis can be done to classity
the document, and perhaps determine some content. For
example, 1T a document 1s recognmized as a “Dell Invoice,” then
worktlows where a PO was 1ssued to Dell can be ranked more
highly. IT an invoice # can be recognized, 1t may be possible to
determine the metadata triple automatically. Perhaps the user
would only confirm that this document should be added to the
workflow where a computer was requested and Dell was
chosen as the vendor.

US 9,081,987 B2

21

An Example of a Verification Method

In one embodiment, to verity a worktlow, the verification
software starts with information stored i1n the SOX server
database about the workilow state and the hashes of each 1tem
in the worktlow. These items can be accessed from the SOX
server image store and displayed for example as a row of FIG.
6. In one embodiment, the verification software declares that
a workilow was incomplete because the required document
types are not all present. In one embodiment, the verification
software does not understand the content, so the user of the
verification software must check that an ivoice from dell 1s
not a blank piece of paper for example.

For any document, the verification soitware can go from
the location of the documents hash 1n the log file to the next
entry that contains “entangling imnformation.” The software
can then access the “certificate” from the metadata store,
access the server listed as providing verification, and deter-
mine 1f 1ndeed the SOX server’s checksum appears in that
server’s log. It all of these checksums match, then the verifi-
cation software can indicate that the document existed by a
particular date, based on a particular external server’s clock.
An Example of a Computer System

FI1G. 8 1s a block diagram of one embodiment of a computer
system that may perform one or more of the operations
described herein. Referring to FIG. 8, computer system 800
may comprise an exemplary client or a server computer sys-
tem. Computer system 800 comprises a communication
mechanism or bus 811 for communicating information, and a
processor 812 coupled with bus 811 for processing informa-
tion. Processor 812 includes a microprocessor, but 1s not
limited to a microprocessor, such as, for example, Pentium™,
etc.

System 800 further comprises a random access memory
(RAM), or other dynamic storage device 104 (referred to as
main memory) coupled to bus 811 for storing information and
istructions to be executed by processor 812. Main memory
804 also may be used for storing temporary variables or other
intermediate information during execution of instructions by
processor 812.

Computer system 800 also comprises a read only memory
(ROM) and/or other static storage device 806 coupled to bus
811 for storing static information and instructions for proces-
sor 812, and a data storage device 807, such as amagnetic disk
or optical disk and 1ts corresponding disk drive. Data storage
device 807 1s coupled to bus 811 for storing information and
instructions.

Computer system 800 may further be coupled to a display
device 821, such as a cathode ray tube (CRT) or liquid crystal
display (LCD), coupled to bus 811 for displaying information
to a computer user. An alphanumeric input device 822,
including alphanumeric and other keys, may also be coupled
to bus 811 for communicating information and command
selections to processor 812. An additional user input device 1s
cursor control 823, such as a mouse, trackball, trackpad,
stylus, or cursor direction keys, coupled to bus 811 for com-
municating direction information and command selections to
processor 812, and for controlling cursor movement on dis-
play 821.

Another device that may be coupled to bus 811 1s hard copy
device 824, which may be used for printing instructions, data,
or other mformation on a medium such as paper, film, or
similar types of media. Furthermore, a sound recording and
playback device, such as a speaker and/or microphone may
optionally be coupled to bus 811 for audio interfacing with
computer system 800. Another device that may be coupled to
bus 811 1s a wired/wireless communication capability 825 to
communication to a phone or handheld palm device.

10

15

20

25

30

35

40

45

50

55

60

65

22

Note that any or all of the components of system 800 and
associated hardware may be used in the present invention.
However, 1t can be appreciated that other configurations of the
computer system may include some or all of the devices.

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-
tion, 1t 1s to be understood that any particular embodiment
shown and described by way of illustration 1s 1n no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims which 1n themselves recite only those
features regarded as essential to the imnvention.

We claim:

1. A server system comprising:

a first memorys;

a second memory; and

a processor coupled with the first memory and the second

memory that
captures 1mages ol documents associated with one or
more worktlows and tag the collected document
images with worktlow information indicative of an
associated worktlow, wherein for each tagged docu-
ment 1mage, the workflow information comprises a
metadata triplet that includes a workilow type, a
worktlow instance, and a control point, wherein the
worktlow type differentiates between different work-
flow processes, each of the different worktlow pro-
cesses comprising a control point execution sequence
associated with a corresponding workilow process,
the workflow instance differentiates between differ-
ent instances of the same workflow type, and the
control point indicates a stage 1 an instance of a
workilow process for which the tagged document
serves as a visual record of execution of the control
point,
stores the captured images of documents and metadata
in the first memory, the first memory being accessible
for verification operations performed with respect to
the worktlow,
stores a log that includes entries with one or more media
identifiers corresponding to the captured 1mages in
the second memory, the second memory being acces-
sible for verification operations performed with
respect to the worktlow,
generates log data corresponding to the images associ-
ated with workilows captured at the document recerv-
ing interface and store the log data 1n the log, and
provides information about the log to another applica-
tion, store entanglement information into the log, and
use the entanglement information to verity compli-
ance with a regulation for execution of a worktlow
during a selected time period comprising, further
compromising the processor
selecting a set of instances of the worktlow, wherein
cach instance 1n the set 1s randomly selected from
among all instances of the worktlow created during
the selected time period, instances selected for the
set being based on a total number of instances cre-
ated during the selected time period,
for each instance of the work flow in the set of
instances, auditing a control point execution
sequence 1n said each istance of the workflow by
determining that one or more entries corresponding
to document 1images associated with control points
in the worktlow existed 1n the log at specific times
corresponding to an order of the sequence of con-

US 9,081,987 B2

23

trol points, wherein an existing entry in the log 1s

verified to have existed at the specific time by uti-

lizing entanglement information in the log stored
after the entry 1n the log, the entanglement infor-

mation indicative of a peer server that supplies a

clock value when hash values are verified, a first

index and a first hash value from the log that are
verifiable by the peer server, and a second index
and a second hash value stored by the peer server
that verily the existing entry, and
verilying compliant execution of the workilow during
the selected time period based on a determination
that the control point execution sequence for all
instances of the worktlow 1n the selected set of
instances has been successfully audited.

2. The server system defined in claim 1, further comprising,
the processor logging data by generating a media 1dentifier
tor each captured document and storing each media 1dentifier
in the log.

3. The server defined in claim 2 wherein the media 1denti-
fier comprises a hash value generated by applying a hashing
function to said each captured document.

4. The server defined 1n claim 3, further comprising the
processor adding the hash value to the log with a rolling
checksum.

5. The server defined 1n claim 4, further comprising the
processor adding worktlow tags and checksums from other
servers 1nto the log.

6. The server defined in claim 1 wherein the log stores
entries that comprise a log entry type, a message hash, and a
rolling hash.

7. The server defined in claim 6 wherein the log entry type
1s determined from content of the captured image.

8. The server defined 1n claim 1, further comprising the
processor exchanging cryptographic checksum information
with the peer server.

9. The server defined 1n claim 1, further comprising the
processor capturing information associated with the docu-
ment being captured.

10. The server defined in claim 1 wherein each workilow
includes a plurality of control points, where each control
point 1s associated with at least one visual record.

11. The server defined in claim 1, further comprising the
processor generating a time of 1nitial storage and one or more
data associated with images that are associate with a control
point.

12. The server defined in claim 1, further comprising the
processor supporting interactions by adding tagged media
images to the log and the image store and provides access to
media to verity compliance of the regulation.

13. The server defined 1n claim 1 wherein the first memory
and the second memory are on the same device.

14. The server defined in claim 1 wherein the second
memory stores authentication information associated with
one or more documents stored 1n the first memory.

15. The server defined in claim 1 wherein the first memory
stores authentication information.

16. The server defined 1n claim 1 wherein the first memory
stores a certificate validating a first document.

17. The server defined 1n claim 1 wherein each of the
plurality of worktlows represents a business process, and
turther wherein each of the plurality of worktlows has a
plurality of control points, wherein the control points are
items examined 1n an audit and each control point has one or
more documents with 1t to verity that the control was 1mple-

10

15

20

25

30

35

40

45

50

55

60

65

24

mented based at least 1n part on the utilization of the entangle-
ment information to verity the one or more documents existed
at the specific time.

18. The server system defined 1n claim 1, further compris-
ing the processor exchanging imnformation with at least one
other device to receive the entanglement information.

19. A method comprising:

receving images ol documents associated with control

points of one or more worktlows, wherein each of the
plurality of workflows represents a business process,
and further wherein each of the plurality of workflows
has a plurality of control points, wherein the control
points are a sequence of items examined 1n an audit and
cach control point has one or more documents associ-
ated with 1t that serve as a visual record that verify that
the control point was implemented;

tagging the collected document 1mages with workflow

information 1indicative of an associated workflow,
wherein for each tagged document image, the workilow
information comprises a metadata triplet that includes a
worktlow type, a workilow instance, and a control point,
wherein the workflow type differentiates between diif-
terent worktlow processes, each of the different work-
flow processes comprising a control point execution
sequence 1n a worktlow process, the workilow instance
differentiates between difierent instances of the same
worktlow type, and the control point indicates a stage 1n
an 1stance of a workilow process for which the tagged
document serves as a visual record of execution of the
control point;

storing received 1mages of documents with metadata in a

memory accessible for verification operations per-
formed with respect to the worktlow;
storing a log that includes, generating log information 1n a
log, the log information corresponding to the recerved
images associated with worktlows, the log including
entries with one or more media identifiers corresponding
to the recerved 1mages; and
interacting with one or more other devices to provide log
information, wherein interacting with one or more
devices to exchange log information comprises entan-
gling the log with a log of each of the one or more other
devices, wherein the entangling allows verification of
compliance with a regulation for execution of a work-
flow during a selected time period comprising

selecting a set of instances of the workilow, wherein each
instance in the set 1s randomly selected from among all
instances of the worktlow created during the selected
time period, instances selected for the set being based on
a total number of 1nstances created during the selected
time period,

for each instance of the work flow 1n the set of instances,

auditing the control point execution sequence 1n said
cach instance of the workflow by determining that one or
more entries corresponding to document 1mages associ-
ated with control points in the workflow existed in the
log at specific times corresponding to an order of the
sequence ol control points, wherein an existing entry in
the log 1s verified to have existed at the specific time by
utilizing entanglement information in the log stored
after the entry 1n the log, the entanglement information

indicative of a peer server that supplies a clock value
when hash values are verified, a first index and a first
hash value from the log that are verifiable by the peer
server, and a second index and a second hash wvalue
stored by the peer server that verity the existing entry,
and

US 9,081,987 B2
25

verilying the compliant execution of the workilow during
the selected time period based on a determination that
the control point execution sequence for all instances of
the worktlow 1n the selected set of 1nstances has been
successiully audited. 5

20. The method defined 1n claim 19 further comprising:

generating a hash value for each captured document by

applying a hashing function to each recerved document;
and

storing each media identifier in the log with arolling check- 10
Sum.

21. The method defined in claim 19 wherein interacting,
with one or more devices to exchange log information com-
prises actively posting a hash of the log to one or more other
logs, recording information in the log about the one or more 15
other logs that interacted with the log to facilitate subsequent
verification of log information stored 1n the log.

Gx e * % s

26

	Front Page
	Drawings
	Specification
	Claims

