US009081924B2
12 United States Patent (10) Patent No.: US 9.081.924 B2
Chen et al. 45) Date of Patent: Jul. 14, 2015
(54) METHOD AND APPARATUS FOR (52) U.S. CL
TRANSACTION RECORDING AND CPC GO6F 17/5022 (2013.01); GO6F 11/3672
VISUALIZATION (2013.01)
(38) Field of Classification Search
(75) Inventors: Yung Chuan Chen, Kaohsiung (TW); CPC ., GO6F 17/5022; GO6F 11/3672
I-Liang Lin, Zhube1 (TW); Li-Chi USPC e, 703/14, 27
Chang, Hsinchu (TW); Bindesh Patel, See application file for complete search history.
San Jose, CA (US)
(56) References Cited

(73) Assignees: Synopsys, Inc., Mountain View, CA

(US); Synopsys Taiwan Co., Ltd., U.S. PATENT DOCUMENTS

Taipe1 (TW) 6263301 BL* 7/2001 CoX €t al. worvovooororoii 703/ 14

6,678,645 B1* 1/2004 Rajsumanetal. 703/20

(*) Notice: Subject to any disclaimer, the term of this 7.283.944 B2* 10/2007 Tsaietal. ..ooooovvevvveennn..., 703/15
patent 1s extended or adjusted under 35 20068/610880§g§g 22: igg éé gi%htliﬂgalﬁi ++++++++++++++++++++ gg;; i

1 abeleetal.o.oi0s 1

U.5.C. 154(b) by 706 days. 2007/0094562 Al* 4/2007 Bingham 714/741

2008/0147372 Al* 6/2008 Paulsencccovvvrnn.... 703/14

(21) Appl. No.: 13/047,007
* cited by examiner

(22) Filed: Mar. 14, 2011
Primary Examiner — Aniss Chad

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Kilpatrick Townsend &

US 2011/0238397 A1 Sep. 29, 2011 Stockton LLP
o (37) ABSTRACT
Related U.S. Application Data _ _ .
. o Methods and apparatus for recording and visualizing trans-
(60) Provisional application No. 61/318,627, filed on Mar. actions of a test bench simulation are disclosed. Transaction-
29, 2010. specific data generated from a test bench simulation may be
displayed 1n a sequence diagram view to provide a view of the
(51) Int. Cl. transactions arranged sequentially in time.
GO6I 17/50 (2006.01)
GO6l 11/36 (2006.01) 32 Claims, 20 Drawing Sheets

wishbone _driver.m_bus_if
Suart_duv_top.m_duv_if.m_wb_if

Wishbone Wishhone | Interfacef | Wishhone DUV
Sequencer Driver Monitor Status

hbone | m bus if.wb addr i<= bus_trans.m_new_value = hus trans
M_wiShbone_trans m_input_req.m_input_addr; { 26'00, m_bus_if.wb_addr_i }; -
(m_input_req)

m_bus_if.wb_dat | <= bus_trans.m_new_value =
m_input_req.m_input_data; m_bus_if.wb dat i
m bus if.wh sel | <= bus_trans.m_new_value =
m_input_reg.m_input_sel; m_bus_if.wb_dat o;

I
m bus if.wh we | <=
m_input_req.m_input_we;

Wishbone Wishbone | Interface | Wishbone DUV
Sequencer Driver Monitor Status

US 9,081,924 B2

Sheet 1 of 20

Jul. 14, 2015

U.S. Patent

000G 000G

f&amm TT03fs 1InF|08s 1Ing| 1103 1104 yged bas [10f S T3 |TIS HE
=ameu 01 sdsfor sds|z o3 sdsly sdsh sds| ,=ateu o7 sds|o1 sds|sdsloa sds
1=A7TI9498 |T118488| A3TI9A8G] 1048|1943 (=A1TJ23A98

I =I@m2 It =H.mm2 5t __hn.mmz :I.@mS h_Hmva

7|s Tng| d bas TnI
slog sds| meu o7 sds
5| 118498 | (=A7T19A08
W) u=bSH

h.- it Imv mZ @mE i =H.m_m2

» u=DSH

LY ATV N s S v e {21] B

S 1103|103 ﬁ&amm 1103 |d bes Trng pes 1103 s T10F | T1nF|s 103 Jed bes 1107 s TTnI|s 103
o1 sds |sds| —ommeu 01 sds |weu 01 sds it 01 sds| o1 sdsp sds o sds faweu 01 sds |oa sds|oa sds
+ 19A3G | 23S ouﬁﬂmﬁm 1=£9T18A85 |A1T19A8G 311940 [19A8S |TI9408 | (=A7T18A88 | 119495 | TI2ARS
::Im. SH .@mz I :I.m.mz 7} :I.@mz P i H.m.mZ

::Im‘mz ::I.@mz z:l.@mz :H.@mz ::Im.mE

e 0 OO i SO e O3 L O

T3 103 | yged bes Trng| d bes Ting|oes TTnifes TIng| TTnF | s 10y [d bes Tngfes TTnI|s TInIfS 1103
1 sds|sds| —ammeu o1 sds| weu o7 sds|z 01 sds| o1 sdshy sds| o sds Jmeu o7 sds| o3 sds|oq sds 1e0usnhes ¢ [
1035|493 (=K3779495| (=A3119485 |£3110495[1T70A95|18A9S | 119483 | (=A3TT9A9S |3T19A85 | TIBARS[TIRASS | (A1 110403

b_.Hm_mZ mmz it :Hmﬂmz

EE!%IE!@EEE!@EEE)

1 sds|sds| —ommeu o3 sds| weu o7 sds |1 01 sds| 01 sds|y sds | oy sds |ueu o3 sds| o3 sdsor sds
T9A93 | A3S (1=£3T1049G| (=A3T19493 |A3T 194881710495 |18A8G | T104983 | (=A3T10488 |3TI0A9G | T18ASS[TI9AS 0=A1T13A8S
J=bsi | bsiy 2 w=DSH| »»=08],=bSH | ,,=bSH =55, .=bsul ,.,=bs], ,=Hsn _hSiy

N)) =))) I [R

”_ :

=Hmbﬂuﬁ . _o

S T3 10T ﬂpmmlmmm I QWme 110 098 JRRAR! 98 TI0E1 T1I0S w T10J ed bas | T4 g T4 g JERL

gds Joa sds

01 sds |sds| ,—oumeu a7 sds |weu o7 sds |t 01 sds| o1 sds ameu 03 sds o1 sds|oa sds
: T9A3G [489 ouﬁﬁmﬁm oufﬂgmm 1779488 1119488 [19488 |TI0488 | (0=A1T10495 |119495 | T18A8S
«u=DSH | DS wu=0SH | »u=DSH |,=DSH |4 u=DSH

" _zl.@mz " zl.@mE I i H.@mz

et e OO 5 S O e SO L O

189uanbas[lsanels OSNAX d] Owap snq

JOALID'[0]S9ARIS OSNAX 001 OWSP SNQ

J89usnbas Jaddn-[p]sisiSewgsSnax ngr owap sng

J82UBN DS [p]SI8ISBW QSNAX" QA OWap ShQ

JaALD [p]sJo)SeWOSAX Q) OWap Sno

v 000 008 | 000') 008 v

olacg|p sux <« [l ®0O] 02w 09 & ¥ Yy ([DEY G|
djod MOPUTM S|0CT BO[eUY WIOJeABTE MRt [eubig uoneloidxT o|ig
[x][O]"] qps} dwnp/sajdwexa/orp~sngx/se|dWexs/paipow-0 Z-WAOINAO/G | AS/UBUDX8/aLLOU/IPISA] <7 SABMU SBAON> _H_

US 9,081,924 B2

Sheet 2 of 20

Jul. 14, 2015

U.S. Patent

159 Jopun SaSSep)

199] Japun
Spou)aW |1BD :/

=
S
3
-
0
&
| n

u DI

XXX159] 0]
90UB)SUI MaU '

9SENISS| AAA JORRUIPSHAAA

¢ Ol

1SonDay oM

XXXPU 01
L1

o U0NN8X8 8pIS JAAIAS

1$9NDaY AN PUSS
1$9) 8]NJ3X3 0] UOII8UU0I 4] | H ¢

18Y10 €7

N™ | Jopeay d11H PPV i ¢
N~ | J8JoWeIed J1 TH PRV 1} T
XXXUIDaq Z

LONNJ8X3 apIs Jual|D

OSEDISOLAAA

XXXISeL Uny |

J/UUNY 1S=| HUA

3

v Ol

US 9,081,924 B2

Sheet 3 of 20

aouanhag

aUI7
aWI |

Jul. 14, 2015

uody melf Jp3 91
qpsy dwinpyse|dwexs;bo|sngx/ssjdwexs;z (g-WAONAQ/GLAS/UBY xagluoy/iplan/ «g:welbelq sousnbeg> |]

][0

jusuodwod WAO

U.S. Patent

US 9,081,924 B2

Sheet 4 of 20

Jul. 14, 2015

U.S. Patent

p Ol

@

bas qns peaxrcbas 83T’

bsas qns s3TimM'bss 83T

EBTIITILA,

bss qns puex-bas a3TI*

A ISIAITS,

bas qns peaicbas 83T’

AT TS A,

bas qns 83Tim*bss a1’

S AT,

bas qns pueircbes o3rI

S G
B ha

@mm qns mpﬁpg bss mpﬁ

-
_ bos 18m0T 03 nggs

@mm gns puer’ bas 931"

1NN

bas Aiouduw

— T90uanbas#[(]ssaeTs: I9ATIP#[(]sa0180UAQ "

SULX 0Z€-09) bas gns puesbss sjum Jaddn 108[9S

F o ®o |

digH uondg MeIN IPF 8l
I%](O]["] qpsy dwinpyse|dulexs/Bo|~snax/ss|dwexs/z () Z-WAOWAQ/E LAS/UBY2™ xel/awou/ipen/ <g:weibeq sousnbegs []

(ZgNOdSaY)bax
(gIT¥M) DI "

US 9,081,924 B2

(SNOdSHY)bax
(qumy)ba1 b

—

g

I~

&

\f,

'

P

b

uw (ZSNOdSTY) bar
(qygy)bai b

\,

y—

—

g

= (ESNOdSTY)bax

— (TITyM)box "

—

py

diof

][0

U.S. Patent

— T90usnbas#[]soneTs 10ATIp#[0]s193s0mgg * | | zoousnbass[glstease | | 1oousnbes zaddnglg] -+ [SUTX

(ZII¥M)wa3T T'bas zam

(TLI¥M)bs1 bas qns a3+ -

(ISNOESEY)USIT T

QYTy)us3T 1+bss Iom*
(qyay)be-bas qns pu- -

(ESNQISEY)USIT T

QyTy)ua3T 1+bss 1om°

(q¥Zy)bszbas qns pu*

(ISNOdSEY) wagT T

(TI1TuM)Wa3T [°'has zom:

T1T9M)DoI°Das ans

wu. "

SUL X 09) (F]IYM)CBIDES NS puelI'haS 8)lum Jaddn 109|9]
3 o © 0 |
uodd MR Ip3 9

apsy dwnp/sajdwexa/Bo| sngx/sejduwexs/g " Z-WAONAQ/GLAS/UBYY Xa4/aLoy/IpJan/ <¢:Wwelbe|q sausnbeg> ||

US 9,081,924 B2

Sheet 6 of 20

Jul. 14, 2015

U.S. Patent

(TSNOdSTY)USTT T
(ISNQdSTY) bax
(ILI¥M)DoI" "

(FLIYM)wa3T [*bos 1ok
(311¥M)bo1 bss qns sy

(ISNOdSTY)IWAIT T

(ZSN0dSTY) bax

(qygy)boaz b+

(YTy)ussr [°bos 1o’

(ISNOdSTY) waaT
(ZSN04SAY)bax

(qygy)boaz b+

(qyTy)ua3t 1°boas Iom: -’

(ISNOdSTY)UaIT T

(29N0dSTY)bar
(FITYM)boT "

(F1TUM)ue3T 1'bos 1o’

@mM|QSm|ﬁmmH.@mm|mpHH...

— 190usnbas#[g]seaets | | 1oaTIp#[olsiagseusq | | 1o0usnbass[(lsiagse || 1eouanbas 1addng[g] ¢+ [IPUIX
SULX 07€-09) D8S qns puetbas ajlm Jaddn 108199
¥ o ®O |
GI8H UoRdQ MaIA WP ol

M @_H_ apsy dwnpyse|dwexs/bo| snax/ssjdwexs/g " Z-WAONAQ/GLAS/UBYD X8l/8wou/IpJen/ <¢:weibelq 8ousnbes> []

US 9,081,924 B2

Sheet 7 of 20

27

bas Krowsy °**°

Jul. 14, 2015

— 130UNDISH|

dieH

E3]s]] il

U.S. Patent

L Ol

EEI A E R
JOALIDH|0[SI91SBWAQSNAXH#(T) OWap SNgx#do) 1S8] WA0 004 DSW 108[9S
F o ©o |

uoaQ MeIA Ip3 9y
qpsy dwnp/ss|dwexs/0o| sngx/ssjdwexs/z ("g-WAONAQ/GLAS/USYD X8i/woyyipieA/ <g:welbeq sousnbass [|

US 9,081,924 B2

Sheet 8 of 20

Jul. 14, 2015

U.S. Patent

3 Ol

7

(ISNOJSTY)UBIT T
(TITYM)Wa3T T*hos Iam: -

(TSNOJSTY)UBIT T
(IL1¥M)wa3T [°hos zom* -

«0GZ#UAS " WS3T 30uaNbas WAO/S3IUSN

09s/AbOTOPOYISW/ 08/ * ¢ /** /**,=%0B3S TTBD

,0,=9pu0dser ST $C§

:ﬁzu@ﬂlaulmﬁm

L1566 T ,=peoTAed sds

:w .. N 't

=112 pT bas sds

,031'bas qns puei+bas aataM 1addn,=y3ed bas 1103
,I90UaNDASH[()] S193SPUAH(SNCKA(CT OUS

k D $nqx#dol 1593 WAO,=d9URU 03 SCS

bos Kiowow *°° 0=A31109A88
::u@mz
9314 18ddn

(surx 09) (TITuM)b31°bag qng puei-hes

— 190uanDbas#[(] seneTs " " roATID#[(]SI978RUE]" " " \

el L

bes qns o3TiIM'Dos o3T*

ado—ang 93TIADos 93T

| TOATIP#[(]sTogseus(1 | 18ousnbass[(]sIegse | | 1eousnbas zaddnglg]

7)bsa*bss qns pu**:

7)bsx*bas qns pur-:

M) Dox°bas qns pr

SULX 09) (JLIHMIWSBY |'DBS JBMO| 0] 18adn 109|989

dioH

¥ o ®O
uondd Mmeip 1P 9

M _H__H_ QU&.QE:Ewmamem{@oflwsgx\wmamem\w.o.N-E>o_>_>0\m.7.>w\cmcolxm._\mEoE_v._mz Am”Em._@m_ﬁ_ mo:m:cmwv _H_

US 9,081,924 B2

Sheet 9 of 20

Jul. 14, 2015

U.S. Patent

/0

bas Azowauw **°

— To0usnbas#[(]soarTs

dieH

ISATID#

[

6 Ol

SISV IS

bes qns ea1im'bes e3T’'*

(TSNOASTY)WagT T

qyIy)ua3t 1'bos 1omc -

(TSNOISTY)W T
(T7I¥M)w93T T°'bas zom:

(TSNOJSHY)WAIT T

(T1T¥M)ws3T T'bas Iam
bas qns o3T1iM*bsg o371

(T9NOdSTY)Wl T
QYZ¥)ws3T 1'bas 1am

qy3¥)ba1+bes qus pu- -

(ISNOASTY)WaT T
QyEy)ualt 1'has 1aa-

qyay)baz+bss qus pu-*-

(ISNOJSHY) Wa3T T

(T1T¥M)we3T T°bos zom* -

(217u4)ba1 bas qns pu-

glsteaseusq | | 130usnbass[glsegse: | | 190usnbas zaddng[g] -+ [IPUTX

(SULX 09) (F1I4MIb8Ibas™gns puesbas™ a)im™1addn :199/9G

~

0 ® |

uondg malx WpF 9l
M _@_u qpsy dwnpyse|dwexs/bo| sngx/sejduwexs/g (" Z-WAONAQ/GLAS/UBYY X8l/ewoy/IpJaA/ <¢:welbelq 8ouenbess |]

US 9,081,924 B2

Sheet 10 of 20

Jul. 14, 2015

U.S. Patent

i

bas Arowsuw ***

— I80UaNDasH|

dieH

E3]=1{lnl

01 DI

»

L

bss qns pesi+bas s31a**

(TSNOJSHIN) USIT T

qyay)ua3T 1°bas zom:

(TSNOASTY)Wt T
(F11¥M)w83T 1'bas zom:

(ZSNOASTN)UdIT T
(TITYM) U331 1'bas 1om: k

@mm|gsm|mpﬁua.@mm|mpﬂ..»

(ZSNQOASTY)WL T

ayay)us3t 1-hes zom:
gy3y)box+bas qns pur-:

(ISNQOASTY)Wa3T T

QYT¥)we3T 1'bas o
qyay)bax+has qus pu’-:

(ISNOJSTY) WaIT T

(T114M)wa3T 1-bas zom*

7II¥M)bo1bas qns p**-

glsanerse | | zeatapslolszagseusy +| | 190usnbass[glszezse | | 190usnbas 1addna[g] + [|PU1X
(SULX 09) (F]IYM D8I DaS QNS purJI'DES 8)lIM™1adaAn :)08(8S
F |w ® P |

uondg Meiy IPT 8
gpsy dwnpyse|duwexs/0o| snqx/se|dwexs/z ("g-WAOIWAQ/GLAS/UBYD Xei/ewoy/IpJen/ <¢:weibelq souenbegs [|

Vil Ol

(TSNOdSTY)bar
(qyay)box
(ZIT¥M)waaT 1'bas zam' e

(T11¥K)bs1"Dos qns a3-

US 9,081,924 B2

(ISNOJSHY)Wa3T T
(ISNOdSTY)bar

& (qyay)bazh:
S qydy)us3t 1'hos zam’
: qydy)bez-bos gns pur
g (ZSNOdSEY) USIT T
= (4SNO0dS Y)baz
s 9,

(qy3¥)box-b: .-

Q¥Ey)wsiT 1'hos Iam’*’

= ayTy)bez+bes qns pu*
= mEEEEEEEEEEIOE-
mm (ISNQASHY JUdIT T
i (238045 7%) bax
o
= (gITuM) oI "
ra (TLT¥M)wedT 1°Dos Iom**

1LI4M)bo1-bas gns pre
ToATIpA[] sTo3seusy | | zoousnbasy[g]s1azse + | | 1o0uenbas raddng[g] e [PULR

SULX 0Z€) (Qy3Y)0al bas gns puel bas a)lim Jaddn :108[8S
¥ o ©O |

uondg meiA Ip3 9IIg

_m _@_u gpsy dwnp;ss|dwexa/bo| snax/sajdwexa/z (' Z-WAOJNAQ/GLAS/UBYD Xa4/aWou/Iplan/ <¢:welbeiq sousnbags _H_

— Hmummswmm%_”o_mmb.m._”m. ' o

U.S. Patent

US 9,081,924 B2

Sheet 12 of 20

Jul. 14, 2015

U.S. Patent

(ISNOdSEY)hex
(qyEy)box*

(TSNOdSEY)hax
(qyay)ba1 b

(ZSNOdSEY)hax
(qyay)baz‘b: -

(ISNOdSHY)hax
(3LT1yM) Do

— 190uanbas#[(]saaeTs

dieH

][0

dll Dl

(ZII¥M)weqT [°bas zom* -

(1TuM)bax bas qns a3*

(ISNOdSTY)WSIT T

(QyZ¥)wayT [°bas 1am’ -

avay)baztbss qns pur:

(ISNOASTY)WaIT T

QYTY)we3T [+hos zom'

avay)bez+bas qns pu--:

(ISNOASTY)UaIT T

(IIT¥M)wayT 1*bes 1am**

111¥M)ba1bss qns p*

19ATIp#[0]s10350U# * * | | 190uaNbas#[(]s13s0 " * | | T90uaNbas zaddng[p] r [PUL
SULX 07¢) (gQyaN)wel |'baes™Jamo| 01 Jaddn :108[8S
F o @0

uoap MeIA 1P 8|y
apsy dwnpysa|dwexa/bo| sngx/sajdwexs/z () Z-WAS/NAQ/GLAS/USYD Xau/awoy/ipion] <g:wesbelq sdusnbass [

US 9,081,924 B2

Sheet 13 of 20

Jul. 14, 2015

U.S. Patent

¢l 9l

4] > 4] >

"0 Z-WAO/WAQ/E LAS/UBYO™XaI/OWOU/IPISA] 7:9ABAY UIPIOA> _H_
pmmmm..ﬁm DTS * (TX

YooTo BTSOTX
'[1]3ueab brseQ1xX

'[1']asonbar mﬁm.gﬁm
[0]auesh BTs oTX

-
I ‘1(]3sonbax brs* 1x
130p Aummp 3np
:()0TX 3T sngx

LAS*QIT 3591, dpnyouT,

JJAS*ENQK, dpnTouT,
_ BT
1do1 g3 snax a1npou| ;7

dli-t +AD 3¢ @ DDCE[e]

AS'do}q)sngx) doy gy snqx doy q) sngx < | urepysoel] Uipapa>[]

SNQX xAS'I0JTUOW I93SRU S0]X vAS’AUD SNQX

1oouanbasslglseaets: +| |aeatapslolsasaseusqe | [1oouonbass[(lsaogse: +| |1oousnbos zaddnglg] «« [PU1* |[|SndX 4AS'ISATIP_I93SeUW SngX 4AS*I03TUOW Sng Snqx
SNqY yAS'3UdbY Isjseu’snqx LUAS* 80X

SULX O¢¢) {Qv3d/oel gns pueloes sjum Jaddn Hum_mm Wexa /7 (' 7-UAC/HAQ/GLAS/UBYD X8I /W0 /TPIBA/ 9L XdS

F| wvo| §AS SREY // ITPUS,

,AS'AUS S§NQX, spnIouT,

wexa/Bo|~snagx/sejdwexs/z 0 Z-WAOJAAQ/LAS/UBYd Xal/awoy/ipan <g:weibelqg aousnbags []

AV

SNIeIS JOJIUON

ANG 5UOGUSIM - oompal BUOGUSIM 3UOGYSIM

18A1IQ 199U8Nbhas

US 9,081,924 B2

- ‘amIndul wrbalindul " w
o~ => | oM gmJl snq W
= f I
= = 9N|BA” MU~ W'SUBJ} sng => | |95 Ml sSnq W
7» 1T1ep gm')lsng W ‘BJep 1ndul” wbas Indur w
= 9N|EA M3aU W'SUeJ] sng => | 1ep am’Jl sng w
1||| I. o In Al |I_U_ b |IQ - (ba s ndul™ w)
nl SUBJ) sng 11 Ippe Al Snq .E og%i -ppe ndul- W 2. inaut W SueJ] auoqysim W
= = 9N|BA M3aUu W'SUe] sng => | Jppe gm'Jl sng w
)
=
—

SNJE]Q JOJIUO 18A11Q 189u8Nbhag
ANG 3UOQYSI , 90BLI3)U| 3UOGYSIM 3UOGYSIM

JITgMT W ANDT W do) ANpTLIEN<S
1I7SNQ” W JaAIIp~auoqysIm

U.S. Patent

7l Ol

SNJEIS
ANG

JO}JIUOI

US 9,081,924 B2

3UOQYSIMW

—

-

Cof

-

\r

A

3z RINENT

= [IENUIA JOJIuOW a9kl (W
8oBLIBUI [w

) 9JEMPJBY JOJIUOW 89BI] [ng

—

< v

= SUBJ} SNg SRLVEMIT w

= <— oIV JONP S0P

—

-

303Ul
3JeMDIBY JOALID 898BI|

SMIEIS
ANQ

JOJUOW

SUOQYSIM

U.S. Patent

30B 8]

50B1J8)U|

189U8Nnbag
oUOQYSIM

19A1(]

3U0GYSIM

‘BamIndul wbas Indul”w
=> | aM gm’)l Sngq W
f I I
1198 Indul wbss Indul w
=> | [9S M)l SN W
f I I
‘B1ep Indul w-bal ndur w
=> | 1ep gm’Jl sng W
= m— — (ba yndur"w)
Jppe Indul” wrbal ndulr w SUBJT9UOQUSIM L
=> | Jppe gm’jl sng w |

- —_—— <

13A1IQ

199U8Nnhag

SUOQUSIM SUOQUSIM

US 9,081,924 B2

Gl Ol

I
A 18AQ 189uanbhag
_ 3UOQUSIM 3UOQYSI
I U
ie1ep DTS [p:y] OTDOT ®ITA €7 [jA
{drq DTS oTboT |77
= {11038 BTS othoT | 1%
e hmﬂ‘% Wa HWS 0%
e ‘peal TS otboT | 6¢ A —
rM __mﬂm brs [gi1] othor |86 E|_um: Hl_,ac_l
— H@Um WHM mm %mm. L£ M QM) SNg™ W
{JueIb_bTS [(:qT, 0T 19¢
,_w uﬁmmzwa ma 30T otboT |G¢ |I|
= n_mmmm ma HWS iy W bas jndur w
2 007D DTS OTbOT |¢€ T A T eNA
STebrg Ty /1 |36 STgMJIT SN W
_ I¢ _—_—
— :ﬂm@wm%m.mmm wm mm Wbas ndur
m _) sfeT] T0II0) // wm P gMfl Sng W
I — -
S TR . N baJ Indul” W
ol . - vqﬁqmé —RE L WbaJ ynaur w Sue. ﬁJCGH w_\.sa,v_
- popops |6 ol J@[%" 4 VAD €t 3[R D[OEE S beousngw } auoqys!
M N S|00] 90BJ| 22IN0S MalA Uoljelo|dxT 9| ——

qps) dwnp/sajdwexa; - IJdA/ - (AS'I SNAX/AS/) | w:gx. 'd0) Q) SNQgX <) UIB\ 9.l | U:IPJoA> _H_

189uanhag
QUOQUSIMA

SMJEIS
ANd

JO}IUO 13A1Q

SRR

oUOGYSIM SUOQYSIM

U.S. Patent

US 9,081,924 B2

Sheet 17 of 20

Jul. 14, 2015

U.S. Patent

Il DOl

DUS S[iN Jusuodlod WA
INIYd_WAQ Junod jndur jxau sz_ hiall_WAo,
INIdd_WAO ‘bau Indur wioslqo”pjeil o,

INIYd WAD 320} %Em U)uI pjel} WAo,
,ﬂ.%%um:o%_m_a.tm: uIbaq S Jusuodwod WA,

UOIBIeD3p-0)Ne SSED @
00| Indur W 010dewss paja9)oid
oJul snjels Q)
29 Indul Jxeu W paubisun Jul pajasjoid
barindu"w uonoesuel) auoqLyIMEN paaslold
'§o0[q 9|qeus W Iq pajos)old
_ 9)N23Xa JO} Jaquiaw)/
Jl shg w JI g JJen [enjIA pa1adlold

BIEp JaquaW SSe[d @)/

J# JOALID 9SB(11BN SPUS)XDN@ALIP dUOqySIM 1Jen SSe|o

- JOALIP WORSAS 14BN : SSBIpUD

UonewJoul moys : theyounjpua
) B o 3SEOMNE
‘(Jaweu 1abjojul 1ioda) WAO 8|qeus, |4}

A

7S/UoUSGISaY}UBAI0GGO VEn

1S9|dwexafSaNgl- | | Z-WAON AR

IO

SNJeIS 10}IUO
ANC QUOGYSIM

TSR0 XaUPI] <C SROIGQgaL SeroNs |]

IERITETIE]S

3UOQYSIM

W bas Indul™
gmwyl sng w
I
wba) ndur w
S gm’Jl sng W
I
Wbas indur~w
0 gmyl sng W
I
W-baJs jndur w
e gm’'ll sng w
I

(baJ"jndur” w)
SUBJ) BUOQUSIM™ W

18A1Q 199U8Nbag

998]J8)U] 3UOQUSIM 3UOQUSIM

AN

US 9,081,924 B2

IQALI(]

—
g
A—
- _
o woll | dsi
y—
'
b
W
@nu bas 1omo1 03 1oddn
190uanbag
\
y—
—
g
.4_-_..,..
— bau bai bai
=
—

(bos qns peor) (bas gns 9juam) (bas qns puer)

bos ojm ™ 1oddn I120uanbas 1addn

[0 |sIoisewn

U.S. Patent

3l Ol

SNJE)S J0JIUOI

ANG BUOGUSIA E BUOGUSIAL SUOGUSIMN

18ALQ 189UBNDHBS

US 9,081,924 B2

m
= ‘OMINAul Wbad indurw
o => | 9M gM’JI sng W
= f N
_.n_ﬂw - mDIQB.u:IWDQIE :meH_DQC_IE.Um._IH_DQC_IE
7 - 2:? MAU~ W SUBJ~SNQ > |]89S gmjl sng W

A — —— — f I

T1epTgm)iTsng w S% _ac_ W baJ 1ndur w
\r; u®3,m> Mau W Sued] sng => | 1ep gm’Jl sng w
~ A W f I ha, Indui L
(bas 7])

< SUBJI™SNG {1Ippe—gm)i~ sng” w ‘00,97 } Ippe ndul w-bas jndur w SUBJ]BUOQUSIM L
— = 9N|BA MaUu W'Suel] sng => | Jppe gm’Jl sng w

SNJe)S J0JIUOI

ANG BUOGUSIA E BUOGUSIAL BUOGUSIAN

J9ALQ 199U8NHag

U.S. Patent

US 9,081,924 B2

Sheet 20 of 20

Jul. 14, 2015

U.S. Patent

SNIRIS J0JIUO
ANd

4 Iy

A
[0]uRIb bTS 0Tx | 9¢
'[o]gsenber brs*qIx |Gt
Jnp Awmmp 1np | pe
{()oTx snox |z¢
_ I¢
,AS*qTT 3893, 8pnTouT, |0f
tﬁm mﬁx: mﬂ_ﬂoc..r mm
_ 37
(dog g snqx aTmpow | L7
_ 07
_Bm.m..ﬁ m.:%? m@ﬂuc..r mm

yA'AIMD 0p,, 8pnToUT, |§7 [

- X Y
9T HIQIM ¥aQ¥ snax =utdep, fz7 [L— 1

6l Ol

JBAI(189U3Nnhag

3U0QUSIM 30BLIB)U 3U0qySIM 3U0QYSIM

‘9M Indul wbaJ ndu
LOM gm'JImsng
I
W ba ndurw
S gm’Jl sng w

|

il W bas jndul w
Jep gmyl snq U
o
— — (baIndur™ w)
L wbalndul W g0 i =an0gysimw
DpE gm'jl snq W
I

« 1
_ J8AI(T 189U8nhag
— oUOqysIp SUOQYsIM
v

> |25 MR

MOPUITR Bngaq S|od] 82in0T 8|

‘3218 DTS*(TX |77
'IppR_bTS*(TX |17
‘19891 DTS*)X | 0%
'YO0TD_DTS* (TX |6€
‘T1]aue1d brs* gt |g¢
'[1]9senber_brs otz | i€

qps} dwnpyse|duexs; /ipJen; - (AS'SNGX/AS/ ") JISNQX OIx A0} g1 SNaX <|.Ulejysoel] wipisp> []

US 9,081,924 B2

1

METHOD AND APPARATUS FOR
TRANSACTION RECORDING AND
VISUALIZATION

This application claims the benefit under 35 U.S.C. §119
(¢) of U.S. Provisional Application Ser. No. 61/318,627, filed
on Mar. 29, 2010, which 1s incorporated by reference herein
in its entirety.

TECHNICAL FIELD

This disclosure relates to methods and apparatus for
recording and visualizing transaction-specific data for a test
bench simulation.

BACKGROUND

The Open Verification Methodology (OVM) and Universal
Verfication Methodology (UVM) are examples of standard
transaction-based methodologies used to verily semiconduc-
tor chip designs. The OVM test bench environment typically
includes, for example, the hardware or device under test
(DUT) and the software or test bench including clocks, sig-
nals sent, and signals received. The methodologies are trans-
action-based, meaning that transactions between test bench
components are constructs that represent different states of a
signal. For example, a transaction representing a memory
write command may include the address, verity, write, etc. A
transaction may include higher level transactions as well as
lower level transactions.

Transaction data for a stmulation recorded 1n a fast signal
database (FSDB) may be opened in a waveform view, and
example of which 1s shown 1 FIG. 1. A waveform view
allows an integrated circuit designer to visualize the signal
transitions over time and the relationship of those signals with
other signals 1n an integrated circuit design. In the OVM
wavelorm view, transactions are typically shown as boxes
with each box containing detailed information about a spe-
cific transaction for an individual component. For a particular
component, the boxes containing transaction information are
arranged 1n relative temporal order. While the wavetform view

provides a visualization of the relative temporal sequence of

transactions for a particular component and between compo-
nents of a DUT, the waveform view does not readily provide
a sense of the absolute temporal sequence of transactions for
the simulation.

Various other views of a stmulation have also been devel-
oped to facilitate verification of integrated circuit design. For
example, a temporal flow view (TFV) provides a sequential
view ol hardware components, state diagrams show the rela-
tionship between hardware components, and Unified Model-
ing Language (UML) diagrams may provide information
about structure, behavior, and/or interactions of and/or
between the system components.

For example, digital logic hardware events may be dis-
played in sequential temporal order using tools such as
SpringSoit Novas Temporal Flow View (TFV). On the soft-
ware side, tools such as Unified Modeling Language (UML)
provide graphical representations of software systems. An
example of a UML sequence diagram 1s shown 1n FIG. 2. In
particular, the UML sequence diagram shows test bench com-
ponents and the interactions between these components in

5

10

15

20

25

30

35

40

45

50

55

60

their relative sequential temporal order. The primary use of 65

UML has been to document a program or system. However, to
facilitate system design verification 1t may be usetul to gen-

2

crate and display interactions representing the dynamic
behavior of a test bench simulation.

SUMMARY

The information of interest to the integrated circuit
designer 1n a sequence diagram 1s the test bench components
(OVM or UVM objects) and the transactions passing between
these components. Using existing verification tools, detailed
information about all transactions and test bench components
including information concerning which test bench compo-
nents are sending and recerving transaction-specific data may
be recorded. A sequence diagram view may be generated
from the data stored 1n the debug database during a test bench
simulation and then displayed to provide an alternative and
more 1ntuitive view of the test bench behavior. When used in
conjunction with traditional hardware-focused waveform
views, a sequence diagram view provided by the present
disclosure may serve as a usetul tool for system development
engineers to analyze, debug, and understand the design and
verification environment of a DUT.

Leveraging SystemVerilog code, a flexible logging func-
tion that records messages mto a debug database, an OVM
library may be modified and implemented to automatically
log transaction-level activity between an interface such as a
sequencer making a request and a driver returning a response.
In this manner each request transaction may be associated
with a response transaction. While this information may be
usetul to a user 1n the context of wavetorm and table views of
the simulation, the availability of transaction-specific infor-
mation enables the user to generate a sequence diagram view
of the specific transactions 1n simulation time that provides a
more intuitive view of the test bench activity.

In a first aspect, methods are disclosed comprising running,
a simulation comprising transactions on a device under test,
wherein the simulated transactions comprises multiple test
bench components; generating a transaction database as a
response to the simulation, wherein the transaction database
comprises transaction-specific data elements for a specific
transaction between the test bench components; generating a
sequence diagram from the transaction database, wherein an
clement of the sequence diagram comprises a temporal rela-
tionship between two or more of the transaction-specific data
clements; and displaying the sequence diagram, wherein the
displayed sequence diagram comprises displaying at least
two test bench components and displaying transactions
between the at least two test bench components arranged
temporally.

In a second aspect, apparatus are disclosed comprising a
simulator for simulating transactions on a device under test,
wherein the simulation comprises multiple test bench com-
ponents; a transaction database for storing simulation results
from the simulator, wherein the transaction database com-
prises transaction-specific data elements for a specific trans-
action between the test bench components; a sequence dia-
gram generator for generating a sequence diagram from the
transaction database, wherein an element of the sequence
diagram comprises a temporal relationship between two or
more of the transaction-specific data elements; and an output
device for displaying the sequence diagram, wherein the dis-
played sequence diagram comprises an image of at least two
test bench components and transactions between the at least
two test bench components arranged temporally.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
claimed embodiments.

US 9,081,924 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, 1llustrate embodi-
ments consistent with the present disclosure and, together
with the description, serve to explain the principles of the
disclosed embodiments. Those skilled 1n the art will under-
stand that the drawings, described herein, are for 1llustration
purposes only. The drawings are not intended to limit the
scope of the present disclosure.

FIG. 1 shows an OVM waveform view of a test bench
simulation.

FI1G. 2 1llustrates a UML sequence diagram with horizontal
boxes representing software components, relative execution
order on the vertical axis, and interactions between software
components shown as arrows.

FIG. 3 illustrates a sequence diagram view showing the
high-level transactions (lined areas) between OVM test bench
components and with simulation time on the vertical axis.

FIG. 4 1llustrates an expanded sequence showing multiple
lower-level transactions relating to the selected correspond-
ing high-level transaction (bold dashed horizontal arrows for
“...rite_seq.rand_sub_seq”).

FIG. § illustrates a full expansion of a single high-level
transaction to show all transactions relating to a selected
transaction (bold dashed horizontal arrow for . .. d_sub_
seq.req(WRITE)”) and the request(s) (bold solid arrow
for <. .. wer_seq.l_1tem(WRITE)”) and response(s) (bold
dashed arrow for “1_item(RESPONSE)”) corresponding to
the selected transaction.

FIG. 6 illustrates a collapsed view of multiple selected
transactions (lined area).

FI1G. 7 1llustrates a collapsed view of all transactions.

FIG. 8 1llustrates a view showing attributes (detailed trans-
action information) for a selected transaction superimposed
on the sequence diagram.

FI1G. 9 1llustrates visualization of related transactions that
are contiguous 1n simulation time.

FI1G. 10 illustrates visualization of related transactions that
are non-contiguous in simulation time.

FIG. 11 A 1llustrates tracing a transaction backward 1n time
and FIG. 11B 1llustrates tracing a transaction forward in time.

FIG. 12 1llustrates the simultaneous display of a source
code view of a simulation (upper leit window), a wavelorm
view of the simulation (lower window), and a sequence dia-
gram view ol the simulation (upper right window), where the
different views are synchronized to show information for a
particular transaction in simulation time.

FI1G. 13 1llustrates the interface between the test bench and
the device under test.

FIG. 14 1llustrates a menu overlay used to access different
hardware and test bench interfaces.

FIG. 13 1llustrates display of the SystemVerilog source
code 1n response to a user request for executing a trace driver/
monitor hardware interface command.

FIG. 16 illustrates display of the SystemVerilog source
code 1n response 1o a user request of executing a trace driver/
monitor virtual interface command.

FI1G. 17 shows a flow diagram for the generation of trans-
action-specific data.

FIG. 18 1llustrates details of highlighted transactions and
statements for the driver/monitor interface.

FIG. 19 illustrates dragging and dropping highlighted
transactions and statements to the TBBR source code.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to certain embodi-
ments, examples of which are illustrated 1n the accompanying,
drawings.

10

15

20

25

30

35

40

45

50

55

60

65

4

The components of an OVM-based transaction-level veri-
fication environment include a stimulus generator (se-
quencer) to create transaction-level traffic to a device under
test (DUT), a driver to convert these transactions to signal-
level stimul1 at the DUT interface, a monitor to recognize
signal-level activity on the DUT 1nterface and to convert the
activity into transactions, and an analyzer, such as a coverage
collector or scoreboard, to analyze the transactions. In a typi-
cal SystemVerilog test bench there 1s a driver and one or more
levels of sequencers. Transactions represent, for example,
data passed between sequencers and between the lower-level
sequencer and the driver. In general, 1t 1s useful to obtain data
for the transactions between the sequencer and the driver, and
between the monitor and the analyzer. Other transactions may
also be of interest. The OVM library provides functions for
extracting and recording information in the FSDB. Various
OVM library commands may be defined and enabled by the
user to generate a transaction database. For example, OVM
library commands may be assigned transaction recording
functions so that running a simulation will then result 1n
transaction-specific data being recorded and stored in the
FSDB.

During a simulation, transactions may be automatically
recorded using the OVM transaction recording infrastructure.
OVM library functions may be modified to provide a modi-
fied OVM library. Users may then link to the modified OVM
library and apply the existing OVM (or UVM) transaction
recording methodology to automatically record transaction-
specific data to the FSDM file. For example, empty functions
within the OVM library may be used to record the transac-
tions and store transaction-specific data 1n a transaction data
base. For example, empty OVM functions that may be imple-
mented to record and store transaction-specific data include,
for example, “ovm_create_fiber”, “ovm_set_index_at-
tribute_by_name”, “ovm_set_attribute_by_name”, “ovm_
check_handle kind, ovm_begin_transaction”, “ovm_end_
transaction, ovim_link transaction”, “ovm_1ree transaction_
handle”, and others. The functions may be implemented to
automatically record transactions during a simulation. For
example, the following modified functions may be defined to
record and store transaction-specific data:

“ovm_create_fiber”: (Given a name, create a stream on
which transactions are recorded.

“ovm_set_index_attribute_by_name”: Not used.

“ovm_set_attribute_by_name”: Add a named attribute to
this transaction. Invoked by “ovm_component::end_tr().
For the monitor and driver, the user calls this application
programming interface manually.

“ovm_check_handle kind”: Return 1 if the type of the
given ‘handle’ 1s htype, otherwise return 0. Legal hytpes are
‘Stream’ and ‘Transaction’.

“ovm_begin_transaction”: Return a handle to a new trans-
action. The new transaction has attributes such as whether it 1s
active, the name, start time (now or at “begin_time”), label,
and description.

“ovm_end_transaction”: Given an open transaction
handle, end 1t. If “end_time” 1s non-zero, then end the trans-
action at “end time”.

“ovm_link_transaction”: Given two transaction handles,
create a relationship between the handles.

“ovm_1ree transaction handle”: Given a transaction
handle, release storage for the transaction. Calling “free
transaction_handle()” means that the handle 1s no longer to
be used anywhere; after this call the transaction handle 1s
invalid.

To enable transaction recording and storing, a user may

first invoke the modified OVM library using function “ovm_

US 9,081,924 B2

~
misc.sv’ by adding the command *“set_confi_int(**”,
“recording_detail”, OVM_FULL)” in the build function of
the test bench, which calls the command “void'(this.begin_
tr()) and ovm_component:end_tr()” in the driver and moni-
tor. Other functions and/or command definitions may be used
to record and store the transaction-specific data to the FSDB.

The transactions may then be displayed, for example, 1n a
wavelorm view showing all transactions between an interface
such as between the sequencer and the driver for an OVM test
bench. However, the modified OVM library may also be
instrumented to automatically record imnformation between a
test bench component making a request (sequencer) with a
test bench component returning a response (driver). In this
way each request transaction may be associated with a
response transaction. While this information 1s usetul to the
user 1n the context of the waveform view and the table view,
the availability of such complete information may facilitate
creating other views of the test bench activity such as a
sequence diagram view.

An example of an OVM sequence diagram view of the test
bench activity 1s shown in FIG. 3. In FIG. 3, the absolute time
during the simulation (simulation time) 1s shown increasing
from top to bottom on the left side of the image. A list of test
bench components 1s displayed horizontally along the top of
the sequence diagram. Transactions between test bench com-
ponents are shown as blocks bounded by arrows pointing,
from the sending component to the recerving component. The
blocks are also referred to as a sequence. A sequence repre-
sents a higher level transaction that includes one or more
lower level transactions.

Transaction-specific data elements include, for example,
the name of the specific transaction, the start time of the
specific transaction, an end time or duration of the specific
transaction, the interface on which the specific transaction
takes place, the name of a variable associated with the specific
transaction, and the value for the named variable associated
with the specific transaction at an 1dentified time. The inter-
face on which a specific transaction takes place includes, for
example, the name of a test bench component making a
request and the name of a test bench component returning a
response to the request. The test bench components may be,
for example, one or more sequencers and one or more drivers.
The sequence diagram may be displayed to show transactions
between at least two components as an 1dentifier relating the
at least two components at the time the transaction occurred
during the simulation. For example, as shown 1n FIG. 3, 1n
certain embodiments, the identifier may be a horizontal arrow
between the two components. Examples of displayed trans-
actions include data that 1s passed between two sequencers
and data that 1s passed between a sequencer and a driver. A
displayed transaction may represent a single lower level
transaction or may represent a higher level transaction con-
sisting of multiple lower level transactions. A higher level
transaction may be an intermediate higher level transaction
such that the intermediate higher level transaction 1s an ele-
ment of a still higher level transaction.

A sequence/transaction may be selected and expanded to
show the multiple lower level transactions. The lower level
transactions include transactions between the two compo-
nents that were iitiated by a transaction that occurs earlier in
simulation time. For example, referring to FIG. 3, by select-
ing the sequence between component . . . [O]#upper_se-
quencer and component asters|O]#sequencer, the
sequence may be expanded to show transactions at the next
lower level, as shown 1n FIG. 4. Selecting a transaction may
be done, for example, by activating a cursor while pointing at
a specific transaction or by hovering a cursor over the specific

b

10

15

20

25

30

35

40

45

50

55

60

65

6

transaction or sequence. Also, as shown 1n FIG. 4, the selected
transaction may be highlighted. Other lower level transac-
tions may be visualized by selecting the desired sequence. For
example, by selecting the sequence *“ . . . rite_seq.rand_sub_
seq’ at simulation time 60 1n FIG. 4, the sequence may be
expanded to show the lower level transactions associated with
the sequence arranged in order during simulation time as
shown 1n FIG. 5. Again, the selected transaction as well as the
request(s) and response(s) corresponding to the selected
transaction may be highlighted. Specifically, as shown in
FIG. §, at time 60, component . . . [O]#upper_sequencer sends
command “d_sub_seq.req(WRITE)” to component. . . asters
[O]#sequencer. The command prompts a request
“wer_seq.1l_item(WRITE)” from component asters . . .
|O]#sequencer to component . . . O#masters|[O]#driver, which
returns response “1_item(RESPONSE)” to component . . .
asters| O]#sequencer.

In addition to expanding a higher level transaction to show
lower level transactions encompassed by the higher level
transaction, multiple lower level transactions may be col-
lapsed 1nto their corresponding higher level transaction. For
example, referring to FIG. 5, selecting the transaction * . . .
nd_sub_seq.req(READ)” at time 320 1n FIG. 3 collapses or
hides the mtermediate transaction “ . . . nd_sub_seg.req
(READ)” 1nto the higher level sequence shown 1in FIG. 6. As

shown 1 FIG. 7, all transactions corresponding to selected
transaction * . . . nd_sub_seqg.req(READ)” may be collapsed
into the corresponding higher level sequence.

As illustrated 1n FIGS. 3-7, transactions that are temporally
ordered 1in simulation time may be selected and expanded or
collapsed to facilitate the ability of a user to visualize related
test bench transactions and to debug the DUT.

In certain embodiments, additional details or attributes of a
specific transaction may be displayed by selecting a specific
transaction. This feature 1s shown 1n FIG. 8, where the addi-
tional details or attributes of the transaction “d_sub_seqg.req
(WRITE)” at time 60 are displayed in an overlay when the
user selects the transaction.

Related transactions may also be 1dentified by selecting a
specific transaction. For example, as shown 1n FIG. 9, select-
ing transaction “d_sub_seq.req(WRITE)” at time 60 causes
the related write transaction “wer_seq.1_1tem(WRITE)” and
response transaction “1_1tem(RESPONSE)” to be high-
lighted as solid horizontal and dashed lines, respectively.
Also, as shown 1n FIG. 10, related transactions may be high-
lighted (see bold solid and dashed horizontal lines) even
though the related transactions may not be contiguous in
simulation time. In the figures, highlighting 1s indicated by
bold solid and dashed lines. Alternatively, transactions may
be highlighted using different colors or using other appropri-
ate demarcation.

In certain embodiments, related transactions may be traced
forward or backward in time. By selecting a specific transac-
tion, a related transaction that initiated a selected transaction
may be identified or a related transaction that was prompted
by a selected transaction and occurs later in time may be
identified. The selected transaction and the related trans-
action(s) may be identified, for example, by color. For
example, as 1llustrated 1n FIG. 11A and FIG. 11B, by select-
ing a specilic transaction, in this case, “wer_seq.1_item
(READ)”, between components . . . masters|[O]#sequencer
and . . . Offmasters[O]#driver in FIG. 11A, the related trans-
action “nd_sub_seq.req(READ)”, which occurs earlier 1n
time, becomes highlighted (bold dashed lines). Similarly, as
shown 1n FIG. 11B, related transactions may also be traced
forward 1n time, where selecting transaction “ . . . nd_sub_

US 9,081,924 B2

7

seq.req(READ)” highlights related transaction *
wer_seq.1_item(READ)”, which occurs later 1in time.

To further facilitate the ability of a user to debug a DUT, a
sequence diagram view may be synchronized to and dis-
played with one or more other views of the stmulation such as
the source code view and/or the wavetform view. The simul-
taneous display of the source code view (upper left window),
the wavetorm view (lower window), and the sequence dia-
gram view (upper right window) for a stmulation 1s 1llustrated
in FIG. 12. The views are synchronized to display informa-
tion about the test bench and transactions at a particular time
during the simulation. The sequence diagram view may be
synchronized with other views of the simulation such as a
wavelorm view so that the selection of a particular transaction
on the sequence diagram view may cause a cursor to move to
a position 1n the wavelorm view corresponding to the time
during the simulation at which the transaction takes place.
Because views of both the hardware activity and the sequence
diagram view may be obtained from the stmulation, the views
may be synchronized in simulation time and correlated to
provide the user with additional information useful, for
example, to debug a DUT. By combiming the hardware and
software views to show the details of the interface, such as the
SystemVerilog interface, that 1s used to connect the test bench
to the hardware, the user may understand how the relationship
between the hardware and the software influences the perior-
mance of the DUT.

In general, the test bench and the hardware design are
inter-related by the hardware interface. By incorporating
hardware interface information into a sequence diagram users
may trace test bench transactions into the corresponding
hardware interface signals. For example, FIG. 13 illustrates a
sequence diagram view for a communication between a
sequencer and a driver and incorporates the interface showing
the mappings between the test bench and the hardware in
terms of input and output ports. The mappings, represented by
the dashed lines 1n FIG. 13, may show the test bench functions
only (as illustrated), or may show the values of the signals
sent to the ports. In certain embodiments, the interface may be
implemented to provide a menu to access displays of specific
interfaces. As shown in FIG. 14, specific interfaces include,
for example, the driver/hardware interface, the driver virtual
interface, the monitor’hardware interface, and the monitor
virtual interface. FIG. 15 shows the hardware interface cor-
responding to the transactions of a selected driver. FIG. 16
shows the virtual interface corresponding to the transactions
ol a selected driver.

The OVM sequence diagram view exhibits several
attributes that distinguish 1t from other test bench simulation
views such as the UML sequence view and the TFV view. A
typical design and verification environment includes both
hardware (device under test) and the simulation software (test
bench). The wavetorm and TFV views provide visualizations
of the hardware activity. However, the sequence diagram
view provided by the present disclosure provides a visualiza-
tion of the test bench activity. The simulation data used to
render the sequence diagram 1s automatically generated from
a supported simulator without the need for user intervention
as 1s required, for example, to obtain UML sequence views.
Another advantage of the sequence diagram view is that the
transactions are displayed in absolute simulation time,
whereas soltware operations 1n a UML sequence view are
only displayed relative 1n time to other operations.

In certain embodiments, methods provided by the present
disclosure include running a test bench simulation compris-
ing transactions on a device under test, wherein the device
under test comprises multiple components, generating a

10

15

20

25

30

35

40

45

50

55

60

65

8

transaction database as a response to the sitmulation, wherein
the transaction database comprises transaction-specific data
clements for a specific transaction; generating a sequence
diagram from the transaction database, wherein an element of
the sequence diagram comprises a temporal relationship
between two or more of the transaction-specific data ele-
ments; and displaying the sequence diagram, wherein the
displayed sequence diagram comprises at least two compo-
nents and transactions between the at least two components
arranged temporally.

In certain embodiments, apparatus provided by the present
disclosure include a simulator for simulating transactions on
a device under test, wherein the simulated transactions com-
prise multiple test bench components; a transaction database
for storing simulation results from the simulator, wherein the
transaction database comprises transaction-specific data ele-
ments for a specific transaction; a sequence diagram genera-
tor for generating a sequence diagram from the transaction
database, wherein an element of the sequence diagram com-
prises a temporal relationship between two or more of the
transaction-specific data elements between the test bench
components; and an output device for displaying the
sequence diagram, wherein the displayed sequence diagram
comprises an image of at least two test bench components and
transactions between the at least two test bench components
arranged temporally.

In certain embodiments, an apparatus provided by the
present disclosure includes a wavelorm view generator for
generating a wavelorm view of the transaction-specific data
clements for the simulation.

In certain embodiments, an apparatus provided by the
present disclosure includes an mput device for selecting a
displayed transaction. The input device may be used, for
example, to expand or collapse a transaction, to trace a trans-
action forward or backward in time, and/or to 1dentily related
transactions.

An apparatus provided by the present disclosure may also
include a source code database for the simulation; a source
code view generator for generating a source code view of the
simulation from the source code database; a synchronizer for
synchronizing the source code view of the sitmulation with the
sequence diagram; and an output device for displaying the
synchronized source code view and the sequence diagram. An
apparatus may include a wavelorm view generator for gener-
ating a wavelorm view of the simulation from the transaction
database; a synchronizer for synchronizing the waveform
view of the simulation with the sequence diagram; and an
output device for displaying the synchronized waveform view
of the simulation and the sequence diagram. In certain
embodiments, the synchronized views and the sequence dia-
gram may be displayed on the same output device. The output
device may also be used to display a test bench interface
relating the simulation source code to the mput and output
ports for the test bench.

An example ol a process used to generate transaction-
specific data 1s summarized in the diagram shown in FI1G. 17.

In this example, there are three components: an upper_se-
quencer, a sequencer, and a driver in the agent masters[0].
First, the upper_sequencer sends sequence “upper_write_
seq’ to the sequencer. The sequence “upper_write_seq” con-
tamns three sub-sequences: “rand_sub_seq”, “write_sub_
seq’”’, and “read_sub_seq”. Each sub-sequence contains a
sequence 1tem “req”’. When the sequencer receives the
sequence 1tem “req”’, the sequencer converts the sequence
item 1nto sequence “upper_to_lower_seq” and sends it to the
driver. The sequence ‘“‘upper_to_lower_seq” contains
sequence 1tem “1_item”. When the driver recerves sequence

US 9,081,924 B2

9

item “1_1tem™, the driver makes a copy, renames it “respon-
se_item” and sends the renamed sequence item “‘respon-
se_1tem” back to the sequencer.

An example of code elements enabling the process
described in the table are provided as follows:

class upper_write_ seq extend ovim__sequence {
rand_sub_ seq rand_sub_ seq_ handle;
write_ sub__seq rand_ sub_ seq_ handle;
_ read_sub_seq rand_sub_seq_handle;

ovim__sequence_ utils(upper_ write_ seq, Xbus__master upper__sequencer)
virtual task body(){

10

sps_payvload: Used to highlight related sequences;

sps_tr_1d: Unique 1dentification for a sequence 1tem; and

sps_1s_response: Mark response 1tem.

Component upper_sequencer 1s connected to sequencer
through a port by the user test bench code. At an appropnate

OVM_ DO(rand_ sub_ seq_ handle); — Send a rand_ sub_ seq sub-sequence now
OVM_ DO(write__sub_ seq_ handle); —= Send a write_ sub_ seq sub-sequence now
OVM_ DO(read_sub_ seq_handle); — Send a read__sub__seq sub-sequence now

h
3
class rand_sub_ seq extend ovim__sequence {
req req__handle;
1 ovim__sequence_ utils(rand__sub_ seq, xbus__master upper_sequencer)
virtual task body(){

OVM_ DO(req__handle); — send a req “sequence item’ now
h

h

class write_ sub__seq extend ovin__sequence {
req req__handle;
‘ ovim__sequence_ utils(write__sub__seq, xbus__master_upper__sequencer)
virtual task body(){

OVM_ DO(req_ handle); — send a req “sequence item’ now
h

h

class read_ sub_ seq extend ovm__sequence {
1 req req__handle;
ovim__sequence_ utils(read_ sub__seq, xbus__master_ upper__sequencer)
virtual task body(){
OVM_ DO(req_ handle); — send a req “sequence item” now
h

h

class req extend ovm__sequence__item {
class myTest extend ovim__ test {
virtual function void build();
// — send a upper__ write_ seq “sequence” 1n myTest

set__config string(“xbus__demo__tb0.xbusO.masters[0].upper__sequencer”,

Y ER

“default__sequence™, “upper_ write_ seq”);

super.build();
endfunction : build
class sequencer extend ovim__sequencer {
class upper_to_ lower__seq extend ovin__sequence {
ovim__sequence_ utils(upper_ to_ lower_ seq, Xxbus__master upper_ sequencer)
class |_item extend ovm__sequnce _item {
class driver extend ovm__ driver {

Referring to the above codes, a stmulation 1s mitiated from
“myTest” when the upper_sequencer sends the “upper_wri-
te_seq” sequence to the sequencer. When OVM_DO 1s
invoked, transaction-specific data elements including the
starting time, ending time, and “stream” name of the transac-
tion are automatically created and recorded 1n a signal value

change file 1n the FDSB. The transaction “stream” name 1s
used to determine which transaction “fiber” 1s to display the
transaction. In addition, the following attributes, which may
be used to construct the sequence diagram, are also recorded
in FSDB:

sps_to_name: The destination of a sequence or sequence
item;

tull_seq_path: The full sequence name of a OVM sequence
or sequence item;

sps_seq_1d_arr: The 1dentification array of a sequence or

sequence 1tem;

50

55

60

65

time, the upper_sequencer sends a “req sequence_item’ to the
port and 1s then received by the sequencer. The sequencer
converts the “received req” sequence 1tem to “upper_to_low-
er_sequence”. The sequencer then sends “1_item” to a driver
through another port.

The sequencer 1s connected to the driver through another

port by the user test bench code. When the driver receives a
“1_item”, 1t makes a copy, renames 1t “response_1tem’, and
sends “response_item” to the sequencer. The main task per-
formed by the driver is to set signal values on certain DUT
input ports according to the data in “1_item”, e.g., the driver
drives the inputs on the DUT based on the sequence 1tems 1t
receives.

An example of steps for generating a sequence diagram are
as follows:

Traverse each stream stored 1n the FSDB file. Each stream
represents a component in the sequence diagram. For

US 9,081,924 B2

11

example, there are four stream names, namely, sequencer,
driver, monitor and reference model. These streams are the
components of the sequence diagram;

Identify the driver component and the monitor component,
and establish the interface between the driver and the moni-
tor;

Analyze source codes and locate the statements between
driver/interface and monitor/interface;

Traverse each transaction on the stream. A transaction may
be associated with a component by the “sps_to_name”
attribute;

For transactions on the same component, determine
whether the transactions may be collapsed by the “sps_seq_1-
d_arr”. For example, 11 there are two transactions in which
“sps_seq_1d_arr” are “1.2” and “1.3”, then they may be col-
lapsed because the transactions share the same parent
sequence 17,

If the attribute “sps_payload™ 1s assigned values and 1s
associated with transactions between different components, a
user may highlight the transactions displayed on the sequence
diagram by selecting one of the transactions; and

If the attribute “sps_is_response™ 1s 1, the corresponding,
transaction 1s a response from driver.

An example of steps for displaying a sequence diagram are
as follows:

Draw the components horizontally on the top of the
sequence diagram;

Draw the time line vertically on the left of the sequence
diagram;

For each component, draw the collapsed transactions from
the source component to the destination component;

Draw the function names between the driver/interface and
the monitor/interface; and

Drag and drop the statements to the TBBR source code
window.

In the test bench, the driver transforms a transaction from a
sequencer to signals, and then sends the signals to an inter-
face. A monitor collects the signals from the interface and
forms the signals ito transactions. Therefore, there 1s no
transaction between dniver/interface and monitor/interface.
To describe the transformation from transactions to signals
and from signals to transactions, the names of the functions
that perform the transformation between the driver/interface
and the monitor/interface may be extracted from the source
code (FIG. 18). These functions are written 1n the test bench
source code (FIG. 19). Theretfore, a user may drag and drop
function names to the TBBR source code window to access
details of the functions.

Other embodiments consistent with the present disclosure
will be apparent to those skilled 1n the art from consideration
of the specification and practice of the embodiments dis-
closed herein. The exact constructions of the embodiments
described above and illustrated in the accompanying draw-
ings are not meant to be limiting, and various modifications
and changes may be made without departing from the scope
thereof. It 1s intended that the scope of the disclosed embodi-
ments only be limited by the appended claims. Furthermore,
the claims are not to be limited to the details given herein, and
are entitled their full scope and equivalents thereof.

What 1s claimed 1s:

1. A method, comprising;:

receiving, at one or more computer systems, mformation
generated 1n response to a stmulation comprising trans-
actions on a device under test between multiple test
bench components;

10

15

20

25

30

35

40

45

50

55

60

65

12

generating, with one or more processors associated with
the one or more computer systems, a transaction data-
base as a response to the simulation;

generating, with the one or more processors associated

with the one or more computer systems, an element of a
sequence diagram that visually represents both a tempo-
ral sequence between two or more data elements of a
transaction between at least two test bench components
and a transaction passing sequence between each of the
two or more data elements; and

generating, with the one or more processors associated

with the one or more computer systems, information
configured to display the sequence diagram based on the
clement and storing the information configured to dis-
play the sequence diagram 1n a storage device associated
with the one or more computer systems;

wherein a transaction represented by an element 1n the

sequence diagram 1s selected from data passed between
two sequencers and data passed between a sequencer
and a driver.

2. The method of claim 1, wherein each specific transaction
in the transaction database comprises:

a name of the specific transaction;

a start time of the specific transaction;

an end time or duration of the specific transaction;

an interface on which the specific transaction takes place;

a name ol a variable associated with the specific transac-

tion; and

a value for the named variable associated with the specific

transaction at an 1dentified time.

3. The method of claim 2, wherein the interface on which
the specific transaction takes place comprises:

a name of a test bench component making a request; and

a name of a test bench component returning a response to

the request.

4. The method of claim 1, wherein generating the informa-
tion configured to display the sequence diagram based on the
clement comprises generated a display with transactions
between the at least two test bench components as an 1denti-
fier relating the at least two test bench components at a cor-
responding simulation time.

5. The method of claim 1, further comprising generating a
wavelorm view of the simulation wherein the wavelorm view
comprises wavelorms generated from the transaction data-
base.

6. The method of claim 5, further comprising identifying a
portion of the wavelform corresponding to the time of a trans-
action represented by an element 1in the sequence diagram.

7. The method of claim 1, further comprising tracing a
transaction represented by the element of the sequence dia-
gram forward or backward in time in response to a selection
via a user interface of the transaction.

8. The method of claim 1, wherein the at least two test

bench components are selected from the sequencer and the
driver.

9. The method of claim 1, wherein a transaction repre-
sented by the element of the sequence diagram further repre-
sents multiple lower level transactions.

10. The method of claim 1, further comprising visually
expanding a transaction represented by the element of the
sequence diagram into one or more lower-level transactions
in response 1o a selection via a user interface of the transac-
tion.

11. The method of claim 1, further comprising collapsing
one or more transactions represented by the element of the
sequence diagram into a higher-level transaction represented

US 9,081,924 B2

13

by a single element in the sequence diagram 1n response to a
selection via a user interface of at least one of the one or more
transactions.

12. The method of claim 1, further comprising generating
information configured to display attributes of a transaction
represented by the sequence diagram 1n response to a selec-
tion via a user interface of the transaction.

13. The method of claim 1, further comprising identifying
one or more transactions related to a transaction represented
by the element of the sequence diagram 1n response to a
selection via a user interface of the transaction.

14. The method of claim 1, further comprising:

receiving source code for the simulation and generating a

source code database;

generating a source code view of the simulation from the

source code database:

generating a synchronized source code view based on syn-

chronizing the source code view of the simulation with
the sequence diagram; and

generating information configured to display the synchro-

nized source code view.

15. The method of claim 1, further comprising:

generating a waveform view of the simulation from the

transaction database;

generating a synchromzed waveform view based on syn-

chronizing the wavetform view of the simulation with the
sequence diagram; and

generating information configured to display the synchro-

nized waveform view of the simulation.

16. The method of claim 1, further comprising incorporat-
ing an element into the sequence diagram that represents a test
bench interface, wherein the test bench interface comprises

source code for the simulation and a list of input ports and
output ports for the test bench.
17. An apparatus, comprising:
a hardware processor; and
a non-transitory memory storing a set of instructions which
when executed by the processor configure the processor
to:
receive information generated by a simulation compris-
ing transactions on a device under test between mul-
tiple test bench components;
generate a transaction database storing simulation
results from the simulation;
generate an element of a sequence diagram that visually
represents both a temporal sequence between two or
more data elements of a transaction between at least
two test bench components and a transaction passing
sequence between each of the two or more data ele-
ments; and
generate information configured to display the sequence
diagram based on the element and store the informa-
tion configured to display the sequence diagram 1n the
memory;
wherein a transaction represented by an element 1n the
sequence diagram 1s selected from data passed
between two sequencers and data passed between a
sequencer and a driver.
18. The apparatus of claim 17, wherein each specific trans-
action 1n the transaction database comprises:
a name of the specific transaction;
a start time of the specific transaction;
an end time or duration of the specific transaction;
an 1nterface on which the specific transaction takes place;
a name of a variable associated with the specific transac-
tion; and

10

15

20

25

30

35

40

45

50

55

60

65

14

a value for the named variable associated with the specific

transaction at an identified time.

19. The apparatus of claim 18, wherein the interface on
which the specific transaction takes place comprises:

a name of a test bench component making a request; and

a name of a test bench component returning a response to

the request.

20. The apparatus of claim 17, wherein to generate the
information configured to display the sequence diagram
based on the element the processor 1s configured to generate
a display with transactions between the at least two test bench
components as an 1dentifier relating the at least two test bench
components at a corresponding simulation time.

21. The apparatus of claim 17, wherein the processor 1s
turther configured to generate a waveform view of the simu-
lation wherein the wavelorm view comprises wavetforms gen-
erated from the transaction database.

22. The apparatus of claim 21, wherein the processor 1s
turther configured to identity a portion of the waveform view
corresponding to the time of a transaction represented by an
clement 1n the sequence diagram.

23. The apparatus of claim 17, wherein the processor 1s
turther configured to trace a transaction represented by the
clement ofthe sequence diagram forward or backward 1in time
in response to a selection via a user interface of the transac-
tion.

24. The apparatus of claim 17, wherein the at least two
displayed test bench components are selected from the
sequencer and the driver.

25. The apparatus of claim 17, wherein the processor 1s
turther configured to visually expand a transaction repre-
sented by the element of the sequence diagram into one or
more lower-level transactions 1n response to a selection via a
user interface of the transaction.

26. The apparatus of claim 17, wherein a transaction rep-
resented by an element 1n the sequence diagram further rep-
resents multiple lower-level transactions.

277. The apparatus of claim 17, wherein the processor 1s
turther configured collapse one or more transactions repre-
sented by the element of the sequence diagram into a single
higher-level transaction represented by a single element in the
sequence diagram 1n response to a selection via a user inter-
face of at least one of the one or more transactions.

28. The apparatus of claim 17, wherein the processor 1s
turther configured to 1dentily arequestrelated to a transaction
represented by an element 1n the sequence diagram and a
response related to the transaction 1n response to a selection
via a user interface of the transaction.

29. The apparatus of claim 17, wherein the processor 1s
turther configured to identify one or more transactions relat-
ing to a transaction represented by an element 1n the sequence
diagram 1n response to a selection via a user interface of the
transaction.

30. The apparatus of claim 17, wherein the processor 1s
turther configured to:

generate a source code database 1n response to receiving

source code for the simulation;

generate a source code view of the simulation from the

source code database;

generate a synchronized source code view based on syn-

chronizing the source code view of the simulation with

the sequence diagram; and
generate information configured to display the synchro-
nized source code view.

US 9,081,924 B2

15

31. The apparatus of claim 17, wherein the processor 1s
turther configured to:
generate a wavelorm view of the simulation from the trans-
action database;
generating a synchronized wavetorm view based on syn-
chronizing the waveform view of the simulation with the
sequence diagram; and
generate iformation configured to display the synchro-
nized wavetorm view of the simulation.
32. The apparatus of claim 17, wherein the processor 1s
turther configured to display a test bench interface, wherein
the test bench interface comprises source code for the simu-

lation and a list of 1mput ports and output ports for the test
bench.

10

15

16

	Front Page
	Drawings
	Specification
	Claims

