US009081742B2

a2 United States Patent (10) Patent No.: US 9,081,742 B2
Sonnier et al. 45) Date of Patent: Jul. 14, 2015

(54) NETWORK COMMUNICATIONS (56) References Cited

PROCESSOR ARCHITECTURE
U.S. PATENT DOCUMENTS

(75) Inventors: David P. Sonnier, Austin, TX (US); 4,622,631 A 11/1986 Frank et al.
William G. Burroughs, Macungie, PA 5,623,698 A 4/1997 Stt_aph_enson et al.
(US); Narender R. Vangati, Austin, TX 5,892,766 A 4/1999 Wicki et al.
(US); Deepak Mital, Orefield, PA (US); 2093,285 A 1999 Wong et al
6,038,630 A 3/2000 Foster et al.
Robert J. Munoz, Round Rock, TX 6,195,335 Bl 2/2001 Calvignac et al.
(US) 6,567,564 Bl 5/2003 van der Wal
6,636,932 B1 10/2003 Regev et al.
: : 7,089,346 B2 8/2006 Cebulla et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 7,200,837 B2* 4/2007 Stevenso..... 717/114
(US) 7,234,018 Bl 6/2007 Purcell et al.
7,461,208 B1 12/2008 Caprioli et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 882 days. FOREIGN PATENT DOCUMENTS
JP HO02-271444 11/1990
21) Appl. No.: 12/782,379
(21) - App ’ OTHER PUBLICATIONS
(22) Filed: May 18, 2010 Kumar; Carbon: Architectural Support for Fine-Grained Parallelism
on Chip Multiprocessors; ISCA; Jun. 2007 .*
(65) Prior Publication Data (Continued)

US 2010/0293312 Al Nov. 18, 2010 Primary Examiner — Corey S Faherty

(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

Related U.S. Application Data

(60) Provisional application No. 61/179,202, filed on May (57) ABSTRACT
18, 2009. Described embodiments provide a system having a plurality
of processor cores and common memory 1n direct communi-
(51) Int. Cl. cation with the cores. A source processing core communi-
GO6F 15/167 (2006.01) cates with a task destin:atiop core by generating a task mes-
HO4I 12/933 (2013.01) sage for the task destination core. The task source core
HO4L 12/031 (2013.01) transmits the task message directly to a receiving processing

core adjacent to the task source core. If the recerving process-

(52) U.S. CL : : o - _
cPe GOGF 15/167 (2013.01): HO4L 49/107 Ing core 1s not the task destination core, the recerving pro
cessing core passes the task message unchanged to a process-
(2013.01); HO4L 49/109 (2013.01); HO4L ing core adjacent the receiving processing core. If the
49/506 (2013.01) receiving processing core 1s the task destination core, the task
(58) Field of Classification Search destination core processes the message.
None
See application file for complete search history. 8 Claims, 11 Drawing Sheets

2
TASK " TASK Z
«» (_BACKPRESSURE RING /° TASK BACKPRESSURE RING BACKPRESSURE RING | =
=1 »
o E TASK 130 TASK o
&= REQUEST RNG TASK_REQUEST RING | REQUEST RING | S3
= TASK TASK =
£ S| _ACKNOWLEDGE RING TASK_ACKNOWLEDGE RING ACKNOWLEDGE RING | &
= BACKPRESSURE RING 1 |2
VR

A R I B R = I Y 1 11

602y | | 604 | 1R 616y | i

) TASK mk (1] |} TASK THSK | !

' | DESTINATION |=—={ SOURCE [} | ||| DESTNATON [+ SOURCE | !

) NODULE MODULE | ! [| MODULE MODULE | !

O TR IR IF ____ H I }

g 605 (618
TASK TASK
o | LI O | 10 | PRODUCER op | LX) |, | PRODUCER
o b 0T, P T,
TASK TASK TASK TASK
CONSUMER | | CONSUMER CONSUER | | CONSUME
CORE | CORE 2
TO/FROM ON-CHIP SHARED MEMORY T0/FROM ON=CHIP SHARED MEMORY

110 10

US 9,081,742 B2

Page 2
56 References Cited 2006/0256783 Al 11/2006 Avrapetian et al.
yrap
2007/0016756 Al 1/2007 Hsieh et al.
UU.S. PATENT DOCUMENTS 2007/0226798 Al 9/2007 Sibert
2008/0162793 Al 7/2008 Chu et al.
7,596,142 Bl 9/2009 MacAdam 2009/0282222 Al 11/2009 Hoover et al.
7,623,543 B2* 11/2009 Suetal. wooovocovevvveninn, 370/445 2010/0260198 Al 10/2010 Rojas-Cessa et al.
8,295,891 B2 10/2012 Castor et al.
2002/0029214 A__h 3/2002 Yianilos et al. OTHER PUBI ICATIONS
2002/0165985 A1 11/2002 Chen et al.
2003/0033276 Al 2/2003 Cheng et al. * _ - . ‘
5003/0123468 Al 7/2003 Nong Horst:kTask Flow Architecture for WSI Parallel Processing; IEEE;
2004/0255209 Al 12/2004 Gross 1992.
2005/0027920 Al 2/2005 Fitzsimmons et al. _ _
2005/0152352 Al 7/2005 Jun et al. * cited by examiner

AVad 1VNd11X3 091

US 9,081,742 B2

T
| _
04} ~{ NIONIN G3UVHS dIHO-NO m
| _
m 47 47 47 47 47 47 m
“ mm mm mm “
| _
. _ _
y— _ _
o | |
- | _
o | _
e | _
D | |
7 “ “
| _
| _
_ LN
| _
Te _ |
o | _
— | _
D) “ llEll. “
. “ 400 L 100 [T |4 400 L 100 [T] 3409 “ NI
|
= “ . d - || INON3 - moNa| | o)) " mzo_zwﬁ:zzoo
| _
| _
| 0| Ay 1 Mozl (74 4l 701
m ONIY SV m
m 0¢| "
L

d05S5300dd MdOMLAN ~~001

VI |

U.S. Patent

US 9,081,742 B2

Sheet 2 of 11

Jul. 14, 2015

U.S. Patent

09} HY40 TVNEILX
Y O
" "
05 TOVAYIINI AYONIN TYN3LX3 m
“ “
| |
_ _

m HOVD | | IHOVO HOVD | | IHOVD HOVD | | IHOVD m
_ NILSAS | | WALSAS NILSAS | | WALSAS NILSAS | | WALSAS _
" AYONIN |
S NS N N NN S ___Q3dWHS |

Lo

207 HOLIMS ¥YESSO¥I ININIOTE-NON
Aoodl |1 3¥oo| [N 02| [+ 300 1407
dn d1 INION] INIONI 0/
! Ay g4l Noz) ozl Al

F___-_-___-_-'_-—-—-—-'—_—-—-—-—-—-—-—-—-—-—_—-ﬁ

d0SS300dd NAOMLIN 001

5d035100ad 1VNdd1X1 Ol

US 9,081,742 B2

..--
|
|
|
|
| A 3402
| 80¢ 3-12d
| XY
“
| .
= “ .
S “ . 3190144 702
= | 947d
3 |
: m e SN IXV
| 7 7 02
T yossa00ue 90
n m (IVN)
~ _ 708 JOVAYIINI SSII0V
-+ |
~ | 40SSII04JOYIIN
3 Ll " | 1402
m 40SS3004d WONIN
| NOY4/0L
- | O 4VASSO¥) /
5 “ Sng 981 ININOOTE-NON S340
= “ INION3
|
M 00} —— ¥0SSIN0Ud YIOMLIN N0d3/01
-

00¢
AN

U.S. Patent Jul. 14, 2015 Sheet 4 of 11 US 9,081,742 B2

riG. 4

ON-CHIP SHARED MEMORY
110

1P MEMORY SPACE 402

TABLE MEMORY SPACE 404

DYNAMIC SHARED 108
MEMORY SPACE

US 9,081,742 B2

Sheet Sof 11

Jul. 14, 2015

U.S. Patent

JIVAUINI
1NalnO

s =u =m =t

¥ 1409
ANION3

016

| 3409 d"
S
AL
Iy
¢ 40D 7 0D
INION3 INION3
805 905
¢ 9Id

ANION3

705

!

h————————‘

\
l

ENLELELL

1NaNi

¢0S

2 INmdd L
v e

} ANI13dId
1VNLdIA e

J0S ~—~ 001

US 9,081,742 B2

Sheet 6 of 11

Jul. 14, 2015
ONIY NI 3409 LXIN WO¥4/0L

U.S. Patent

AJONIN Q3UVHS dIHO-NO WOY4/0l

¢ 3400

¥é9

d19N00ad

F-—--—--—--—--—-

(v9

INId JOATTMONAIY
ASVL

INId 1SN0
ASVL

ONId JdNSSIddHIvE
ASVL

ASVL

J1NAON
12d4N0S
ASVL

(9

0H

X
dINNSNOJ

ASV1

| 1403

|
dINNSNOD
ASVL

(19
0C9

0414 ASVL "~

819

11nd0

NOLLYNILSd

ASVL

N J1NAON
12dN0S

ASVL

F----------

INIY 4155 3dd NIV
INId JOQFTMONNIY ASYL

ONIY 1S3N03Y NSV

ONIY JdNSSIddAIVE ASYL

d19N00ad

0l

X
dANNSNOD

ASVL

019

909

9 914

J1NAON

ASVL

0v9

AJONIN Q3UVHS dIHO-NO WOY4/0l

|

dINNSNOD

ASVL

NOILVYNILS4d

INId JO0TTMONAIY

ONIY 1SN0

809

N ————

ASY1

INId NI 3409
SNOIATYd WO¥4/0L

ASV1

INId J4NSSIddNIVH

ASVL

U.S. Patent Jul. 14, 2015 Sheet 7 of 11 US 9,081,742 B2

FIG. 7
700 SOURCE CORE DEFINES TASK T0 SEND)~ 702
- SEND TASK ENQUEUE REQUEST WITH DEST. ID, 204
TASK SIZE, PRIORITY AND ORDER ID ON RING
FORWARD
REQUEST TO NEXT CORE ON RING RECEIVES REQUEST 706
NEXT CORE
S REQUEST FOR THIS CORE? 710
YES
i DEST. CORE DETERMINES TASK QUEUE |-712
714
S QUEUE FILLED TO THRESHOLD DEPTIR 1ES
NO
DEST. CORE INCREMENTS QUEUE WRITE POINTER BY
720 TASK SIZE AND ADDS ENTRY TO PENDING TABLE:
ALLOCATES NEW BLOCK FOR QUEUE IF NEEDED /16
72
126 DEST. CORE SENDS RESPONSE WITH ADDRESS(ES) ON RING || DEST.
FORWARD CORE
RESPONSE T0 NEXT CORE ON RING RECEIVES RESPONSE SENDS
NEXT CORE o DISCARD
5 RESPONSE FOR THIS CORE? RESPONSE
= ' ON RING

730 SOURCE CORE ISSUES WRITE OF TASK
STRUCTURE TO SPECIFIED ADDRESS(ES
132 WAIT FOR TASK WRITE TO COMPLETE

134
/38 DEST. CORE SENDS ACKNOWLEDGE ON RING 18
FORWARD (
ACKNOWLEDGE NEXT CORE ON RING RECEIVES ACKNOWLEDGE SOURCE
10 NEXT CORE 10 CORF
1S ACKNOWLEDGE FOR THIS CORE? FREES

ALL DATA
YES 742 | \SSOCIATED

DEST. CORE UPDATES PENDING TABLE WITH ACKNOWLEDGE || WITH TASK

NO 144
JOES ACKNOWLEDGE CLOSE ANY GAPS

YES 146

DEST. CORE UPDATES QUEUE WRITTEN POINTER
COMPLETE)}~ 748

US 9,081,742 B2

Sheet 8 of 11

Jul. 14, 2015

U.S. Patent

JD0T 3409

8%8

INISS1J04d
A1V1dNil

1NaNi %
9¢8

Wi 4%
EINALLEI

1NN
¢ 1409

7e8
908

NV
EINAL LI

1Nalno

8¢8

INISS1004d
11V1aNil
1Nalno

0%8

JDOT 3409

(8

INISS1J04d
A1V1dNil
1NaNi

44

NV
EINALLEI

1NN
¢ 1409

8
708

08

AV
IVIdNAL
1NdINo
INISSI004d O
IVIdNAL QIUVHS
10dINo 4IHD-NO
313 011
11907 3409
T
INISSI00N
IVIdNAL
1NN %
218
NV 208
IVIdNAL
1NN
Ol | 70
208 008

& Ild

US Patent Jul. 14, 2015 Sheet 9 0of 11

LJI

FIG. 9

fﬁ! L

AAAAAAA

U.S. Patent Jul. 14, 2015 Sheet 10 of 11 US 9,081,742 B2

riG. 10
QUEUE | QUEUE 2
1002 1004 1008

FLOW ID OF ASSIGNED
NEXT TASK QUEUE
T0 ARRIVE

— et

S| Dol

U.S. Patent Jul. 14, 2015 Sheet 11 of 11 US 9,081,742 B2

rlG. 17
A

T TASK ARRIVES AT 1102
DESTINATION CORE
DEST. CORE CHECKS 1104
ORDER 1D OF TASK

DEST. CORE PERFORMS

HASH OF ORDER ID TO 1106
DETERMINE A TARGET QUEUE

1S

ORDER 1D ALREADY

IN THE QUEUE
!

2 1108

NO

1112

DETERMINE

LEAST LOADED

QUEUE BY DATA SIZE

OR ENTRIES
?

ENTRIES

1116

ASSIGN TASK TO SAME ASSIGN TASK TO QUEUE ASSIGN TASK TO
QUEUE TO MAINTAIN WITH SMALLEST TOTAL QUEUE WITH FEWEST

FLOW TASK ORDER CORRESPONDING DATA SIZE TASK ENTRIES

ADD ORDER ID TO e
QUEUE HASH TABLE
RETURN T0
STEP 714 OF Fig. 7) 114

US 9,081,742 B2

1

NETWORK COMMUNICATIONS
PROCESSOR ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the filing date of U.S.
provisional application No. 61/179,202 filed 18 May 2009 the
teachings of which are incorporated herein 1n their entireties
by reference.

The subject matter of this application 1s related to U.S.
patent application Ser. No. 12/430,438 filed 27 Apr. 2009,

Ser. No. 12/729,226 filed 22 Mar. 2010, Ser. No. 12/729,231
filed 22 Mar. 2010, Ser. No. 12/782,393, filed 18 May 2010,
and Ser. No. 12/782,411, filed 18 May 2010, the teachings of

all of which are incorporated herein in their entireties by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to processor systems and,
more specifically, to an accelerated processor architecture for
network communications.

2. Description of the Related Art

Network processors are generally used for analyzing and
processing packet data for routing and switching packets in a
variety ol applications, such as network surveillance, video
transmission, protocol conversion, voice processing, and
internet traflic routing. Early types ol network processors
were based on software-based approaches with general-pur-
pose processors, either singly or 1n a multi-core implementa-
tion, but such software-based approaches are slow. Further,
increasing the number of general-purpose processors had
diminishing performance improvements, or might actually
slow down overall Network Processor throughput. Newer
designs add hardware accelerators to offload certain tasks
from the general-purpose processors, such as encryption/de-
cryption, packet data inspections, etc. These newer Network
Processor designs are traditionally implemented with either 1)
a non-pipelined architecture or 11) a fixed pipeline architec-
ture.

In a typical non-pipelined architecture, general-purpose
processors are responsible for each action taken by accelera-
tion functions. A non-pipelined architecture provides great
flexibility 1n that the general-purpose processors can make
decisions on a dynamic, packet-by-packet basis, thus provid-
ing data packets only to the accelerators or other processors
that are required to process each packet. However, significant
soltware overhead 1s involved 1n those cases where multiple
accelerator actions might occur 1n sequence.

In a typical fixed-pipeline architecture, packet data flows
through the general-purpose processors and/or accelerators in
a fixed sequence regardless of whether a particular processor
or accelerator 1s required to process a given packet. This fixed
sequence might add significant overhead to packet processing
and has limited flexibility to handle new protocols, limiting
the advantage provided by the using accelerators.

SUMMARY OF THE INVENTION

This Summary 1s provided to mtroduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identify key features or essential features of the claimed sub-
ject matter, nor 1s 1t mtended to be used to limit the scope of
the claimed subject matter.

10

15

20

25

30

35

40

45

50

55

60

65

2

Described embodiments provide a system having a plural-
ity of processor cores and common memory in direct coms-
munication with the cores. A source processing core commu-
nicates with a task destination core by generating a task
message for the task destination core. The task source core
transmits the task message directly to a receiving processing,
core adjacent to the task source core. If the recerving process-
ing core 1s not the task destination core, the receiving pro-
cessing core passes the task message unchanged to a process-
ing core adjacent the receiving processing core. If the
receiving processing core 1s the task destination core, the task
destination core processes the message.

BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, features, and advantages of the present
invention will become more fully apparent from the following
detailed description, the appended claims, and the accompa-
nying drawings i which like reference numerals identify
similar or identical elements.

FIG. 1 shows a block diagram of a network communica-
tions processor in accordance with exemplary embodiments
ol the present invention;

FIG. 2 shows a block diagram of an exemplary embodi-
ment of the network commumnications processor of FIG. 1;

FIG. 3 shows a block diagram of an exemplary communi-
cation bus of the network communications processor of FIG.
2;

FIG. 4 shows an exemplary subdivision of an on-chip
shared memory of the network communications processor of
FIG. 1;

FIG. 5 shows an exemplary data tflow of two virtual pipe-
lines through an exemplary network communications proces-
sor of FIG. 1;

FIG. 6 shows a block diagram of exemplary cores of the
network communications processor of FIG. 1;

FIG. 7 shows a flow diagram of an exemplary process for
sending tasks between one or more cores of the network
communications processor of FIG. 1, 1in accordance with
embodiments of the present invention;

FIG. 8 shows a block diagram of an exemplary flow of tasks
between one or more cores of the network communications
processor of FIG. 1, 1n accordance with embodiments of the
present invention;

FIG. 9 shows a block diagram of a task queue structure, 1n

accordance with embodiments of the present invention;
FIG. 10 shows a block diagram of exemplary task queues,
in accordance with embodiments of the present invention;
and
FIG. 11 shows a flow diagram of an exemplary task queu-
Ing process, 1in accordance with embodiments of the present
invention.

DETAILED DESCRIPTION

In accordance with embodiments of the present invention,
a system 1s provided having a plurality of processor cores and
common memory in direct communication with the cores. A
source processing core communicates with a task destination
core by generating a task message for the task destination
core. The task source core transmits the task message directly
to arecerving processing core adjacent to the task source core.
If the receving processing core i1s not the task destination
core, the receiving processing core passes the task message
unchanged to a processing core adjacent the recerving pro-

US 9,081,742 B2

3

cessing core. If the receiving processing core 1s the task
destination core, the task destination core processes the mes-
sage.

Table 1 defines a list of acronyms employed throughout

this specification as an aid to understanding the described
embodiments of the present invention:

TABLE 1
USB Universal Serial Bus
SATA Serial Advanced Technology Attachment
SCSI Small Computer System Interface
SAS Serial Attached SCSI
PCI-E Peripheral Component Interconnect Express
SoC System-on-Chip
AXI Advanced eXtensible Interface
AMBA Advanced Microcontroller Bus Architecture
PAB Packet Assembly Block
MTM Modular Traflic Manager
Regkx Regular Expression
PIC Protocol Integrity Checker
IP Internet Protocol
TCP Transmission Control Protocol
EF Expedited Forwarding
BE Best Effort Forwarding
FIFO First-In, First-Out
I/O [nput/Output
DDR Double Data Rate
DRAM Dynamic Random Access Memory
MMB Memory Manager Block
MAI Microprocessor Access Interface
PLB Processor Local Bus
MPP Modular Packet Processor
AALS ATM Adaptation Layer 5
SED Stream Editor
SPP Security Protocol Processor
CRC Cyclic Redundancy Check
UDP User Datagram Protocol
diffserv Differentiated Services
AF Assured Forwarding
IPS Internet Provider Security

FI1G. 1 shows a block diagram of an exemplary single-chip
network processor system implemented as a system-on-chip
(SoC), Network Processor 100. Network Processor 100
might be used for processing data packets, performing pro-
tocol conversion, or the like. Reference herein to ‘“one
embodiment”, “an exemplary embodiment”, or “an embodi-
ment” means that a particular feature, structure, or character-
istic described in connection with the embodiment can be
included in at least one embodiment of the imvention. The
appearances of the phrase “in one embodiment” 1n various
places 1n the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments necessarily mutually exclusive of other embodiments.
The same applies to the term “1implementation.”

Network processor 100 1ncludes on-chip shared memory
110, one or more mput-output (I/0) cores, shown as 1/0 core
112, one or more microprocessor (LP) cores, shown as uP
cores 114,-114, , and one or more engine cores 120,-120,,,
where M and N are integers greater than 1. Network Processor
100 also includes task ring 130, memory manager block
(MMB) 140, MMB ring 116, and external memory interface
150 for communication with external memory 160. External
memory 160 might typically be implemented as a dynamic
random-access memory (DRAM), such as a double-data-rate
three (DDR-3) DRAM, for off-chip storage of data. In some
embodiments, such as shown 1n FIG. 1, all of the one or more
I/0, uP and engine cores, and MMB 140, are directly coupled
to shared memory 110. In alternative embodiments, each of
the one or more I/0O, uP and engine cores, and MMB 140
might not need to be directly coupled to shared memory 110.

For example, as described 1n greater detail with regard to FIG.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

2, each of'the one or more I/O, uP and engine cores, and MMB
140 (collectively referred to as “cores™) might be coupled to
a switch system that is then coupled to shared memory 110.
Shared memory 110 might include one or more FIFO
queues 142. As discussed 1n more detail below, one or more
FIFO queues 142 might be dynamically allocated 1n shared
memory 110 to the various cores 112, 114, and 120 based on
corresponding requests by the cores to MMB 140. Each core
might request allocation of memory for additional FIFO
queues via MMB ring 116. While, 1n FI1G. 1, task ring 130 and
MMB ring 116 are shown coupled to the various cores 1n an
order, one skilled 1n the art will realize that such order 1s for
illustrative purposes only as an aid to describing the present
invention, and any one of the cores might be adjacent to
another core along rings 130 and 116. As described herein, the
term “‘adjacent” describes either a previous core or subse-
quent core on communication rings 116 and 130. For
example, 1 the exemplary embodiment shown in FIG. 1,
MMB 140 1s adjacent to uP core 114, , and 1/O core 112.

I/0 core 112 might typically be implemented as hardware
that connects Network Processor 100 to one or more external
devices through I/O Communication link 102. I/O Commu-
nication link 102 might generally be employed for commu-
nication with one or more external devices, such as a com-
puter system or networking device, that interface with
Network Processor 100. /O Communication link 102 might
be a custom-designed communication link, or might conform
to a standard communication protocol such as, for example, a

Small Computer System Interface (“SCSI”) protocol bus, a
Serial Attached SCSI (*SAS”) protocol bus, a Seral

Advanced Technology Attachment (“SATA”) protocol bus, a
Universal Serial Bus (“USB”), an Ethernet link, an IEEE
802.11 link, an IEEE 802.15 link, an IEEE 802.16 link, a
Peripheral Component Interconnect Express (“PCI-E”) link,
a Serial Rapid I/O (*SRIO”) link, or any other interface link.
Received packets are preferably placed 1n memory 110 and
then one or more “tasks™ corresponding to the recerved pack-
ets are provided, via task communication ring 130, to one or
more of the various cores. As described herein, a task 1s a
command 1ssued between cores to perform processing func-
tions on at least a portion of packet data. Transmitted packets
are preferably received from a task and transmitted externally.

Task ring 130 1s a communication bus linking adjacent
cores together 1 a senal or “daisy-chain” fashion. In one
embodiment, task ring 130 might be a unidirectional ring that
passes task control information from a source core to a des-
tination core, and the tasks might contain address pointers to
data stored 1n shared memory 110. As described herein, tasks
are instructions to the destination core to perform certain
functions. Tasks received by a destination core might be
stored 1n a corresponding one of FIFO queues 142, and the
data corresponding to the task to be processed by the desti-
nation core might be stored in shared memory 110.

Tasks allow Network Processor 100 to process a wide
variety ol data and control messages more efficiently than
with a fixed pipeline or non-pipelined architecture. As dis-
cussed 1n more detail below, the sequence of the tasks
depends on 1) the type of packet and 11) the type of processing
performed by the various cores on a particular packet (or
group of packets), control message, or other data. This 1s
referred to herein as a “Virtual Pipeline™”, a trademark of
LSI Corporation, of Milpitas, Calif.

In embodiments of the present invention, a virtual pipeline
operates by each core receving a task, executing that task,
and assigning a subsequent task to another (or the same) core
depending on the packet or instruction being processed. For
purposes here, a core generating a task 1s referred to as a

US 9,081,742 B2

S

source core, and a core given a task to execute 1s referred to as
a destination core. Tasks provided to a destination core are
written to shared memory 110 by the source core and read
from shared memory 110 by the destination core. Task ring
130 provides a communication path for the various cores to
pass tasks to each other utilizing messages that contain the
address pointers to data corresponding to the task stored 1n
shared memory 110. Although shown 1n FIG. 1 as a ring bus,
it 1s understood that other topologies other than a ring might
be used to pass tasks from core to core, such as direct con-
nections between each of the cores or use of a switch system.
As described below, a task data structure might typically
include 1) an 1dentification of a virtual pipeline for the task, 11)
packet specific parameters and engine instructions for the
virtual pipeline, 11) inline header and trailer data for the task,
and 1v) pointers to data stored 1n memory 110.

In embodiments of the present invention, shared memory
110 1s a conventional memory operating as a cache and might
be allocated or subdivided. For example, as shown in FI1G. 4,
shared memory 110 might be subdivided into three areas:
processor memory space 402, table memory space 404, and
dynamic shared memory space 406. Processor memory space
402 might typically be employed to store all or part of the
operating systems and other sets of istructions for uP cores
114,-114,,, for use during configuration and operation of
Network Processor 100. Table memory 404 might typically
be employed to store statically allocated data having a rela-
tively fixed size, for example, a table of queue addresses for
cach of engine cores 120,-120,,to access FIFO queues 142, or
key tables for an encryption/decryption core (e.g., core 120,),
etc. Dynamic shared memory space 406 might typically be
employed as memory that can be dynamically allocated by
MMB 140, for example, FIFOs 142 which are dynamically
allocated by MMB 140 to the various engine cores 120,-120.,;
and uP cores 114 ,-114, . Dynamic shared memory space 406
typically stores data, tasks, and other transient data employed
by the various cores.

Returming to FIG. 1, external memory interface 1350
couples shared memory 110 to external DRAM 160 to pro-
vide off-chip storage of data not needed by the various engine
cores 120,-120,, and uP cores 114,-114,, to {ree space 1n
shared memory 110. Memory management block (MMB)
140 allocates and frees memory resources in shared memory
110. Memory 1s allocated for such applications as task FIFO
storage (e.g., FIFOs 142), packet data storage, hash-table
collision handling, timer event management, and traflic man-
ager queues. MMB 140 provides reference counts to each
block of memory within shared memory 110. Multiple refer-
ence counts allow for more efficient storage of information,
such as multicast traffic (data to be sent to multiple destina-
tions) or for retransmission. Multiple reference counts
remove the need for replicating the data each time the data 1s
needed. MMB 140 preferably tracks the memory allocations
using a stack-based approach since a memory block recently
released 1s preferably the next block to be allocated for a
particular task, reducing cache trashing and cache tracking
overhead.

FI1G. 2 15 an alternative view of Network Processor 100 of
FIG. 1. Like-numbered 1tems perform analogously with those
described with respect to FIG. 1 and are not discussed herein
in connection with FIG. 2 except as noted. Non-blocking
crossbar switch 202 connects cores 112, 120,-120,, 114, -
114, ,and MMB 140 to system caches 204 in shared memory
110, and a connection made through non-blocking crossbar
switch 202 1s considered, for purposes here, a direct connec-
tion between a core and the memory 110. Crossbar switch 202
1s preferably a non-blocking switch arbitrating memory

10

15

20

25

30

35

40

45

50

55

60

65

6

access priority by the cores. As described 1n more detail
below, system caches 204 are addressed via the crossbar
switch 1n such a way as to balance access to the caches,
referred to herein as striping, helping to avoid hot spots in
shared memory 110, improve performance of the caching 1n
and out of external memory 160, and reduce cache access
bottlenecks. Thus, 1n embodiments of the present invention,
cach system cache 204 might form a memory array, and the
number of system caches might preferably be implemented as
a power of two. Non-blocking crossbar switch 202 might be

implemented such as described in the above-identified related
U.S. patent application Ser. No. 12/430,438 filed 27 Apr.

2009, Ser. No. 12/729,226 filed 22 Mar. 2010, and Ser. No.
12/729,231 filed 22 Mar. 2010.

In embodiments of the present mnvention, there are three
types of “clients” (e.g., types of cores) supported by the
crossbar: 1) processor cores, 1) I/O cores, and 111) general
clients. Processor cores 114,-114, . access the system cache
via the crossbar and have generally absolute priority to reduce
to a minimum latency for the processors that might otherwise
sulfer from stall cycles when latency increases beyond a
threshold.

I/0 cores are a type of client that support IO 1nterfaces,
such as I/0 core 112, and have medium memory access pri-
ority. Allocation of this prionty level 1s important because
these types of clients might suffer from underrun/overrun
1ssues when supporting their interfaces. The I/O core clients
generally experience higher latency than general processor
cores, but lower latency than general clients. However, since
the I/O function 1s generally easy to read-ahead and write-
behind, this higher latency for these types of clients causes
little or no 1mpact to overall performance. If the maximum
latency 1s bounded, the size of the read-ahead and write-
behind required might be determined.

General clients have the lowest access priornty for shared
memory 110. General clients might constitute all other mod-
ules of Network Processor 100. For example, these modules
might be hardware accelerators or special purpose proces-
sors. One such special purpose processor, shown in FIG. 3, 1s
Microprocessor Access Interface (MAI) 302. As shown 1n
FIG. 3, MAI 302 might provide a physical bus interface to
enable virtual pipeline connections between one or more
internal and external processors and non-blocking crossbar
switch 202. All general client functions are designed to be
tolerant of the memory latency and can tolerate short disrup-
tions 1n latency without causing performance issues.

MALI 302 1s generally performance insensitive to absolute
latency. Thus, MAI 302 is typically operated with high utili-
zation at the lowest possible priority value. The 1I/O core
clients are sensitive to memory access latency, but only to
having predictable latency. If the memory access latency 1s
bounded, prefetch and write behind might be employed to
operate without underrun or overrun. In general, all other
memory clients are sensitive only to average latency. In addi-
tion, they might prefetch and write-behind to achieve a
desired level of performance.

FIG. 3 shows a block diagram detailing an interface 300
between processors 114,-114, . and crossbar switch 202. As
shown, Network Processor 100 contains one or more micro-
processors 114,-114, ., each of which might include internal
[L1/L.2 caches (not shown). The multiple processors 1mple-
ment cache coherency between themselves as 1s well known
in the art. Cache misses from the processors go across the
main system memory crossbar 202 to on-chip shared memory
110 and, 11 necessary, external memory 160. Interface 300
might also include a standard set of peripheral interfaces

(USB, EEPROM, etc., not shown) on or off the chip. For

US 9,081,742 B2

7

example, as shown 1n FIG. 3, PCI-E interface 308 might be
provided. PCI-E nterface 308 allows for any external device
operating in conformance with the PCI-E protocol to be
attached to Network Processor 100. For example, PCI-E
interface 308 might allow one or more external processors to
access shared memory 110, task queues 142 and other
resources on the chip, such as task ring 130 and MMB ring,
116. Thus, the task communication mechanism employed by
the internal processors can also be used for message passing,
between the internal and external processors.

Communication between processors 114,-114,, and
memory 110 via crossbar switch 202 occurs via two paths,
one path for processor instructions requiring latency less than
a predefined threshold (“minimal latency™) and the other path
for other types of information, such as tasks sent via the
virtual pipeline, that are not as sensitive to memory latency.
Memory access interface (MAI) 302 handles instructions that
are less sensitive to memory latency. MAI 302 1s an interface
between crossbar switch 202 (and memory 110) and the inter-
nal processor(s) 114,-114,, and any attached processor(s)
external to Network Processor 100. MAI 302 provides an
interface for different kinds of microprocessors to recerve and
send tasks like any of the internal cores coupled to shared
memory 110.

For example, MAI 302 might be coupled to PCI-E interface
308. As illustrated here, MAI 302 connects to the crossbar
202 for its task-based communications. For processor com-
munications, MAI 302 1s coupled to AXI bus 304. The AXI
protocol 1s higher frequency implementation of the Advanced
Microcontroller Bus Architecture (AMBA) introduced by
ARM Ltd. AXI bus 304 enables MAI 302 to communicate
with any peripheral device or processor that supports the AXI
protocol. AXI-to-PCI-E controller 308 might be used by MAI
302 to allow external processors to access AXI bus 304.
Internal processors 114 ,-114, access AXI bus 304 via AXI-
to-PLB Bridge 306. PLB 1s a microprocessor bus architecture
introduced by IBM. In embodiments of the present invention,
processors 114,-114, ,are Power PC® processors that utilize
PLB bus 310 for communication between processors and
crossbar 202. AXI-to-PLB bridge 306 allows processors
114,-114, .to communicate with AXI bus 304, and thus exter-
nal processors (via AXI-to-PCI-E controller 308).

Thus, MAI 302, AXI-to-PCI-E controller 308 and AX]I-to-
PLB Bridge 306 make the architectural design of Network
Processor 100 “agnostic” to the chosen processor architecture
for processors 114,-114,, or any external processors. For
example, a given design might employ Pentium® or Power
PC® processors, or a combination of different processors,
without changing the mterfaces to various software modules
of Network Processor 100. Pentium® 1s a registered trade-
mark of Intel Corporation, and Power PC® 1is a registered
trademark of IBM.

As mentioned above, task communication within the archi-
tecture of Network Processor 100 1s handled by MAI 302.
MAI 302 allows the processors to send and recerve tasks to
and from other processors or other cores within the architec-
ture. MAI 302 1s also used for configuration updates. All
accesses that MAI 302 makes to uP memory space 406 are
tully coherent with the processor recerving or 1ssuing a task.
If an external processor supports I/O coherency for PCI-E
transactions, then the external processors are coherent as
well. All interactions with MAI 302 are non-blocking to the
processor and generally involve only local memory updates.
Processor overhead is reduced to a few cached memory
accesses (no 1/0 cycles required). Advantageously, MAI 302
allows the programming model might be substantially the

same for internal and external CPUs. The programming

10

15

20

25

30

35

40

45

50

55

60

65

8

model might also be substantially the same for special pur-
pose processors, such as digital signal processors.

Multiple task queues (e.g., FIFOs 142 of FIG. 1) for each
processor are supported for input, output, and processor con-
figuration. This allows independent access to the queues from
different processors or cores. An ordered queue process,
described in more detail below, can be used to provide per
flow load balancing. Tasks can also be directed to a specific
queue.

One component of MAI 302 manages processor address-
able FIFO butfers. For outgoing tasks, MAI 302 will copy the
data out of the processor-specified butfer quickly. Therefore,
the processor will be able to reuse the butfers quickly. The
task queues going towards the CPUs can also be quite shal-
low, for example, the queues might only be deep enough for
MAI 302 to have suflicient time to push a next task in to the
buffer. Buflfer management {for task-recetve queues,
explained in more detail below, 1s handled by the processor
providing MAI 302 with a small set of butler addresses. This
approach might require an extra copy of the data being buil-
ered, but this copy might have only a small performance
impact because of the aggregate bandwidth provided by the
memory subsystem and the intelligent management of the
cache. No extra external memory access cycles will be
required for this copy.

Returning to FIG. 1, external memory intertace 150 pro-
vides a multi-bit interface for external memory 160. Prefer-
ably, external memory mtertace 150 1s a standard interface,
such as DDR3 (double data rate, version 3). Interface 150
might contain multiple DRAM controllers that accept cycles
from multiple system caches 204. In embodiments of the
present invention, the system cache number and a hash of the
upper bits of the address are used to determine the chip select
(when multiple banks of cache are used) and also the bank
selects. With the randomized striping across the system
caches, as described in more detail below, this has the effect of
evenly distributing all cycles across the chip selects and cache
banks. This provides a more deterministic DRAM pertor-
mance than without randomized striping. This, combined
with the request priority information provided by the system
cache, allows high DRAM utilization with deterministic and
consistent performance.

Shared memory 110 1s treated as a system-wide cache
(shown 1n FIG. 2 as system caches 204) having conventional
cache architecture with a number of extensions. In one
embodiment, the cache 1s an 8-way associative with LRU (last
recently used) data eviction to external memory 160. Possible
extensions to the cache operation are:

1. Cache line valid might be tracked independently for each
half of each cache line.

2. Accesses from processors 114,-114, . might be 1ssued
speculatively to the system cache. This allows the system
cache to start 1ts tag lookup 1n parallel with the cache coher-
ency operation between the processors.

3. Padded write operations might be provided. Padded
write operations are used when data 1s being written into
packet bulfers and message FIFOs (not shown) in shared
memory 110 to avoid unnecessary reads from external
memory 160.

4. Read with invalidate operations might be provided. Read
with invalidate operations are used when data i1s being read for
the last time to prevent unnecessary write-backs to the exter-
nal memory 160 when data 1s no longer needed.

5. The cache might support two priority levels (1n addition
to the crossbar priorities). Cache misses from the processors
are at high priority levels. Also, I/O cores 120,-120,, 1ssue
high priority memory requests when the respective read-

US 9,081,742 B2

9

ahead or write-behind FIFOs (not shown) are nearing a tull
threshold. This 1s used to avoid underruns and overruns by the
I/0 cores. These priority levels atffect both the order 1n which
the cache runs operations, but1s also forwarded to the external
memory controller 150 when an operation requires an exter-
nal memory access.

To generate the physical address to the striped caches 204
trom the logical addresses passed through the crossbar switch
202, a hash calculation based on at least a portion of the
logical address 1s performed to select which of the caches 204
are addressed. In embodiments of the present invention, a
single clock cycle hash algorithm was chosen. By using an
exclusive-OR of groups of the logical address bits, a hash
value 1s generated to select which portion of memory 110 1s
accessed. In embodiments of the present invention, memory
blocks for caches 204 might be dynamically allocated in one
of the following sizes: 256, 2048, 16384, and 65536 bytes.
The allocated memory blocks might typically be employed to
store packet data. To avoid a bias towards the beginning of the
blocks for memory accesses by always storing data starting at
the beginning of the block and continuing sequentially into
the block, the hash calculation based on at least a portion of
the logical address 1s performed to select which of the caches
204 are addressed.

For example, if there are sixteen caches (2°=16), then the
hash algorithm generates a four-bitresult. An exemplary four-
bit hash algorithm of a 36 bit logical address to a four-bit hash
value 1s (A(35:32) A(31:28) A(27:24) A(23:20) A(19:16)
"A(17:14) A(14:11) A(11:8)) & Oxf, where A(X:Y) are bits
X through Y, inclusive, of the logical address, “*” represents
the logical function exclusive-OR, and “&” represents the
logical AND function. The physical address 1s a 32-bit value
tformed by a concatenation of logical address bits 35:12 and
bits 7:0, with the hash value used to select one of the sixteen
2°*-entry caches 204. The hash algorithm and the resulting,
physical address provide suiliciently random mapping of the
logical address to the physical address, such that memory
hot-spotting and cache-access and external memory access
bottlenecks are significantly reduced. For example, to avoid
having bias to the beginning of the memory block, memory
address bits A(14:11), A(17:14), and A(19:16) might be
hashed since these groupings correspond to the address bits
just above the bits used to address an individual 2048, 16384,
and 65536 byte block, respectively. This approach might be
used to define the hash function for 2, 4, and 8 memory arrays
in Network Processor 100. In addition, the algorithm uses
only simple logical functions and 1s fast to perform. It 1s
understood that other algorithms, combinations of bits, or
hash value sizes might be used for the hashing algorithm.

Special Purpose Engine Core Examples

The uP cores and engine cores (accelerators) illustrated in
FIGS. 1 and 2 might be categorized into three categories: 1)
multi-threaded special purpose processors, 11) software-
driven hardware accelerators, and 111) command-driven hard-
ware accelerators. A multi-threaded special purpose proces-
sor 1s preferably designed for processing that 1s dominated by
random sequences of memory accesses. Deep packet inspec-
tion and packet classification engines are the best example of
processes requiring random memory accesses. A software-
driven hardware accelerator 1s preferably designed for pro-
cessing that 1s best handled by hardware accelerators, but
benelits from direct software control, such as traffic manage-
ment and scheduling. Each decision 1n traific management
can be sequentially dependent on every prior decision. A
command-driven hardware accelerator 1s specially designed
hardware that can be directed on a packet-by-packet basis. An
example of a command-driven hardware accelerator 1s a cryp-

10

15

20

25

30

35

40

45

50

55

60

65

10

tographic engine. Except for the I/O core 112, the following
cores are examples of engine cores 120,-120,, shown 1n
FIGS. 1 and 2. A given implementation of Network Processor
100 might include zero or more of each of the following
exemplary cores.

I/0O core 112 provides I/O interfaces and 1n exemplary
embodiments 1s a command-driven hardware accelerator that
connects the Network Processor 100 to external devices. As
described herein, Network Processor 100 might include one
or more I/O cores. Recetved packets are preferably placed 1n
shared memory 110 and then one or more corresponding
tasks are sent out. Transmitted packets are preferably received
from a task and transmitted externally. Exemplary I/O inter-
faces include Ethernet /O adapters providing integrity
checks of incoming data. The I/O adapters might also provide
timestamp data for recerved and transmitted packets that
might be used to implement features such as timing over
packet (e.g., IEEE 1588). In alternative embodiments, 1/O
cores 112 might be implemented as mput (receive) only or
output (transmit) only interfaces.

The Modular Packet Processor (MPP) 1s a multi-threaded
special purpose processor that provides tree based longest
prefix and access control list classification. The MPP also has
a hardware hash-based classification capability with full
hardware management of hash-table additions, deletions, and
collisions. Optionally associated with each hash entry 1s a
timer that might be used under software control for tasks such
as connection timeout and retransmission timing. The MPP
contains a statistics and state management engine, which
when combined with the hash table and timer facilities, pro-
vides support for state-based protocol processing. The MPP
might support millions of flows, limited only by the amount of
DRAM capacity assigned to the functions. The MPP archi-
tecture might be able to store all per thread state 1n memory
instead of in register files.

The Packet Assembly Block (PAB) 1s a command driven
hardware accelerator providing a holding butfer with packet
assemblyj transmit, retransmit, and delete capabilities. An
incoming task to the PAB can spec1fy to insert/extra data from
anywhere 1n any assembly builer. Gaps are supported 1n any
butler. Locations to 1nsert and extract can be specified to the
bit level. Exemplary traditional packet reassembly functions
might be supported, such as IP defragmentation and AALS.
The PAB maight also support generalized holding butfer and
sliding window protocol transmit/retransmit buifering, pro-
viding an oitload for features like TCP origination, termina-
tion, and normalization.

The Modular Tratfic Manager (MTM) 1s a software-driven
accelerator that provides packet scheduling and possibly up to
s1x levels of scheduling hierarchy. The MTM might support
millions of queues and schedulers (enabling per tlow queuing
if desired). The MTM might provide hardware support for
shaping and scheduling with dual leaky token schedulers and
smooth deficit weighed round robin (SDWRR) for every
queue and scheduler. The M'TM might also support multicast-
ing. As described herein, the multicast facility uses the refer-
ence count capabilities of MMB 140 to avoid any unneces-
sary copies of data. Each copy of a packet 1s scheduled
independently and can traverse down different virtual pipe-
lines. This enables multicast with independent encapsula-
tions or any other processing. The MTM might also contain a
special purpose processor that can be used for fine-grained
control of scheduling decisions. This processor can be used to
make discard decisions as well as scheduling and shaping
decisions.

The Stream Editor (SED) 1s a software-driven accelerator
that allows for editing of packets. The SED performs packet

US 9,081,742 B2

11

editing functions that might include adding and moditying
packet headers as well as fragmenting or segmenting data
(e.g., IP fragmentation). The SED receives packet data as well
as parameters from tasks and a task specified per-tflow state.
The output of the SED becomes the outgoing packet data and
can also update task parameters.

The Regular Expression (RegEx) engine 1s a packet search
engine for state-based cross-packet pattern matching. It 1s
multi-threaded accelerator. An exemplary RegEx engine
might be implemented such as described mn U.S. Pat. No.
7,439,652 or U.S. Patent Application Publication No. 2008/
0270342, both of which are incorporated by reference herein
in their entireties.

The Security Protocol Processor (SPP) provides encryp-
tion/decryption capabilities and 1s a command-driven hard-
ware accelerator, preferably having the flexibility to handle
protocol variability and changing standards with the ability to
add security protocols with firmware upgrades. The ciphers
and 1ntegrity (hash) functions might be implemented in hard-
ware. The SPP has a multiple ordered task queue mechanism,
discussed 1n more detail below, that 1s used to load balance
across the threads.

The Protocol Integrity Checker (PIC) 1s a command-driven
hardware accelerator that provides CRC/checksum checking,
and generation features. It might support multiple CRC func-
tions, including software-specified polynomials. It might
support IP/UDP/TCP checksums for IPv4 and IPv6. When
checking CRCs and checksums, the results are available as
output task parameters. When inserting CRCs and check-
sums, the packet data 1s modified as required.

The timer manager 1s a command-driven hardware accel-
crator that provides support for timers for the processors 114.
For example, 1t recerves tasks specilying a timer ID, a timeout
value and a tag that will be returned to the software when the
timer expires. Timers can be reset and cancelled as well.
When a timer expires, a task 1s sent to the processor with the
timer 1D and the tag specified. With the task communication
mechanism provided by the MAI 302 (FIG. 3), a large num-
ber of timers can be managed with low processor overhead.

Tasks and Task Processing

As mentioned above, operations of the cores 1n Network
Processor 100 are controlled using tasks. A task might contain
a data packet, but might also contain only commands and
metadata. A task 1s a request from a source entity or source
core to a destination entity or destination core for the desti-
nation core to perform some processing task. Tasks are com-
municated via memory-based FIFO queues 142. These
queues exist 1 shared memory 110. The system cache opti-
mization features defined above are used to ensure that task
communication does not require frequent access to external
memory 160. Embodiments of the present invention provide
a distributed messaging facility, for the purpose of avoiding
bottlenecks or head-of-line blocking 1ssues, as 1s often the
case with dedicated hardware queues. There 1s no hardware-
imposed limit on the depth (or size) of any task queue (e.g.,
FIFOs 142). There are software-configured limits that can
impose a policy on the depth allowed of any FIFO.

Each task has a priority. In some embodiments, there are
cight priority levels but other numbers of priority levels might
be provided. A module (e.g., cores 114,-114,, and 120, -
120,,) can have multiple input queues. The task priority can be
configured to select which queue any given task goes 1n, or to
select a threshold by which a task 1s rejected, as described 1n
more detail below. This directly supports the commonly
known “diffserv” model, of EF/AF/BE (expedited forward-
ing, assured forwarding, best effort forwarding) packet
model. In addition, task queue depths can be used to generate

10

15

20

25

30

35

40

45

50

55

60

65

12

backpressure information. The backpressure information can
be referenced by software and by the traiffic manager enabling
intelligent response to oversubscription cases.

A task 1s a data structure that preferably contains the fol-
lowing 1tems:

1. Identification of which virtual pipeline this task 1s on;

2. Packet specific parameters and engine instructions for

the virtual pipeline;

3. Inline data (header and trailer); and

4. Pointers to data stored in memory 110.

The following data limitations might be supported 1n the
task structure:

1. Up to 96 bytes of header data and 8 bytes of trailer are

inline 1n the task:

2. Small packets do not require indirect (pointer only)

blocks; and

3. Large packets can have editing done to headers and

trailers without rewriting packet.

A task can contain only parameter data or only packet data
(although, 1n practice there are some parameters and instruc-
tions along with almost every packet). Inline data 1s used for
two different cases. One case 1s for small packets. For this
case, only 1nline data 1s used. Another case 1s where a large
packet has had some edits done. In this case and for example,
i the changed data 1s within the first 96 bytes of the packet,
the changed part of the data can be put inline and the data
pointers updated. A heuristic 1s used to determine when 1t 1s
more appropriate to make a copy of the entire packet, orto use
the inline data to handle any edits. This ability to edit the
packet by adding inline data optimizes several typical cases,
including updating IP/UDP/TCP checksums and adding 1.2
cache headers.

As will be described with regard to FIG. 8, tasks are built
using task templates that describe a processing sequence
through the chip. Templates are not flow specific, but rather
describe a virtual pipeline through the engines. Templates are
parameterized, allowing the commands to 1nclude not only
generic instructions, but also per packet and per flow infor-
mation. These templates are stored 1n the cores as described
below.

A template merging process creates next task from a com-
bination of incoming task, engine outputs and template 1itself.
This mechanism allows the commands to any given point 1n
the pipeline to come from any prior point in the pipeline
(including the launching point). It also allows the pipeline
definition to specity parts ol the commands, avoiding the need
to have all the commands come explicitly with the task.

In exemplary embodiments, virtual pipelines are defined
by the software developer. Based upon the virtual pipelines,
the run time soitware produces the templates accordingly.
Virtual Pipelines are defined by:

1. For each pipeline, define the sequence of processors to
be used.

2. For each processor, the required command fields.

3. For each field, the source module, data output from a
previous engine 1n the virtual pipeline or data that 1s constant
for the pipeline.

For mterfacing to the processor cores 114,-114, ,(e.g., via
the MAI 302), the virtual pipeline defines the data sent or
received from the processors. In the virtual pipeline defini-
tion, these are the fields that are used (instead of hardware
defined fields) 1n a data structure corresponding to the task
parameters sent or recerved via MAI 302.

Exemplary Virtual Pipeline Operations

FIG. 5 shows a flow of two exemplary virtual pipelines
through Network Processor 100. FIG. 5 shows a first virtual
pipeline sequence 520 for processing an exemplary packet,

US 9,081,742 B2

13

and a second virtual pipeline 522 for processing another
exemplary packet. As shown 1n FIG. 5, virtual pipeline 520
defines a processing order starting at input intertace 502 (such
as the I/O core 112 of FIG. 1), engine core 504, engine core
508, processor core 312, engine core 506, and finally output
interface 314. However, another packet received by the mput

interface 502 might be processed 1n accordance with second
virtual pipeline 522. As shown 1n FIG. 5, virtual pipeline 522
also defines a processing order starting at input interface 502
and engine core 504 but then proceeds to engine core 310 and
then output interface 514. Processor core 512 and engine
cores 506 and 508 are not included 1n virtual pipeline 522.
Because only those cores that are required are included 1n a
virtual pipeline, Network Processor 100 has increased effi-
ciency ol processing data packets. Each engine core includes
template tables describing the task parameters and task for-
mat for processing by the next engine for each task on a given
virtual pipeline, and which task parameters are consumed by
the current engine. In an exemplary embodiment of the
present invention, engine core 304 might be a packet classifier
that parses incoming packet and determines what tasks (vir-
tual pipeline) are to follow for a given packet. Engine core 506
might be a scheduler that transmits outgoing task according to
configured schedule parameters. Engine core 508 might be a
decryption engine that decrypts packet prior to sending it to
processor core 512. Engine core 510 might be a data packet
modifier that updates packet data before sending 1t out via
output interface 514.

Other exemplary virtual pipeline operations include a pro-
cessor-only model, accelerator-only, pre-processing, post-
processing, and fast path models. In a processor-only model,
packets from 1I/O core 112 are sent straight to MAI 302 and a
processor core processes them. Resulting packets are sent out
via MAI 302 to IO core 112. In this exemplary processor-
only model, I/O core 112 and MAI 302 might be employed as
an optimized I/O interface.

The accelerator-only model, similar to the non-pipelined
prior art network processor architecture, uses the acceleration
functions 1n a non-pipelined fashion. This can be used for a
processor to use the SPP accelerator or RegEx accelerator in
a traditional co-processor model.

The pre-processing model 1s focused around 1dentifying
parts of the packet that can be handled before the packet 1s
processed on a general purpose processor. Some examples of
things that are typically handled in a pre-processing model
are:

1. State-based packet classification

2. IP de-fragmentation

3. TCP assist/offload

4. Rate shaping

5. Decryption (e.g., IPS/Kasumi/Snow3QG)

6. RegEX processing

With pre-processing, a packet arrives at the processor,
skipping over the steps that are already completed. For
example, 1 IPS applications, the MPP core performs flow
classification and then the PAB core performs IP defragmen-
tation and TCP normalization. Once the TCP data stream 1s
normalized, 1t 1s then sent through the RegEx core, and the
resulting packet with RegEx conclusions 1s sent to the pro-
cessor for the actual packet processing. Another example
would be to perform the decryption of IPS tunnels before
sending the packet to the processor.

The post-processing model 1s analogous to the pre-pro-
cessing model. In the post-processing model, steps that occur
at the end of packet processing are 1dentified and when the
processor sends out a packet, these steps are performed.

10

15

20

25

30

35

40

45

50

55

60

65

14

These steps are skipped at the end of normal processing.
Some examples of things that can be handled via post-pro-
cessing are:

1. Scheduling/shaping
2. Encryption

3. Checksum/CRC generation

4. IP fragmentation

5. Multi-cast

The fast path model 1s useful for packets that can be
handled completely outside of the processors 114,-114, .. For
example, a virtual pipeline tlow might start out in the pre-
processing/post-processing model, but then the software run-
ning in a processor determines that a given tlow does not
require the processing by a processor 114,-114, and then
switches the flow to the fast path. One example of this from an
IPS application would be to have a processor determine that a
grven TCP session 1s transierring video data (which would not
need any additional IPS processing). Once that determination
1s made, the MPP core classification can be updated so that
any future packets for this tlow stay entirely in the engine
cores. In this case, the combination of what would have been
the pre-processing and post-processing are connected
together (using a different virtual pipeline) and packets from
this flow do not consume any further processor cycles.

Task Management

FIG. 6 shows a block diagram of exemplary task ring
managers for each core of the network communications pro-
cessor of FIG. 1. As shown 1n FIG. 6, each core includes a task
ring manager that includes two register stages: an input reg-
ister stage (Task Destination Module 602) and an output
register stage (Task Source Module 604) for commands on
the task ring. The task destination modules 602 and 614
accept incoming tasks, maintain pointers for the task queues
in the corresponding core, and pass recerved tasks to task
consumers 608, 610, 620, 622 through task FIFOs 606 and
618. Task source modules 604 and 616 accept tasks from task
producers 612 and 624, store the tasks in a temporary builer
(not shown) and send them out on task ring 130. Task Desti-
nation Module 602 stores the task command sent from a
previous module on the ring and Task Source Module 604
stores the task command that needs to be sent to anext module
on the ring. Task Source Module 604 can 1nsert a task com-
mand on the ring 11 the 1nput register either has an empty slot
or if the 1nput register has a task command whose destination
1s this module.

If the mput register has a task command that 1s not for this
module, the module should copy this command on to its
output register stage. There 1s an interface between the task
destination module and the task source module that 1s used to
pass an incoming task to the output of the task manager, for
example to provide memory access for the task source mod-
ule for task dropping, described below. Should too many
requests be received for a core (a destination core) to process
or the queues for the core are reaching a maximum, a back-
pressure 1s sent on task backpressure ring 640. When a core
that 1s 1ssuing tasks (a source core) recetves a backpressure
signal propagated along task backpressure ring 640, that
source core should stop 1ssuing further task requests on task
ring 130. In this example, each core has four holding buiier
locations that are used to store requests and allow responses to
flow during request backpressure. The holding buifers are
used only when task flow control 1s active.

A source core, for example core 1 or a core prior to core 1
on the ring, sends a task to a destination core, here core 2, by
sending a task request signal or message on task request ring
130. Core 2 sends a response to core 1 on task request ring 130
that indicates an address to write the task, and core 1 appends

US 9,081,742 B2

15

the task data structure to input task FIFO queue 618 of core 2.
Core 1 then sends an acknowledge signal that the write 1s
complete on task acknowledge ring 642. Multiple cores can
append tasks to the same mput FIFO simultaneously to form
a fully distributed system for the purpose of avoiding bottle-
necks. In exemplary embodiments, the FIFO management
structure supports one task enqueued per clock cycle 1n aggre-
gate, which 1s a high enough rate where the task management
mechanism 1s generally not considered to be a bottleneck.

FI1G. 7 shows a flow diagram of an exemplary process 700
for sending tasks between one or more cores of the network
communications processor by appending to one of 1ts mput
task queues a message via task ring 130. Messages are used to
manage the memory locations 1n shared memory 110 to write
the tasks. At step 702, a source core defines a task to be
performed by a destination core and, at step 704, the source
core sends a task request around the ring with the ID of the
destination source and the size of the relevant task. The task
request might also include additional data, such as a priority
indication and order ID. The task request moves from core to
core along task ring 130 until the destination core recerves the
request, as illustrated in steps 706-710. At step 712, the des-
tination core determines which of 1ts task queues 1s to store
the task, as will be discussed in more detail below. If, how-
ever, at step 714 the destination queue 1s determined to be
filled beyond a threshold depth 11 the task 1s accepted, at steps
716 and 718 the designation core effectively instructs the
source core to discard the task and the associated task data.
Steps 716 and 718 might typically include similar communi-
cation ring steps such as 1illustrated in steps 706-710. I the
queue will not be filled beyond the threshold depth, then at
step 720 the source core increments a queue write pointer by
the task size, adds an entry to a table of pending tasks and
allocates new blocks of memory for the task queue, 11 needed.

At step 722, the destination core responds to the source
core with the memory address at which to write the new task,
and the response propagates along the task ring until reaching
the source core 1n steps 724-728. At steps 730 and 732, the
source core then writes the task at the specified address and
responds to the destination core with an acknowledgement on
the task ring at step 734. The acknowledgment indicates to the
destination core that the task data 1s now ready. The acknowl-
edgement propagates around the task ring until the source
core receives the acknowledgement at steps 736-740, and at
step 742, the destination core updates a table of pending tasks
with the acknowledgement. Because there might be several
tasks being written 1n a given queue at any time, the queues
are able tolerate gaps in the queue 1if a later arriving task
complete a write to cache before the earlier task finishes
writing the queue. To handle this, at step 744, the destination
core manages the fact that there could be several of these task
writings 1 process at a time by checking to see 1f any of the
gaps are closed when the acknowledgement 1s sent. Then, at
step 746, the destination core updates a pointer (a “written”
pointer that, when it does not equal a write pointer, indicates
that a gap exists 1n the queue). The destination core then
simply reads the next task from a simple FIFO queue. At step
748 the task transier 1s complete.

FI1G. 8 shows a block diagram of an exemplary flow of tasks
between one or more cores and task template processing such
as described with regard to FI1G. 7. Shown in each of the cores
are templates stored therein that are used to interpret fields 1n
a received task or set the contents of a task being sent out. As
shown here, input templates are stored in memories 810, 822,
and 834 located 1n each core 802, 804 and 806, respectively.
For example, mput task template processing block 812
receives an input task 808 and the template stored in memory

10

15

20

25

30

35

40

45

50

55

60

65

16

810 1s used by template processing block 812 to interpret
input task 808. A template identification field (templatelD) 1n
the task 1s used to address a template memory. Core logic
block 814 processes the task and, if a subsequent task 1s
needed to further process, for example, a packet, core logic
814 requests a new task that output template processing block
818 formats in accordance with an output template stored 1n
memory 816 located 1n core 802 and 1s addressed by the same
templatelD used to address the input template memory 810.
Static parameters for output template processing block 818 1n
core 802 might be stored in shared memory 110.

Static parameters are typically stored in table memory
space 404 (F1G. 4), as described above. The static parameters
might include multiple template tables, all same-sized entries
being stored in the same table. The task source core, for
example core 802, addresses the template static parameters
by generating the template type and an index. The type selects
a base register that points to the first entry in the table. The
index 1s used to get the particular set of parameters needed by
output template processing block 818. There might be more
than one mput task template stored 1n memory 810 and more
than one output template stored 1n memory 816 although,
depending on the type of core, there might not be an 1mput
template processing (e.g., 1n an packet receive-only core) or
output template processing (e.g., a packet transmit-only core
such as core 806) and the associated hardware removed.
Which template 1s selected for a given task depends on the
type of task and the destination core for the task. These
templates are defined by configuration software and data
loaded when Network Processor 100 1s mnitially programmed
and might depend on the type of packet or data being pro-
cessed by a given core at a given time.

In exemplary embodiments, a source core that writes a task
to a destination core might use special cache operations that
do not require reads of the external memory 160. In this
instance, the destination core invalidates the cache lines as it
reads data out of the queue. With the typical task queue being
relatively shallow, it 1s possible that no accesses of external
memory 160 are required. However, 1t might be desired to
allow task queues to get sutficiently deep to handle oversub-
scription, for example, there 1s no mtrinsic limit to the depth
of the cache.

FIG. 9 shows a block diagram of an exemplary task queue
structure of a destination core. As shown 1n FIG. 9, a first task
902 from one of the cores (a source core) 1s stored in the
queue, beginning at Address 1. Task 902 1s followed by a
second task 904 and a third task 906. Tasks 902-906 might be
from any of the cores of Network Processor 100. Task 906 1s
tollowed by a fourth task 908. However, task 908 exceeds a
memory boundary of the first memory block of queue 900. In
exemplary embodiments of the present invention, the
memory boundary of each block 1s 2 kB. Thus, as a source
core writes task 908 to the queue, the source core appends
data 910, which provides a pointer to a next, linked, block of
memory where the remainder of the fourth task 1s stored,
starting at Address 2. Empty space 912 1n the second block 1s
available for additional tasks to be stored therein.

As mentioned above, each core might have multiple (thou-
sands for some cores, such as I/O core 112) task queues
associated therewith. In this case and as discussed in connec-
tion with step 712 1 FIG. 7, assigning a task to a particular
queue depends on several factors, such as whether the queues
are ordered queues, the number of tasks 1n a given queue, and
the size or depth of the queue. Ordered task queues support
parallel processing of packets while keeping packets from a
given tlow 1n order. An ordered task queue 1s a virtual queue
that maps to a set of real queues. Tasks are sent to a virtual

US 9,081,742 B2

17

queue, and then the task management system determines
which real queue the task should be placed mto. For packets
going to a processor core, virtual queuing enables parallelism
and threading of the application code. Ensuring that a single
flow 1s never in more than one processor at a time enables the
creation of software without “spin locks” or other complex
sequencing operations. This 1s also used for the cryptographic
SPP core and deep-packet inspection (RegEX) cores, enabling
the use of multiple hardware threads. For the SPP, this 1s
needed because a packet from a given flow cannot be started
until the previous one has completed. Without this kind of
load balancing, only a single thread could be used, limiting
performance. The deep packet inspection has the same char-
acteristic when doing cross packet inspection.

The mechanism used for the ordered task queues can be
described as dynamic flow pinning and is 1llustrated in FIG.
10. When a task arrives, tlow 1D 1008 1s checked to see 11 any
of the physical queues, shown as queues 1002 and 1004,
already include flow ID 1008. It the flow ID 1s in a physical
queue, then the new task must be placed in the same queue. If
the flow 1D 1s not 1n any physical queue, then the new task 1s
placed in the least loaded queue. The definition of least loaded
might be chosen to be based either on 1) the number of tasks
in the queue or 11) the total amount of packet data represented
by those tasks. The number of tasks 1s used when the work per
task 1s constant. The number of bytes 1s used when the work
per task varies with the packet size.

In embodiments of the present invention, ordered task
queues are managed by generating a hash function of the flow
ID. The hash function 1s used to index a table that specifies
which physical queue a given task 1s 1. The flow ID 1s
determined from data 1n the task parameters. The determina-
tion of which data from the task parameter 1s defined by the
virtual pipeline templates discussed above. The hash
described herein offers acceptable performance since, 1n the
instance ol a hash value collision, it 1s acceptable for two
different tlows to have the same hash value for the purpose of
ordering, so long as a single tlow 1s always recognized such
that ordering 1s maintained.

FIG. 11 shows a flow diagram of an exemplary ordered
queue task determination and assignment process. These
steps expand the function of step 712 of FIG. 7. A task
received by the destination core at step 1102 1s to be written
into one of several queues associated with the destination
core. At step 1104, the destination core checks the order
identification, Order 1D, of the task and, at steps 1106 and
1108, a hash of the ID is performed to index a table that
specifies which physical queue to check whether a task with
the same ID 1s already queued. If another task with the same
Order ID was found in one of the queues, then at step 1120 the
task 1s written into the same queue to maintain task tlow order.
I1, however, at step 1108 no task having the same Order 1D
was found to be 1 a queue, then it might be desirable to
balance the task queues by assigning the task to a queue that
1s least loaded. Based on the type of task as determined 1n step
1112, 1f the task has data associated therewith then the task 1s
written 1into the queue that has smallest amount of data (step
1114) or, 11 the task 1s a non-data task then task 1s written into
the queue with the fewest tasks therein (step 1116). Lastly, the
Order 1D of the written task 1s added to the queue table 1n step
1118. The virtual queue mechanism also supports unordered
task queues. These are virtual queues that provide load bal-
ancing where no flow ordering 1s required or possible (e.g.,
when there 1s no flow ID at all).

While the exemplary embodiments of the present invention
have been described with respect to processing blocks 1n a
software program, including possible implementation as a

10

15

20

25

30

35

40

45

50

55

60

65

18

digital signal processor, micro-controller, or general purpose
computer, the present invention 1s not so limited. As would be
apparent to one skilled in the art, various functions of sofit-
ware might also be implemented as processes of circuits.
Such circuits might be employed 1n, for example, a single
integrated circuit, a multi-chip module, a single card, or a
multi-card circuit pack.

The present invention can be embodied in the form of
methods and apparatuses for practicing those methods. The
present invention can also be embodied in the form of pro-
gram code embodied 1n tangible media, such as magnetic
recording media, optical recording media, solid state
memory, toppy diskettes, CD-ROMs, hard drives, or any
other non-transitory machine-readable storage medium,
wherein, when the program code 1s loaded 1nto and executed
by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention. The present invention
can also be embodied 1in the form of program code, for
example, whether stored 1n a non-transitory machine-read-
able storage medium, loaded into and/or executed by a
machine, or transmitted over some transmission medium or
carrier, such as over electrical wiring or cabling, through fiber
optics, or via electromagnetic radiation, wherein, when the
program code 1s loaded 1nto and executed by a machine, such
as a computer, the machine becomes an apparatus for prac-
ticing the invention. When implemented on a general-purpose
processor, the program code segments combine with the pro-
cessor to provide a unique device that operates analogously to
specific logic circuits. The present immvention can also be
embodied 1n the form of a bitstream or other sequence of
signal values electrically or optically transmitted through a
medium, stored magnetic-field variations 1n a magnetic
recording medium, etc., generated using a method and/or an
apparatus of the present invention.

It should be understood that the steps of the exemplary
methods set forth herein are not necessarily required to be
performed 1n the order described, and the order of the steps of
such methods should be understood to be merely exemplary.
Likewise, additional steps might be included 1n such meth-
ods, and certain steps might be omitted or combined, 1n meth-
ods consistent with various embodiments of the present
invention.

As used herein 1n reference to an element and a standard,
the term “compatible” means that the element communicates
with other elements 1n a manner wholly or partially specified
by the standard, and would be recognized by other elements
as sulliciently capable of communicating with the other ele-
ments 1n the manner specified by the standard. The compat-
ible element does not need to operate internally 1n a manner
specified by the standard.

Also for purposes of this description, the terms “couple,”
“coupling,” “coupled,” “connect,” “connecting,” or “con-
nected” refer to any manner known 1n the art or later devel-
oped 1n which energy 1s allowed to be transferred between
two or more elements, and the interposition of one or more
additional elements 1s contemplated, although not required.
Conversely, the terms “directly coupled,” “directly con-
nected,” etc., imply the absence of such additional elements.
Signals and corresponding nodes or ports might be referred to
by the same name and are interchangeable for purposes here.

It will be further understood that various changes 1n the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain the nature of
this invention might be made by those skilled in the art with-
out departing from the scope of the invention as expressed 1n
the following claims.

US 9,081,742 B2

19

We claim:
1. A system coupled to a network, the system comprising:
a plurality of ring-coupled processing cores, the processing,
cores coupled by at least one ring bus; and
a common memory adapted for direct communication with
cach of the processing cores, the common memory com-
prising a plurality of addressable memory arrays;
at least one of the plurality of processing cores configured
to generate one or more task messages corresponding to
at least a portion of data packets received from the net-
work;
cach processing core configured to:
send a task message over the at least one ring bus to an
adjacent processing core coupled to the ring bus, the
task message having a corresponding one or more

destination processing cores;
check, upon receiving a task message, whether the pro-

cessing core 1s a destination processing core for the

task message and, 1f not, pass the task message

unchanged to a next adjacent processing core coupled

to the ring bus, whereby the task message 1s passed

from the source processing core to each correspond-

ing destination processing core on the ring bus;

if the processing core 1s a destination engine for the task

message, the processing core 1s configured to:

read from the task message (1) an address of data in the
common memory to be accessed by the destination
processing core, and (11) a flow i1dentifier of the
task:

compute a hash value based on at least a part of the
address; and

select, based on the computed hash value and the flow
identifier of the task, one of the plurality of addres-
sable memory arrays in which to store the received
task:

wherein, by having at least one of the processing cores

receive a task message, execute a task, and provide a
subsequent task message to a subsequent processing
core based on the received data packet, a virtual pipeline
1s defined for processing the recerved data packet, the
virtual pipeline defining a flow order for each task mes-
sage through two or more of the plurality of processing
cores, and wherein each task message comprises a field
indicating one of the plurality of virtual pipelines
through which the task message 1s processed.

2. The system of claim 1, wherein:

the system 1s a network processor adapted to recerve data

packets.

3. The system of claim 1, wherein the tasks are stored 1n the
common memory 1n one or more queues, each processing
core having at least one dedicated queue.

4. The system of claim 3, wherein the queues are arranged
as FIFO queues.

5. The system of claim 1, wherein at least one of the
processing cores 1s a programmable processor.

6. In a system coupled to a network, the system having a
plurality of processor cores and common memory 1n direct
communication with the cores, the common memory com-
prising a plurality of addressable memory arrays, a method of
communicating between a task source core and a task desti-
nation core, the method comprising:

generating, by the task source core, a task message for the

task destination core;

transmitting, by the task source core, the task message

directly to a receiving processing core adjacent to the
SOUrce processing core;

10

15

20

25

30

35

40

45

50

55

60

65

20

11 the recerving processing core 1s not the task destination
core;
passing by the receiving processing core the task mes-
sage unchanged to a processing core adjacent the
receiving processing core;
11 the receiving processing core 1s the task destination core:
determining (1) an address of data in the common
memory to be accessed by the destination processing
core and (11) a flow 1dentifier of the task message;
computing a hash value based on at least a part of the
address:
selecting, based on the computed hash value and the tlow
identifier of the task message, one of the plurality of
addressable memory arrays in which to store the
received task message; and
processing the task message,
wherein, by at least one of the processing cores receiving a
task message, executing a task, and providing a subse-
quent task message to a subsequent processing core
based on the received data packet, a virtual pipeline 1s
defined for processing the receirved data packet, the vir-
tual pipeline defiming a flow order for each task message
through two or more of the plurality of processing cores,
and wherein each task message comprises a field 1ndi-
cating one of the plurality of virtual pipelines through
which the task message 1s processed.
7. The method of claim 6, wherein the method 1s 1imple-

mented by a machine executing program code encoded on a
non-transitory machine-readable storage medium.

8. A system comprising:

a plurality of processing cores coupled by a ring network;
and

a common memory adapted for direct communication with
cach of the processing cores, the common memory com-
prising one or more queues 1n a plurality of addressable
memory arrays, wherein each processing core has at
least one dedicated queue;

wherein each of the processing cores 1s adapted to (1)
transmit a task message to an adjacent processing core
coupled to the ring network, the task message having a
corresponding one or more destination processing cores,
(2) check, upon receiving a task message, whether the
processing core 1s a destination processing core for the
task message and, i not, pass the task message
unchanged to a next adjacent processing core coupled to
the rng network, whereby the task message 1s passed
from the source processing core to each corresponding
destination processing core on the ring network, (3) 1f
the processing core 1s a destination engine for the task
message, the processing core 1s configured to read from
the task message (a) an address of data 1n the common
memory to be accessed by the destination processing
core, and (b) a flow 1dentifier of the task, (4) compute a
hash value based on at least a part of the address, and (5)
select, based on the computed hash value and the flow
identifier of the task, one of the plurality of addressable
memory arrays in which to store the recerved task;

wherein the task messages are pointers to tasks stored in the
one or more queues, wherein the one or more queues are
determined based on (1) a hash value and (11) a flow
identifier associated with the task message;

wherein the one or more queues are adapted to recerve
tasks simultaneously from multiple of the plurality of
processing cores, and

wherein by having at least one of the processing cores
receive a task message via the ring network, execute a
task, and provide a subsequent task message to subse-

US 9,081,742 B2
21

quent processing core, via the ring network, based on the
received data packet, the network processor 1s adapted to
function as a virtual pipeline for processing the recerved
data packet, the virtual pipeline defining a flow order for
cach task message through two or more of the plurality 5
of processing cores, and wherein each task message
comprises a field indicating one of the plurality of virtual
pipelines through which the task message 1s processed.

G x e Gx o

22

	Front Page
	Drawings
	Specification
	Claims

