a2y United States Patent
Khayat et al.

US009081674B2

US 9,081,674 B2
Jul. 14, 2015

(10) Patent No.:
45) Date of Patent:

(54) DUAL MAPPING BETWEEN PROGRAM

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

STATES AND DATA PATTERNS

Applicant: Micron Technology, Inc., Boise, 1D

(US)

Inventors: Patrick R. Khayat, San Diego, CA
(US); Sivagnanam Parthasarathy,
Carlsbad, CA (US); Mustafa N.
Kaynak, San Diego, CA (US)

Assignee: Micron Technology, Inc., Boise, 1D
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 200 days.

Appl. No.: 13/780,499

Filed: Feb. 28, 2013

Prior Publication Data

US 2014/0244964 Al Aug. 28, 2014

Int. CI.

G11C 29/00 (2006.01)

Gool’ 12/06 (2006.01)

U.S. CL

CPC e, Gool 12/06 (2013.01)

Field of Classification Search

CPC e GO6F 12/06

USPC 714/768; 711/103; 365/185.02, 185.09

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,469,931 B1* 10/2002

0,587,372 B2
6,959412 B2
7,030,789 Bl

7/2003 Blodgett
10/2005 Silvus et al.

4/2006 Cideciyan et al.

1.5 BITS/CELL
652

CELLT
STATES

L2

L1

CELLO
STATES

Banetal. 365/185.08

651

7,071,849 B2 7/2006 Zhang

7,848,142 B2 12/2010 Radke

8,031,529 B2 10/2011 Sarin

8,085,590 B2 12/2011 Litsyn et al.
2008/0158948 Al* 7/2008 Sharonetal. 365/185.02
2009/0109747 Al 4/2009 Radke
2010/0157641 Al 6/2010 Shalvi et al.
2010/0306619 Al 12/2010 Yang
2011/0058424 Al 3/2011 Goda et al.
2011/0276749 Al* 11/2011 Litsynetal. 711/103
2012/0307559 A] 12/2012 Shen et al.

OTHER PUBLICATIONS

Yang, et al., “Product Code Schemes for Error Correction in MLC
NAND Flash Memories,” Research Paper, Dec. 2012, vol. 20, Issue
12, pp. 2302-2314.

U.S. Appl. No. 13/444,314, entitled “Mapping Between Program
States and Data Patterns,”filed Apr. 11, 2012, (44 pgs.).

* cited by examiner

Primary Examiner — Sam Rizk

(74) Attorney, Agent, or Firm — Brooks, Cameron &
Huebsch, PLLC

(57) ABSTRACT

The present disclosure includes methods and apparatuses for
dual mapping between program states and data patterns. One
apparatus includes a memory and a controller configured to
control a dual mapping method comprising: performing a
base conversion on a recerved data pattern and mapping a
resulting base converted data pattern to one of a first number
of program state combinations corresponding to a first group
of memory cells; and determining a number of error data units
corresponding to the base converted data pattern and mapping
the number of error data units to one of a number of second
program state combinations corresponding to a second group
of memory cells. The number of error data units are mapped
to the one of the second number of program state combina-
tions corresponding to the second group of memory cells
without being base converted.

34 Claims, 7 Drawing Sheets

660-1—

BIT[2] = 0
(BINARY VALUE OF DATA PATTERN < 4)

PGM STATES
OF CELLS [1:0]

BIT[2:0]

CELL 1| GELLs
ofofu v

e o
O

U.S. Patent Jul. 14, 2015 Sheet 1 of 7 US 9,081,674 B2

102 104

108 110-1
CONTROLLER

CHANNEL
MAPPING MEMORY
106 12
ERROR
HOST
HOST CODE/
INTERFACE DECODE

113 110-M

MAPPING2 \
14 CHANNEL N

MEMORY

Fig. 1

US 9,081,674 B2

Sheet 2 of 7

Jul. 14, 2015

U.S. Patent

(01)

o1
¢ SLd e
G 8) f 9 s) () £) @) NS
01
1 (o] (o] (o Cof (o] (o] (o0
L1 <
- & z
= @ 3
A m_‘._
3 <
__
¢ a = a
— (&1
__
n | G
' (v | a
G
0} G (o
— (o]
—1 o
8-0cz 022 902z S0 02T €02 z02Z L0ZT g

US 9,081,674 B2

Sheet 3 of 7

Jul. 14, 2015

U.S. Patent

g€ o1

JOV4431NI HSV 14

(NTD) 411 + ONIDVYIOVANN)
HINOVA-NN V1vd

¢-€lt

d3d02343d 004

¢Clt

dIMIVANN
NOISHJANOQOD JSVd

90¢

JOV4ddINI 1SOH

V€ si]

JOV443LINI HSV1d

dINIVd VLV

a3sva VINONA'1Od

J=ELE

d4d0ONd 904

}7CLE

dIMOVd
NOISHJANOD J5Vd

JOV44d.INI LSOH

U.S. Patent Jul. 14, 2015 Sheet 4 of 7 US 9,081,674 B2

435
Y 439-1 439-2— 4393~ 4394
LEVELS / CELL 7 1 13 14
MAX BITS / CELL 2807355 | 3459432 | 3.70044 | 3.807355
7
] s O
438 EXPANSION FACTOR 7% 18%
STORED BITS / GELL 2.5 3.25
Fig. 4

T T ems [oees

R | | e | s

“ExANDDUSER | | e | e
761

ECC PARITY 0.10
CODEWORD
ECC OVERHEAD

U.S. Patent Jul. 14, 2015 Sheet 5 of 7 US 9,081,674 B2

630— 15 BITS/CELL
CELL1
-ﬂlﬂ 51
o fofufe] &8

Fig. 6A4

660-1
o BIT[2] =

(BINARY VALUE OF DATA PATTERN < 4)
PGM STATES
BIT[2:0] OF CELLS [1:0]
- CELL 1 | CELLO
ojojo|w | w

ojofrifwfu

oftfoju

o]y
Fig. 6B

660-2
o BIT[2] = 1
(BINARY VALUE OF DATA PATTERN > 4)

PGM STATES
BIT[2:0] OF CELLS [1:0]

] | 0] | CELL1T | CELLO

L1 L2
2 LO
1

L

U.S. Patent Jul. 14, 2015 Sheet 6 of 7 US 9,081,674 B2

2.25BITS / CELL
760-1— BIT[8] =
(BINARY VALUE OF DATA PATTERN < 250)

Fig. 74

760-2— BIT[8] = 1
(BINARY VALUE OF DATA PATTERN = 256)

SWAP
BITS[7:6] | CELL3 | CELL2 | CELL 1 | CELL 0
00 [e | apal | eTe2

Fig. 7B

U.S. Patent Jul. 14, 2015 Sheet 7 of 7 US 9,081,674 B2

860-1—, 25BITS/CELL
BIT[4] = 0 (< 16)

F ig. 84

BIT[4] =1 (
SWAP SWAP
CELL STATE
BIT[3] BIT[2] | CELL1 | CELLO

Fig. 6B

US 9,081,674 B2

1

DUAL MAPPING BETWEEN PROGRAM
STATES AND DATA PATTERNS

TECHNICAL FIELD

The present disclosure relates generally to semiconductor
memory and methods, and more particularly, to dual mapping,
between program states and data patterns.

BACKGROUND

Memory devices are typically provided as internal, semi-
conductor, integrated circuits 1n computers or other electronic
devices. There are many different types of memory including
volatile and non-volatile memory. Volatile memory can
require power to maintain its data (e.g., information) and
includes random-access memory (RAM), dynamic random
access memory (DRAM), and synchronous dynamic random
access memory (SDRAM), among others. Non-volatile
memory can provide persistent data by retaining stored data
when not powered and can include NAND flash memory,
NOR flash memory, static random access memory (SRAM),
resistance variable memory, such as phase change random
access memory (PCRAM) and resistive random access
memory (RRAM), and magnetic random access memory
(MRAM), such as spin torque transier random access
memory (STT RAM), among others.

Flash memory devices, including floating gate flash
devices and charge trap flash (CTF) devices can comprise
memory cells having a storage node (e.g., a floating gate or a
charge trapping structure) used to store charge and may be
utilized as non-volatile memory for awide range of electronic
applications. Memory cells can be arranged 1n an array archi-
tecture and can be programmed to a desired state. For
instance, electric charge can be placed on or removed from
the storage node (e.g., floating gate) of a memory cell to place
the cell into one of a number of program states. As an
example, a single level cell (SLC) can be programmed to one
of two program states which can represent a stored data unit
(e.g., binary units 1 or 0). Various flash memory cells can be

programmed to more than two program states, which can
represent multiple stored data units (e.g., binary units 1111,
0111,0011,1011,1001,0001,0101, 1101, 1100, 0100, 0000,
1000, 1010, 0010, 0110, or 1110). Such memory cells may be
referred to as mult: state cells, multiunit cells, or multilevel
cells (MLCs). MLCs can allow the manufacture of higher
density memories without increasing the number of memory
cells since each cell can represent more than one digit (e.g.,
more than one bit).

Some MLCs can be programmed to a quantity (L) of pro-
gram states that does not correspond to an integer number of
stored data units. That 1s, the number of data units capable of
being stored 1n a cell (e.g., Log,(LL)) can correspond to a
fractional number of stored data units (e.g., a fractional num-

ber of bits).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an apparatus 1n the form of a
computing system including at least one memory system 1n
accordance with a number of embodiments of the present
disclosure.

FIG. 2 1s a diagram 1llustrating threshold voltages corre-
sponding to program states ol memory cells programmable to
different numbers of program states in accordance with a
number of embodiments of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3A 1s a functional block diagram illustrating an
encode data path associated with dual mapping between data

patterns and program states in accordance a number of
embodiments of the present disclosure.

FIG. 3B 1s a functional block diagram 1llustrating a decode
data path associated with dual mapping between data patterns
and program states 1n accordance a number of embodiments
of the present disclosure.

FIG. 4 1s a table 1illustrating a number of dual mapping
configurations 1n accordance with a number of embodiments
ol the present disclosure.

FIG. S1s a tablellustrating overhead associated with a dual
mapping configuration 1 accordance with a number of
embodiments of the present disclosure.

FIG. 6A illustrates a diagram including a constellation
having a first and a second mapping shell and associated with
dual mapping between data patterns and program states in
accordance with a number of embodiments of the present
disclosure.

FIGS. 6B-6C illustrate mappings between data patterns
and program states 1n accordance with a number of embodi-
ments of the present disclosure. The example shown 1n FIGS.
6B-6C supports two-dimensional (2D) mapping over two
cells.

FIGS. 7A-7TB illustrate mappings between data patterns
and program states 1n accordance with a number of embodi-
ments of the present disclosure. The example shown 1n FIGS.
7A-TB supports four-dimensional (4D) mapping over four
cells.

FIGS. 8A-8B illustrate mappings between data patterns
and program states 1n accordance with a number of embodi-
ments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure includes methods and apparatuses
for dual mapping between program states and data patterns.
One apparatus includes a memory and a controller configured
to control a dual mapping method comprising: performing a
base conversion on a receitved data pattern and mapping a
resulting base converted data pattern to one of a first number
of program state combinations corresponding to a {irst group
of memory cells; and determining a number of error data units
corresponding to the base converted data pattern and mapping
the number of error data units to one of a second number of
program state combinations corresponding to a second group
of memory cells. The error data units are mapped to the one of
the second number of program state combinations corre-
sponding to the second group of memory cells without being
base converted.

Embodiments of the present disclosure can provide a dual
mapping process 1n which user data units are mapped via a
different mapping process than a mapping process used to
map error data units (e.g., parity bits associated with error
correction codes) corresponding to the user data units. As an
example, the mapping process used to map the user data units
can comprise base conversion, and the mapping used to map
the error data units can be a substantially systematic mapping
between program states and data patterns. Such dual mapping
processes can provide different error propagation character-
1stics between user data and corresponding error data, for
instance. A number of dual mapping embodiments of the
present disclosure can provide benefits such as providing
more eflective fractional bit per cell mapping as compared to
a number of previous approaches, among various other ben-
efits. For example, a number of embodiments may be better
suited for systems employing error detection and/or correc-

US 9,081,674 B2

3

tion (e.g., systems employing error correction codes (ECC)
such as low density parity check (LDPC) codes and Hamming
codes, among others) and/or systems utilizing reliability data
(e.g., soit data, such as log likelihood ratios (LLRs)) as com-
pared to previous mapping algorithms.

In the following detailed description of the present disclo-
sure, reference 1s made to the accompanying drawings that
form a part hereot, and 1n which 1s shown by way of 1llustra-
tion how a number of embodiments of the disclosure may be
practiced. These embodiments are described in suilicient
detail to enable those of ordinary skill in the art to practice the
embodiments of this disclosure, and 1t 1s to be understood that
other embodiments may be utilized and that process, electri-
cal, and/or structural changes may be made without departing

from the scope of the present disclosure. As used herein, the
designators “M”, “N”, “n”, “A”, “B”, “G”, and “L,” particu-
larly with respect to reference numerals in the drawings,
indicates that a number of the particular feature so designated
can be included with a number of embodiments of the present
disclosure. As used herein, “anumber of” something can refer
to one or more of such things.

The figures herein follow a numbering convention 1n which
the first digit or digits correspond to the drawing figure num-
ber and the remaining digits 1identily an element or compo-
nent 1in the drawing. Similar elements or components between
different figures may be 1dentified by the use of similar digits.
For example, 106 may reference element “06 1n FIG. 1, and
a similar element may be referenced as 306 in FIG. 3A. As
will be appreciated, elements shown 1n the various embodi-
ments herein can be added, exchanged, and/or eliminated so
as to provide a number of additional embodiments of the
present disclosure. In addition, as will be appreciated, the
proportion and the relative scale of the elements provided in
the figures are intended to 1llustrate the embodiments of the
present invention, and should not be taken 1n a limiting sense.

FIG. 1 1s a block diagram of an apparatus 1n the form of a
computing system 101 including at least one memory system
104 1n accordance with a number of embodiments of the
present disclosure. As used herein, a memory system 104, a
controller 108, or a memory device 110 might also be sepa-
rately considered an “‘apparatus”. The memory system 104
can be a solid state drive (SSD), for instance, and can include
a host interface 106, a controller 108 (e.g., a processor and/or
other control circuitry), and a number of memory devices
110-1, ..., 110-M (e.g., solid state memory devices such as
NAND flash devices), which provide a storage volume for the
memory system 104 and may be referred to heremn as a
memory 110. In a number of embodiments, the controller
108, the memory device 110, and/or the host interface 106 can
be physically located on a single die or within a single pack-
age (e.g., a managed NAND application). Also, 1n a number
of embodiments, a memory 110 can include a single memory
device.

As illustrated 1n FIG. 1, the controller 108 can be coupled
to the host interface 106 and to the memory 110 via a plurality
of channels and can be used to transier data between the
memory system 104 and a host 102. The interface 106 can be
in the form of a standardized interface. For example, when the
memory system 104 1s used for data storage 1n a computing,
system 100, the interface 106 can be a serial advanced tech-
nology attachment (SATA), peripheral component 1ntercon-
nect express (PCle), or a universal serial bus (USB), among,
other connectors and interfaces. In general, however, inter-
face 106 can provide an interface for passing control, address,
data, and other signals between the memory system 104 and
a host 102 having compatible receptors for the interface 106.

10

15

20

25

30

35

40

45

50

55

60

65

4

Host 102 can be a host system such as a personal laptop
computer, a desktop computer, a digital camera, a mobile
telephone, or a memory card reader, among various other
types of hosts. Host 102 can include a system motherboard
and/or backplane and can include a number of memory access
devices (e.g., a number of processors).

The controller 108 can commumnicate with the memory 110
to control data read, write, and erase operations, among other
operations. The controller 108 can include, for example, a
number of components 1n the form of hardware and/or firm-
ware (e.g., one or more integrated circuits) and/or software
for controlling access to the memory 110 and/or for facilitat-
ing data transfer between the host 102 and memory 110. For
instance, 1 the example illustrated in FIG. 1, the controller
108 includes a mapping component 112 (MAPPING1), an
error code/decode component 113 (ERROR CODE/DE-
CODE), and a mapping component 114 (MAPPING?2). How-
ever, the controller 108 can include various other components
not illustrated so as not to obscure embodiments of the present
disclosure. Also, the components 112, 113, and/or 114 may
not be components of controller 108, 1n some embodiments
(e.g., the components 112, 113, and/or 114 can be indepen-
dent components that may not be resident on controller 108).

The mapping components 112 and 114 can be used 1n
association with mapping between memory cell program
states and data 1n accordance with a number of embodiments
described herein. As an example, the mapping component
112 can be used to perform an expansion process on a data
pattern received thereto (e.g., a user data pattern receirved
from host 102) and to map the expanded data pattern to one of
a number program state combinations corresponding to a
group of memory cells to which the expanded data pattern 1s
to be stored. The error code/decode component 113 can be an
error correction code encoder/decoder such as an LDPC
encoder/decoder, for instance, which can encode/decode
(e.g., with error data units such as parity bits) user data trans-
terred between host 102 and the memory 110. The mapping
component 114 can be configured to, for example, map error
data generated by the error code/decode component 113 to
one of a number of program state combinations correspond-
ing to a group of cells to which the error data 1s to be stored.
As described further below, 1n a number of embodiments, the
group ol memory cells used to store the user data pattern (e.g.,
which may be a base converted data pattern) are configured to
store a first number of data units per cell and the group of
memory cells used to store the error data are configured to
store a second number of data umts per cell, with the first
number of data units per cell being different than the second
number of data units per cell. In a number of embodiments,
the first and/or second number of data units per cell 1s a
non-integer number of data units. As used herein, a cell and/or
a group of cells being “configured to store™ a particular num-
ber of data units per cell does not limit the number of states to
which a cell and/or the cells of a group of cells are program-
mable. For instance, it 1s noted that the memory cells of the
group used to store the user data pattern and the memory cells
of the group used to store the error data may each be program-
mable to a same number of states; however, the number the
data units per cell that the cells are configured to store (e.g.,
the number of states to which the cells are programmable 1n
accordance with a particular mapping) can depend on the
particular mapping. As such, a group of cells being “config-
ured to store” a particular number of data units per cell indi-
cates the particular quantity of data unmits stored per cell and/or
the quantity of available program states used 1n association
with a particular mapping; however, the cells of the same
group can be configured to store a different quantity of data

US 9,081,674 B2

S

units per cell and/or to use a different quantity of available
program states in association with a different mapping
scheme.

The memory 110 can include a number of arrays of
memory cells. The arrays can be flash arrays with a NAND
architecture, for example. However, embodiments are not
limited to a particular type of memory array or array archi-
tecture. The memory cells can be grouped, for mstance, 1nto
a number of blocks including a number of physical pages. A
number of blocks can be included 1n a plane of memory cells
and an array can include a number of planes. As one example,
a memory device may be configured to store 8 KB (kilobytes)
of user data per page, 128 pages of user data per block, 2048
blocks per plane, and 16 planes per device.

In embodiments 1n which the memory devices 110-1, . . .,
110-M comprise tlash arrays having a NAND architecture,
the arrays can comprise access lines (e.g., word lines) and
intersecting data lines (e.g., bit lines). The arrays can com-
prise “strings” of memory cells connected in series source to
drain between a source select gate configured to selectively
couple a respective string to a common source and a drain
select gate configured to selectively couple a respective string
to a respective bit line. The memory cells can comprise, for
instance, a source, a drain, a charge storage node (e.g., a
floating gate), and a control gate, with the control gates of
cells corresponding to a “row” of cells being commonly
coupled to a word line. A NOR flash array would be similarly
structured with the exception of strings of memory cells being
coupled 1n parallel between select gates.

As one of ordinary skill 1n the art will appreciate, groups of
flash cells coupled to a selected word line can be programmed
and/or read together as a page of memory cells. A program-
ming operation (€.g., a write operation), can include applying,
a number of program pulses (e.g., 16V-20V) to a selected
word line 1n order to increase the threshold voltage (Vt) of
selected cells coupled to that selected word line to a desired V't
level corresponding to a target (e.g., desired) program state. A
read operation can include sensing a voltage and/or current
change of a bit line coupled to a selected cell (e.g., responsive
to a read voltage applied to the word line corresponding to the
cell) 1n order to determine the program state of the selected
cell.

As described further herein, 1n a number of embodiments
ol the present disclosure, a memory cell can be programmed
to one of a quantity of program states corresponding to either
an 1nteger number of stored data units (e.g., bits) or a frac-
tional number of stored data units. In a number of embodi-
ments, the program states ol a number of cells of a group of
cells each storing a fractional number of bits can be combined
such that the group of cells stores an 1nteger number of bits.
For 1nstance, consider a group of cells each programmed to
one of five program states, such that each cell can store 2.25
bits. In this example, the combined program states of a group
ol four cells corresponds to 9 bits (2.25 bits/cellx4 cells). That
1s, a 9 bit data pattern can be stored 1n the group of four cells.
As such, controller 108 can control programming and/or
reading a group of cells each storing a fractional number of
bits per cell and can output (e.g., to host 102) an N unit data
pattern stored in the group, where N 1s an integer number data
units (e.g., bits). The particular data pattern (e.g., bit pattern)
to which the combination of determined program states of the
group corresponds can be determined based on a mapping
algorithm 1n accordance with a number of embodiments
described herein.

FIG. 2 1s a diagram 216 illustrating threshold voltages
corresponding to program states of memory cells program-
mable to different numbers of program states 1n accordance

5

10

15

20

25

30

35

40

45

50

55

60

65

6

with a number of embodiments of the present disclosure. The
memory cells can be NAND flash memory cells as described
above and can be programmed to various Vt levels within a
voltage range of about -2V to +3V; however, embodiments
are not limited to a particular type of memory cell or to a
particular operational voltage range (e.g., window).

Row 218 indicates the quantity of program states to which
the memory cell may be programmed. The program states
shown 1n FIG. 2 are labeled LO, L1, L2, etc., with each
program state representing a distribution of Vt levels corre-
sponding to the respective program states. In a number of
embodiments, the program state LO can be a lowermost pro-
gram state (e.g., a program state corresponding to lowermost
Vt levels) and may be referred to as an erase state since cells
can be 1n a lowermost state after an erase operation; however,
embodiments are not so limited.

In FIG. 2, column 220-1 corresponds to memory cells
programmed to one of two different program states LLO and
L1, and which can store one unit (e.g., bit) of data per cell.
Column 220-2 corresponds to memory cells programmed to
one of three different program states L.O, L1, and L2, and
which can store 1.5 units of data per cell. Column 220-3
corresponds to memory cells programmed to one of four
different program states 1O, L1, L2, and L3, and which can
store 2 units of data per cell. Column 220-4 corresponds to
memory cells programmed to one of five different program
states LO to L4, and which can store 2.25 units of data per cell.
Column 220-5 corresponds to memory cells programmed to
one of six different program states LO to L5, and which can
store 2.5 units of data per cell. Column 220-6 corresponds to
memory cells programmed to one of seven different program
states LO to L6, and which can store 2.75 units of data per cell
or 2.8 umts of data per cell. Column 220-7 corresponds to
memory cells programmed to one of eight different program
states LO to L7, and which can store 3 units of data per cell.
Column 220-8 corresponds to memory cells programmed to
one of nine different program states LO to L8, and which can
store 3.1235 units of data per cell. Embodiments are not limited
to these examples. For instance, 1in general, fractional unit
cells can store log 2(L) units/cell. The particular number of
units stored per cell can depend on the particular mapping
algorithm used, for example.

Memory cells programmable to a power of 2 quantity of
program states (e.g., 2 program states, 4 program states, 8,
program states, 16 program states, etc.) can individually store
an integer number of bits per cell (e.g., log, (L) bits/cell where
L 1s the number of program states to which the cell 1s pro-
grammable). As such, the program state of each memory cell
can be directly mapped to one of L different N bit data
patterns where N 1s the integer quantity of bits stored 1n the
cell. For instance, the program states of a cell programmable
to two program states (LLO and LL1) can be mapped to 0 or 1
(e.g., a 1 bit data pattern), the program states of a cell pro-
grammable to 4 program states (LO to L3) can be mapped to
00, 01, 10, and 11, respectively (e.g., a 2 bit data pattern), and
the program states of a cell programmable to 8 program states
(LO to L7) can be mapped to 000, 001, 010, 011, 100, 101,
110, and 111, respectively (e.g., a 3 bit data pattern).

In contrast, memory cells programmable to a non-power of
2 quantity of program states individually store a fractional
(e.g., non-1nteger) number of bits per cell. As such, rather than
program states ol each individual cell mapping to an N bt
data pattern, combinations of the L program states to which
cach mdividual cell of a group of cells 1s programmable are
mapped to an N bit data pattern where N 1s an integer quantity
of bits stored 1n the group. For instance, combinations of
respective program states of a group of two memory cells

US 9,081,674 B2

7

programmable to three program states (LO, L1, and L2) (e.g.,
1.5 bits/cell) are mapped to a 3 bit (e.g., 1.5 bits/cellx2 cells)
data pattern (e.g., 000, 110, 100, etc.). Stmilarly, combina-
tions of respective program states of a group of four memory
cells programmable to five program states (1O to L4) (e.g.,
2.25 bits/cell) are mapped to a 9 bit (e.g., 2.25 bits/cellx4
cells) data pattern (e.g., 110011001, 000001111, 101010101,
etc.), and combinations of respective program states of a
group of eight memory cells programmable to 9 states (LLO to
L8) (e.g., 3.125 bats/cell) are mapped to a 25 bit (e.g., 3.125
bits/cellx8 cells) data pattern (e.g.,
0000011111000001111100000,
1010101010101010101010101,
1111111111111111110000000, etc.). As another example, a
group of 4 cells programmable to seven program states (LO to
L.6) (e.g., 2.75 bits/cell) can be mapped toan 11 bit (e.g., 2.75
bits/cellx4 cells) data pattern. Alternatively, a group of 5 cells
programmable to seven program states (1O to LL6) (e.g., 2.8
bits/cell) can be mapped to a 14 bit (e.g., 2.8 bits/cellx5 cells)
data pattern.

In general, for a group of cells collectively storing an
integer number (N) of units of data (e.g., bits), but individu-
ally storing a fractional number of units of data, 2* different
N unit data patterns are mapped to a corresponding number
(e.g., 2") of different program state combinations of the
group. As an example, consider a group of two cells each
programmed to one of three program states (O, L1, L2) such
that the group collectively stores 3 bits of data (e.g., 1.5
bits/cell). As such, 2° (e.g., 8) different 3 bit data patterns are
mapped to 2° (e.g., 8) different program state combinations of
the group.

In a number of embodiments, a constellation (e.g., an LxL
square constellation where L 1s the quantity of program states
to which a cell 1s programmable) can be used to represent the
different possible program state combinations associated
with a group of fractional unit memory cells. For instance,
cach possible program state combination can correspond to a
different constellation point, which can be mapped to a par-
ticular N unit data pattern, where N 1s the mteger quantity of
data units stored in the group of cells. For this 2-dimensional
example constellation, the quantity of program state combi-
nations (e.g., the quantity of constellation points) can equal
[, which must be greater than or equal to the 2" different N
unit data patterns corresponding to the N quantity of data
units stored 1n the group of cells. As such, one or more of the
[° program state combinations may not be mapped to an N
unit data pattern, or one or more of the L* program state
combinations may be mapped to a same one of the N unit data
patterns as one or more others of the L? program state com-
binations. An example of a mapping constellation 1n accor-
dance with a number of embodiments of the present disclo-
sure 15 described below in connection with FIG. 6A. In a
number of embodiments, a group of fractional bit cells col-
lectively storing an integer number of bits comprises more
than two cells. In such embodiments, the quantity of program
state combinations (e.g., the quantity of constellation points)
can be greater than L°.

The particular mappings between data patterns to respec-
tive program state combinations corresponding to groups of
fractional unit (e.g., fractional bit) memory cells vary. That 1s,
the manner in which program state combinations are assigned
to the data patterns may not be uniform. For instance, 1n a
number of embodiments, user data can be mapped via a
mapping process different from the mapping process used to
map the error data (e.g., parity bits) corresponding to the user
data. For instance, in a number of embodiments, an expansion
process (e.g., a base conversion) can be performed on a user

10

15

20

25

30

35

40

45

50

55

60

65

8

data pattern 1n association with mapping user data patterns to
particular program state combinations.

However, such expansion (e.g., code expansion via base
conversion) can result 1n an increase 1n error data (e.g., ECC)
redundancy as an increased number of parity bits result from
the mncreased amount of user data bits (e.g., due to expansion
via base conversion). Some mapping processes can effec-
tively and efficiently map between data patterns and program
states without performing a code expansion, for instance.
However, such mapping processes may result 1n an increase
in error multiplication and/or propagation (which results in an
increased error rate provided to an ECC decoder) and may
increase the complexity associated with reliability data (e.g.,
solt data) generation and/or analysis, for example. The
amount of increase in error multiplication and/or propagation
may depend on factors such as the number of bits stored per
cell and/or the number of program states to which the cells are
programmed, among other factors. A number of embodi-
ments of the present disclosure can provide decreased com-
plexity and/or can reduce and/or prevent error multiplication
and/or propagation as compared to previous approaches,
among other benefits.

FIG. 3A 1s a functional block diagram illustrating an
encode data path 303-1 associated with dual mapping
between data patterns and program states 1n accordance a
number of embodiments of the present disclosure. A data
pattern (e.g., a user data pattern) can be recerved by a host
interface 306. The data pattern 1s provided to a mapping
component 312-1 (BASE CONVERSION PACKER). In this
example, the mapping component 312-1 performs a base
conversion on the data pattern and maps the base converted
data pattern to one of anumber of program state combinations
corresponding to a first group of memory cells. The first group
of memory cells can each be configured to store a fractional
number of data units per cell such that the group stores an
integer number of bits, and the quantity of memory cells inthe
first group may be based on the number of program states to
which the first group of memory cells are configured to be
programmed. For instance, since the maximum number of
data units (e.g., bits) storable per cell 1s equal to log,(L),
where L 1s the number of program states, a group of five cells
cach programmable to one of seven program states may be
used to store 2.8 bits/cell (2.8 bits/cellx5 cells=14 bits). Base
converting the recerved data pattern can result 1n expanding
the data pattern to an increased number of data units. For
instance, 1n this example, each 14 bit data pattern recerved by
mapping component 312-1 can be converted to five three-bit
base-7 numbers represented by 15 bits, and each of the five
three-bit base-7 numbers can be mapped to one of the seven
program states to which the first group of cells are program-
mable. Embodiments are not limited to this example, and
other examples will be described below 1n association with
FIG. 4. Although an expansion factor 1s associated with map-
ping via base conversion (e.g., more parity bits are generated
as compared to a case without expansion), the amount of error
propagation associated with the mapping can be reduced as
compared to other mapping methods. For instance, since base
conversion 1s performed prior to ECC encoding, at the read
path, unpacking for base conversion 1s performed after ECC
decoding such that the decoded data sequence has no (or very
few) errors.

An error code/decode component 313-1 1s shown in the
data path 303-1. In this example, the component 313-1 1s an
ECC encoder that recetves the base converted data pattern
from mapping component 312-1. The ECC encoder 313-1
can generate parity bits based on the base converted data
pattern and add the parity bits to the base converted data

US 9,081,674 B2

9

pattern such that a codeword to be written to memory com-
prises a number of base converted data patterns and their
respective parity bits.

The data path 303-1 also includes a mapping component
314-1. In this example, the component 314-1 1s a polynomial
based data packer. The polynomial based data packer can be
configured to map a number of error data units (e.g., the parity
bits) corresponding to the base converted data pattern to one
of a number of program state combinations corresponding to
a second group of memory cells. The second group of
memory cells can be configured to store a fractional number
of data units per cell. In a number of embodiments, the group
of memory cells configured to store the error data units store
tewer data units per cell than that of the group of memory cells
configured to store the base converted user data units. In a
number of embodiments, the number of error data units are
mapped to the one of the number of program state combina-
tions corresponding to the second group of memory cells
without being base converted. In some such embodiments,
the error data units do not have an expansion factor associated
therewith. Since the base conversion of the user data occurs
prior to the ECC encoding, error propagation which may be
associated with the polynomial based data packer 314-1 can
be eliminated with respect to the user data.

As described further below, in a number of embodiments,
a polynomial based mapping method can have a mapping
constellation associated therewith that comprises at least a
first mapping shell and a second mapping shell. The polyno-
mial based mapping between program state combinations and
data patterns can be based on a polynomial expression of
order G, where G 1s a quantity of fractional unit cells com-
bined to store an integer number of data units corresponding
to a data pattern. In a number of embodiments, a first term of
the polynomial expression corresponds to a first mapping
shell and a second term of the polynomial expression corre-
sponds to a second mapping shell, with each mapping shell
corresponding to a number of constellation points. As an
example, the polynomial expression on which the mapping 1s
based can be the expression (A+B)“, with A“ being the first
term and corresponding to a quantity of constellation points
of the first mapping shell, and GxA‘“""'xB being the second
term and corresponding to a quantity of constellation points
of the second mapping shell. As described further below, A
can be the quantity of program states from which the respec-
tive program state combinations corresponding to the first
mapping shell are determined and B can be the quantity of
additional program states (e.g., an additional quantity of the L
program states) from which the respective program state
combinations corresponding to the second mapping shell are
determined. As such, 1n embodiments in which two mapping
shells are used, A+B 1s equal to the quantity of program states
to which the memory cells are programmable. As an example,
A can be equal to 2 with “a” being a value such that 2“ 1s an
uppermost power of 2 that 1s less than the quantity of program
states (e.g., L) to which the memory cells are programmable.
For instance, for cells programmable to 6 different program
states and storing 2.5 bits/cell, A can be equal to 4, since 2° is
the uppermost power of 2 that is less than 6. If A 1s equal to 4,
B can be equal to 2 (e.g., 6—4). As such, the quantity of
program states from which the respective program state com-
binations corresponding to the first mapping shell are deter-
mined 1s four (e.g., A=4). That 1s, only combinations of the
first four program states (e.g., LO to L3) of the six program
states (e.g., LOto L5) to which the memory cells are program-
mable, correspond to constellation points of the first mapping,
shell. In this example, the quantity of additional program
states from which the respective program state combinations

10

15

20

25

30

35

40

45

50

55

60

65

10

corresponding to the second mapping shell are determined 1s
two (e.g., B=2). As such, only combinations comprising at
least one of the last two program states (e.g., L4 and LL5) of the
s1X program states (e.g., LO to L5) to which the memory cells
are programmable, correspond to constellation points of the
second mapping shell. In a number of embodiments, the A
program states corresponding to the first mapping shell com-
prise the lowermost A program states of the L program states
(e.g., the program states corresponding to the lowermost Vt
levels), and the B program states corresponding to the second
mapping shell comprise program states other than the lower-
most A program states.

A memory interface 315 (e.g., Flash Interface) 1s shown 1n
data path 303-1 of FIGS. 3A and 303-2 of FIG. 3B. The
memory interface 315 can serve as the interface between a
memory such as memory 110 and a controller such as con-
troller 108 shown in FIG. 1, for example.

FIG. 3B 1s a functional block diagram 1llustrating a decode
data path 303-2 associated with dual mapping between data
patterns and program states in accordance with a number of
embodiments of the present disclosure. A read operation can
be performed on respective groups of memory cells storing
user data (e.g., base converted user data) and corresponding
error data. A mapping component 314-2 (e.g., Data
Un-Packer) can determine reliability data (e.g., soft data such
as log likelihood ratios (LLRs)) corresponding to the base
converted user data bits as well as for the corresponding error
data (e.g., parity bits) based on the read program states of the
respective groups of memory cells. The LLR determinations
can be one-dimensional (1D) computations for the user data
bits since they are 1n the base converted domain (e.g., three
bits per cell for the example above in which each cell storing
user data 1s programmed to one of eight program states).
However, the LLR determinations can be more complex for
the parity bits since the mapping (e.g., polynomial based) of
the parity bits may involve multidimensional swapping, as
described further below.

After the data units stored 1n the groups of memory cells
have been determined (e.g., based on the read operation), and
the LLRs corresponding thereto have been determined, an
error code/decode component 313-2 can be used to check for
and/or correct errors 1n the data. In this example, the error
code/decode component 1s an ECC decoder 313-2. After the
ECC decoder 313-2 has operated on the data, the base con-
verted data pattern corresponding to the user data can be

mapped back to the non-base converted data pattern (e.g.,
unpacked) via mapping component 312-2 (BASE CONVER-

SION UNPACKER) prior to being returned to a host (e.g.,
host 102 shown 1n FIG. 1) via host interface 306.

FIG. 4 1s a table 435 1llustrating a number of dual mapping,
configurations 439-1, 439-2, 439-3, and 439-4 in accordance
with a number of embodiments of the present disclosure.
Table 435 corresponds to embodiments 1n which user data
437 1s mapped via base conversion and corresponding parity
data 438 1s mapped via a polynomial based mapping such as
those described herein, for example. The different mapping
configurations 439-1, 439-2, 439-3, and 439-4 of table 435
correspond to the quantity of program states per cell (Levels/
Cell) storable by a particular memory array (e.g., flash array).

As shown 1n table 435, configurations 439-1,439-2,439-3,
and 439-4 correspond to a memory array storing 7 program
states/cell, 11 program states/cell, 13 program states/cell, and
14 program states/cell, respectively. As noted above, the
maximum data units (e.g., bits) storable per cell 1s given by
Log, (L), where L 1s the number of program states. The maxi-
mum number of bits storable per cell (Max Bits/Cell) for

configurations 439-1, 439-2, 439-3, and 439-4 are shown 1n

US 9,081,674 B2

11

table 435. Table 435 also 1indicates the actual number of user
bits stored per cell (Stored Bits/Cell) for each of the configu-
rations (e.g., 2.8 for configuration 439-1, 3.4 for configura-
tion 439-2, 3.6 for configuration 439-3, and 3.8 for configu-
ration 439-4. Table 435 also indicates the number of cells (#
of Cells) 1n a group of cells used to store an integer number of
user data bits. In this example, a group of 5 cells 1s used to
store the user data bits for each of the configurations 439-1,
439-2, 439-3, and 439-4. The user data bits are grouped such
that for configuration 439-1, a group of 5 cells stores 2.8
bits/cellxS cells (e.g., 14 bits), for configuration 439-2, a
group of 5 cells stores 3.4 bits/cellxS cells (e.g., 17 bits), for
configuration 439-3, a group of 5 cells stores 3.6 bits/cellx5
cells (e.g., 18 bits), and for configuration 439-4, a group of 5
cells stores 3.8 bits/cellx5 cells (e.g., 19 bats).

In accordance with a number of embodiments, the quantity
of user data bits stored per group (Bits/Group (Native)) are
expanded via base conversion such that each group of 3 cells
stores a higher quantity of user data bits (shown as Bits/Group
(Base Converted) 1n table 435). In this example, the 14 user
data bits stored per group (e.g., a 14 bit data pattern) 1n
association with configuration 439-1 are converted to five
3-bit base-7 numbers represented by 15 bits, the 17 user data
bits stored per group 1n association with configuration 439-2
are converted to five 4-bit base-11 numbers represented by 20
bits, the 18 user data bits stored per group 1n association with
configuration 439-3 are converted to five 4-bit base-13 num-
bers represented by 20 bits, and the 19 user data bits stored per
group 1n association with configuration 439-2 are converted
to five 4-bit base-14 numbers represented by 20 bits. Consid-
ering configuration 439-1, each of the five converted 3-bit
base-7 numbers would indicate to which one of the seven
program states a particular cell of the five cells of the group
maps. As an example, (a 3-bit pattern 000 may map to a first
program state (LL0O), 001 may map to program state L1, 010
may map to program state .2, 011 may map to program state
L3, 100 may map to program state .4, 101 may map to
program state L5, and 110 may map to program state L.6).
Embodiments are not limited to this example. For instance,
the respective mappings between 3-bit base-7 numbers and
particular program states may be different and base conver-
s10n to a base other than base-7 (e.g., base 14) may be used.
For instance, a number of bits can be converted to a number of
base-X data units, where X 1s greater than two, and wherein
the value of X 1s based, at least partially, on a quantity of
program states to which the memory cells of a group are
programmable.

In the example described 1n association with FIG. 4, the
base conversion performed on the user data bits results 1n an
expansion factor as shown in table 435. For instance, the
expansion factors corresponding to configurations 439-1,
439-2,439-3, and 439-4 are 7%, 18%, 11%, and 5%, respec-
tively. For instance, the expansion factor associated with con-
figuration 439-1 can be determined by dividing the number of
data bits after base conversion (e.g., 15 bits) by the number of
user data bits prior to base conversion (e.g., 14 bits). Since
15/14=1.0"7, the user data 1s expanded by 7%. As described
above, 1n a number of embodiments, the user data bits to be
stored 1n a group of memory cells undergo base conversion
prior to generation of the error data (e.g., parity data) via an
ECC encoder, for example. Therefore, due to the expansion
resulting from the base conversion process, more parity bits
are generated than would be otherwise generated (e.g., 1t the
user bits were not expanded via base conversion or were error
encoded prior to base conversion, for instance). It 1s noted that
expansion of the user data does not result 1n an increased
number of cells being used to store the user data. That 1s, if the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

user data were not expanded, the quantity of cells used to store
the unexpanded user data would be the same as the quantity of
cells used to store the expanded user data.

As described above, i1n a number of embodiments, the
parity data corresponding to user data to be stored 1n a
memory array can be mapped to one of a number of program
state combinations corresponding to a group of memory cells
to which the parnity data (e.g., bits) are to be stored. In a
number of embodiments, the group of memory cells to which
the expanded (e.g., base converted) user data bits are to be
stored are configured to store a different number of bits/cell
than the group of cells to which the parity bits are to be stored.
In a number of embodiments, the group of cells storing parity
bits are configured to store fewer bits/cell than the group of
cells storing the user data bits. For instance, as shown 1n table
4335, the cells storing parity bits 1n association with configu-
ration 439-1 store 2.5 bits/cell as compared to 2.8 bits/cell
stored by cells storing the user bits, the cells storing parity bits
in association with configuration 439-2 store 3.25 bats/cell as
compared to 3.4 bits/cell stored by cells storing the user bits,
the cells storing parity bits 1n association with configuration
439-3 store 3.5 bits/cell as compared to 3.6 bits/cell stored by
cells storing the user bits, and the cells storing parity bits 1n
association with configuration 439-4 store 3.5 bits/cell as
compared to 3.8 bits/cell stored by cells storing the user bits.

In a number of embodiments, the parity bits are not base
converted. That 1s, the parity bits do not undergo a code
expansion. In a number of embodiments, the parity bits are
mapped based on a mapping constellation comprising at least
a first mapping shell and a second mapping shell (e.g., via a
polynomial based mapping process), examples of which are
described further below 1n association with FIGS. 6 A to 8B.

FIG. 5 1s a table 545 illustrating overhead associated with
a dual mapping configuration in accordance with a number of
embodiments of the present disclosure. The example pro-
vided in table 545 corresponds to a dual mapping configura-
tion corresponding to memory cells programmable to seven
program states per cell such as configuration 439-1 described
above 1n association with FIG. 4.

Table 545 indicates that 1n order to store 16,384 bits of user
data (User) 1n a group of cells storing 2.8 bits/cell, the quan-
tity of cells 1n the group 1s 5,852 cells. Converting the 16,384
user data bits to base-7 requires 17,555 bits (Expanded User)
(e.g., 16,384 bitsx15/14), which can be stored 1n the same
number of cells (e.g., 5,852) with each three bits representing
one of the seven program states.

For 10% ECC parity overhead, 1,931 parity bits are gen-
erated for the 17,5535 base converted bits. In this example, the
parity bits are stored 1n 2.5 bit/cell memory cells such that a
group of 781 cells (e.g., 1,951 bats 12.5 bats/cell) are needed
to store the parity bits. As such, the codeword (e.g., base
converted user data bits and corresponding parity bits) com-
prises 19,506 bits (e.g., 17,555 user bits+1,951 parity bits),
and a total of 6,633 cells (5,852 cells for user data+781 cells
for parity data) are needed to store the codeword. As shown 1n
table 545, the ECC overhead in terms of bits due to this
example dual mapping configuration 1s 0.16 (16%) (e.g.,
1-16,384/19,506). That 1s, although 10% overhead 1s allotted
for ECC parity, the dual mapping 1n this example results 1n an
overall bit increase of about 16% resulting from the expan-
s10on factor (e.g., due to base conversion of the user data) and
the additional parity bits resulting therefrom (e.g., due to the
larger ECC encoder input). The dual mapping configuration
of this example also results 1n an increase in the number of
cells used to store the base converted user data and corre-
sponding parity data of about 1.77% (e.g., 1-5,852/6,633) as

compared to a mapping configuration in which the user data

US 9,081,674 B2

13 14

bits are not base converted, for instance. However, a number Table 1 shown below provides configuration information
of dual mapping embodiments described herein can provide associated with the example described in connection with
benelits such as reducing and/or eliminating error propaga- FIGS. 6 A-6C. Table 1 indicates the quantity of bits stored per
tion over user data as compared to previous mapping cell (*“bpc”) (e.g., 1.5), the quantity of states (“States™) to
approaches. > which the memory cells are programmable (e.g., 3), the quan-

As described above, 1n a number of embodiments, a poly- tity of cells (“Cells/nD”) corresponding to an N bit data
nomial based mapping method can be used to map error data pattern (e.g., 2), N corresponding to a symbol size, the quan-
corresponding to particular user data (e.g., user data mapped tity of constellation points (“Constellation points™) needed to
via base conversion). The polynomial based mapping can map to 2" program state combinations (e.g., 8), the quantity

have a mapping constellation associated therewith that com- 1° 4 program states used to form program state combinations

prises at least afirst plapping shell and a second mapping shell corresponding to the first mapping shell (“First shell states™)
such as that SI}OWH in F1G. 6A. _ (e.g., 2), the quantity of constellation points ot the first map-
A polynomial based mapping process can be implemented 5,5 shel| (“First shell points™) (e.g., 4), the quantity of addi-
EY a {Iga(pilp.lng componznt such as mapping compone;r[114 ional program states used to form program state combina-
estiibed 10 t'1G. 1 and mapping compqnents 314-1 314!'2 tions corresponding to the second mapping shell (“Second

described 1n FIGS. 3A/3B. In such mappings, a symbol size s . . .
o rofor 10 a auantitv of bits stored ver call multiolied by a shell states™) (e.g., 1), the quantity of constellation points of
4 4 P P J the second mapping shell (*Second shell points™) (e.g., 4),

minimum quantity of cells needed to store an integer number . e . .
of bits. Fo(}' instglce 1t a group of memory cellgs store 1.5 and the packing density (“Packing density™) (e.g., 88.85%).
j »0 The packing density is equal to (2°7°*7)/(L""’) where bpc is

bits/cell, then the minimum number of cells needed to store an _ _ _ _
integer number of bits is 2 cells, which corresponds to a the quantity of bits/cell stored 1n a group of quantity nD cells,

symbol size of 3 bits (e.g., 1.5 bits/cellx2 cells). Asymbolsize ~ With bpexnD) corresponding to an the symbol size (e.g., N
of N bits (e.g., N parity bits) indicates that 2 different N bit ~ bits), and L is the quantity of program states to which the

15

data patterns are to be mapped (e.g., assigned) to 2" respec- group of cells are programmable.
TABLE 1
Constellation First shell First shell Second shell Second shell Packing
bpc States Cells/nD points states points additional states points density
1.5 3 2 & 2 4 1 4 88.89%
tive program state combinations (e.g., 2" constellation Therefore, 1 the example shown 1n FIG. 6 A, the quantity
points) corresponding to a group ot cells. of constellation points, and hence the quantity of different

As éi‘SSCI‘led above, a polynomial expression (e.g., 33 program state combinations is 9, which is one greater than the
(A+B)”) can be used to determine the quantity of mapping gyantity of data patterns needed to represent the 8 different N
shells needed 1or APPIIE data patterns of the determined bit (e.g., 3 bit) data patterns (e.g., 2”). As such, as shown in
symbol size to the 2 respective program state combinations, FIG. 6 Ajj the constellation p oin‘[j o orrespondinjg to the pro-

as well as to determine to which of the number of mapping binat; _ . q q
shells a particular N bit data pattern corresponds. As 4 &N state combination (L2; L2) 1s not mapped to a data

described further below, 1n a number of embodiments, a MSB pattern (?-g-: dS ir{dict?lted by an “x” 1 diagram 650). As ?UCh:
(most significant bit) of a data pattern (e.g., of an N bit the packing density 1s less than 100%. In general, a higher
symbol) 1s used to determine whether or not the data pattern packing density corresponds to a higher utilization of

maps to the first mapping shell. For example, an MSB 01 “0” memory capacity (e.g., flash capacity). In a number of
can 1ndicate the data pattern maps to the first mapping shell, . embodiments, those one or more program state combinations

and an MSB of “1” can indicate theﬂgata I‘-Eﬁem maps 1o a which are not mapped to a data pattern correspond to higher
higher order mapping shell (e.g., a 2"“ or 3™ mapping shell, program state combinations (e.g., those combinations includ-

etc.). A polynomial based mapping component can map the ing program states corresponding to higher Vt levels), which

bits assigned to the respective cells of the group of G cells 1o benefit h . h | Ffoct
(.., “dimensions™) to respective program states. can provide benefits such as preventing charge loss etffects
50 associated with higher program states.

FIG. 6 A 1llustrates a diagram 650 including a constellation

having a first and a second mapping shell associated with The quantity 01; constellation points of j[he respective first
mapping between data patterns and program states in accor- and second mapping shells can be determined using the first
dance with a number of embodiments of the present disclo- two terms ot the polynomuial expression described above (e.g.,
sure. Diagram 650 represents a constellation (e.g., a square (A+B)“, with A“ being the first term and indicating the quan-

constellation) associated with a group of two cells (e.g., cell 0 55 tity of constellation points of the first mapping shell and
and cell 1) storing 3 bits of data (e.g., 1.5 bits/cell) such that GxA'“ VB being the second term and corresponding to a

a corresponding symbol size 1s 3 bits, which can be repre- quantity of constellation points of the second mapping shell.
sented as [2:0]. Row 631 illustrates the three program states In the 1.5 bats/cell example of FIG. 6 A, A 1s equal to 2, G 1s
(e.g., LO, L1, and L.2) to which cell O (e.g., a first cell of the equal to 2, and B is equal to 1. As such, A is equal to 4 and
group) is programmable and column 652 illustrates the three 60 GxA'‘“"VxB is equal to 4. As described above, A is the quan-
program states (e.g., LO, L1, and L.2) to which cell 1 (e.g., a tity of program states from which the respective program state

second cell of the group) 1s programmable. As such, the combinations corresponding to the first mapping shell are
constellation of FIG. 6 A includes nine constellation points determined and B 1s the quantity of additional program states
corresponding to the mine possible program state combina- from which the respective program state combinations corre-

tions (cell O state; cell 1 state) (e.g., (LO; LO), (LO; L1), (LO; 65 sponding to the second mapping shell are determined. As
L2),(L1;L0),(L1;L1),(L1;L2),(L2;L0),(L2;L1),and (L.2; such, in this example, combinations of the first 2 program

L.2)). states (e.g., LO and LL1) are mapped to the respective 4 con-

US 9,081,674 B2

15

stellation points of the first mapping shell and the 4 constel-
lation points of the second mapping shell map to program
state combinations that include the uppermost program state
(e.g., L2). That 1s, program state combinations of the second
mapping shell include one cell having program state LOor L1, >
and one cell having program state L2.

As shown 1n FIG. 6A, the 4 constellation points of the first
mapping shell are numbered O to 3 and correspond to the
respective program state combinations (LLO; LO), (LO; L1),
(L1; LO), and (L1; L1). The 4 constellation points of the
second mapping shell are numbered 4 to 7 and correspond to
the respective program state combinations (L.2; L.O), (L2; LL1),
(LO; L2), and (LL1; L2). The decimal values 0 to 7 correspond
to the respective 3 bit data patterns 000 to 111.

FIGS. 6B and 6C illustrate a manner in which the different
3 bit data patterns are mapped to the program state combina-
tions corresponding to the first and second mapping shells,
respectively. Diagram 660-1 illustrates mappings corre-
sponding to the first mapping shell and diagram 660-2 1llus-
trates mappings corresponding to the second mapping shell.
In this example, the MSB (e.g., bit[2]) of the 3 bit data pattern
(e.g., represented as bit[2:0]) indicates whether the data pat-
tern maps to the first shell or the second shell. For instance, 11
bit[2] 1s “0” (e.g., the binary value of the 3 bit data pattern 1s
less than 4), the data pattern maps to the first shell, and if bit[2] 2°
1s “1” (e.g., the binary value of the 3 bit data pattern 1s greater
than or equal to 4), the data pattern maps to the second shell.

10

15

20

16

(e.g., a value of “0” corresponds to LO and a value of *1
corresponds to LL1). However, when cell[0] 1s the swap cell,

b1t[0] 1s assigned to cell[1] and when cell[1] 1s the swap cell,
b1t[0] 1s assigned to cell[0]. As such, FIGS. 6B and 6C illus-

trate a manner 1n which the different 3 bit data patterns cor-
responding to a first and a second mapping shell are mapped
to respective program state combinations of a group of two
memory cells each storing 1.5 bits/cell in accordance with a
number of embodiments of the present disclosure.

Table 2 shown below provides configuration information

associated with the example described in connection with
FIGS. 7A and 7B. Table 2 indicates the quantity of bits stored

percell (“bpc”) (e.g., 2.25), the quantity of states (“States™) to
which the memory cells are programmable (e.g., 5), the quan-

tity of cells (*Cells/nD”) corresponding to an N bit data
pattern (e.g., 4), N corresponding to a symbol size (e.g., 9 bits
in this example), the quantity of constellation points (“Con-
stellation points™) needed to map to 2* program state combi-
nations (e.g., 512), the quantity of program states used to form
program state combinations corresponding to the first map-
ping shell (“First shell states™) (e.g., 4), the quantity of con-
stellation points of the first mapping shell (“First shell
points”) (e.g., 256), the quantity of additional program states
used to form program state combinations corresponding to
the second mapping shell (“Second shell states™) (e.g., 1), the
quantity of constellation points of the second mapping shell
(“Second shell points™) (e.g., 256), and the packing density
(“Packing density”) (e.g., 81.92%).

TABLE 2
Constellation First shell First shell Second shell Second shell Packing
bpc States Cells/nD points states points additional states points density
2.25 5 4 512 4 256 1 256 81.92%
335

The mappings of FIG. 6B corresponding to the first map-
ping shell are systematic (e.g., they can then be determined in
a systematic manner). For instance, bit[1] can be assigned to
cell[1] and bit[0] can be assigned to cell[0] (the cells repre-
sented as cells[1:0]). That 1s, as shown 1n FIG. 6B, the binary
values of bits[1:0] of the data pattern [2:0] correspond
directly to the program states of cells[1:0] (e.g., a binary value
of “1”” corresponding to program state L1 and a binary value
of “0” corresponding to program state L.O).

The mappings of FIG. 6C corresponding to the second
mapping shell are near systematic (e.g., they can be deter-
mined in a substantially systematic manner). The mappings
corresponding to the second mapping shell are not entirely
systematic since, unlike the first mapping shell, the binary
values of bits [1:0] of the 3 bit data pattern (e.g., symbol size)
do not correspond directly to the program states of respective
cells[1:0]. As noted above, for the second mapping shell, one
of cells[1:0] carries program state L2. In this example, bit[1]
1s used to determine which of cells[1:0] carries L2 (e.g., a
binary value of “0” for bit| 1] indicates cell[0] carries L2 and
a binary value of ““1”” for bit[1] indicates cell[1] carries L2. A
bit(s) used to determine which cell carries the one or more of
a number of program states not corresponding to a first map-
ping shell can be referred to herein as a “swap cell bit(s),” and
the cell that carries the one or more of the number of program
states not corresponding to the first mapping shell can be
referred to herein as a “swap cell.” In this example, bit[1] 1s
the swap cell bit. As such, 11 bit[1] 1s “0,” cell[0] 1s the swap

cell and 1f bat[1] 1s “1,” cell[1] 1s the swap cell. As 1n the first
shell mapping of FIG. 4B, in FIG. 4C, the binary value of

b1t[0] does correspond directly with program states LO and L1

40

45

50

55

60

65

The quantity of constellation points of the respective first
and second mapping shells can be determined using the first
two terms of the polynomial expression described above (e.g.,
(A+B)%), with A“ being the first term and indicating the
quantity of constellation points of the first mapping shell and
GxA'“YxB being the second term and corresponding to a
quantity of constellation points of the second mapping shell.
In the 2.25 bits/cell example of FIGS. 7A and 7B, A 1s equal
to 4, G is equal to 4, and B is equal to 1. As such, A is equal
to 256 and GxA“xB is equal to 256. As described above,

A 1s the quantity of program states from which the respective
program state combinations corresponding to the first map-
ping shell are determined and B 1s the quantity of additional
program states from which the respective program state com-
binations corresponding to the second mapping shell are
determined. As such, in this example, combinations of the
first 4 program states (e.g., LO to L3) are mapped to the
respective 256 constellation points of the first mapping shell
and the 256 constellation points of the second mapping shell
map to program state combinations that include a program
state other than the first 4 program states (e.g., the uppermost
program state [L.4). As shown in FIG. 7B, 1n this example,
program state combinations of the second mapping shell
include each of three cells having one of program states LO to
L3, and one cell carrying program state 1.4.

FIGS. 7A and 7B illustrate a manner in which the different
9 bit data patterns are mapped to the program state combina-
tions corresponding to the first and second mapping shells,
respectively. Diagram 760-1 illustrates mappings corre-
sponding to the first mapping shell and diagram 760-2 1llus-
trates mappings corresponding to the second mapping shell.

US 9,081,674 B2

17

In this example, the MSB (e.g., bit[8]) of the 9 bat data pattern
(e.g., represented as bit[8:0]) indicates whether the data pat-
tern maps to the first shell or the second shell. For instance, 11
bit[8] 1s “0” (e.g., the binary value of the 9 bit data pattern 1s
less than 256), the data pattern maps to the first shell, and 1if 5
bit[8] 1s “1”” (e.g., the binary value of the 9 bit data pattern 1s
greater than or equal to 256), the data pattern maps to the
second shell.

FI1G. 7 A illustrates how the bits| 7:0] of the 9 bit data pattern
can be mapped to program state combinations of the four
cells[3:0] systematically for the first mapping shell. For
istance, bits [7:6] can be assigned to cell[3], bits[5:4] can be
assigned to cell[2], bits[3:2] can be assigned to cell[1], and
bits[1:0] can be assigned to cell[0], with the binary values of
the bit pairs assigned to the cells corresponding directly to the 15
program states of the respective cells (e.g., with the binary

values “00,” “01,” *“10,” and “11,” corresponding directly to
L0, L1, L2, and L3, respectively).

10

18

FIGS. 8A and 8B. Table 3 indicates the quantity of bits stored
per cell (“bpc™) (e.g., 2.5), the quantity of states (“States”) to
which the memory cells are programmable (e.g., 6), the quan-
tity of cells (*Cells/nD”) corresponding to an N bit data
pattern (e.g., 2), N corresponding to a symbol size (e.g., 5 bits
in this example), the quantity of constellation points (“Con-
stellation points”) needed to map to 2" program state combi-
nations (e.g., 32), the quantity of program states used to form
program state combinations corresponding to the first map-
ping shell (“First shell states™) (e.g., 4), the quantity of con-
stellation points of the first mapping shell (“First shell
points”) (e.g., 16), the quantity of additional program states
used to form program state combinations corresponding to
the second mapping shell (“Second shell states”) (e.g., 2), the
quantity of constellation points of the second mapping shell
(“Second shell points™) (e.g., 16), and the packing density

“Packing density’) (e.g., 88.89%).
(g y”’) (e.g.,)

TABLE 3
Constellation First shell First shell Second shell Second shell Packing
bpc States Cells/nD points states points additional states points density
2.5 6 2 32 4 16 2 16 88.89%

FIG. 7B illustrates how the bits [7:0] of the 9 bit data
pattern can be mapped to program state combinations of the
tour cells[3:0] for the second mapping shell. As noted above,
for program state combinations of the second mapping shell,
one of cells[3:0] carries program state L.4. In this example,
bits[7:6] are used to determine which of cells[3:0] carries
program state L4 (e.g., a binary value of “00” for bits[7:6]
indicates cell[0] carries L4, a binary value of “01” for bits[7:
6] indicates cell[1] carries L4, a binary value of “10” for bits
[7:6] indicates cell| 2] carries 1.4, and a binary value of “11”
for bits[7:6] indicates cell[3] carries 4. That 1s, bits [7:6] are
the swap bits for this 2.25 bits/cell example. As such, as
shown i FI1G. 7B, i1 bits| 7:6] are “00,” cell| 0] 1s the swap cell,
if bits[7:6] are “01,” cell[1] 1s the swap cell, 1t bits[7:6] are
“10,” cell[2] 1s the swap cell, and 11 bits[7:6] are “11,” cell[3]
1s the swap cell. FIG. 7B also indicates the bit assignments for
the three cells that do not carry 4. For instance, as 1llustrated,
if bits [7:6] of the 9 bit data pattern are “00” such that cell[O]
carries L4, then bits [3:2] are assigned to cell[1], bits [5:4] are
assigned to cell [2], and bats [0:1] are assigned to cell[3]. In
the second mapping shell, the bit pairs [5:4], [3:2], and [1:0]
of the 9 bit data pattern each correspond directly to the pro-
gram states LO to L3. For istance, a 9 bit data pattern of
100100111 having bits[7:6] being “00,” bits[5:4] being “10,”
bits[3:2] being “01,” and bits[1:0] being “11,” maps to cell[0]
being programmed to program state L4, cell[1] being pro-
grammed to program state L1, cell|2] being programmed to
program state L2, and cell[3] being programmed to program
state L3 1n accordance with the second shell mapping 1llus-
trated 1n FI1G. 7B. The mapping corresponding to the second
shell 1s near systematic. For instance, two of the four cells

corresponding to the mapping carry systematic information
all of the time.

As such, FIGS. 7A and 7B illustrate a manner 1n which the
different 9 bit data patterns corresponding to a first and a
second mapping shell are mapped to respective program state
combinations of a group of four memory cells each storing
2.25 bits/cell in accordance with a number of embodiments of
the present disclosure.

Table 3 shown below provides configuration information
associated with the example described in connection with

30

35

40

45

50

55

60

65

The quantity of constellation points of the respective first
and second mapping shells can be determined using the first
two terms of the polynomial expression described above (e.g.,
(A+B)%), with A“ being the first term and indicating the
quantity of constellation points of the first mapping shell and
GxA'“"VxB being the second term and corresponding to a
quantity of constellation points of the second mapping shell.
In the 2.5 bits/cell example of FIGS. 8 A and 8B, A 1s equal to
4, G 1s equal to 2, and B 1s equal to 2. As such, A° 1s equal to
16 and GxA'“ B is equal to 16. As described above, A is
the quantity of program states from which the respective
program state combinations corresponding to the first map-
ping shell are determined and B 1s the quantity of additional
program states from which the respective program state com-
binations corresponding to the second mapping shell are
determined. As such, in this example, combinations of the
first 4 program states (e.g., LO to L3) are mapped to the
respective 16 constellation points of the first mapping shell
and the 16 constellation points of the second mapping shell
map to program state combinations that include a program
state other than the first 4 program states (e.g., the program
states L4 and L5). As shown in FIG. 8B, in this example,
program state combinations of the second mapping shell
include one cell having one of program states 1O to L3, and
one cell carrying program state .4 or L5.

FIGS. 8A and 8B 1llustrate a manner 1n which the different
S5 bit data patterns are mapped to the program state combina-
tions corresponding to the first and second mapping shells,
respectively. Diagram 860-1 1llustrates mappings corre-
sponding to the first mapping shell and diagram 860-2 1llus-
trates mappings corresponding to the second mapping shell.
In this example, the MSB (e.g., bit[4]) of the 5 bit data pattern
(e.g., represented as bit[4:0]) indicates whether the data pat-
tern maps to the first shell or the second shell. For instance, 1t
bit[4] 1s “0” (e.g., the binary value of the 5 bit data pattern 1s
less than 16), the data pattern maps to the first shell, and 1f
bit[4] 1s “1” (e.g., the binary value of the 5 bit data pattern 1s
greater than or equal to 16), the data pattern maps to the
second shell.

FIG. 8 A illustrates how the bits[4:0] of the 5 bit data pattern

can be mapped to program state combinations of the two

US 9,081,674 B2

19

cells[1:0] systematically for the first mapping shell. For
instance, bits [1:0] can be assigned to cell[0], and bits[3:2]
can be assigned to cell[1], with the binary values of the bit

pairs assigned to the cells corresponding directly to the pro-
gram states of the respective cells (e.g., with the binary values

“00,” 01,7 *“10,” and *“11,” corresponding directly to LO, L1,

L2, and L3, respectively).
FIG. 8B 1llustrates how the bits [4:0] of the 5 bit data

pattern can be mapped to program state combinations of the
two cells[1:0] for the second mapping shell. For program
state combinations of the second mapping shell, one of cells
[1:0] carries program state L4 or L5 since B 1s equal to 2 (e.g.,
2 additional program states correspond to the second map-
ping shell). In this example, bit[3] 1s used to determine which
of cells[1:0] carries program state .4 or L5 (e.g., a binary
value of “0” for bit[3] indicates cell[0] carries L4 or L3, and
a binary value of *“1” for bit| 3] indicates cell[1] carries L4 or
L.3. That is, bit[3] 1s the swap bit for this 2.5 bits/cell example.

As such, as shown 1n FIG. 8B, 11 bit[3] 1s “0,” cell[0] 1s the
swap cell, and 1t bit[3] 1s “1,” cell[1] 1s the swap cell. In
embodiments 1n which B corresponds to a quantity of pro-
gram states greater than one, a bit(s) can also be used to
determine which of the B program states 1s to be carried by the
swap cell. The program state carried by the swap cell 1s
referred to herein as the “swap state.” In this example, bit[2]
1s used to determine the swap state. For instance, 1f bit[2] 1s
“0,” the swap state 1s L4, and 11 bit[2] 15 “1,” then the swap
state 1s L5, 1n the example shown 1n FIG. 8B.

FIG. 8B also indicates the bit assignments for the cell that
does not carry L4 or L5. As 1n the first shell mapping of FIG.
8A, in FIG. 8B, the binary value of bits[1:0] does correspond
directly with program states L.O to L3 (e.g., a value of “00”
corresponds to L0, a value of “01” corresponds to LL1, a value
ol “10” corresponds to L2, and a value of “11” corresponds to
[.3). However, when cell[0] 1s the swap cell, bits[1:0] are
assigned to cell[1] and when cell[1] 1s the swap cell, bits[1:0]
are assigned to cell[0]. As such, FIGS. 8A and 8B 1llustrate a
manner 1n which the different 5 bit data patterns correspond-
ing to a first and a second mapping shell are mapped to
respective program state combinations of a group of two
memory cells each storing 2.5 bits/cell in accordance with a
number of embodiments of the present disclosure.

As 1llustrated by the examples shown in FIGS. 6 A through
8B, the polynomial based mappings can mvolve swap cells,
which can result in error propagation as the programmed state
of a particular cell of a group of cells storing a data pattern can
elfect bits stored by other cells of the group, for instance. The
amount of error propagation can further increase as the num-
ber of bits/cells involved 1n the packing increases. However,
such error propagation can be reduced and or eliminated 1n
accordance with a number of embodiments described herein.
For example, 1n a number of embodiments, a polynomial
based mapping 1s used only for mapping error data (e.g.,
parity bits), while a different mapping (e.g., base conversion)
1s used for mapping the user data. As described above 1n
association with FIGS. 4 and §, for example, such dual map-
ping processes can result 1n an increase 1n the total quantity of
cells used to store a particular amount of user data and 1ts
corresponding error data. However, because the error data 1s
a relatively small portion of the codeword size, the slight
increase 1n the total quantity of cells needed to store the data
can be oifset by the lack of error propagation associated with
the user data. Also, since the mappings used for the user data
does not involve swap cells (e.g., the mapping 1s systematic),
LLR generation for the user data bits can be less complex as
compared to multi-dimensional LLR generation that can be

10

15

20

25

30

35

40

45

50

55

60

65

20

associated with unpacking cells mapped via a polynomial
based mapping method such as those described above.

CONCLUSION

The present disclosure includes methods and apparatuses
for dual mapping between program states and data patterns.
One apparatus includes a memory and a controller configured
to control a dual mapping method comprising: performing a
base conversion on a recerved data pattern and mapping a
resulting base converted data pattern to one of a first number
of program state combinations corresponding to a first group
of memory cells; and determining a number of error data units
corresponding to the base converted data pattern and mapping
the number of error data units to one of a second number of
program state combinations corresponding to a second group
of memory cells. The number of error data units are mapped
to the one of the second number of program state combina-
tions corresponding to the second group of memory cells
without being base converted.

It will be understood that when an element 1s referred to as
being “on,” “connected to” or “coupled with” another ele-
ment, 1t can be directly on, connected, or coupled with the
other element or intervening elements may be present. In
contrast, when an element 1s referred to as being “directly on,”
“directly connected to” or “directly coupled with” another
clement, there are no intervening elements or layers present.
As used herein, the term “and/or” includes any and all com-
binations of a number of the associated listed items.

As used herein, the term “and/or” includes any and all
combinations of a number of the associated listed items. As
used herein the term “‘or,” unless otherwise noted, means
logically inclusive or. That 1s, “A or B” can include (only A),
(only B), or (both A and B). In other words, “A or B” canmean
“A and/or B” or “a number of A and B.”

It will be understood that, although the terms first, second,
third, etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another
element. Thus, a first element could be termed a second
clement without departing from the teachings of the present
disclosure.

Although specific embodiments have been 1illustrated and
described herein, those of ordinary skill 1n the art will appre-
ciate that an arrangement calculated to achieve the same
results can be substituted for the specific embodiments
shown. This disclosure 1s intended to cover adaptations or
variations of a number of embodiments of the present disclo-
sure. It1s to be understood that the above description has been
made 1n an illustrative fashion, and not a restrictive one.
Combination of the above embodiments, and other embodi-
ments not specifically described herein will be apparent to
those of skill in the art upon reviewing the above description.
The scope of the a number of embodiments of the present
disclosure includes other applications 1n which the above
structures and methods are used. Therefore, the scope of a
number of embodiments of the present disclosure should be
determined with reference to the appended claims, along with
the full range of equivalents to which such claims are entitled.

In the foregoing Detailed Description, some features are
grouped together 1n a single embodiment for the purpose of
streamlining the disclosure. This method of disclosure 1s not
to be interpreted as retlecting an intention that the disclosed
embodiments of the present disclosure have to use more fea-
tures than are expressly recited 1n each claim. Rather, as the
following claims reflect, inventive subject matter lies 1n less
than all features of a single disclosed embodiment. Thus, the

US 9,081,674 B2

21

following claims are hereby incorporated into the Detailed
Description, with each claim standing on 1ts own as a separate
embodiment.

What 1s claimed 1s:

1. An apparatus, comprising:

a first mapping component configured to:

perform a base conversion process on a data pattern
recerved thereby; and

map the base converted data pattern to one of a first
number of program state combinations corresponding
to a first group of memory cells to which the base
converted data pattern 1s to be stored;

an error code component configured to generate error data

based on the base converted data pattern; and

a second mapping component configured to map the error

data generated by the error code component to one of a
second number of program state combinations corre-
sponding to a second group of memory cells to which the
error data 1s to be stored;

wherein the first group of memory cells 1s configured to

store a {irst number of data units per cell and the second
group of memory cells 1s configured to store a second
number of data units per cell, the first number of data
units per cell being different than the second number of
data units per cell.

2. The apparatus of claim 1, wherein the base conversion
process results 1n expansion such that the base converted data
pattern 1s an expanded data pattern.

3. The apparatus of claim 1, wherein the error data gener-
ated by the error code component comprises a number of
parity bits.

4. The apparatus of claim 1, wherein at least one of the first
number of data units per cell and the second number of data
units per cell 1s a non-integer number of data units per cell.

5. The apparatus of claim 4, wherein:

the first group of memory cells 1s configured to store an

integer number of data units; and

the second group of memory cells 1s configured to store a

different integer number of data units.

6. The apparatus of claim 1, wherein the apparatus 1s a
controller configured to write the base converted data pattern
and the error data to a memory 1n accordance with mapping
provided by the first and second mapping components.

7. The apparatus of claim 1, wherein:

the second group of memory cells comprises G memory

cells each programmable to a respective one of L pro-
gram states;

the error data 1s to be stored to the group of G memory cells

as one of a number of N unit data patterns to which
program state combinations of the G memory cells are
mapped; and

the apparatus 1s configured to program each memory cell of

the group of G memory cells to a respective one of the L
program states such that a combination of the program
states of the group maps to the one of the number of N
unmit data patterns;

wherein the respective program states to which the

memory cells of the group of G memory cells are pro-
grammed such that the combination of the program
states of the group maps to the one of the number of N
umt data patterns 1s determined using a mapping based,
at least partially, on a polynomial expression of order
equal to G, a first term of the polynomial expression
corresponding to a first mapping shell and a second term
of the polynomial expression corresponding to a second
mapping shell.

10

15

20

25

30

35

40

45

50

55

60

65

22

8. The apparatus of claim 7, wherein the first mapping shell
comprises constellation points corresponding only to pro-
gram state combinations that do not include at least one of L
program states to which the group of G memory cells are
programmable, L being a minimum number of program states
needed to store N/G units of data per memory cell of the group
of G memory cells.

9. The apparatus of claim 7, wherein the polynomial
expression is (A+B)“ with A“ being a quantity of constella-
tion points of the first mapping shell and GxA“"’xB being a
quantity of constellation points of the second mapping shell.

10. The apparatus of claim 9, wherein A 1s a quantity of
program states from which the respective program state com-
binations corresponding to the first mapping shell are deter-
mined and B 1s a quantity of additional program states from
which the respective program state combinations correspond-
ing to the second mapping shell are determined.

11. A method, comprising:

expanding, via a first mapping component, a recerved data

pattern from a first number of data units to an expanded
number of data units;

mapping, via the first mapping component, the expanded

number of data units to one of a first number of program
state combinations corresponding to a first group of
memory cells to which the expanded number of data
units are to be stored;

generating a number of error data units based on the

expanded number of data units; and
mapping, via a second mapping component, the error data
units to one of a second number of program state com-
binations corresponding to a second group of cells to
which the number of error data units are to be stored;

wherein the first group of memory cells 1s configured to
store a first number of data units per cell and the second
group of memory cells 1s configured to store a second
number of data units per cell, the first number of data
units per cell being different than the second number of
data units per cell.

12. The method of claam 11, wherein expanding the
received data pattern comprises performing a base conversion
on the received data pattern.

13. The method of claim 12, wherein performing the base
conversion comprises constraining the mapping of the
expanded number of data units to a particular base, and

wherein the mapping of the error data units 1s not base-
constrained.
14. The method of claim 11, further comprising:
storing the expanded number of data units and correspond-
ing error data units in their respective groups of memory
cells in accordance with the respective mappings; and

determining data currently stored in the first and second
groups of memory cells by performing a read operation
on the first and second groups of memory cells;

performing an error decode operation on the data deter-
mined from the read operation prior to contracting the
number of data unmits read from the respective group of
memory cells from the expanded number of data units
back to the first number of data units.

15. The method of claim 14, further comprising determin-
ing reliability data for the data determined from the read
operation prior to performing the error decode operation.

16. The method of claim 14, wherein determining reliabil-
ity data comprises determining log likelihood ratios (LLRs),
and wherein determiming the LLRs comprises:

performing a one-dimensional LLR computation to deter-

mine LLRs corresponding to the data determined from

US 9,081,674 B2

23

the read operation performed on the group of memory
cells storing the expanded number of data units; and
performing a multi-dimensional LLR computation to
determine the LLRs corresponding to the data deter-
mined from the read operation performed on the second
group of memory cells.

17. An apparatus, comprising:

a memory; and

a controller coupled to the memory and configured to con-
trol a method executed to:

map a base converted data pattern to one of a {irst num-
ber of program state combinations corresponding to a
first group of memory cells each configured to store a
fractional number of data units per cell; and

map a number of error data units corresponding to the
base converted data pattern to one of a second number
of program state combinations corresponding to a
second group of memory cells each configured to
store a fractional number of data units per cell;

wherein the number of error data units are mapped to the
one of the second number of program state combina-
tions corresponding to the second group of memory
cells without being base converted; and

wherein the fractional number of data units per cell
corresponding to the first group of memory cells 1s
greater than the fractional number of data units per
cell corresponding to the second group of memory
cells.

18. The apparatus of claim 17, wherein the second group of
memory cells comprises G memory cells and the number of
error data units comprises N error data units, and wherein the
N error data units are mapped via a mapping based, at least
partially, on a polynomial of order G, with a first term of the
polynomial expression corresponding to a first mapping shell
and a second term of the polynomial expression correspond-
ing to a second mapping shell.

19. The apparatus of claim 18, wherein:

the second group of memory cells are each programmable

to one of L program states with L being a number of
program states used to store N/G data units per cell;

the first term of the polynomial expression is A, with A“

being a quantity of constellation points of the first map-
ping shell, and wherein A 1s a quantity of the L. program
states corresponding to the A constellation points of the
first mapping shell; and

the second term of the polynomial expression is GxA“

HxB, with GxA“"'xB being a quantity of constellation
points of the second mapping shell, and wherein B 1s an
additional quantity of the L program states correspond-
ing to the GxA‘“'xB constellation points of the second
mapping shell.

20. The apparatus of claim 19, wherein each of the A“
constellation points of the first mapping shell corresponds to
a different N unit data pattern of a number of N unit data
patterns.

21. The apparatus of claim 20, wherein none of the con-
stellation points of the first mapping shell correspond to a
program state combination comprising at least one of the L
program states.

22. The apparatus of claim 21, wherein:

the A“ constellation points of the first mapping shell cor-

respond to data patterns of the number of N unit data
patterns having a binary value of less than the binary
value of A°; and

the GxA“"PxB constellation points of the second map-

ping shell correspond to data patterns of the number of N

10

15

20

25

30

35

40

45

50

55

60

65

24

unit data patterns having a binary value greater than or
equal to the binary value of A°.

23. The apparatus of claim 22, wherein if the N error data
units have a binary value greater than or equal to the binary
value of A, then one or more units of the N error data units
determine which of the memory cells of the second group 1s
programmed to at least one of the L program states.

24.'The apparatus of claim 19, wherein A 1s equal to 2“ with
“a” being a value such that 2“ 1s an uppermost power of 2
value that 1s less than L.

25. The apparatus of claim 19, wherein the A quantity of
the L program states correspond to higher voltage program
states than the B quantity of the L program states.

26. The apparatus of claim 18, wherein at least one of the
first mapping shell and the second mapping shell includes a
number of constellation points that are not mapped to a pro-
gram state combination, and wherein the number constella-
tion points that are not mapped to a program state combina-
tion correspond to higher program state combinations than
those constellation points that are mapped to a program state
combination.

277. An apparatus, comprising:

a memory; and

a controller coupled to the memory and configured to con-

trol a dual mapping method, the method comprising:

performing a base conversion on a received data pattern
and mapping a resulting base converted data pattern to
one of a number of program state combinations cor-
responding to a first group of memory cells;

determining a number of error data units corresponding
to the base converted data pattern and mapping the
number of error data units to one of a number of
program state combinations corresponding to a sec-
ond group of memory cells;

wherein the number of error data units are mapped to the
one of the number of program state combinations
corresponding to the second group of memory cells
without being base converted; and

wherein:

the number of error data units comprises N data units,
with N being an integer;

the second group of memory cells comprises G memory
cells configured to store N/G data units per cell, with
N/G being a non-integer number of data units per cell;
and

the number of error data units are mapped based, at least
partially, on a mapping comprising a polynomial
expression of order equal to G, a first term of the
polynomial expression corresponding to a {first map-
ping shell and a second term of the polynomial
expression corresponding to a second mapping shell.

28. The apparatus of claim 27, further comprising:

a first mapping component configured to perform the base

conversion on the received data pattern;

an error code component configured to determine the num-

ber of error data units corresponding to the base con-
verted data pattern; and

a second mapping component configured to map the num-

ber of error data units to the one of the number of pro-
gram state combinations corresponding to the second
group of memory cells.

29. The apparatus of claim 28, wherein at least one of the
first mapping component, the error code component, and the
second mapping component reside on the controller.

30. The apparatus of claim 27, wherein the mapping 1ndi-
cates a swap cell for constellation points of at least the second
mapping shell.

US 9,081,674 B2

25

31. A method for operating a memory, comprising:

mapping a base converted data pattern to one of a number
of program state combinations corresponding to a first
group of memory cells each configured to store a frac-
tional number of data units per cell; and

mapping a number of error data units corresponding to the
base converted data pattern to one of a number of pro-
gram state combinations corresponding to a second
group of memory cells each configured to store a frac-
tional number of data units per cell;

wherein the number of error data units are mapped to the
one of the number of program state combinations corre-
sponding to the second group of memory cells based on
a mapping constellation comprising at least a first map-
ping shell and a second mapping shell; and

wherein the fractional number of data units per cell corre-
sponding to the first group of memory cells 1s greater
than the fractional number of data units per cell corre-
sponding to the second group of memory cells.

26

32. The method of claim 31, wherein mapping the number

of error data units further comprises determining at least one
swap cell for constellation points of at least one of the first
mapping shell and the second mapping shell.

33. The method of claim 31, further comprising:

writing the base converted data pattern and the number of
error data units to the first and second groups of memory
cells 1n accordance with the respective mappings; and

generating log likelithood ratios (LLRs) corresponding to
data read from the first and second groups of memory
cells prior to converting data read from the first group of
memory cells from a base converted data pattern to a
non-base converted data pattern.

34. The method of claim 31, further comprising, generating,

. the base converted data pattern by converting a number of
base-2 data units to a number of base-X data units, where X 1s
greater than two, and wherein the value of X 1s based, at least
partially, on a quantity of program states to which the memory
cells of the first group are programmable.

¥ ¥ * ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

