12 United States Patent

US009075851B2

(10) Patent No.: US 9,075,851 B2

Kilian et al. 45) Date of Patent: Jul. 7, 2015
o e s 2001/0034728 AL* 102001 MeBride ot al 1o 7071
1 cbride etal.
RETENTION IN A STORAGE SYSTEM 2002/0120667 Al1* 8/2002 Nakano 709/200
2004/0015713 Al 1/2004 Abe et al.
(75) Inventors: Michael Kilian, Harvard, MA (US); 2004/0019500 AL* 12004 Ruth oo 705/1
Mark Avery, Weston, MA (US); 2004/0039594 Al1* 2/2004 Narasimhan etal. 705/1
: 2004/0070622 Al* 4/2004 Cosseyetal. 345/769
Stephen Todd, Shrewsbury, MA (US); 2004/0167898 Al* 82004 Margolusetal. 707/10
Tom Teugels, Schoten (BE); Francis 2005/0055518 Al* 3/2005 Hochberg etal. ... 711/159
Martens, Berchem (BE); Jan 2005/0055519 Al* 3/2005 Stuart et al. 711/159
Bruyndonckx, Mechelen (BE) 2005/0060224 Al1* 3/2005 Rickettscccoeevinennn., 705/11
2005/0076042 Al* 4/2005 Stakutisetal. 707/100
(73) Assignee: F‘ng Corporation, Hopkinton, MA (Continued)
_ ‘ o ‘ FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 EP 0322 130 A3 6/1989
U.S.C. 154(b) by 441 days. EP 0515073 * 12/1992 .oocoveenoc, GOGF 12/08
EP 0 881 580 A3 2/2002
(21) Appl. No.: 10/731,790 (Continued)
(22) Filed: Dec.9,2003 OTHER PUBLICATIONS
_ o LeBoef et al., “Effect of Sarbanes-Oxley on Document Retention
(65) Prior Publication Data Policies”, May 30, 2003, p. 1-4.*
US 2005/0125411 Al Jun. 9, 2005 (Continued)
(1) Int. CL Primary Examiner — Khanh Pham
(52) I(J;0S6P;]f = (2006.01) (74) Attorney, Agent, or Firm — Krishnendu Gupta; Joseph
e -l 1D’ Angelo
CPC e GO6F 17/30551 (2013.01) .
(58) Field of Classification Search (57) ABSTRACT
UsSPC S 7117159, 705/11; 707/1(.)1’ 200, 205 A system and method are provided for retention of data on a
See application file for complete search history. . .
storage system. An application program provides the storage
(56) References Cited system with data to be stored on the storage system. The

5,107,419
5,689,699
5,813,009
0,718,347
6,807,632
7,272,613
7,281,084

U.S. PATENT DOCUMENTS

A * 4/1992
A 11/1997
A * 9/1998
Bl* 4/2004
Bl 10/2004
B2* 9/2007
Bl1* 10/2007

MacPhailcoovevvivnn, 707/9
Howell et al.

Johnsonetal. 707/100
Wilson ..ooooovvvvvvviiininnnnn, 707/201
Carpentier et al.

Simetal.oooooovvvininnin, 707/102

Todd etal.ovvonn. 707/202

application program also provides the storage system with a
retention period that indicates a period of time for which the
data may not be deleted. When the storage system receives a
request to delete the data, 1t first evaluates the retention period
associated with that data to determine 11 the retention period
has expired. If the retention period has not expired, the stor-
age system denies the request to delete the data.

20 Claims, 3 Drawing Sheets

(Start)

] T

Receive Request to Delete CDF
Using Content Address

405
¥ e

Locote CDF on

Storage System

Yes

408
¥ /

Delete
CDF

Retention

407

No

Fericd
Expired
?
411
¥ //
Deny Delation
Request

413

End

US 9,075,851 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5/2005 McGovernetal. 711/100
1/2006 Shaathetal. 707/102

2005/0097260 Al*
2006/0010150 AlL*

FOREIGN PATENT DOCUMENTS

GB 2379059 A 2/2003
JP 5-159164 6/1993
JP 10-124351 5/1998
JP 11-306062 11/1999
JP 2001-356942 12/2001
JP 2002-024076 1/2002
JP 2002-366441 12/2002
WO WO 99/38093 7/1999
WO WO 01/18633 3/2001
WO W00225445 ¥ 3/2002 GO6F 17/30
OTHER PUBLICATIONS

Coyne et al., “The High Performance Storage System”, Nov. 1993,

ACM Press, p. 83-92.*

Santry et al., “Deciding when to forget in the Elephant file system”,
Dec. 1999, ACM Press, p. 110-123.*

Sipior, “The Dark Side of Employee Email”, Jul. 1999, Communi-
cations of the ACM, vol. 42, No. 7, p. 88-95.*

Coyne et al., “HPSS Collaboration: Learn about HPSS”, <http://
www.hpss-collaboration.org/hpss/about/collaboration.jsp>,
Retrieved Jul. 26, 2007, p. 1.*

Smith, “Long Term File Migration: Development and Evaluation of

Algorithms™, Aug. 1981, Communications of the ACM, vol. 24, No.
8, Pl. 521-532.*

OED.com, Entry for “storage device”, 1989, Second Ed., Oxford
University Press. <Retrieved from the web Jul. 29, 2008>.*
Wikipedia.org, entry for “Storage Device™, Jul. 27, 2008, Wikipedia
Foundation, <Retrieved from the web Jul. 29, 2008>*

IEEE, The Authoritative Dictionary of IEEE Standards Terms, entry
for “storage device”, Dec. 2000, 7th Ed. p. 1113.*

Baird et al., “Distributed Information Storage Architecture”, Apr.
1993, Mass Storage Systems, Putting All that Data to Work, Proceed-
ings, Twelfth IEEE Symposium on Monterey, p. 145-155, <Retrieved
from IEEE Explore Jan. 17, 2009>.*

Bedoll, “The Importance of metadata in mass-storage systems”, May
1990, Mass Storage Systems, Crisis 1n Mass Storage, Tenth IEEE
Symposium, p. 111-116, <Retrieved from IEEE Explore Jan. 17,
2009>*

Lanzatella, “Storage Management Issues for Cray Research™, May
1990, Mass Storage Systems, Tenth IEEE Symposium, p. 176-181,
<Retrieved from IEEE Explore Jan. 17, 2009>.*

Foster et al, “Renaissance: managing the network computer and its
storage requirements”, Oct. 1991, Proceedings of the Symposium on
Mass Storage Systems, p. 3-10, <Retrieved from IEEE Explore Jan.
17, 2009>*

Search Report from Great Britain Patent Application No. GB
0426364.6.

Translation of Japanese Application No. 10-124351 provided with
Great Britain Search Report.

Office Action from Indian Application 749/KOL/2004 dated Mar. 25,
20009.

Office Action from Japanese Application 2004-355471 dated Jun. 9,
20009.

* cited by examiner

U.S. Patent Jul. 7, 2015 Sheet 1 of 3 US 9,075,851 B2

105a

- Host

1056
™~

Host

107
103 /‘———I

Storage
System

Network

Host

U.S. Patent Jul. 7, 2015 Sheet 2 of 3 US 9,075,851 B2

/201 203 205
Original
Data
207 203 200
Modified Content
Datg Address
/.3'01 903
Cont_ent '
Descrlptcr Blob
File
JO5S
Metadatag
J307a
Ref 1 ' >
o07b
Ref 2
307n
Ref n

FIG. S

U.S. Patent Jul. 7, 2015 Sheet 3 of 3 US 9,075,851 B2

403
.
Receive Request to Delete CDF
Using Content Address
405

Locate CDF on Storage System

407
Retention N
Y 0O
- Period
Expired
l'?

LN I e

Delete Den y Deletion
CDF Request

413

—>{ End

FIG. 4

US 9,075,851 B2

1

METHOD AND APPARATUS FOR DATA
RETENTION IN A STORAGE SYSTEM

BACKGROUND OF INVENTION

1. Field of Invention
The present invention relates generally to data storage and,
more particularly, to a method and apparatus for data reten-

tion 1n a data storage system.

2. Discussion of Related Art

Businesses and other institutions, such as hospitals,
schools, and government agencies, often use data storage
systems to maintain records 1n electronic form. Such records
may 1include, for example, company financial records, elec-
tronic mail (e-mail), patient medical records, student tran-
scripts, and other types of data. It may be important to the
business or institution to maintain these records 1n their origi-
nal form for a certain period of time aiter their creation. That
1s, the business or institution may desire to prevent the records
from being deleted or modified until a certain period of time
has elapsed. For example, a hospital may wish to prevent
modification or deletion of patient x-rays for a certain number
ol years after the x-rays are taken. Further, such retention of
data may be mandated by law. For example, Securities and
Exchange Commission (SEC) Rule 17a-4 requires that com-
panies preserve certain {inancial records for a period of six
years.

With conventional storage systems, users may accidentally
delete or modily such records. Alternatively, malicious users
may intentionally delete or modity such records, for example
to conceal unscrupulous business practices or to dishonestly
alter school transcripts. Whether accidental or intentional,
such acts may cause an 1rreparable loss of data or even a
violation of law. While some computer systems include a file
system front end (often on a host computer rather than on a
storage system) that allows files to be designated “read-only,”
an administrator of the system typically has the ability to
change the “read-only™ status of files such that the files may
be modified or deleted. Further, conventional file systems do
not allow the user to specity a period of time for which data
cannot be deleted or modified. That 1s, designating a file
“read-only” means that the file cannot be deleted or modified
so long as the file’s read-only status 1s not altered.

Some storage systems store data on recording media, e.g.,
optical discs (such as, CD-ROM discs) which cannot be over-
written or modified. However, such systems do not allow the
user to specily a retention period, as once data 1s written to the
media 1t can never be deleted from the media, although the
media may be physically destroyed to prevent access to the
data. Such media 1s not reusable 11 1t 1s ever desired to replace
the data on the media with new data.

SUMMARY OF INVENTION

One 1illustrative embodiment 1s directed to a method of
processing data 1n a computer system comprising at least one
host and at least one storage system. The method comprises
acts of: (A) receiving a request, from the host, to delete a unit
of data stored on the storage system; (B) determining whether
a previously-defined retention period for the unit of data has
expired; and (C) when 1t 1s determined 1n the act (B) that the
retention period for the unmit of data has not expired, denying,
the request to delete the umt of data. Another illustrative
embodiment 1s directed to at least one computer readable
medium encoded with instructions that, when executed on a
computer system, performs the above-described method.

10

15

20

25

30

35

40

45

50

55

60

65

2

A turther illustrative embodiment 1s directed to a storage
system for use 1n a computer system comprising at least one
host and the storage system. The storage system comprises: at
least one storage device to store data recerved from the at least
one host; and at least one controller. The at least one controller
receives a request, Irom the host, to delete a unit of data stored
on the storage system; determines whether a previously-de-
fined retention period for the unit of data has expired; and
when 1t 1s determined that the retention period for the unit of

data has not expired, denies the request to delete the unit of
data.

Another illustrative embodiment 1s directed to a storage
system for use 1n a computer system comprising at least one
host and the storage system. The storage system comprises at
least one storage device to store data recerved from the at least
one host; and at least one controller. The at least one controller
receives at least one request, from the host, to store a unit of
data 1n the storage system until at least the expiration of a
retention period specified 1n the at least one request; stores the
unit of data in the at least one storage device; and stores the
information specitying the retention period in the at least one

storage device.

A Turther illustrative embodiment 1s directed to amethod of
processing data 1n a computer system comprising at least one
host and at least one storage system. The method comprises
an act of: (A) transmaitting at least one request, from the host
to the storage system, requesting that the storage system store
a data unit until at least the expiration of a retention period
specified 1n the at least one request.

Another illustrative embodiment 1s directed to a method for
use 1 a computer system comprising at least one host and at
least one content addressable storage system that stores at
least two different types of data units including blobs of data
and content descriptor files (CDF) that correspond to the
blobs, each CDF including metadata relating to the corre-
sponding blob, each one of the blobs and CDF's being acces-
sible to the at least one host computer using an 1dentifier that
1s generated based on a content of the one of the blobs and
CDFs. The method comprises an act of: (A) providing at least
one piece of information 1n the identifier for each data unit to
identify whether the 1dentified data unit 1s a blob or a CDF.

A Turther illustrative embodiment 1s directed to a method of
processing data 1n a computer system comprising at least one
host and at least one content addressable storage system that
stores at least two different types of data unmits including a blob
of data and a content descriptor file (CDF) that corresponds to
the blob and forms a blob/CDF set with the blob, the CDF
including metadata relating to the corresponding blob, each
one of the blobs and CDFs being accessible to the at least one
host computer using an identifier that 1s generated based on a
content of the one of the blobs and CDF's, wherein the storage
system executes a garbage collection utility that deletes blobs
but only after the corresponding CDF has been deleted so that
the blob does not have a corresponding CDF. The method
comprises an act of: providing the host with at least two
options for deleting at least one of a blob and CDF in a
blob/CDF set, the at least two options differing in terms of
how much processing of the deletion 1s performed upiront in
response to a deletion request and how much processing of
the deletion 1s left for the garbage collection utility.

BRIEF DESCRIPTION OF DRAWINGS

In the drawings:
FIG. 11s ablock diagram of an exemplary computer system
on which embodiments of the invention may be implemented;

US 9,075,851 B2

3

FIG. 2 1s a diagram 1llustrating the generation of content
addresses, 1n accordance with one embodiment of the inven-
tion;

FIG. 3 1s a block diagram 1llustrating an exemplary manner
in which data may be stored on a storage system 1n accor-
dance with one embodiment of the invention; and

FI1G. 4 1s a tlow chart 1llustrating a process by which data
may deleted from a storage system, in accordance with one
embodiment of the invention.

DETAILED DESCRIPTION

Various embodiments of the present invention are directed
to methods and apparatus for use 1n a computer system that
includes a storage system and a host computer that commu-
nicate to perform operations on data. For example, the storage
system may store data (write) 1n response to a request from
the host computer to store the data, return stored data (read) in
response to a request from the host computer for the stored
data, and delete stored data 1n response to a request from the
host computer to delete the data.

In one embodiment of the mvention, when sending a
request to the storage system to store data, a host computer
(defined herein as any computer capable of writing data to a
storage system) may provide the storage system with the data
to be stored and a retention period associated with the data to
be stored. The retention period may, for example, define a
period of time for which the data cannot be deleted or modi-
fied. The storage system may store the data and its associated
retention period. I the storage system later recerves a request
from a host computer to delete or modify the data, the storage
system may first evaluate the stored retention period associ-
ated with the data to determine 11 the retention period has
expired. If the retention period has not expired, the storage
system will not delete or modify the data. In this manner, once
the retention period has been established for a unit of data, the
storage system ensures that the unit of data 1s retained 1n an
unmodified state for the full retention period.

An exemplary system on which various embodiments of
the invention may be implemented 1s shown 1n FIG. 1. FIG. 1
shows a storage system 101 that communicates with a plural-
ity of hosts 105a, 1055, . . ., 105% through a network 103. As
used herein, a “network” (e.g., network 103) 1s a group of two
or more devices interconnected by one or more segments of
transmission media on which communications may be
exchanged between the devices. Each segment may be any of
a plurality of types of transmission media, including one or
more electrical or optical wires or cables made of metal
and/or optical fiber, air (e.g., using wireless transmission over
carrier waves) or any combination of these transmission
media.

Storage system 101 may include one or more storage
devices (e.g., disks drives) to store applications, application
data, user data, and the like in the computer system. Storage
system 101 may be accessed by hosts 105 for the purposes of
storing, retrieving, or performing operations on data stored on
storage system 101. It should be appreciated that storage
system 101 may be a device used primarily for data storage, or
may be a device that performs a variety of other functions,
such as executing user applications. That 1s, storage system
101 may be any device that is capable of storing and retrieving
data.

Hosts 105 may be, for example, servers that provide
resources (e.g., data storage, email, and other services), cli-
ents (e.g., general-purpose computer systems operated by
users), network components (e.g., switches) or any other type

10

15

20

25

30

35

40

45

50

55

60

65

4

of computer. Hosts 103 are coupled by network 103 to storage
system 101 so that the hosts 1035 can use the storage system
101 to store and retrieve data.

It should be appreciated that the storage configuration
shown in FI1G. 1 1s only an example of the types of systems on
which aspects of the present invention can be implemented, as
the 1nvention 1s not limited to use with any particular type of
system configuration. For example, there need not be multiple
hosts connected to a single storage system, and any of numer-
ous other types of connection, (e.g., direct connections) can
be used 1n addition to, or instead of, a network.

The Host 105 can access data on the storage system 101 1n
any of numerous ways, as the aspects of the present invention
described herein are not limited to any particular type of
system configuration. For example, 1n some computer sys-
tems, application programs executing on host 105 store infor-
mation on files managed by a file system (e.g., executing on
host 105). The file system maps the name of each particular
file to one or more logical volumes and blocks of storage
therein for storing the data within the file. The logical vol-
umes may correspond directly to physical storage devices
provided on the storage system 101, or when the storage
system 101 1s an 1ntelligent storage system, the storage sys-
tem may perform another layer of mapping between the logi-
cal volumes presented to hosts 105 and the actual physical
storage devices within the storage system 101.

One embodiment of the present invention discussed below
1s adapted for use 1n a computer system of the type described
in commonly assigned co-pending application Ser. No.
09/236,366, entitled “Content Addressable Information
Encapsulation, Representation, and Transfer”, filed Jan. 21,
1999, Ser. No. 09/235,146 entitled “Access to Content
Addressable Data Over A Network”, filed Jan. 21, 1999 and
Ser. No. 09/391,360, entitled System and Method for Secure
Storage, Transier and Retrieval of Content Addressable Infor-
mation, filed Sep. 7, 1999, each of which 1s incorporated
herein by reference. These applications relate to content
addressable storage (CAS) and are referred to collectively as
“the CAS applications”.

In a content addressable system, data 1s stored using a
content address generated based upon the content of the data
itself. The content address may be generated by applying a
hash function to the data to be stored. The output of the hash
function 1s the content address that may be used 1n commu-
nication between the host and storage system to refer to the
data. The content address can be mapped (e.g., within the
storage system 101) to one or more physical storage locations
within the storage system. The use of content addressing 1s
particularly well adapted to applications wherein the infor-
mation stored does not change (1.e., fixed content data), such
as numerous types of records such as those discussed above.

One example of a hash function that may be used to gen-
erate the content address 1s message digest 5 (MD35). The
content address can correspond directly to the result of the
hash of the content, or additional information can be added to
the hash result to generate the address. In one embodiment,
information describing whether the content being stored is
host data or metadata associated with host data 1s added to the
hash of the content to generate the content address. This
additional information 1s useful 1n ways described below. It
should be understood that any type of hash function may be
used, as the aspects of the mnvention described herein are not
limited to the use of any type of hash function, or even to use
in a content addressable system.

When a host sends data to the storage system to be stored
therein, both the host and the storage system may indepen-
dently compute the content address of the data. The host may

US 9,075,851 B2

S

retain the content address for use 1n the future to retrieve the
data from the storage system. Alternatively, when the host
sends data to the storage system, only the storage system may
compute the content address and return the computed content
address to the host for later use 1n accessing the data. As yet
another alternative, both the storage system and the host may
compute the content address, and the storage system can
return 1ts generated the content address to the host. The host
can compare its mndependently computed content address to
the one recerved from the storage system to verily that they
match.

As discussed above, for some types of fixed content data,
such as patient X-rays or company financial records, it may be
desired to retain the data 1n i1ts original form, which means that
modification of the data should not be allowed once the data
has been stored on the storage system. In one embodiment of
the mvention for use with the above-retferenced CAS appli-
cations, a characteristic of the content addressing system
described 1n those applications 1s used to prevent modifica-
tions to previously written data. This characteristic 1s 1llus-
trated conceptually 1 FIG. 2, which 1llustrates that when a
host stores original data 201 on a storage system, a content
address 205 for the original data 1s generated by hashing
tfunction 203. The host may later retrieve a copy of the data
from the storage system using content address 205. If the host
seeks to modify the data and re-write 1t to the storage system
as modified data 207, a new content address 209 1s generated
by hashing function 203 for the modified data. Because origi-
nal data 201 and modified data 207 are different, hashing
tfunction 203 will generate different content addresses for data
201 and data 207. As a result, content addresses 205 and 209
will map to different physical locations on the storage
device(s) of the storage system. Thus, when the host stores
modified data 207 in the storage system, it i1s stored at a
different location from original data 201 and does not over-
write the original data. Thus, original data 201 remains
unmodified on the storage system.

It should be appreciated that the embodiment of the present
invention that prevents modification of data once written 1s
not limited to use with a content addressable system, as alter-
native techniques can be employed 1n systems using other
types of addressing schemes to prevent modification of data
previously written. For example, a host and/or file system
may preclude writing to data previously written, and may
require any modified data to be mapped to a different storage
location.

As mentioned above, 1 addition to preventing modifica-
tion of data, it may also be desirable to prevent deletion of data
betore the expiration of a previously defined retention period.
One embodiment of the invention 1s directed to techniques for
ensuring that data cannot be deleted during a previously
specified retention period. As discussed above, one embodi-
ment of the present invention can be used 1n connection with
the architecture described 1n the CAS applications. FIG. 3
illustrates the manner in which data 1s stored in accordance
with the that architecture.

A unit of data 1n the architecture defined 1n the CAS appli-
cations 1s referred to as a blob (e.g., blob 303). Blob 303 may
be, for example, the binary data to be stored by a host (e.g.,
host 105 1n FIG. 1) on a storage system (e.g., storage system
105), such as, for example, a patient x-ray, company {inancial
records, or any other type of data. When the blob 303 1s stored
to the content addressable storage system, a unique address 1s
generated for the blob 303 based upon its content in the
manner discussed above.

Each blob 303 has at least one content descriptor file (CDF)
associated with it. CDF 301 may include metadata 305 and a

10

15

20

25

30

35

40

45

50

55

60

65

6

plurality of references 307a, 3075, . . ., 307». A CDF may
reference one or more blobs or CDFs. Thus, the references
307 may be, for example, references to the blobs and/or CDFs
referenced by CDF 301. Metadata 305 may, for example,
include the creation date of CDF 301 (e.g., the date that CDF

301 was stored on the storage system) and a description of the
content of blob 303. In accordance with one embodiment of
the i1nvention, the metadata further includes information
speciiying a retention period related to the associated blob
303. The retention period may be, for example, specified as a
period of time from the creation date of blob 303 and/or CDF
301 during which blob 303 and CDF 301 may not be deleted.
Thus, for example, 11 the retention period included in CDF
301 1s two years, the storage system will not permit deletion
of CDF 301 and blob 303 for two years from the creation date
included 1n metadata 305 of CDF 301.

In accordance with one embodiment of the present inven-
tion, the retention period defined 1n the metadata 305 relates
directly to the CDF 301, and only indirectly to the blob 303.
This aspect of the present invention 1s adapted for use in a
system architecture wherein a host cannot seek to directly
delete a blob 303 (1.e., any such request 1s denied), but can
only seek to delete a CDF 301, and wherein a garbage col-
lection utility (described 1n more detail below) 1s employed
on the storage system to clean up blobs that have been 1den-
tified for deletion. A blob may be i1dentified for deletion 1t
there are no CDFs that reference 1t. In this respect, one aspect
of that architecture 1s that a blob cannot be deleted so long as
it 1s referenced by at least one CDF 301, but any blob that 1s
not referenced by a CDF can be deleted.

It should be appreciated that the present invention 1s not
limited to use 1n a system having the architecture described
above, as many of the architectural features described above
are merely implementation details. None 1s necessary to prac-
ticing the present invention. For example, rather than defining
a retention period solely for a CDF, retention periods could
alternatively be defined directly for a blob. If the blob 1tself
carried a retention period, 1t would then be possible to allow
host computers to directly delete blobs whose retention peri-
ods had expired.

The description of the blob 303 included 1n metadata 305
may include imnformation describing the content of blob 303.
For example, if blob 303 i1s an x-ray, metadata 305 may
include information such as the patient’s name, the data the
x-ray was taken, additional doctor’s notes regarding the x-ray
or patient, or other information. It should be appreciated that
the types of metadata given above are only examples of the
types of metadata that may be included 1n metadata 305 of
CDF 301. Indeed, any data related to blob 303 may be
included 1n metadata 305, as the present invention 1s not
limited 1n this respect.

CDF 301 may also include one or more references 307.
These references may be, for example, references to blobs or
other CDFs. For example, reference 307¢ may include the
content address or file system location of blob 303, so that
CDF 301 “points to” blob 303 through reference 307a.
Hence, blob 303 may be accessed by a host using the content
address or file system location of CDF 301, because reading
the contents of CDF 301 provides the content addresses or file
system location for blob 303. In the embodiment shown, CDF
301 also includes a reference 3075 that “points to” 1tself, 1.e.,
reference 3075 includes the content address or file system
location of CDF 301. This circular reference 1s provided to
facilitate one embodiment of the garbage collection process
described below 1n greater detail. However, the present inven-
tion 1s not limited to the use of that garbage collection process,
or to the use of a circular reference in each CDF, as other

US 9,075,851 B2

7

implementations are possible. CDF 301 may include a plu-
rality of other references that point to other CDF's or blobs, so

that those CDFs or blobs may also be accessible using the
content address of CDF 301.
In the example of FIG. 3, only one CDF (i.e., CDF 301)1s >

shown “pointing to” blob 303. However, 1t should be appre-
ciated that multiple CDFs may include references to the same
blob. That is, two or more CDFs may “point to” the same blob.
When multiple CDFs include references to the same blob,
these multiple CDFs may include different metadata, includ-
ing different creation dates and/or different retention periods.
For example, one CDF that “points to” the blob may specity
a retention period of two years from its creation date of Jul.
15,2003, and a second may specily a retention period of three
years from the same creation date. In accordance with one
embodiment of the 1nvention, the storage system may enforce
the longest of the retention periods. Thus, on Jul. 15, 2005, the
storage system will permit deletion of the first CDF, but waill
not permit deletion of the second CDF or the blob referenced
thereby. However, on Jul. 15, 2006, the storage system will
permit deletion of the first CDF (1f not already deleted) and
the second CDF, thereby allowing for garbage collection of
the blob.

The embodiment of the present invention that employs the
longest retention period specified for a blob does so to ensure
that a user cannot circumvent an earlier-specified retention
period by simply creating a new CDF for a blob that specifies
a shorter retention period. The longest retention period for a
blob 1s enforced in one embodiment of the mvention by the
above-described implementation wherein a blob cannot be
deleted so long as 1t 1s referenced by any CDF. However, 1t
should be appreciated that the aspect of the present invention
that relates to enforcing the longest defined retention period 1s
not limited to this implementation, as other techniques are
possible.

When a host stores a blob on the storage system, 1t may
provide the storage system with the blob and a CDF that 1s
associated with the blob 1n a manner described 1n more detail
below. The host may use the content address of the CDF to
access the CDEF, and thereby access the blob metadata and
references included therein. The host may then use a blob
reference (1.e., the content address or file system location of
the blob) obtained from the CDF to access the blob (data)
itself. Alternatively, after writing a blob, the host may retain 45
the content address of the blob and use this content address to
access the blob directly.

After a blob 1s created, one or more additional CDFs may
be created that reference it. This may be done, for example, 1T
it 1s desired to associate additional metadata with the blob, 50
such as metadata to increase the retention period of the blob or
add additional description information that is associated with
the blob. Such additional CDFs may reference either the first
CDE, the blob itself, or both.

In the example described above, the retention period was 55
specified as a period of time 1n years from the creation date of
the CDF. However, it should be understood that the retention
period may be specified at a finer granularity. For example,
the retention period may be specified 1n years, months, days,
hours, minutes, seconds, or any combination of these (or any
other) lengths of time. Further, the retention period need not
be specified as a period of time from the creation date of the
CDF. For example, the retention period may be specified as a
date and/or time when the CDF and referenced blobs may be
deleted. In one embodiment discussed 1n detail below, the
retention period may be specified as a period of time from the
occurrence of a specified event.

10

15

20

25

30

35

40

60

65

8

As discussed above, when a host creates a CDF for storage
on the storage system, the host may specily a retention period
which 1s included 1n the content of the CDF. The retention
period may be specified as a period of time from the creation
date of the CDF. In one embodiment, the storage system seeks
to retain control over the retention period, to ensure that a host
cannot delete data prior to expiration of the specified retention
period. Thus, when a retention period 1s based upon a creation
date for the CDF, 1t 1s desirable to base the creation data from
a clock of the trusted storage system, to prevent a host from
spoofing an incorrect creation date to bypass a retention
period imposed on the data. For example, suppose on Sep. 15,
2003 a CDF 1s stored with a retention period of two years.
Thus, the intended date of expiration of the CDF 1s Sep. 15,
20035. However, 1f the host spoofed a creation date timestamp
of Sep. 15, 2002 into the CDF, the CDF would expire on Sep.
15, 2004, one year before the intended expiration date of the
CDFEF. Therefore, in accordance with one embodiment of the
ivention, techniques are employed that allow the storage
system to ensure that the creation date timestamp 1n the CDF
1s an accurate retlection of the actual creation date of the CDF.
This can be done 1n any of numerous ways, as the aspects of
the present invention directed to having the storage system
verily the creation date for stored data 1s not limited to the
particular implementations described below.

To ensure the accuracy of the creation date timestamp
provided by the host, 1n one embodiment, the host 1s provided
with an application programming interface (API) that inter-
acts with the storage system to assist 1n ensuring the accuracy
ol the creation date for any data written to the storage system.
In one embodiment, the host APl communicates with the
storage system to get the current time from the storage system
(e.g., from the storage system’s clock or any source trusted by
the storage system), and compares the current time from the
storage system’s clock to the current time at the host (e.g.,
from the host’s clock). From this comparison, the host deter-
mines a delta value indicating the difference in time between
the storage system’s clock and the host’s clock. The informa-
tion relating to the storage system’s clock may be communi-
cated to the host in any of numerous ways. In one embodi-
ment, whenever the storage system sends a communication to
the host, the current time from the storage system’s clock 1s
added onto the communication. Thus, each time the host
receives a communication from the storage system, the host
may compare the current time received from the storage sys-
tem and the current time according to the host’s clock, and
update the delta value accordingly. When the host creates a
CDF and sends 1t to the storage system for storage, the cre-
ation date timestamp may be written into the CDF by adding
the delta value to the current time specified by the host’s
clock, so that the creation date can be verified by the storage
system based upon its own clock.

In one embodiment of the invention, before the creation
date timestamp 1s written into the CDF, the host checks to
make sure that the delta value has been checked within a
reasonable period of time. For example, if the host has not
received the storage system’s clock within the last ten sec-
onds, the host may directly query the storage system for 1ts
current time for use 1n creating the date timestamp in the CDF.

In one embodiment of the invention, the storage system
may optionally verily the creation date of the CDF upon
receipt ol the CDF from the host, as further protection against
the host attempting to spoof a false creation time for data
being written. That 1s, the storage system may compare the
creation date timestamp in the CDF to the time when the write
request 1s recerved at the storage system. If the two do not
match within some reasonable tolerance (e.g., ten seconds),

US 9,075,851 B2

9

then the storage system may deny the request to store the
CDFEF. The tolerance can be defined 1n any suitable way, as this
aspect of the present invention 1s not limited 1n any respect.
For example, the tolerance may specify a threshold value that
may not be exceeded by the difference between the CDE’s
creation date timestamp and the time according to the storage
system clock. The tolerance may be, for example, a fixed
period of time, such as ten seconds, or any other reasonable
period of time. Alternatively, the tolerance may be propor-
tional to the retention period of the CDF, so that 1f the reten-
tion period 1s small, the tolerance 1s also small, whereas 11 the
retention period of the CDF 1s large, the tolerance can also be
relatively large. Any suitable function may be used to define
the relationship between the length of the retention period and
the tolerance, as the invention 1s not limited to this respect.

As discussed above, 1n accordance with one embodiment
of the present mnvention, a blob cannot be directly deleted by
a host. In accordance with this embodiment, any request from
a host to directly delete a blob will be rejected by the storage
system. In accordance with one embodiment of the present
invention, a technique 1s employed to 1dentily whether a data
unit stored on the storage system 1s a blob or a CDF, to
distinguish whether a delete request 1s to a blob and 1s to be
denied, or 1s to a CDF and may be granted subject to certain
conditions discussed below. This aspect of the present mnven-
tion can be implemented 1in any of numerous ways.

In accordance with one embodiment of the present inven-
tion, the content address for any data unit stored on the storage
system 1ncludes at least one bit that 1s 1n addition to the hash
generated from the content of the data unit 1n the manner
discussed above, and the additional bit 1s used to i1dentily
whether the data associated with the content address 1s a blob
or a CDF. In this manner, when the host seeks to access a unit
of data, the content address provided 1dentifies to the storage
system whether the data unit 1s a blob or a CDF, and the
storage system can use this information to process such dele-
tion requests differently. In this respect, deletion requests
directed to a blob will be denied, and deletion requests
directed to a CDF will be handled 1n the manner discussed
below 1n connection with FIG. 4.

In accordance with one embodiment of the present inven-
tion, the content address 1s generated by the storage system
itselt, and 1s returned to the host. In this respect, the storage
system employs the above-described technique for generat-
ing the content address, and 1s a trusted source for generating
such addresses authentically. By having the content address
generated by the storage system, 1t 1s ensured that a host
cannot spoot the storage system by, for example, falsely 1den-
tifying content data (1.e., a blob) as a CDF to enable it to later
be deleted directly. In this respect, one embodiment of the
present mvention 1s directed to providing a storage system
that can meet with rigorous requirements for ensuring that
retention policies are met, 1rrespective of the behavior of
hosts connected thereto. An example of such an environment
1s to provide a storage system that complies with SEC Rule
17a-4 requirements for preserving financial records for a
stated period of time.

FIG. 4 1s a tlow chart that illustrates the process for han-
dling a request to delete a CDF from a storage system 1n
accordance with one embodiment of the invention. This pro-
cess can be executed by the storage system itself, or by a
separate computer that provides an interface between the
host(s) and the storage system. The process begins 1n act 403
with the receipt of a request at the storage system to delete a
CDF. As discussed above, the request may, for example,
identity the CDF by 1ts content address. In one embodiment
of the present mvention, techniques are employed to ensure

10

15

20

25

30

35

40

45

50

55

60

65

10

that the subject of the deletion request 1s 1n fact a CDF. Those
steps can be performed before 1nitiating the process shown 1n
FIG. 4, or alternatively, can be integrated into the process, by
performing an additional verification step, and by denying the
request 11 1t 1s not directed to a CDF. After the request 1s
received, the process proceeds to act 405, where the CDF 1s
read from the storage system. The process then proceeds to
act 407, where the process examines the metadata of the CDF
and evaluates the retention period to determine 11 the retention
period has expired. When the retention period has expired, the
storage system deletes the CDF 1n act 409, and then termi-
nates 1n act 413. Deletion of the CDF may be performed in
several different ways, as will be discussed below 1n more
detail. As mentioned above, deletion of the CDF may lead
(1ndirectly) to deletion of any blobs referenced by the CDF 1n
a manner discussed below 1n greater detail. When it 1s deter-
mined 1n act 407 that the retention period has not yet expired,
the process denies the request to delete the CDF. The storage
system may optionally return an error message to the
requester (e.g., ahost). The process then terminates atact 413.

Information relating to the CDF's and blobs can be stored in
any suitable manner, as the present invention 1s not limited to
any particular implementation technique. In accordance with
one embodiment of the present invention, such information 1s
stored within tables 1n a database suitable for use with
unstructured variable length records. Each blob and CDF may
have an associated table that stores, for example, the content
address of the blob or CDF, the content address of any CDF's
that reference (or point to) the blob or CDEF, and other infor-
mation, such as which physical storage location(s) (e.g.,
disks) store the blob or CDF, a creation timestamp, the physi-
cal location(s) for any mirrors of the blob or CDF, etc. The
reference tables for a CDF need not include entries 1dentify-
ing which blobs the CDF points to, because the content of the
CDF 1tself contains such information. The reference tables
may include a reference count to be used 1n the garbage
collection process. The reference count may indicate how
many CDFs reference a particular blob or CDF. For example,
the garbage collector may examine the reference count asso-
ciated with a particular blob or CDF to determine 11 any CDF's
reference the particular blob or CDF. If the blob or CDF 1s
unreferenced, the garbage collector may delete 1t. Many other
types of information may be stored 1n the table, as the inven-
tion 1s not limited 1n this respect. It should be appreciated that
the entire table need not be stored in a single location on a
single storage system, and that parts of the table may be
distributed throughout different locations of one or more stor-
age systems. Additionally, 1t should be understood that a
single database need not be employed to store the tables for all
blobs and CDFs, as any suitable configuration can be used,
including one that does not employ database tables at all.

As should be appreciated from the foregoing, embodi-
ments of the present invention can be used in systems where
a CDF may point not only to blobs of data, but also to other
CDFs. This architecture 1s useful in creating hierarchies of
stored information. For example, a blob could contain an
x-ray for an individual, such that a first level CDF may refer
to the x-ray and 1dentify it as belonging to a particular indi-
vidual. In addition, that x-ray may also be grouped with a
number of x-rays for that individual, or his family, with a
higher level CDF pointing to a number of the lower level
CDFs to create a logical hierarchy.

In accordance with one embodiment of the present inven-
tion, when a higher level CDF 1s created that points to one or
more lower level CDFs, the references to the lower level
CDFs are included in the content of the higher level CDF, so
that the higher level CDF logically points to the lower level

US 9,075,851 B2

11

CDFs. In one embodiment, references to lower-level CDFs
may simply be included as metadata or descriptors 1n the
content of the higher level CDEF, as the architecture does not
contemplate one CDF pointing to another in the manner 1n
which a CDF points to a blob as discussed herein (i.e., the
address of the higher level CDF 1s not provided 1n the refer-
ence table for the lower level CDF). However, 1n an alternate
embodiment of the present invention, such references can be
provided so that a higher level CDF may point to a lower level
CDF and have 1ts address provided in the reference table for
the lower level CDF. In accordance with this 1mplementat10n

the lower level CDF cannot be deleted while 1t 1s pointed to by
the higher level CDF, such that deletion of the lower level
CDF will require a prlor deletion of the higher level CDF.

As discussed above, 1n accordance with one embodiment
of the present invention, a garbage collection technique 1s
employed that deletes any blob that 1s not referenced by a
CDF. In accordance with one embodiment of the present
invention, when a blob 1s written to the storage system, 1t 1s
written before 1ts corresponding CDF. Thus, when the blob 1s
written, the content address for 1ts CDF may not yet have been
generated, such that it may not be available to include as a
reference 1n the table associated with the blob. In accordance
with one embodiment of the present invention, a technique 1s
employed to ensure that a blob written before 1ts CDF does
not appear to the garbage collection utility as an unreferenced
blob, thereby leading the garbage collection utility to delete
the newly written blob.

In accordance with one embodiment of the present inven-
tion, the writing of a blob and CDF 1s considered to constitute
a transaction, and an 1dentifier 1s assigned to the transaction.
When the blob 1s written, the transaction 1dentifier 1s used as
a placeholder 1n the blob’s reference table 1n place of the
not-yet-generated content address of the CDF that will refer-
ence the blob. The garbage collection utility recognizes the
placeholder and will not delete the blob. When the CDF 1s
later written and its content address 1s computed, the transac-
tion number in the blob reference table 1s replaced with the
content address of the CDF.

It should be appreciated that the present invention 1s not
limited to employing the above-referenced techmque of pro-
viding a temporary transaction number when a blob 1s 1ni-
tially written, as other suitable techniques can be employed to
ensure that the blob will not be deleted by the garbage col-
lection utility. Furthermore, such a techmque need not be
employed in connection with embodiments of the present
invention used 1n systems that do not employ a garbage col-
lection utility, that employ a garbage collection utility that
employs a different technique for determining which blobs
should be deleted (rather than looking for blobs that are not
referenced by any CDF), or systems that do not write blobs to
the storage system before their associated CDFs.

As discussed above, one embodiment of the present inven-
tion 1s adapted for use with a garbage collector utility. The
garbage collector may be, for example, a background process
that executes on the storage system to reclaim disk space that
has previously been allocated for storage, but 1s no longer
needed (e.g., because the CDF or blob stored 1n that space has
been marked for deletion). In one embodiment of the mven-
tion, the garbage collector searches the reference table(s) for
blobs and CDFs looking for blobs or CDFs that are not ref-
erenced by any CDF. When the garbage collector finds such
blobs or CDFs, the garbage collector deletes them and
removes their corresponding entries from the reference
table(s). It should be appreciated that when the garbage col-
lector “deletes™ a particular CDF or blob, the file that includes
the CDF or blob may simply be removed from the file system

10

15

20

25

30

35

40

45

50

55

60

65

12

ol the storage system. Alternatively, in one embodiment of the
invention adapted for use with applications desiring more
secure deletion, the physical location(s) that stored the blob or
CDF data may be overwritten with data (e.g., random bits or
a specified sequence of bits) such that the actual binary data of
the blob or CDF 1s erased or electronically “shredded” using
any suitable technique.

In one embodiment of the present invention, the reference
tables associated with every CDF that has not been marked for
deletion has a circular reterence to the CDF itself, to ensure
that if the CDF 1s not referenced by another, the garbage
collection routine will not delete 1t as an unreferenced CDF 1n
the manner discussed above. It should be appreciated that the
present mvention 1s not limited in this respect, as other gar-
bage collection techniques can be employed that do not rely
on the lack of a reference from another CDF as a basis for
deleting a CDF. For example, when used 1n accordance with
the embodiment of the present invention that employs a
unmque identifier to differentiate between CDFs and blobs, the
garbage collection utility could look to that unique 1dentifier
and recognize that unreferenced CDFs should not be deleted,
whereas only unreferenced blobs should be.

As discussed above, 1n one embodiment of the invention, a
host 1s not permitted to delete blobs directly. That 1s, any
attempt to delete a blob directly (e.g., by sending a delete
command to the storage system with the content address of
the blob) will be denied by the storage system. This restriction
1s independent of the application program or utility of the host
that issues the request, or the access privileges of the requester
(e.g., even requests from a system administrator of the host
will be denied). Thus, the host may delete blobs only by
deleting all CDF's that reference the blob, and once the blob 1s
no longer referenced by any CDFs, 1t will be deleted by the
garbage collector.

As discussed above, 1n one embodiment of the invention
the storage system may be able to distinguish a delete request
for a blob from a delete request for a CDF. In one embodi-
ment, when a host sends a delete request to the storage sys-
tem, the host may include the content address of the data to be
deleted, along with information (e.g., a boolean) that 1ndi-
cates whether the content address corresponds to a blob or a
CDF. If the host indicates that the content address corre-
sponds to a blob, the storage system will deny the deletion
request, as direct deletion of blobs 1s forbidden in one
embodiment of the invention. However, 1f the boolean indi-
cates that the content address corresponds to a CDF, the
storage system will process the request to delete the data
corresponding to the content address provided by the host.
Belore the storage system deletes any data, the storage system
checks the metadata associated with the data requested for
deletion to determine 11 the retention period for the data has
expired. In one embodiment, the storage system may find the
retention period associated with a CDF 1n the content of the
CDF 1tself. If the retention period has expired, the storage
system may delete the CDF. If the content address provided
by the host corresponds to a blob (such that the indication 1n
the boolean that 1t corresponds to a CDF 1s erroneous), the
storage system will be unable to find a retention period 1n the
content of the blob. When no retention period 1s found 1n the
content of the data to be deleted, the storage system will deny
the deletion request. Thus, any request to delete a blob will
fail, as the storage system will be unable to locate a retention
period 1n the content of the blob. This prevents a host from
bypassing the retention period established 1 a CDF by
directly deleting the blob itsell.

In another embodiment, the storage system may distin-
guish a delete request for a blob from a delete request for a

US 9,075,851 B2

13

CDF based on additional information added to the content
address. As mentioned above, the content address may be

derived from a hash of the data of the blob or CDF. The

content address may 1nclude an additional 1dentifier to indi-
cate whether the content address 1s the address of a blob or a
CDF. The identifier may be located anywhere within the
content address. For example, when using a 26 character hash
value as the content address, the 1dentifier may be an addi-
tional character arranged such that thirteen characters of the
hash value precede the identifier and thirteen characters of the
hash value follow the 1dentifier.

Deletion of a CDF and associated blob(s) may be per-
formed 1n any of numerous ways. The techniques described
below can be considered as alternative techniques for adop-
tion within a given system configuration, as only one tech-
nique for deleting a CDF and its associated blob(s) may be
provided. However, 1n accordance with one embodiment of
the present invention, two or more of the below-described
deletion techniques are provided on a single system (e.g.,
implemented by the storage system), such that the user 1s
provided with a choice of options for performing a deletion.
As 1s discussed 1n greater detail below, some methods may
require a relatively small amount of 1nitial processing and
leave a relatively large amount of processing for the garbage
collector, whereas others may require a relatively greater
amount of initial processing but leave less work for the gar-
bage collector (if a garbage collector 1s used at all). It should
be appreciated that the deletion techniques described below
are only performed once 1t 1s determined (e.g., 1n act 407 1n
FIG. 4) that the retention period has expired. Thus, the tech-
niques below can be performed to implement the act of delet-
ing the CDF at act 409 1n the process of FIG. 4.

A first method 1s referred to as fire and forget. As men-
tioned above, 1n one embodiment, a CDF includes a circular
reference to itself (e.g., stored in that CDF’s entry in the
reference table). In response to a request to delete the CDF,
after veritying that the retention period has expired, the fire
and forget method simply removes the circular reference to
the CDF. So long as the CDF 1s not referenced by any other
CDFs (in which case deletion would not be authorized), the
garbage collector will eventually delete the CDF 1n the man-
ner discussed above when 1t discovers that the CDF 1s now
unreferenced. When the garbage collector deletes the CDF, it
also searches the reference table(s) to locate any other blobs
or CDFs that were referenced by the deleted CDF, and
removes any ol the reference table entries which identify
those blobs and CDF's as being reference by the deleted CDF.
This removal may result 1n a blob that was referenced by the
CDF no longer being referenced by any CDFs, which will
result in the garbage collector eventually deleting any such
blob once 1t 1s discovered that the blob 1s unreferenced.

The fire and forget technique 1s in1tially very fast, 1n that the
storage system does relatively little processing before
responding to the host that the CDF 1s deleted, and leaves
much of the processing for the garbage collector. A charac-
teristic of the fire and forget technique 1s that when the host
seeks to delete a blob by deleting 1ts corresponding CDF, an
indication returned from the storage system that the CDF has
been deleted 1s not an 1indication that the corresponding blob
(even 1f 1t 1s now unreferenced) has been deleted, as there may
be some lag time for the garbage collector to search through
all of the blob and CDF reference tables and delete all table
entries 1dentifying the newly deleted CDF, and to thereafter
discover that a blob 1s now unreferenced and to delete 1t. As a
result of this lag time, data may be read even after the deletion
has been acknowledged.

10

15

20

25

30

35

40

45

50

55

60

65

14

A second method of deletion 1s referred to as asynchronous
deletion. As 1n fire and forget, asynchronous deletion also
removes the circular reference from the CDF. However, 1n
asynchronous deletion, the CDF 1s then moved to a different
location that indicates that the CDF has been deleted and
makes the CDF no longer available to be read by the host. The
new location for the CDF may be a special file system loca-
tion such as a “deleted folder.” It should be appreciated that
the deleted CDF can be “moved” 1n any suitable manner,
including an actual physical movement of the data associated
with the CDF, by altering the file system location of the CDF
or by marking the CDF with a designator indicating that 1t 1s
now 1n the deleted folder. The garbage collector may access
CDFs 1n the deleted folder and read the contents of those

deleted CDFs to determine which CDFs and/or blobs are

referenced thereby. The garbage collector may then remove
any references to the deleted CDF from the reference table,
and may also delete any blobs that are unreferenced as a result
of those deletions.

In contrast to the fire and forget technique, the asynchro-
nous deletion technique requires more upiront processing by
the storage system (i1.e., moving the CDF to the deleted
tolder) before the storage system returns an indication to the
host that the CDF has been deleted. However, this additional
upiront processing reduces the amount of processing that
must be performed by the garbage collector, as the garbage
collector need not search all of the CDF and blob reference
tables to determine which blobs and/or CDF s were referenced
by the deleted CDUF, as 1t can gain that information directly by
examining the contents of the deleted CDF 1n the deleted
folder. As with the fire and forget technique, there may be a
lag time between the host being informed that the CDF has
been deleted and the resulting deletions of a blob referenced
thereby, although the lag time may be less when using the
asynchronous technique 1n view of the fact that less process-
ing 1s required of the garbage collector.

A third deletion technique i1s referred to as synchronous
deletion. In synchronous deletion, in response to a request to
delete a CDF, the storage system performs the following
upiront processing functions: (1) removes the CDF’s circular
reference; (2) deletes the CDF; (3) removes from the refer-
ence table(s) any entries that identified other blobs or CDFs as
referenced by the deleted CDF; and (4) deletes any blobs that
are currently unreferenced by any CDF. It should be appreci-
ated that in accordance this embodiment of the present inven-
tion, a garbage collection routine 1s unnecessary, as the
above-described implementation of the asynchronous dele-
tion technique takes all actions necessary to achueve deletion,
leaving no work for a garbage collection utility.

As compared to the other deletion techniques discussed
above, the synchronous deletion mvolves relatively more
upiront processing by the storage system prior to mstructing
the host that the deletion has been accomplished, but does not
sulfer from the above-referenced lag in deletion of a blob
referenced by the CDF and eliminates the need for a garbage
collection utility. Thus, 1t should be appreciated that the
embodiments of the present invention described herein are
not limited to the use with a garbage collection utility, as other
deletion techniques are possible.

A variant on the synchronous deletion technique 1s that the
first three ol the above-referenced functions can be performed
initially, prior to mstructing the host that the CDF has been
deleted, and the fourth step (1.e., the removal of any unrefer-
enced blobs) can be left for a garbage collection utility.

It should be appreciated that the above-described methods
of deletion are given only as examples. Many other methods

US 9,075,851 B2

15

ol deletion may be used, as aspects of the mvention are not
limited to the use of any particular deletion techniques.

In one embodiment of the invention, the storage system
provides the host with the ability to directly delete a blob
using a purge command. The purge command allows a host to
delete a blob directly, but only 11 the blob 1s not referenced by
any CDFs. The restriction against deleting a blob referenced
by a CDF ensures that the retention scheme of the storage
system cannot be bypassed by using the purge command.
Unlike the above methods of deletion 1n which the content
address of a CDF was provided to the storage system for
deletion, the purge command allows the content address of a
blob to be provided directly to the storage system for deletion.
By using the purge command, 1t 1s not necessary to wait for a
garbage collector to delete the blob, as the blob may be
deleted directly.

As discussed above, one embodiment of the present inven-
tion 1s directed to storage systems that meet a globally defined
standard for retention, an example of which 1s SEC Rule
17a-4 mentioned above. Such embodiments can be referred to
as defimng compliant systems that comply with externally
established retention policies. In one embodiment of the
invention, such compliant storage systems prevent a host,
system administrator or other to modify or act inconsistently
with the retention policies administered by the storage system
to comply with the globally-defined retention policies.

Another embodiment of the present invention 1s directed to
systems that need not comply with any globally-defined
retention policies. Such an embodiment 1s referred to as
defining non-compliant systems. In one embodiment of the
invention, non-compliant storage systems can provide an
interface, 1n any suitable manner, that allows an administrator
to define whatever user permissions and retention policies are
desired. For example, a set of retention policies may be estab-
lished, but a user with system administrative privileges on the
host or storage system may be granted authorization to
directly delete units of data 1n violation of the defined reten-
tion policies.

Applicants have appreciated that some populated storage
systems may exist with blobs and associated CDF's that were
created without the use of the retention techniques described
therein, such that none of the CDFs will have retention infor-
mation associated with them, and that some system users may
find 1t desirable to upgrade such populated systems to employ
the retention techmiques described herein. Such an upgrade
can be accomplished 1n any of numerous ways. For example,
any pre-existing CDF without a retention period can be
selected to be expired, to have an 1nfinite retention period, or
to have a retention period defined 1n any suitable way.

In the above examples, the retention period for a blob was
stored 1n a CDF associated with the blob. However, 1t should
be appreciated that the retention period may be stored within
the blob 1itself. Further, the aspects of the present invention
described herein are not limited to use 1n a system that
employs a CDF to store metadata associated with a blob or
blobs, as other techniques (e.g., storing such nformation
within the blob 1tsell) are possible.

It should be appreciated that the aspects of the present
invention discussed above can be implemented 1n any of
numerous ways. For example, several of the retention policies
described herein are discussed as being implemented by a
storage system. These aspects can be implemented on one or
more storage boxes themselves that include storage devices
(e.g., tape drives), or alternatively, can be implemented on a
different box disposed as an interface between one or more
hosts and one or more storage systems on which the data 1s
stored. In this respect, aspects of the present invention can be

10

15

20

25

30

35

40

45

50

55

60

65

16

implemented on any computer in the system. As used herein,
the term computer 1s intended to cover any device that
includes a processor for processing data, and can include a
storage system, a network component, or any other comput-
ing device.

The above-described embodiments of the present inven-
tion can be implemented 1n any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, software or a combination thereof. When implemented
in soltware, the software code can be executed on any suitable
processor or collection of processors, whether provided 1n a
single computer or distributed among multiple computers. It
should be appreciated that any component or collection of
components that perform the functions described above can
be generically considered as one or more controllers that
control the above-discussed functions. The one or more con-
trollers can be implemented 1n numerous ways, such as with
dedicated hardware, or with general purpose hardware (e.g.,
one or more processors) that 1s programmed using microcode
or soitware to perform the functions recited above.

In this respect, 1t should be appreciated that one implemen-
tation of the embodiments of the present invention comprises
at least one computer-readable medium (e.g., a computer
memory, a floppy disk, a compact disk, a tape, etc.) encoded
with a computer program (1.e., a plurality of istructions),
which, when executed on a processor, performs the above-
discussed functions of the embodiments of the present mven-
tion. The computer-readable medium can be transportable
such that the program stored thereon can be loaded onto any
computer system resource to implement the aspects of the
present ivention discussed herein. In addition, 1t should be
appreciated that the reference to a computer program which,
when executed, performs the above-discussed functions, 1s
not limited to an application program running on a host com-
puter. Rather, the term computer program 1s used herein 1n a
generic sense to reference any type of computer code (e.g.,
soltware or microcode) that can be employed to program a
processor to implement the above-discussed aspects of the
present invention.

It should be appreciated that in accordance with several
embodiments of the present invention wherein processes are
implemented 1n a computer readable medium, the computer
implemented processes may, during the course of their execus-
tion, receive mput manually (e.g., from a user).

The phraseology and terminology used herein 1s for the
purpose of description and should not be regarded as limiting.
The use of “including,” “comprising,” or “having,” “contain-
ing”, “mnvolving”, and variations thereof herein, 1s meant to
encompass the 1tems listed thereafter and additional items.

Having described several embodiments of the invention 1n
detail, various modifications and improvements will readily
occur to those skilled in the art. Such modifications and
improvements are intended to be within the spirit and scope of
the mvention. Accordingly, the foregoing description 1s by
way of example only, and 1s not intended as limiting. The
invention 1s limited only as defined by the following claims
and the equivalents thereto.

What 1s claimed 1s:

1. A method for use 1n a computer system comprising at
least one host and at least one storage system, the method
comprising acts of:

(A) recerving a request, from the host, to delete a first unmit
of content stored on the storage system, wherein a reten-
tion period for the first unit of content 1s stored 1n the first
unit of content, wherein the request identifies the first
unit of content using a first content address generated, at

least 1n part, from the retention period and at least some

US 9,075,851 B2

17

other content 1n the first unit of content such that, if the
retention period 1s modified, a second umt of content
with a second content address 1s generated and stored in
a different location from the first unit of content;

(B) determining whether the retention period for the first
unit of content has expired;

(C) when it 1s determined 1n the act (B) that the retention
period for the first umit of content has not expired, deny-
ing the request to delete the first unit of content; and

(D) when 1t 1s determined in the act (B) that the retention
period for the first unit of content has expired, directly
deleting the first unit of content in response to the

request.
2. The method of claim 1, wherein the acts (A), (B) and (C)

are performed by the storage system.

3. The method of claim 1, further comprising an act (D) of,
prior to performing the acts (A), (B) and (C), recerving infor-
mation specifying the retention period for the first umt of
content.

4. The method of claim 1, turther comprising acts of, prior
to performing the acts (A), (B) and (C):

(D) receiving the first unit of content at the storage system;

and

(E) writing the first unit of content to the storage system.

5. The method of claim 4, turther comprising acts of, prior
to performing the acts (A), (B) and (C):

(F) recerving information specitying the retention period
for the unit of content along with the first unit of content;
and

(G) writing the information speciiying the retention period
to the storage system.

6. At least one non-transitory computer readable storage
medium encoded with mstructions that, when executed on a
computer system, perform a method for use in the computer
system, wherein the computer system comprises at least one
host and at least one storage system, and wherein the method
comprises acts of:

(A) recerving a request, from the host, to delete a first unit
of content stored on the storage system, wherein a reten-
tion period for the first unit of content 1s stored 1n the first
umt of content, wherein the request identifies the first
unit of content using a content address generated, at least
in part, from the retention period and at least some other
content 1n the first unit of content such that, it the reten-
tion period 1s modified, a second unmit of content with a
second content address 1s generated and stored 1n a dif-
ferent location from the first unit of content:;

(B) determining whether the retention period for the first
unit of content has expired;

(C) when it 1s determined 1n the act (B) that the retention
period for the first unit of content has not expired, deny-
ing the request to delete the first unit of content; and

(D) when it 1s determined 1n the act (B) that the retention
period for the first unit of content has expired, directly
deleting the first unit of content in response to the
request.

7. The at least one non-transitory computer readable stor-
age medium of claim 6, wherein the acts (A), (B) and (C) are
performed by the storage system.

8. The at least one non-transitory computer readable stor-
age medium of claim 6, further comprising an act (D) of, prior
to performing the acts (A), (B) and (C), recetving information
specilying the retention period for the first unit of content.

9. The at least one non-transitory computer readable stor-
age medium of claim 6, further comprising acts of, prior to

performing the acts (A), (B) and (C):

5

10

15

20

25

30

35

40

45

50

55

60

65

18

(D) recerving the first unit of content at the storage system;
and
(E) writing the first unit of content to the storage system.

10. The at least one non-transitory computer readable stor-
age medium of claim 9, turther comprising acts of, prior to
performing the acts (A), (B) and (C):

(F) receiving information specifying the retention period
for the first unit of content along with the first unit of
content; and

(G) writing the information specitying the retention period
to the storage system.

11. A storage system for use 1n a computer system com-
prising at least one host and the storage system, the storage
system comprising:

at least one storage device, comprising at least one physical
storage medium to store data recerved from the at least
one host; and

at least one controller that:
receives a request, from the host, to delete a first unit of

content stored on the storage system, wherein a reten-
tion period for the first unit of content 1s stored 1n the
first unit of content, wherein the request 1dentifies the
first unit of content using a content address generated,
at least 1n part, from the retention period such that, 11
the retention period 1s modified, a second unmit of
content with a second content address 1s generated
and stored 1n a different location from the first unit of
content;
determines whether the retention period for the unit of
content has expired;
when 1t 1s determined that the retention period for the
unit of content has not expired, denies the request to
delete the unit of content and at least some other
content 1n the first unit of content; and
when 1t 1s determined that the retention period for the
first unit of content has expired, directly deletes the
first unit of content 1n response to the request.

12. The storage system of claim 11, wherein the atleast one
controller receives information specilying the retention
period for the first unit of content.

13. The storage system of claim 11, wherein the atleast one
controller receives the first unit of content and writes the first
unit of content to the at least one storage device.

14. The storage system of claim 11, wherein the atleast one
controller recerves information specifying the retention
period for the first unit of content along with the first unit of
content and writes the information specifying the retention
period to the at least one storage device.

15. The storage system of claim 11, wherein:

a third unit of content 1s stored on the storage system; and

a reference to the third unit of content 1s stored 1n the first
unit of content.

16. The storage system of claim 15, wherein the controller
1s configured not to delete the third unit of content while the
reference to the third unit of content 1s stored in the first unit
ol content.

17. The storage system of claim 16, wherein:

the controller executes a garbage collector that deletes
units ol content that are not referenced by other units of
content; and

the garbage collector 1s configured not to delete the third
unit of content while the reference to the third unit of
content 1s stored in the first unit of content.

18. The storage system of claim 15, wherein the controller

denies every request from the host to delete the third unit of
content.

US 9,075,851 B2
19

19. The storage system of claim 15, wherein:

the retention period 1s a first retention period;

a Tourth unit of content 1s stored on the storage system,
wherein a second retention period for the fourth unit of
content 1s stored i1n the fourth unit of content; and 5

a reference to the third unit of content 1s stored 1n the fourth
umt of content.

20. The storage system of claim 11, wherein:

the first unit of content i1s a content descriptor file; and

one or more references to blobs are stored in the content 10

descriptor {ile.

20

	Front Page
	Drawings
	Specification
	Claims

