12 United States Patent

Kang et al.

US009075708B1

US 9,075,708 B1
Jul. 7, 2015

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR IMPROVING
DATA INTEGRITY AND POWER-ON
PERFORMANCE IN STORAGE DEVICES

(75)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

Inventors: Ho-Fan Kang, San Diego, CA (US);

Stephen P. Hack, Firestone, CO (US);
Jerry Lo, Hacienda Heights, CA (US);
Frederick H. Adi, Costa Mesa, CA
(US); Lan D. Phan, Garden Grove, CA

(US)

Assignee: Western Digital Technologies, Inc.,
Irvine, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1042 days.

Appl. No.: 13/173,431

Filed: Jun. 30, 2011

Int. CL.

GO6F 12/00 (2006.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC GO6F 12/0246 (2013.01); GO6F 2212/7209
(2013.01); GO6F 2212/7207 (2013.01); GO6F

2212/7202 (2013.01)

Field of Classification Search

CPC ...l

GO6F 2212/7209; GO6F 2212/7202;
GO6F 2212/7207;, GO6F 2212/72

@tomic Wirite Prucessing;)/\

l

Obtain Target FPhysical
Address(es) for
Incoming Write

4G0

USPC e 711/103
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,389,308 B2 6/2008 Bailey
2003/0163663 Al* 82003 Aashemmetal. 711/202
2004/0015642 Al* 1/2004 Morretal.cooooeeeeenennnnn, 711/1
2006/0155931 Al 7/2006 Birrell et al.
2008/0098192 Al* 4/2008 Imetal.ccooceeiinn, 711/170

* cited by examiner

Primary Examiner — Larry Mackall

(57) ABSTRACT

The present disclosure 1s directed to managing write com-
mands for a storage system implementing address indirec-
tion. In some storage systems, a mapping table that provides
logical-to-physical mapping may have individual entries that
cach references a logical address size that exceeds the size of
an atomic write to the storage media. In such systems, a write
to a logical address 1s not atomic as 1t may require several
discrete physical writes that may individually fail. The tech-
niques presented employ several pre-commit and post-com-
mit actions to save data that enables the storage system to
make writes to these logical addresses atomic and prevent
undue delay on powerup.

12 Claims, 7 Drawing Sheets

Command
(Wa\

401

v

Perform Write on Target
Physical Address(es) | ™

Log an Update to invalid
Page Table to Validate
Target Physical
Address(es} of the

Log an Update to Invalid
Page Table to Invalidate
Target Physical
Address(es)

l

Incoming Write Command
(V2N J

408 | \'/—\

408

(Val

402

h 4

Wait for Write Completion

Log an Update to
Invalidate Page Table to
Invalidate Previous
Physical Address(es) of

Log an Update to
Physical Address
Pointer For Future Write
Commands

(Va\

403

A 4

Write Logs to Non-
volatile Memaory

l N\

404

Wait for Wirite
Completion

Pre-Commit

Commit

N the LMU of the Incoming
Write Command in the
Mapping Table

l N\

407

409

Log Update to Mapping
Table to Point to Target
Address{es)

l M\

410

Write Logs to Non-volatile
Memory

— o

412 411

FPost-Commit

U.S. Patent Jul. 7, 2015 Sheet 1 of 7 US 9,075,708 B1

Host Device
130
4 Write Command
Fig. 1 and 1™ o
Logical Address
141
114

Mapping Invalid Page
112 113

Volatile Memory

111
Controller

110

Media Access Commands

Mapping
Table

Invalid Page
Table

N\

121 122

Non-volatile Media

100
120 Non-volatile Storage System

U.S. Patent Jul. 7, 2015 Sheet 2 of 7 US 9,075,708 B1

Fig. 2A

Mapping Table Storage Media

Atomic Write Unit

Logical Mapping Unit (e.g. a Page)

200 210

Atomic Write Unit

| ogical . .
ogical Mapping Unit (e.g. a Page)

Atomic Write Unit

Logical Mapping Unit (e.g. a Page)

Fi1g. 2B

Mapping Table Storage Media

Atomic Wirrite Unit
—__Afomic Write Unit___
Atomic Write Unit
Atomic Write Unit

l.ogical Mapping Unit

520 230

Atomic Write Unit
Atomic Write Unit

Atomic Write Unit
Atomic Wirite Unit

L.ogical Mapping Unit

Atomic Write Unit
—__Atomic Write Unit___
Atomic Write Unit
Atomic Write Unit

Logical Mapping Unit

U.S. Patent Jul. 7, 2015 Sheet 3 of 7 US 9,075,708 B1

. Non-Atomic Write
Fig. 3

Obtain Target Physical

300

Address(es) for
Incoming Write \/\

301
Perform Write on Target
Physical Address(es) \/\
302

Log Update to Mapping
Table Location at Target A\
Physical Address(es)

303

Log an Update to

Invalidate Page Table to
Invalidate Prior Mapping [\L\
Table Address(es) 304

Write Logs to Non-volatile

Memory N\

305

End

306

U.S. Patent Jul. 7, 2015

Fig. 4

Atomic Write Processing

Obtain Target Physical
Address(es) for
Incoming Write

Command

400

401

Log an Update to Invalid

Page Table to Invalidate

Target Physical |
Address(es)

402

Log an Update to
Physical Address
Pointer For Future Write
Commands

403

Write Logs to Non-

volatile Memory

404

Wait for Write

Completion

405

Pre-Commit Commit

Sheet 4 of 7

Perform Write on Target

Physical Address(es)

Wait for Write Completion

Log an Update to Invalid
Page Table to Validate
Target Physical
Address(es) of the
Incoming Write Command

406 408

Log an Update to
Invalidate Page Table to
Invalidate Previous
Physical Address(es) of
the LMU of the Incoming
Write Command in the
Mapping Table

407

409

Log Update to Mapping
Table to Point to Target
Address(es)

410

Write Logs to Non-voiatile

Memory

417 411

End

Post-Commit

US 9,075,708 B1

U.S. Patent

Jul. 7, 2015 Sheet 5 of 7 US 9,075,708 B1

Fig. 5A

Invalid Page Table
(crossed-out entries
indicate invalid
530 locations)

505 V0
—) PCN4 g

510
500 2

Free Physical

Locations [Change Logs]

PCN 8 <

501

PCN 12 ”

502 11

12

Mapping Table

13

PCN 16 14

503 15

Storage Array 040

- 9

0 2 3 4 - 5 6 !
LMU 4 LMU 4 i MU 4 LMU 4
Data Data Data Data
8 9 10 11 12 13 14 15

U.S. Patent US 9,075,708 B1

Jul. 7, 2015 Sheet 6 of 7

Fig. 5B

Free Physical [Change Logs] .
L ocations Invalid Page Tab_le
(crossed-out entries
Indicate invalid
530 .
Pre-Commit locations)
PCN 4 1. Invalidate PCN 4-7 N\
500 2. Move Free °
Physical Location 1
Pointer to PCN 8
2
505 510 3
(2) 501 0
ST, SE—
8
PCN 12
502 Mapping Table °
10
11
12
PCN 16 13
503 14
15
Storage Array 540 A
0 | 3 | 4 5 6 7
LMU 4 L.MU 4 LMU 4 LMU 4
Data Data Data Data
G 9 10 11 12 13 14 15

U.S. Patent US 9,075,708 B1

Jul. 7, 2015 Sheet 7 of 7

Fig. 5C

Free Physical [Change Logs] Invalid Page Table
Locations (crossed-out entries
520 md:catg invalid
\/\ locations)
PCN 4 Pre-Cc:u_'nmit 5
1. Invalidate PCN 4-7
500 2. Move Free @
Physical Location 510
: T —
Pointer to PCN 8
c05 [logs flushed] r—— et
[write to PCN 4-7
ﬁ PCN 8 completed] 4
5
201 Post-Commit - @
3. Validate PCN 4-7 -
4. Invalidate PCN 0-3 | 5
5. Updgate Mapping
Table Location 8
PCN 12 [logs flushed] 9
502 10
Mapping Table 11
12
PCN 16 13
503 520 14
15
Storage Array 940 A
§ 1 2 3 4 5 6 7
| MU 4 LMU 4 LMU 4 LMU4 | LMU 4 LMU 4 LMU 4 LMU 4
Data - old | Data - old | Data - old | Data - old Data Data Data Data
8 0 10 11 12 13 14 15

US 9,075,708 Bl

1

SYSTEM AND METHOD FOR IMPROVING
DATA INTEGRITY AND POWER-ON
PERFORMANCE IN STORAGE DEVICES

BACKGROUND

1. Technical Field

This disclosure relates to non-volatile storage devices.
Specifically, this disclosure relates to improving data consis-
tency/integrity in non-volatile storage devices.

2. Description of Related Art

Prior implementations of logical-to-physical mapping in
non-volatile storage devices typically sized a logical mapping,
unit (LMU) to the size of an atomic write. That 1s, a write to
an LMU (e.g., a logical address 1n a mapping table entry)
corresponded to an atomic physical write/program operation
on the storage media (e.g., programming a page). Therelore,
a write to a logical address was either completed or not
completed 1f power was lost at any point 1n time. Where the
s1ze of a logical mapping unit exceeds the size of an atomic
physical write, 1t 1s possible for portions of the logical map-
ping unit to not be written before power 1s lost. As a result,
when the storage system 1s powered on after a power loss, the
system must determine which logical mapping units were
partially written and revert to a prior version of the partially
written logical mapping unit(s). The determination of par-
tially-valid logical mapping units can result in significant
delays while powering on the system; thus significantly
impacting imtial host responsiveness.

BRIEF DESCRIPTION OF THE DRAWINGS

Systems and methods which embody the various features
of the invention will now be described with reference to the
tollowing drawings, in which:

FIG. 1 illustrates a system overview ol a non-volatile stor-
age system according to an embodiment.

FIGS. 2A and 2B illustrate a logical mapping unit which
corresponds to an atomic write unit and a logical mapping
unit which corresponds to a plurality of atomic write units.

FIG. 3 1llustrates an example process that does not make
write commands to LMUSs atomic.

FI1G. 4 illustrates a process that makes write commands to
LMUSs atomic according to an embodiment.

FIGS. 5A-5C 1llustrate an embodiment for making write
commands to LMUSs atomic.

DETAILED DESCRIPTION

While certain embodiments of the inventions are
described, these embodiments are presented by way of
example only, and are not intended to limait the scope of the
inventions. Indeed, the novel methods and systems described
herein may be embodied 1n a variety of other forms. Further-
more, various omissions, substitutions and changes in the
form of the methods and systems described herein may be
made without departing from the spirit of the inventions.
System Overview

Embodiments of the invention are directed to systems and
methods for ensuring that a write to a logical mapping unit
(LMU), which may include several discrete atomic writes to
physical addresses, 1s atomic. A mapping table 1s frequently
used 1n a non-volatile storage system to provide logical-to-
physical mapping from a host’s logical address to the physical
storage address. As capacity for storage systems increases,
the amount of data stored 1n a mapping table also linearly
increases in size. In order to reduce the amount of data stored

10

15

20

25

30

35

40

45

50

55

60

65

2

in a mapping table and realize costs saving from the resulting
reduced memory needs, each mapping table entry can refer-
ence an increased amount of physical address space. For
example, rather than referring to a single atomic write size
(typically a physical page, usually 8 k of storage), each map-
ping table entry (“logical mapping umt” or “LMU”) can refer
to 64 or 128 physical pages and thereby reduce the size of a
mapping table. However, a write to a single LMU 1n such a
system 1s no longer atomic since power can be lost while the
pages assigned to the LMU are being written. This disclosure
provides several embodiments that ensure writes to LMUSs are
atomic by making pre-commit and post-commit records of
the writes. In an embodiment, the pre-commit and post-com-
mit records are stored to one or more logs or other journal of
drive activity saved to non-volatile storage and such logs
and/or journal can be referenced on startup to quickly deter-
mine whether writes to certain LMUs were successtully
executed.

As used 1n this application, “non-volatile memory” can
refer to any non-volatile memory implementing address indi-
rection. The address indirection 1s typically implemented
with a logical-to-physical mapping which decouples the
host’s logical addresses from the physical storage location in
a storage media. As a result, this disclosure may be applicable
to solid-state memory such as NAND flash. The systems and
methods of this disclosure may also be useful 1n more con-
ventional hard drives and hybrid drives including both solid-
state and hard drive components. Solid-state memory may

comprise a wide variety of technologies, such as flash inte-
grated circuits, Chalcogenide RAM (C-RAM), Phase Change

Memory (PC-RAM or PRAM), Programmable Metallization
Cell RAM (PMC-RAM or PMCm), Ovonic Unified Memory
(OUM), Resistance RAM (RRAM), NAND memory, NOR
memory, EEPROM, Ferroelectric Memory (FeRAM), or
other discrete NVM (non-volatile memory) chips. The solid-
state storage devices may be physically divided into planes,
blocks, pages, and sectors, as 1s known 1n the art. Other forms
of storage (e.g., battery backed-up volatile DRAM or SRAM
devices, magnetic disk drives, etc.) may additionally or alter-
natively be used.

Retferring to FIG. 1, a non-volatile storage device 100
according to one embodiment 1s shown. The non-volatile
storage device 100 includes a controller 110 and a non-vola-
tile storage media 120. The controller 110 typically includes
a volatile memory 111 that 1n one embodiment includes data
relating to a mapping table 112, a log of changes 113 and an
invalid page table 114. The controller may be a processor or a
plurality of processors, or may be implemented 1n hardware
in whole or in part. The volatile memory 111 1n one embodi-
ment includes data used in the operation of the controller 110.
Although depicted to be a part of the controller 1n FIG. 1 the
volatile memory 111 may be outside of the controller. The
mapping table 112 1n one embodiment provides a logical-to-
physical mapping for the logical addresses used by a host
device 130 to be translated to physical addresses for accessing
the non-volatile storage media 120. The invalid page table
114 can indicate physical addresses that do not contain valid
data and may be treated as eligible for garbage collection
operations. As changes are made to the mapping table and
invalid page table, these changes may be recorded 1n the logs
113 for saving 1n the non-volatile storage media.

In one embodiment, the non-volatile storage media 120, 1n
addition to storing user data, stores non-volatile versions of
the data in the volatile memory 111. For example, the map-
ping table 121, logs 122, and 1invalid page table 123 may store
persistent copies of data resident on the volatile memory 111.
These non-volatile versions on the storage array allow the

US 9,075,708 Bl

3

system to maintain coherency and storage organization
through a power oif-on cycle. On powerup, the controller 110
may load the mapping table 121 and invalid page table 123 to
the volatile memory as the mapping table 112 and invalid
page table 114. Because the invalid page table 114 and map-
ping table 112 are relatively large, updated versions of such
tables are infrequently copied as a whole to the non-volatile
storage media 120. Updated versions of the logs 113 are
stored relatively frequently to the non-volatile storage media
and can therefore serve to provide finer-grained updates to the
persistent copies ol mapping table and invalid page table.

The non-volatile storage system 100 may be connected to
a host device 130. The host command can 1ssue a write com-
mand 140 with an associated logical address 141. The con-
troller 110 typically receives the write command 140 and
converts the logical address 141 to a physical address. The
address conversion may include updating the designated
physical address for the logical address in the mapping table
112 and adding a corresponding entry in the logs 113. If the
logical address was previously associated with a physical
address 1n the non-volatile storage media 120, that physical
address will be invalidated in the invalid page table 114 and an
update to the mnvalid page table can be saved to the logs 113.
The logs 113 can then be stored to the non-volatile storage
media as logs 122.
Logical Mapping Units

Referring to FIGS. 2A and 2B, two embodiments of a
mapping table are shown. In the embodiment shown 1n FIG.
2A, a logical mapping unmit (LMU) 200 refers to a single
atomic write unit 210 (e.g., a physical page). That 1s, each
entry 1n the mapping table designates a single atomic write
transaction, such as the programming of a page. An advantage
of this approach 1s that when the controller executes a write
command at a LMU, the entire LMU 1s either written or not
written atomically (since the single physical page write either
succeeds or fails). In the embodiment 1n FIG. 2B, each LMU
now comprises a plurality of atomic write umts 230 (e.g.,
multiple physical pages). As such, it 1s possible for each
atomic write to mdependently succeed or fail. Though an
L.MU 1s shown 1n this embodiment as including four atomic
write units, any number of write units per LMU 1s contem-
plated by this disclosure, such as 32, 64, 128 or more atomic
write units to an LMU. Because portions of a write to the
.MU can fail, the entire block of atomic write units may need
to be re-written to another physical address section so that the
LMU can designate consecutive physical addresses. Due to
this possibility, 1t 1s advantageous for a write to an LMU
encompassing a plurality of atomic write units to be con-
ducted atomically.
Non-Atomic Write Processing

FIG. 3 1llustrates an example process that does not make
write commands to LMUs atomic. At block 300, the non-
atomic write processing begins when a new write command 1s
received. At block 301, the target physical address(es) are
obtained for the write command. At block 302, the write 1s
performed on the target physical address(es). At block 303,
the mapping table 1s updated to reflect the new physical
address(es) and a log of the change 1s made. At block 304, the
invalid page table 1s updated and a log of the changes made to
the mvalid page table 1s also created. At block 305, the logs
are written to non-volatile memory and the process ends at
block 306. I1 the system loses power or shuts down during the
write executions at block 302, the system has notrecorded the
necessary data to retlect the partially completed writes (1.e.,
changes to the invalid page table and mapping table). As such,
data integrity 1s likely impacted by the presence of these
partial writes. Some fallback mechanisms may be used to

10

15

20

25

30

35

40

45

50

55

60

65

4

address at least part of the problem, though they may come
with certain drawbacks. For example, on power-up, the sys-
tem may scan the physical locations corresponding to a list of
upcoming write locations to determine 1f a write actually
occurred that was never recorded. By performing the scan, the
system can then determine whether to maintain the partial
write or revert to the old data. This scan for partially written
data operates as a protective fallback, but can take significant
processing time and delay readiness of the system on pow-
cerup. However, this scanning alone 1s likely mnsuilicient to
provide for data recovery as additional (and potentially com-
plex) logging mechanisms may be needed to revert to old data
and fully reconstruct the lost data.

“Atomic” Write Processing,

Referring now to FIG. 4, a process 1s shown according to an
embodiment for ensuring writes to individual LMUSs that span
multiple atomic write units become atomic processes. While
the writes to LMUSs are not actually atomic writes as dis-
cussed above, this process saves reference data before and
aiter the physical atomic writes as to convert individual writes
to LMUs 1nto atomic transactions. As a result, the system can
ensure data integrity by providing for a mechanism to account
for and recover from partially-written LMUs. The system can
also avoid needing to scan physical addresses on power-up to
detect partially-written LMUSs. This process can be per-
formed by, for example, the controller 1n FIG. 1. As a brief
overview, the process depicted 1n FIG. 4 1s comprised of a
pre-commit, commit, and post-commit phase. The pre-com-
mit phase includes actions taken prior to programming the
storage array with the actual data, the commit phase includes
actions taken to program the storage array, and the post-
commit phase includes actions taken after the programming
to update the system after the write has completed.

In one embodiment, the pre-commit and commit phases are
executed as follows. At block 400, a write command 1s
received and the atomic write processing for an LMU 1s
initiated. As before, at block 401, target physical addresses
are designated for the write command. At block 402, the
designated physical addresses are invalidated 1n the mvalid
page table, and a log of the mvalidation 1s created. At block
403, the pointer designating physical address locations for
future write commands 1s moved to indicate that the physical
addresses are no longer available and a log 1s created to reflect
this change. At block 404, each of the logs created at blocks
402-403 are stored to non-volatile memory. In other embodi-
ments, one log may be used in place of the multiple logs. At
block 405, the process waits for the logs to be committed (1.¢.,
saved) to non-volatile memory before proceeding to the com-
mit phase at block 406. At block 406, the write 1s performed
on the target physical addresses, and at block 407, the process
waits for the writes to the physical addresses to complete
before moving to the post-commit phase.

By recording the logs mentioned 1n blocks 402-403 and
ensuring these logs are committed to non-volatile memory
prior to writing the data for the LMU, the system can recover
on powerup without scanning the physical addresses. As an
example, suppose power 1s lost during block 406 1n a write to
physical addresses 4-7, and as a result, some portion of the
writes to physical addresses 4-7 failed to complete. Because
the logs include an indication that retlects that addresses 4-7
are mmvalid and an indication that the next physical write
location pointer has been moved from addresses 4-7, on sys-
tem start-up, the partially-written physical addresses 4-7 will
be treated as invalid by the controller based on the indications
in the logs, and will become eligible for garbage collection or

US 9,075,708 Bl

S

reuse. Additionally, the next physical write location pointer
will have been moved and the system will not attempt to write
to addresses 4-7.

On completion of the writes at block 407, the post-commuit
phase can begin at block 408. At block 408, the target physical
addresses (the addresses which were just written at block
406) are validated in the invalid page table and a log 1s created
of the validation. At block 409, the physical addresses previ-
ously associated with the logical address are invalidated 1n the
invalid page table and a log 1s created of the invalidation. At
block 410, the mapping table 1s updated to reference the
newly-written physical addresses. At block 411, the logs of
the changes made at blocks 408-410 are written to non-vola-
tile memory and the process ends at block 412. Prior to
initiating the process again for the next write command(s) at
block 400, the system may also need to wait for the logs to
complete writing at block 411. In other embodiments, one log
may beused 1n place of the multiple logs. The re-validation of
the target addresses and the mapping table update enable the
newly-written data to be used.

An example process has been shown here 1n FI1G. 4. Several
alterations are possible and within the scope of the various
embodiments of invention. For example, blocks 402 and 403
can be performed in either order as long as they are stored
prior to the writes at block 406. Similarly, the post-commit
steps 1 blocks 408, 409, and 410 could be performed 1n other
orders. In addition, the example shown 1n FIG. 4 1llustrates a
single command 1n 1solation. In some embodiments, several
L.MU writes are bundled together into groups of writes which
undergo the pre-commit, commit, and post-commit phases
together. For example, a batch of 32 write commands may
arrive from the host system and the logs reflecting changes to
the 1nvalid page table and mapping table for the 32 write
commands may be saved together. In an embodiment, this
batching 1s performed by 1nserting a loop for each phase. For
example, a loop can be inserted from block 403 to block 401
to generate a series of logging entries for the batch of com-
mands before commaitting these logs at block 404. The pro-
cess may also loop through the physical writes for the com-
mands 1n block 406 and proceed beyond block 407 only when
the commands have been physically written. Another loop
may be inserted from block 410 to block 408 to process the
post-commit operations for the commands before the logs are
saved at block 411. In addition, while designated a “log” 1n
this application, any method or techmique for providing a
record for use by the system after power loss may be usetful in
tulfilling the objectives of the “log.” For example, the “log”
may take the form of a journal or a special portion of memory
which automatically records any changes to the mapping
table and invalid page table. While not described 1n detail in
this disclosure, a separate process may ensure the writing of
the logs to the non-volatile memory 1s atomic. That i1s, the
writes at blocks 404 and 411 may be atomic transactions
themselves.

Storage Component Contents

FIGS. 5A through 5C illustrate the effects of the process
described 1n FIG. 4 on the various data components according
to an embodiment. FIG. SA shows the components prior to
receipt and execution of the write command. FIG. 5B shows

the components after completion of the pre-commit steps.
Starting with FIG. 5A, FIG. 5A shows a list of free physical

locations 500, 501, 502, and 503. FIG. 5A also shows change
logs 510, a mapping table 520, an invalid page table 530, and

a physical storage array 540. In this example, the LMU 1n
question (LMU 4 or Logical Chuck Number (LCN) 4) cur-
rently references Physical Chunk Numbers (PCN) 0-3, as

indicated in the mapping table 520 and as shown 1n the stor-

10

15

20

25

30

35

40

45

50

55

60

65

6

age array 340. The free physical locations pointer 505 cur-
rently indicates that free physical location 500 designating

PCN 4 1s the next physical location available for writing. The
invalid page table 530 indicates that all physical locations are
valid/uninitialized. In an embodiment, the absence of an
invalid indication means that the physical location 1s either
valid or uninitialized and valid locations are distinguished by
being referred to in the mapping table. In another embodi-
ment, an additional designation 1s used 1n a table to distin-
guish physical locations that are valid from those that are
unminitialized.

FIG. 5B shows the example system after the execution of
the pre-commut steps. In this example system, the incoming
write command indicates a write to LMU 4. The change logs
indicate the pre-commit steps that were taken. First, the log
records that the target PCNs 4-7 have been invalidated. As
shown 1n the 1valid page table and the circle designating a
“l1,” the crossed out PCNs show that PCNs 4-7 have been
invalidated (the number 1n the circle corresponds to the 1tem
number 1n the change logs). Next, the free physical location
pointer 1s moved from free physical location 501 (PCN 4) to
free physical location 502 (PCN 8) as indicated by the circle
designating a “2.” The log indicating these changes 1s now
saved (“flushed’) to the non-volatile storage prior to execut-
ing any writes to the physical storage. Accordingly, if power
1s lost while executing the writes to PCNs 4-7, the system can
detect the failure of the write to LMU 4 upon start-up based on
indications 1n the saved logs reflecting the invalidation and
free physical location pointer movement.

FIG. 5C shows the example system after the execution of
the commit and post-commit steps. As shown in the storage
array 540, the write command data directed to LMU 4 has
now been written to PCNs 4-7, and PCNs 0-3 now contain the
old data reterenced by LMU 4. This 1s the commut step. In the
post-commit steps, the target PCNs which now contain the
newly written data are marked valid 1n the 1nvalid page table,
as indicated by the circle designating a “3.” Next, the PCNs
containing the old data for LMU 4 are invalidated, as 1ndi-
cated by the circle designating a “4.” Last, the mapping table
1s updated to indicate LMU 4 now references PCNs 4-7, as
indicated by the circle designating a “3.”” Each of the actions
“3,7%“4,” and *“5” 1s recorded 1n the change logs 510 as shown
and the logs can now be saved to the non-volatile memory to

record the post-commit activity to enable use of the newly
written data.

CONCLUSION

While certain embodiments of the inventions have been
described, these embodiments have been presented by way of
example only, and are not intended to limit the scope of the
inventions. Indeed, the novel methods and systems described
herein may be embodied 1n a variety of other forms. Further-
more, various omissions, substitutions and changes in the
form of the methods and systems described herein may be
made without departing from the spirit of the inventions. The
accompanying claims and their equivalents are intended to
cover such forms or modifications as would fall within the
scope and spirit of the inventions. For example, those skilled
in the art will appreciate that 1n various embodiments, the
actual steps taken in the processes shown 1n FIGS. 3, 4, and
5A-5C may ditfer from those shown in the figures. Depending
on the embodiment, certain of the steps described in the
example above may be removed, others may be added, and
the sequence of steps may be altered and/or performed in
parallel. Also, the features and attributes of the specific
embodiments disclosed above may be combined in different

US 9,075,708 Bl

7

ways to form additional embodiments, all of which fall within
the scope of the present disclosure. Although the present
disclosure provides certain preferred embodiments and appli-
cations, other embodiments that are apparent to those of
ordinary skill 1n the art, including embodiments which do not
provide all of the features and advantages set forth herein, are
also within the scope of this disclosure. Accordingly, the
scope of the present disclosure 1s intended to be defined only
by reference to the appended claims.

What is claimed 1s:

1. A non-volatile storage system, comprising:

a non-volatile storage array; and

a controller comprising a volatile memory, the controller

configured to:

maintain a mapping table and a record of 1mvalid physi-
cal addresses 1n the volatile memory, wherein a data
s1ze of a logical address referenced by an entry of the
mapping table 1s larger than a data size of an atomic
program command that can be executed on the non-
volatile storage array;

receive a write command from a host system directed to
a logical address referenced by an entry 1n the map-
ping table;

identify a plurality of physical addresses to be used for
the write command, wherein performing the write
command comprises executing a plurality of program
commands, and wherein each of the program com-
mands corresponds to a different physical address
from the plurality of physical addresses;

mark each physical address of the plurality of physical
addresses as invalid 1n the record of mvalid physical
addresses:;

save a copy of the record of invalid physical addresses to
the non-volatile storage array;

alter saving the copy of the record, execute the plurality
of program commands on the non-volatile storage
array at the plurality of physical addresses; and

when the execution of the plurality of program com-
mands 1s complete, mark each physical address of the
plurality of physical addresses as valid in the record of
invalid physical addresses to obtain an updated record
of invalid physical addresses that retlects changes
made by the execution of the program commands and
replace the coy of the record with a copy of the
updated record at the non-volatile storage array,

whereby saving the copy of the record of invalid physical

addresses belore executing the plurality of program

commands and replacing the copy with the updated

record of 1nvalid physical addresses after execution of

the plurality of program commands 1s complete trans-

forms the plurality of program commands 1nto an atomic

transaction.

2. The non-volatile storage system of claim 1, wherein in
case at least one of the program commands fails to complete,
the saving of the first change to the record of invalid physical
addresses to the non-volatile storage array provides a persis-
tent record that enables the controller to determine that at least
one of the program commands has failed.

3. The non-volatile storage system of claim 1, wherein the
copy of the record of invalid physical addresses 1s saved to the
non-volatile storage array in the form of a log.

4. The non-volatile storage system of claim 1, wherein the
controller 1s further configured to:

invalidate, 1 the record of invalid physical addresses,

physical addresses indicated by the mapping table as
being associated with the logical address; and

5

10

15

20

25

30

35

40

45

50

55

60

65

8

update the mapping table to associate the logical address to

the physical addresses.

5. The non-volatile storage system of claim 1, wherein the
copy of the updated record 1s saved to the non-volatile storage
array 1n the form of a log.

6. The non-volatile storage system of claim 1, wherein the
non-volatile storage array comprises a shingled hard disk or a
solid-state storage array.

7. The non-volatile storage system of claim 1, wherein the
data size of a logical address referenced by an entry of the
mapping table 1s an integer multiple of the data size of an
atomic program command that can be executed on the non-
volatile storage array.

8. The non-volatile storage system of claim 7, wherein the
data size of an atomic program command matches a data size
ol a page 1n the non-volatile storage array.

9. A method of executing a write command by a controller
in a non-volatile storage system, comprising:

maintaining a mapping table and a record of invalid physi-

cal addresses, wherein the data size of a logical address
referenced by an entry of the mapping table 1s larger than
a data si1ze of an atomic program command that can be
executed on a non-volatile storage array;

receving, from ahost system, a write command directed to

a logical address referenced by an entry in the mapping
table;

obtaining a plurality of physical addresses to be used for

the write command, wherein performing the write com-
mand comprises executing a plurality of program com-
mands, and wherein each of the program commands
corresponds to a different physical address from the
plurality of physical addresses;

identifying each physical address of the plurality of physi-

cal addresses as invalid 1n the record of mnvalid physical
addresses;

saving a copy of the record of invalid physical addresses to

the non-volatile storage array;

when the saving of the copy of the record of invalid physi-

cal addresses 1s complete, executing the plurality of
program commands on the non-volatile storage array at
the plurality of physical addresses; and

when the execution of the plurality of program commands

1s complete, 1dentifying each physical address of the
plurality of physical addresses as valid 1n the record of
invalid physical addresses to obtain an updated record of
invalid physical addresses that reflects changes made by
the execution of the program commands and replace the
copy of the record with a copy of the updated record at
the non-volatile storage array;

whereby saving the copy of the record of invalid physical

addresses belore executing the plurality of program
commands prevents use of data from partially-executed
write commands.

10. The method of claim 9, further comprising the step of
loading the mapping table, wherein the loading uses the plu-
rality of physical addresses only 1f the replacing of the copy of
the record with the copy of the updated record has completed.

11. The method of claim 9, wherein the copy of the record
of mvalid physical addresses 1s saved to the non-volatile
storage array 1n the form of a log.

12. The method of claim 9, wherein the copy of the updated
record 1s saved to the non-volatile storage array in the form of
a log.

	Front Page
	Drawings
	Specification
	Claims

