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Interrupt
Management

Via an interrupt line of a physical link, receive an interrupt
request/assertion from a physical custom IP device into a

models module, which simulates one or more physical
components.

Interrupt line 404

asserted by model?

In response to receipt of the interrupt request, initiate by the

models module an interrupt service routine (ISR)

Send a clear interrupt line request from processor model to

physical custom IP device via physical link and set de-
assert timer

Model generates and stores a premature interrupt line de-
assertion state (by model) and prevents physical interrupt
ine asserted state from re-triggering ISR.

414

Maxi

de-assert time M
reached?
N
416
Physical line de-assertion received on>
Interrupt line?
Y

Store physical line de-assertion state and clear de-assert
timer and set model assertion state.
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SYSTEMS AND METHODS FOR HANDLING
INTERRUPTS DURING SOFTWARE DESIGN
SIMULATION

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to mechanisms for simu-
lation of software for hardware systems. More specifically,
this mvention relates to a simulation system that includes
multiple simulation domains with different speeds.

BACKGROUND

An electronic system design may incorporate any number
of configurable or programmable logic devices, such as pro-
grammable logic devices (PLDs) or field programmable gate
arrays (FPGAs). PLDs and FPGAs can be used to implement

any logical function, for example, that an ASIC could per-
form. Additionally, PLDs and FPGAs are reconfigurable so as
to allow updating of various programmable functions as
needed. For example, FPGA’s contain programmable logic
clements and configurable and reconfigurable interconnects
that allow the logic elements to be arranged together into
different configurations to perform various functions. The
logic elements generally also include memory elements,
which may be simple thp-flops or more complete blocks of
memory.

An electronic system design may also incorporate soft-
ware. As these systems grow in complexity and size, one
bottleneck in the design process may be debugging of the
system soitware. Accordingly, it would be beneficial to pro-
vide improved methods and apparatus for debugging soft-
ware for implementation 1n hardware systems.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the dis-
closure 1n order to provide a basic understanding of certain
embodiments of the invention. This summary 1s not an exten-
stve overview of the disclosure and 1t does not 1dentity key/
critical elements of the invention or delineate the scope of the
invention. Its sole purpose 1s to present some concepts dis-
closed herein 1n a simplified form as a prelude to the more
detailed description that 1s presented later.

In general, apparatus and devices for method of simulating
a software design that 1s to be implemented 1n a system are
disclosed. A method embodiment may includes (a) providing
a co-simulation platform comprising a physical link coupling
a first physical component with a models module, which
emulates one or more other physical components of the sys-
tem, wherein such models module includes a processor model
associated with an interrupt service routine (ISR) for han-
dling an interrupt on an interrupt line of the first physical
component; (b) via a physical link, recerving into the models
module an iterrupt request from the interrupt line of the first
physical component; (¢) 1n response to the received interrupt
request, 1nitiating the ISR associated with the processor
model; (d) prior to exiting the ISR, sending a interrupt line
de-assert request from the models module to the first physical
component via the physical link; and (e) prior to exiting the
ISR and prior to receiving a physical de-assertion of the
interrupt line from the first physical component via the physi-
cal link, generating by the models module a premature de-
assertion of the interrupt line and causing such premature
de-assertion to be received by the processor model.

In one aspect, receipt of the mterrupt request and 1nitiation
of the ISR form part of a simulation for debugging the sofit-
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2

ware design that 1s to be implemented in the system. In
another aspect, a method may also include preventing the
interrupt request from being received by the processor model
alter causing the premature de-assertion to be recerved by the
processor model so that the associated ISR 1s not retriggered
alter the ISR exits and prior to de-assertion of the interrupt
line by the first physical component. In one example, the first
physical component 1s a custom IP device of a programmable
logic device.

In a specific implementation, generating by the models
module a premature de-assertion of the interrupt line and
causing such premature de-assertion to be received by the
processor model 1s accomplished by (1) after the ISR 1s 1niti-
ated, sending by the ISR a request for the premature de-
assertion of the interrupt line to an interrupt controller module
in the models module and (11) upon receipt of the request for
the premature de-assertion by the interrupt controller, the
interrupt controller generating a premature de-assertion of the
interrupt line that 1s sent to the processor model and prevent-
ing the interrupt request from reaching the processor. In a
turther aspect, a plurality of states for de-assertion and asser-
tion by the models module and by the first physical device are
tracked. In another embodiment operations (a)-(e) are per-
formed after veritying functional operation of a hardware
design of the system and prior to fabrication of the system
based on such hardware design. In a further aspect, the soft-
ware design 1s mtegrated into the fabricated system after the
software design 1s debugged via the simulation of such soft-
ware design on the co-simulation platform.

In an alternative embodiment, the invention pertains to a
co-simulation platform for simulating a software design that
1s to be implemented 1n a system. The platform comprises a
first physical component configured to represent a config-
urable component of the system and a models module con-
figured to emulate one or more other physical components of
the system. The models module includes a processor model
associated with an interrupt service routine (ISR) for han-
dling an interrupt on an interrupt line of the first physical
component. The platform further comprises a physical link
for coupling the first physical component with the models
module. The models module 1s further configured to perform
one or more ol the above described methods. In another
embodiment, the mvention pertains to at least one computer
readable storage medium having computer program instruc-
tions stored thereon that are arranged to perform one or more
of the above described methods.

These and other features of the present invention will be
presented 1n more detail in the following specification of
certain embodiments of the invention and the accompanying

figures which 1illustrate by way of example the principles of
the mvention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example design flow 1n accordance with one
embodiment of the present invention.

FIG. 2 1s a diagrammatic representation of a co-simulation
system 1n which illegal double interrupts may occur.

FIG. 3 1s a diagrammatic representation of a co-simulation
system that includes mechamisms for inhibiting illegal double
interrupts 1n accordance with one embodiment of the present
invention.

FIG. 4 1s a tlow chart 1llustrating an interrupt management
procedure 1n accordance with an example embodiment of the
present invention.
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FIG. S 1llustrates a typical computer system that can be
used in connection with one or more embodiments of the

present invention.

FIG. 6 1s a block diagram depicting a hardware system,
which may utilize software that 1s debugged in co-simulation
embodiments of the present invention.

FIG. 7 1s an 1dealized block representation of the architec-
ture of an arbitrary hardware device, which may be utilized in
co-simulation embodiments of the present invention.

DETAILED DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

In the following description, numerous specific details are
set forth 1n order to provide a thorough understanding of the
present invention. The present invention may be practiced
without some or all of these specific details. In other
instances, well known process operations have not been
described 1n detail to not unnecessarily obscure the present
invention. While the mvention will be described in conjunc-
tion with the specific embodiments, 1t will be understood that
it 1s not intended to limit the invention to the embodiments.

Embodiments of the present invention will be explained in
connection with various specific devices, circuits, applica-
tions, etc. herein. However, these references are for purposes
of illustration only and are not intended to limit the present
invention in any way. For example, one or more embodiments
of the present imnvention will be explained in the context of
programmable logic devices (PLDs) or field programmable
gate array (FPGA) devices and technologies related thereto to
illustrate the present ivention. However, the mvention is
widely applicable to other devices and 1n other environments.
Moreover, embodiments of the present invention may be used
in a wide variety of functions and/or applications.

In this disclosure, a “configurable device” 1s a program-
mable device that ultimately contains user logic (that 1s, the
function(s) programmed and implemented 1 a program-
mable device by a user, for example an electronic design).
Typically, such a device has a volatile memory and must be
programmed upon each power-up, though not every config-

urable device must possess these characteristics. Examples of
configurable devices include SRAM PLDs and RAM-based

PLDs (for example, Altera FLEX and STRATIX devices).

When a system that utilizes programmable devices 1s being,
developed, this system may also use other components, such
as a processor with embedded software. For example, a sys-
tem-on-chip (SoC) design may include programmable logic
devices, such as FPGA, as well as standard components. For
example, a system may include one or more configurable
devices, one or more embedded soitware configured compo-
nents, such as a central processing unit, and one or more other
standard components, such as Ethernet MAC, USB and
UART. Additionally, these components may be implemented
in any number and type of chips or devices.

A system design process may include both a hardware
design process and a software design process. A typical hard-
ware design process may include designing the hardware
components, simulation and integration of the hardware com-
ponents, synthesis of the hardware design, and fabrication of
the hardware system. After the hardware system 1s fabricated,
the system soitware for such hardware system may then be
designed and developed. The software may then be debugged
on the hardware system and then finally integrated 1nto a final
system.

As hardware systems and associated soltware become
more complex (e.g., in the development of new smartphone
and tablet devices), the timeframe for hardware development
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4

has significantly increased (e.g., 1.5 years for design and
fabrication of the hardware system). The software design
timeframe has also similarly increased and often takes longer
than the hardware design timeframe, resulting 1n significant
delays 1n getting a SoC design to market.

Instead of having software development depend on
completion of the hardware system, certain embodiments of
the present mvention allow software development to begin
upon completion of functional simulation of the hardware
design. FIG. 1 1s an example design flow 100 1n accordance
with one embodiment of the present invention. In a hardware
design phase 101, an overall design architecture may be gen-
erated and reviewed 1n operation 102. For istance, design
goals and specifications are formulated. In operation 104,
various designs may be explored based on the architecture.
For instance, different design components may be reviewed
to determine which components to use for the design archi-
tecture. Additionally, different components may be instanti-
ated using schematic and/or hardware description language
(HDL) tools, such as Verilog. The hardware design may then
be simulated in operation 106 and adjusted as needed. For
example, the schematics and/or HDL designs are input to any
suitable stmulation program to verity the functional operation
of the design.

After the function of the design 1s verified through simu-
lation, the software design 113 may commence without wait-
ing for the hardware to be fabricated. Similar to the hardware
design flow, the design architecture may be specified and
various design arrangements explored 1n operations 114 and
118, respectively. Software 1s designed to be implemented on
a particular hardware configuration that includes both stan-
dard and configurable physical devices. Accordingly, a co-
simulation platform that includes one or more configurable
components 116, e.g., FPGA, and one or more system models
for emulating one or more standard physical devices may then
be used to debug the soitware design 1n operation 120.

System models (e.g., standard components that are mod-
cled 1n a C language) can be developed to emulate various
functions of standard physical components of the hardware
design, while one or more physical configurable devices are
configured to implement the configurable hardware portions
of the hardware design. The system models may include
previously generated models or one or more new models may
be generated (e.g., for a new CPU architecture).

The system models may only emulate portions of the hard-
ware that are needed for debugging the system software. For
example, the models may emulate only hardware functions
that are utilized by the software, such as register read and
write, display, Ethernet MAC, UART, I'TAG interfaces, etc. In
contrast, the models do not need to emulate the hardware at a
physical structure level, such as a gate level. When software 1s
being developed to run on such system models, the software
that 1s being developed may also include specific hardware
software, such as software drivers

Concurrently, the hardware design, which includes stan-
dard components and configurable components (e.g., 1n a
system on chip), 1s synthesized in operation 110 and then
fabricated in operation 112. After the software design 1is
debugged, the software design can then be integrated into the
fabricated hardware 1n operation 122 resulting 1n a finalized
hardware and software system. Since the software design can
commence prior to fabrication of the final hardware system,
the entire hardware and software time can be shortened as
compared to waiting to commence software design after fab-
rication of the hardware system. Specifically, the time for
integrating the hardware components 108, hardware system
synthesis 110, and fabrication 112 may be saved.
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Any suitable co-simulation platiorm may be utilized dur-
ing the soiftware design process. FIG. 2 1s a diagrammatic
representation of a co-simulation system 200, 1n which illegal
double mterrupts may occur. In general, the system 200 may
include software models module 102 for emulating standard
components, which interface with one or more programmable
devices, such as FPGA 108 via physical link 114.

The FPGA 108 may include custom IP (intellectual prop-
erty) 106 that implements custom logic as described further
herein. It would be difficult to develop software models for
the FPGA since the FPGA 1s custom configured for each new
design. Accordingly, software models may often only be
developed for standard components that are not reconfig-
urable. Thus, a co-simulation system can be developed that
utilizes software models 102 for standard components and the
actual hardware, e.g., FPGA 108, for the customizable com-
ponents.

The models module 102 may include any number and type
of software models of standard components, such as a central
processor unit (CPU) model 110 with embedded software.
For example, the software models 102 may emulate a portion
of a System-on-Chip (SoC) platform with a CPU 110 that 1s
configurable to run software that 1s being developed with
respect to such SoC platform. The software being developed
may also mclude a custom IP driver 104 having an interrupt
service routine (ISR) for custom IP 106 implemented 1in
FPGA 108.

The models module 102 may also include a bus model 113
for emulating the routing between the different modules, e.g.,
CPU 110, and the physical link 114. The models modules
may also include a memory mapped I/0 bridge 111 for map-
ping memory transactions generated by the particular archi-
tecture, e.g., emulated CPU architecture, into a data format
that 1s receivable by the physical link 114. For instance, the
custom IP driver 104 may be operable to write to a particular
memory register, and the memory mapped 1I/0O bridge model
111 1s or register location. In response to this register write,
memory-mapped 1/O may be configured to packetize to the
bus format. However, to transfer through physical link,
another packetization may be needed purely for stmulation
reasons. The packet may also be decoded by recerver into the
original bus format created by Memory-mapped 1/0.

The software models are operable to also handle interrupts
from the hardware. For example, the software models 102
also may include an interrupt delivery module 112 to manage
interrupt commumnication between FPGA 108 and the CPU
module 110. The underlying hardware CPU, which 1s config-
ured or programmed to emulate or model a particular CPU,
may have a different pin configuration and data format than
the modeled CPU. Accordingly, the interrupt delivery module
112 may be operable to receive an interrupt request 1n a
particular format on a particular interrupt pin of the physical
link and underlying physical CPU, decode the interrupt
request, and send the decoded interrupt request to the model
CPU 110 1n the correct format and pin for such model CPU
110. For instance, the interrupt request may be received from
custom IP 106 as a sequenced packet on a particular physical
interrupt pin 114a of the physical link 114, e.g., a PCI-Ex-
press format. The interrupt delivery module 112 then unpacks
the interrupt request, verifies the data, and then sends an
interrupt request 1n a format that 1s expected by the CPU, e.g.,
a simple change 1n signal level recerved on a particular emu-
lated pin of the emulated CPU. The bus logic 113 emulates the
routing of the decoded physical line signal to the correct
pin/line of the CPU 110.

The various functions, e.g., memory-mapped /O, ISR,
custom driver, CPU, etc. may be implemented by any suitable
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6

number and type of software modules. Additionally, the co-
simulation system 100 may include any number and type of
software and/or hardware modules, besides the illustrated

components.
The software models 102, drivers, and custom IP 106 of the
FPGA 108 are coupled with each other via physical link 114.

The software models may be implemented on any suitable
device, such as a general purpose computer. The computer 1s

physically coupled with the custom IP 106 of the FPGA 108
through the physical link 114. Accordingly, the software
models implemented on the computer hardware communi-
cate with the custom IP 106 of FPGA, and visa versa, through
physical link 114.

This physical link 114 may be any suitable number and
type of physical interfaces for attaching hardware devices. By
way ol examples, the physical link may be designed for
communication in any suitable format: PCI (peripheral com-
ponent interface), PCI express, PCI-X, AGP (accelerated

graphics port), VLB (VESA local), EISA (extended industry
standard architecture), etc. In general, the physical link 114
may include any suitable number and type of connectors or
conductive lines, such as pins, line traces, etc. The connectors
of the physical link 114 may each be used to transmait and
receive one or more signal types, such as data, addresses,
interrupts, etc. For PCI-Express, two pairs of lines are used to
transmit and receive a particular amount of data (e.g., byte) in
the form of differential signals. Any connector may share
multiple functions or signals (e.g., time or frequency multi-
plexed).

Some physical link protocols, such as PCI or PCI Express,
may require the interrupt lines to be shared by multiple
devices. Additionally, each interrupt may be transmitted from
the custom IP 106 to the models module 102 using a dedicated
line (e.g., mterrupt line 114a) or a line shared with other types
of signal, e.g., data.

The FPGA and one or more model modules (e.g., interrupt
delivery and memory mapped I/O modules) may implement
any suitable protocol for commumicating on physical link
114. The CPU software 110 may be preconfigured with
knowledge of the specific memory and I/O space for each
physical device, such as custom IP 106, coupled with the
physical link 114. The memory mapped I/O module 111 and
interrupt delivery module 112 are operable to encode and
decode communication (€.g., memory transactions and inter-
rupt requests) between the CPU (and driver) and custom IP
106.

Although the physical link 114 may have a relatively high
bandwidth (e.g., PCI), the link 114 may also have a high
latency for handling communication between the software
models 102 and the FPGA 108, as compared with communi-
cation latency on the final SoC. This higher latency may cause
problems 1n stmulation of the SoC as executed on system 200.

For example, a problem with an interrupt may occur 1n this
co-simulation system 200. The custom IP 106 may assert an
interrupt on an interrupt line 114a of physical link 114. The
FPGA 1interrupt signal 1s recerved on line 1144 1nto interrupt
delivery module 112, which 1s operable to deliver an interrupt
via bus module 113 to the custom IP driver 104, which may be
configured with respect to CPU 110. During or after the
interrupt 1s handled by the Interrupt Service Routine (ISR) 1n
the Custom IP driver 104, the ISR may also be configured to
send a request to clear the interrupt line 114a by writing to a
memory-mapped register of memory mapped 1/O module
111 attime t1, which causes the memory mapped I/O module
to send a de-assertion request to the FPGA through physical

link 114.
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In the co-simulation setup 200, the request to clear inter-
rupt line travels to Custom IP 106 1n the FPGA 108 through

bus module 113, memory-mapped I/O model 111, and physi-
cal link 114. Once the request to clear interrupt reaches the
custom IP 106 at time t2, the custom IP 106 almost immedi-
ately de-asserts the interrupt line 115 on the physical link 114.
However, the delay 1n the physical link 114 and the schedul-
ing mechanism of the interrupt delivery model 112 may
together or separately adversely atfect the final delivery of the
line de-assertion to the CPU model 110 at time t3. In response
to the ISR request to clear the interrupt line 114a, the interrupt
line going into the CPU 110 from the FPGA 108 needs to be

de-asserted betfore the ISR exits at time t4. Because ol non-
deterministic latency, 1t may be difficult to guarantee that time

t3 occurs belore t4, resulting in double 1nterrupt behavior in
the driver 104.

Certain embodiments of the present invention provide a
framework for ensuring interrupt timing behavior that does
not result in unexpected double interrupts due to a delay in
receipt of a line de-assertion by a software module as sent
from custom IP of an FPGA. This framework generally
includes one or more additional mechanisms (e.g., software
models and/or driver components) to substantially instanta-
neously change the interrupt line status from assertion to
de-assertion without waiting for the physical interrupt to
arrive so as to guarantee the correct software timing behavior.
Such modification may be implemented 1n any suitable man-
ner. FIG. 3 1s a diagrammatic representation of a co-simula-
tion system 300 that includes mechanisms for inhibiting 1lle-
gal double interrupts in accordance with one embodiment of
the present invention. FIG. 4 1s a flow chart 1llustrating an
interrupt management procedure 400 1n accordance with an
example embodiment of the present invention. This interrupt
management procedure 400 will be described 1n conjunction
with the co-simulation system 300 of FIG. 3. Some compo-
nents of the system 300 of FIG. 3 may include some of the
same mechanisms as described with respect to similar com-
ponents of the system 200 of FIG. 2.

Initially, an interrupt request (assertion 1s received from a
physical custom IP device (of programmable logic device or
FPGA 108) may be recerved into a models module, which
emulates one or more physical components, via an interrupt
line of a physical link 1n operation 402. For instance, interrupt
deliver module 112 receives an interrupt service request from
custom IP 206 via physical link 114, decodes the interrupt
request, and sends the decoded interrupt request to interrupt
controller module 213.

By way of a specific example, the custom IP logic 106 of
FPGA 108 may contain logic elements that have been con-
figured to implement a UART (universal asynchronous
receiver/transmitter) for a keyboard interface. The co-simu-
lation platform 200 may also include simulation software to
simulate data transmission from other physical devices that
would be normally coupled to the custom IP, such as a key-
board. For example, the simulation data for a keyboard may
send data that corresponds with pressing a particular key of a
keyboard to the UART element of the custom IP 106. The
UART of the custom IP 106 may be configured to send an
interrupt request upon receipt of a keyboard key activation.
The custom IP device 106 may also be configured to output
the 1interrupt request or assertion from a particular pin of the
FPGA 108, which 1s communicatively coupled with the mod-
cls module 202 via interrupt line 114a of physical link 114.

The 1nterrupt request may be received into a model com-
ponent, such as interrupt delivery module 112, of models
module 202 without any timing information. That 1s, the
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custom IP may be programmed such that there 1s no timing or
clock information passed between the physical domain and
the software domain.

The interrupt request may then be handled by interrupt
controller module 213. The interrupt controller module 213
may track various interrupt line states, such as a fully asserted
state, a fully de-asserted state, a virtually asserted, and a
virtually de-asserted state. A fully asserted or de-asserted
state corresponds to the interrupt line being asserted or de-
asserted, respectively, on both the physical interrupt line (by
the FPGA) and by the model. A virtually asserted or de-
asserted state corresponds to the interrupt line being asserted
or de-asserted, respectiully, by only the model and not on the
physical interrupt line. These states may be tracked for each
interrupt line and used for various error checking mecha-
nisms. Other states may be tracked and maintained by
embodiments of the present invention.

Alternatively, tracked states may include model assertion,
model de-assertion, physical assertion, and physical de-as-
sertion. With these four states, all combinations of virtual and
physical line states may be tracked and managed. An mvalid
state combination may include a model assertion state not
being present after initial receipt of physical assertion of an
interrupt line (prior to a model de-assertion). Another invalid
state combination includes an assertion by the model with a
de-assertion on the physical iterrupt line.

Referring back to the illustrated procedure, 1t may also be
determined whether the interrupt line 1s asserted by the model
(e.g., both model and physical assertion states are present) in
operation 404. For example, interrupt controller 213 may
check whether an assertion state by the model (for the current
asserted interrupt) has been set. This check may be used to
only mitiate handling of a physical interrupt assertion (e.g.,
initiation of an 1nterrupt service routine) when a model de-
assertion has not commenced. For instance, the interrupt con-
troller model 213 may only send the decoded interrupt asser-
tion to the CPU model only 1f the model assertion has been set
and a previous premature model de-assertion and subsequent
physical de-assertion have both been completed. A model
assertion state may have been set by the model after a physical
de-assertion was received on the mterrupt line 114a or set
during a system initialization step. If an assertion by the
model 1s not set, an error may be reported 1n operation 405. A
corresponding error handling routine may also or alterna-
tively be performed.

Another 1nvalid state combination may include assertion
by only the model, while the physical mterrupt line 1s de-
asserted. Although not shown, it may periodically be deter-
mined whether this invalid state combination has occurred. IT
such mvalid state combination has occurred, an error may be
reported, as well as a corresponding error handling routine
may be performed.

Referring back to the illustrated embodiment, an interrupt
service routine (ISR) may be 1nitiated by the models module
in operation 406 1n response to receipt of the interrupt service
request and if there 1s not currently a model de-assertion. For
instance, the interrupt for pressing a particular keyboard key
1s handled by a particular ISR (in custom IP driver 204) for
handling a key pressing type interrupt.

Prior to completion of the particular ISR, a clear interrupt
line request may also be sent from the processor model to the
physical custom IP device via a physical link and a de-assert
timer may be reset in operation 408. For 1nstance, the custom
IP driver 204 writes to a particular memory register that
corresponds to the particular custom IP device and sets a
predefined counter or timer for determiming whether too
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much time elapses between a clear line request and a corre-
sponding de-assertion of such line.

A memory register access task, such as a memory access
for requesting a clear interrupt line by the custom IP device
106, may form part of the ISR of the driver. The memory
access that 1s generated by driver 204 of processor model 210
may also be routed by bus model 113 to physical link 114 via
memory mapped 1/O model 111. The memory mapped 1/O
model 111 then 1s operable to map the memory access to an
approprately formatted memory access command being out-
put on the appropriate lines of physical link 114 as described
above. The custom IP 106 will recerve the clear interrupt line
request on physical link 114, for example, on specific ones of
the address/data/control lines 1145 that are configured for
receiving requests from a CPU bus. Upon receipt of this clear
line request, the custom IP 106 1s operable to then immedi-
ately clear or de-assert the interrupt line (e.g., 114a) as
requested by the custom IP driver 204.

However, since there may be a delay between the time t1 at
which the clear interrupt line request 1s sent by the ISR and
time 12 at which the custom IP device 106 actually recerves
such request and clears the interrupt line 114a, the models
module 202 1s also operable to internally generate a “mock™
or premature line de-assertion for the physical interrupt line
114a of the physical link 114. That 1s, the models module 202
1s operable to generate a premature interrupt line de-assertion
as 11 such de-assertion 1s being received by the models module
202 from the interrupt line 1144 of the physical link 114. As
shown 1n FIG. 4, the model generates and stores a premature
interrupt line de-assertion state (by model), as well as pre-
vents the physical interrupt line’s asserted state from re-
triggering the ISR 1n operation 412.

Generation of a premature interrupt line de-assertion may
be accomplished by the models module 202, 1n conjunction
with software that 1s being developed on such models module,
in any suitable way. For instance, the last line of the ISR of
custom IP driver 204 of processor module 210, 1mitiates a
premature line de-assertion after the ISR, including the clear
interrupt line request, 1s performed, for example. In a specific
example, the custom IP driver 204 specifies a request for a
premature line de-assertion and this request 1s recerved by
interrupt controller 213. In response to receipt of this prema-
ture de-assertion request, the iterrupt controller 213 gener-
ates an 1nterrupt line de-assertion signal or command 1n a
form that 1s receivable by the CPU model 210 through bus
model 113 at time t3. For instance, the CPU model 210 sees
a level change (e.g., high to low) for an 1nterrupt pin that 1s
virtually coupled with the custom IP device 106 via various
model models.

In effect, the actual asserted physical state of the physical
interrupt line 1s not recerved by the CPU model 210. For
example, the interrupt controller model 213 also prevents the
state of the asserted physical mterrupt line assertion from
reaching the CPU model 210 and custom IP driver 204 to
thereby prevent re-triggering of the ISR. Instead, the virtual
premature de-assert of the interrupt line 1s received by the
CPU model 210. Since a virtual de-assertion by the model 1s
indistinguishable from a physical de-assertion from the
FPGA and the CPU model 210 1s kept unaware of the asserted
state of the physical interrupt line, the CPU model 210 simply
sees de-assertion of the mnterrupt line and the ISR for the
corresponding interrupt line 1s prevented from being trig-
gered again even though the physical line has yet to be de-
asserted.

After the model (e.g., interrupt controller model 213) has
generated the premature or virtual de-assertion for the 1nter-
rupt line, it may then be determined whether a maximum
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de-assertion time has been reached in operation 414. In one
implementation, a counter or timer may be used to determine
whether a predefined maximum time has lapsed since the last
clear line request was sent for the particular interrupt being
managed. IT a predefined maximum time has been reached, an
error report may be generated 1n operation 415. A correspond-
ing error handling routine may also or alternatively be per-
formed.

I1 too much time has not elapsed, 1t may also be determined
whether a physical line de-assertion has been received on the
interrupt line operation 416. If a physical de-assert has not
been recerved, the procedure may continue to wait and check
to determine 11 too much time has elapsed. When a physical
line de-assertion 1s received and too much time has not
clapsed, the physical line de-assertion state may be stored and
the de-assert timer cleared 1n operation 418. A model asser-
tion state may also be set so that the next interrupt request may
be received and handled correctly.

Certain embodiments of the present invention allow cor-
rect timing for interrupts in a co-simulation environment, as
compared to other possible approaches. In a TLM (transac-
tion level modeling) approach to ensure correct timing
between the physical and software domains, a simulated
delay that matches the physical de-assertion delay may be
implemented by the model. However, the problem with this
approach 1s that the simulation of certain modules, such as a
CPU operating system, 1s i1deally run at high processing
speeds. Thus, introduction of an extra delay would not be
desirable 1n this type of simulation. Many simulation domains
are either completely timing-decoupled or have very coarse
grained timing synchronization between each other. In this
case, this solution still fails to guarantee the correct interrupt
line behaviors. In another approach, the interrupt may be
converted from a level type to an edge triggered type. How-
ever, this approach tends to be mnaccurate due to noise and
different detection hardware emulators would need to be uti-
lized 1n the simulation environment, as compared to the actual
level-detection hardware of the corresponding system
designs.

Embodiments of the present invention may be utilized 1n
relation to any co-simulation environment that includes both
soltware modules and physical devices that send interrupts to
the software modules. One example of a physical device 1s a
programmable logic device (PLD). PLD’s are integrated cir-
cuits that can be configured by a user to perform custom logic
functions. Although embodiments of the present invention
may be used 1n the context of any integrated circuit that has
circuitry that can be configured by a user to perform a custom
function, certain embodiments of the present invention are
described 1n the context of programmable logic devices for
clanty.

The disclosed techniques of the present invention may be
implemented in any suitable combination of software and/or
hardware system, such as a web-based server or desktop
computer system. Moreover, a system implementing various
embodiments of the invention may be a portable device, such
as a laptop. The apparatus of embodiments of this invention,
such as for implementing the models, may be specially con-
structed for the required purposes, or it may be a general-
purpose computer selectively activated or reconfigured by a
computer program and/or data structure stored in the com-
puter. The processes presented herein are not inherently
related to any particular computer or other apparatus. In par-
ticular, various general-purpose machines may be used with
programs written 1n accordance with the teachings herein, or
it may be more convenient to construct a more specialized
apparatus to perform the disclosed method steps.
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FIG. S illustrates a typical computer system 500 that can be
used 1n connection with one or more embodiments of the
present invention. The computer system 500 1includes one or
more processors 502 (also referred to as central processing
units, or CPUs) that are coupled to storage devices including
primary storage 506 (typically a random access memory, or
RAM) and another primary storage 504 (typically a read only
memory, or ROM). As 1s well known 1n the art, primary
storage 504 acts to transfer data and instructions uni-direc-
tionally to the CPU and primary storage 506 is used typically
to transfer data and instructions 1n a bi-directional manner.
Both of these primary storage devices may include any suit-
able computer-readable media described above, including a
computer program product comprising a machine readable
medium on which 1s provided program instructions according
to one or more embodiments of the present invention. A mass
storage device 508 also 1s coupled bi-directionally to CPU
502 and provides additional data storage capacity and may
include any of the computer-readable media described above,
including a computer program product comprising a machine
readable medium on which 1s provided program instructions
according to one or more embodiments of the present mnven-
tion. The mass storage device 508 may be used to store
programs, data and the like and i1s typically a secondary
storage medium such as a hard disk that 1s slower than pri-
mary storage. It will be appreciated that the information
retained within the mass storage device 508, may, 1n appro-
priate cases, be mcorporated in standard fashion as part of
primary storage 506 as virtual memory. A specific mass stor-
age device such as a CD-ROM may also pass data uni-direc-
tionally to the CPU.

CPU 502 also may be coupled to an interface 510 that
includes one or more input/output devices such as such as
video monitors, track balls, mice, keyboards, microphones,
touch-sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting
recognizers, or other well-known input devices such as, of
course, other computers. Finally, CPU 502 optionally may be
coupled to a computer or telecommunications network using
a network connection as shown generally at 512. With such a
network connection, 1t 1s contemplated that the CPU might
receive information from the network, or might output infor-
mation to the network in the course of performing the above-
described method steps. The above-described devices and
materials will be familiar to those of skill in the computer
hardware and software arts.

The hardware elements described above may define mul-
tiple software modules for performing one or more operations
according to embodiments of the present imvention. For
example, mstructions for running various model modules,
executing a simulation, and interfacing with a physical
device, such as an FPGA, may be stored on mass storage
device 508 or 504 and executed on CPU 3502 1n conjunction
with primary memory 506.

According to various embodiments, input may be obtained
using a wide variety of techniques. For example, input for
downloading or launching an application may be obtained via
a graphical user interface from a user’s interaction with a
local application such as a web site or web-based application
or service and may be accomplished using any of a variety of
well-known mechanisms for obtaining information from a
user. However, 1t should be understood that such methods of
obtaining input from a user are merely examples and that
input may be obtained 1n many other ways.

Because such information and program instructions may
be employed to implement the systems/methods described
herein, embodiments of the present invention relates to
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machine readable storage media that include program
instructions, state mformation, etc. for performing various
operations described herein. Examples of machine-readable
storage media include, but are not limited to, magnetic media
such as hard disks, tloppy disks, and magnetic tape; optical
media such as CD-ROM disks; magneto-optical media such
as tloptical disks; and hardware devices that are specially
coniigured to store and perform program instructions, such as
ROM and RAM. Examples of program instructions include
both machine code, such as produced by a compiler, and files
containing higher level code that may be executed by the
computer using an interpreter.

FIG. 6 illustrates a PLD 600 1n a data processing system
602. This example hardware system 602 may utilize software
that1s debugged 1n co-simulation embodiments of the present
invention. The data processing system 602 may include one
or more ol the following components: a processor 604;
memory 609; I/O circuitry 608; and peripheral devices 619.
These components are coupled together by a system bus 610
and are populated on a circuit board 612 which 1s contained 1n
an end-user system 614.

The system 602 can be used 1n a wide variety of applica-
tions, such as computer networking, data networking, instru-
mentation, video processing, digital signal processing, or any
other application where the advantage of using reprogram-
mable logic 1s desirable. The PLD 600 can be used to perform
a variety of different logic functions.

In synthesizing configurable components for a hardware
design from a simulation version, a user may use a compiler
to generate the design for implementation on hardware. One
or more configurable devices may be utilized in co-simulation
embodiments of the present invention

The form of a configurable design may be further under-
stood with reference to a hypothetical target hardware device
having multiple hierarchical levels. Such a hardware device 1s
represented in FIG. 7. This 1dealized representation roughly
conforms to the layout of a FLEX 10K programmable logic
device available from Altera Corporation of San Jose, Calif.
In FIG. 7, aprogrammable logic device 700 1s segmented into
a plurality of “rows” to facilitate interconnection between
logic elements on a given row. In the hypothetical example
shown, there are four rows: 702a, 70256, 702¢, and 702d.

Each row of programmable logic device 700 1s turther
subdivided into two “half-rows.” For example, row 7025 1s
shown to contain a halt-row 704aq and a hali-row 704b6. The
next lower level of the hierarchy 1s the “logic array block™
(LAB). Half-row 7045, for example, contains three LABs: an
LAB 706a, an LAB 7065, and an LAB 706c¢. Finally, at the
base of the lierarchy are several logic elements. Each such
logic element may exist within a single logic array block. For
example, LAB 706c¢ includes two logic elements: a logic
clement 708a and a logic element 7085.

In short, PLD 700 includes four hierarchical levels: (1)
rows, (2) half-rows, (3) LABs, and (4) logic elements (LEs).
Any logic element within PLD 700 can be uniquely specified
(and located) by specitying a value for each of these four
levels of the containment hierarchy. For example, logic ele-
ment 7085 can be specified as follows: row (2), half-row (2),
LAB (3), LE (2). To fit a logic design onto a target hardware
device such as that shown 1n FI1G. 7, a synthesized netlist may
be divided 1nto logic cells (typically containing one or more
gates) which are placed in the various logic elements as
unmiquely defined above. Thus, each logic cell from the syn-
thesized netlist resides 1n a unique single logic element.

Often, a multi-level hardware hierarchy such as that shown
in PLD 700 includes multiple levels of routing lines (inter-
connects). These connect the uniquely placed logic cells to
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complete circuits. In PLD 700, for example, four levels of
interconnect are provided, one for each of the four hierarchy
levels. First a local interconnect such as interconnect 712 1s
employed to connect two logic elements within the same
LAB. At the next level, a LAB-to-LAB interconnect such as
interconnect 714 1s employed to connect two LABs within the
same half-row. At the next higher level, a “global horizontal”
interconnect 1s employed to connect logic elements lying 1n
the same row but in different half-rows. An example of a
global horizontal interconnect 1s interconnect 716 shown 1n
row 702b6. Another global horizontal interconnect 1s shown as
interconnect 718, linking logic elements within row 702d.
Finally, a “global vertical” interconnect 1s employed to link a
logic element 1n one row with a logic element 1n a different
row. For example, a global vertical interconnect 722 connects
a logic element 1n the first LAB of the second half-row of row
702¢ to two separate logic elements 1 row 702d. In the
embodiment shown, this 1s accomplished by providing global
vertical interconnect 722 between the above-described logic
clement 1n row 702¢ to global horizontal interconnect 718 1n
row 702d. Consistent with the architecture of Altera Corpo-
ration’s FLEX 10K CPLD, global vertical interconnects are
directly coupled to the logic element transmitting a signal and
indirectly coupled (through a global horizontal interconnect)
to the logic elements recerving the transmitted signal.

In a target hardware device, there will be many paths avail-
able for routing a given signal line. During the routing stage,
these various possible routing paths must be evaluated to
determine which 1s best for the design being fit. Briefly, in one
FLEX 10K architecture, there are at least three rows, with two
half-rows per row, and twelve LABs per halt-row. Each LAB
includes eight logic elements each of which, i turn, includes
a 4-mput look-up table, a programmable thp-flop, and dedi-
cated signal paths for carry and cascade functions. The eight
logic elements 1n an LAB can be used to create medium-sized
blocks of logic—such as 9-bit counters, address decoders, or
state machines—or combined across LABs to create larger
logic blocks.

It should be understood that the present mvention 1s not
limited to the Altera FLEX 10K architecture or any other
hardware architecture for that matter. In fact, 1t 1s not even
limited to programmable logic devices. It may be employed
generically in target hardware devices as broadly defined
above and preferably 1n application specific integrated circuit
designs. PLDs are just one example of ICs that can benefit
from application of the present invention.

This mvention also relates to programmable logic and
other devices programmed with a software design prepared 1n
accordance with the above described methods and/or using a
computer program product according to one or more embodi-
ments of the present invention. Certain embodiments may
turther relate to systems employing such programmable logic
devices.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, 1t will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. Therefore, the
present embodiments are to be considered as 1llustrative and
not restrictive and the mvention i1s not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

What 1s claimed 1s:

1. A method of simulating a soitware design that 1s to be
implemented 1n a system, comprising:

(a) providing a co-simulation platform comprising a physi-

cal link coupling a first physical component with a mod-
cls module, which emulates one or more other physical

10

15

20

25

30

35

40

45

50

55

60

65

14

components of the system, wherein such models module
includes a processor model associated with an interrupt
service routine (ISR) for handling an interrupt on an
interrupt line of the first physical component;

(b) via the physical link, receiving 1into the models module
an interrupt request from the mterrupt line of the first
physical component;

(¢) 1 response to the received interrupt request, mnitiating
the ISR associated with the processor model;

(d) prior to exiting the ISR, sending a interrupt line de-
assert request from the models module to the first physi-
cal component via the physical link; and

() prior to exiting the ISR and prior to receiving a physical
de-assertion of the interrupt line from the first physical
component via the physical link, generating by the mod-
¢ls module a premature de-assertion of the interrupt line
and causing such premature de-assertion to be recerved
by the processor model.

2. The method of claim 1, wherein receipt of the interrupt
request and 1initiation of the ISR form part of a simulation for
debugging the software design that 1s to be implemented 1n
the system.

3. The method of claim 2, wherein operations (a)-(e) are
performed after verifying functional operation of a hardware
design of the system and prior to fabrication of the system
based on such hardware design.

4. The method of claim 3, further comprising;

integrating the soitware design mto the fabricated system
after the software design 1s debugged via the simulation
of such software design on the co-simulation platform.

5. The method of claim 1, further comprising:

alter causing the premature de-assertion to be recerved by
the processor model, preventing the interrupt request
from being received by the processor model so that the
associated ISR 1s not retriggered aiter the ISR exits and
prior to de-assertion of the interrupt line by the first
physical component.

6. The method of claim 1, wherein the mterrupt request 1s

received into the models module without timing information.

7. The method of claim 1, wherein generating by the mod-
¢ls module a premature de-assertion of the interrupt line and
causing such premature de-assertion to be received by the
processor model 1s accomplished by:

after the ISR 1s mitiated, sending by the ISR a request for
the premature de-assertion of the interrupt line to an
interrupt controller module 1n the models module; and

upon receipt of the request for the premature de-assertion
by the interrupt controller, the mterrupt controller gen-
crating a premature de-assertion of the interrupt line that
1s sent to the processor model and preventing the inter-
rupt request from reaching the processor.

8. The method as recited 1n claim 7, further comprising
tracking a plurality of states for de-assertion and assertion by
the models module and by the first physical device.

9. The method of claim 1, further comprising;

setting a de-assertion timer for determining a time duration
since sending the mterrupt line de-assert request; and

11 1t 1s determined that the time duration since sending the
interrupt line de-assert request has reached a predefined
maximum based on the de-assertion timer, reporting an
error for the time duration.

10. The method of claim 1, wherein the first physical com-

ponent 1s a custom IP device of a programmable logic device.

11. The apparatus of claim 10, wherein receipt of the inter-
rupt request and 1n1tiation of the ISR form part of a simulation
for debugging the software design that 1s to be implemented
in the system.
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12. The apparatus of claim 10, wherein the models module

1s Turther configured for:
after causing the premature de-assertion to be received by
the processor model, preventing the interrupt request
from being received by the processor model so that the
associated ISR 1s not retriggered aiter the ISR exits and
prior to de-assertion of the interrupt line by the first

physical component.

13. The apparatus of claim 10, wherein generating by the
models module a premature de-assertion of the interrupt line
and causing such premature de-assertion to be recerved by the
processor model 1s accomplished by:

after the ISR 1s mmitiated, sending by the ISR a request for
the premature de-assertion of the interrupt line to an
interrupt controller module 1n the models module; and

upon receipt of the request for the premature de-assertion
by the mterrupt controller, the iterrupt controller gen-
crating a premature de-assertion of the interrupt line that
1s sent to the processor model and preventing the inter-
rupt request from reaching the processor.

14. The apparatus of claim 10, wherein the first physical
component 1s a custom IP device of a programmable logic
device.

15. A co-simulation platform for simulating a software
design that 1s to be implemented 1n a system, comprising:

a first physical component configured to represent a con-

figurable component of the system:;
a models module configured to emulate one or more other
physical components of the system, wherein such mod-
¢ls module includes a processor model associated with
an 1terrupt service routine (ISR) for handling an inter-
rupt on an mterrupt line of the first physical component;
and
a physical link for coupling the first physical component
with the models module, and
wherein the models module 1s further configured to per-
form the following operations:
via the physical link, recerving into the models module
an interrupt request from the mterrupt line of the first
physical component;

in response to the recerved interrupt request, nitiating
the ISR associated with the processor model;

prior to exiting the ISR, sending a interrupt line de-assert
request from the models module to the first physical
component via the physical link; and

prior to exiting the ISR and prior to receiving a physical
de-assertion of the mterrupt line from the first physi-
cal component via the physical link, generating by the
models module a premature de-assertion of the inter-
rupt line and causing such premature de-assertion to
be received by the processor model.

16. At least one computer readable storage medium having
computer program 1nstructions stored thercon that are
arranged to perform the following operations:
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(a) providing a co-simulation platform comprising a physi-
cal link coupling a first physical component with a mod-
cls module, which emulates one or more other physical
components of the system, wherein such models module
includes a processor model associated with an interrupt
service routine (ISR) for handling an interrupt on an
interrupt line of the first physical component;

(b) via the physical link, receiving into the models module
an interrupt request from the mterrupt line of the first
physical component;

(¢) 1 response to the received interrupt request, mnitiating
the ISR associated with the processor model;

(d) prior to exiting the ISR, sending a interrupt line de-
assert request from the models module to the first physi-
cal component via the physical link; and

(e) prior to exiting the ISR and prior to recerving a physical
de-assertion of the interrupt line from the first physical
component via the physical link, generating by the mod-
cls module a premature de-assertion of the interrupt line
and causing such premature de-assertion to be recerved
by the processor model.

17. The at least one computer readable storage medium of
claim 16, wherein receipt of the interrupt request and 1nitia-
tion of the ISR form part of a simulation for debugging the
software design that 1s to be implemented 1n the system.

18. The at least one computer readable storage medium of
claiam 16, wherein the computer program instructions are
turther arranged for:

alter causing the premature de-assertion to be received by
the processor model, preventing the interrupt request
from being received by the processor model so that the
associated ISR 1s not retriggered aiter the ISR exits and
prior to de-assertion of the interrupt line by the first
physical component.

19. The at least one computer readable storage medium of
claim 16, wherein generating by the models module a prema-
ture de-assertion of the interrupt line and causing such pre-
mature de-assertion to be received by the processor model 1s
accomplished by:

after the ISR 1s mitiated, sending by the ISR a request for
the premature de-assertion of the interrupt line to an
interrupt controller module 1n the models module; and

upon receipt of the request for the premature de-assertion
by the interrupt controller, the interrupt controller gen-
erating a premature de-assertion of the interrupt line that
1s sent to the processor model and preventing the inter-
rupt request from reaching the processor.

20. The at least one computer readable storage medium of
claiam 16, wherein the computer program instructions are
turther arranged for tracking a plurality of states for de-
assertion and assertion by the models module and by the first
physical device.



	Front Page
	Drawings
	Specification
	Claims

