US009058361B2
12 United States Patent (10) Patent No.: US 9,058,361 B2
Jasik et al. 45) Date of Patent: *Jun. 16, 2015
(54) METHOD AND SYSTEM FOR APPLYING A (56) References Cited
GROUP OF INSTRUCTIONS TO METADATA
U.S. PATENT DOCUMENTS
(75) Inventors: Benji Jasik, San Francisco, CA (US); 5577188 A 11/1996 7hu ef al
Simon Fell, San Francisco, CA (US); 5,608,872 A 3/1997 Schwartz et al
Bill Eidson, Palo Alto, CA (US); Lexi 5,649,104 A 7/1997 Carleton et al.
Viripaeff, Novato, CA (US) 5,715,450 A 2/1998 Ambrose et al.
j j 5,761,419 A 6/1998 Schwartz et al.
: : 5,819,038 A 10/1998 Carleton et al.
(73) Assignee: salesforce.com, inc., San Francisco, CA 5821937 A 10/1998 Tg;l(inéteaﬁ
5,831,610 A 11/1998 Tonells et al.
(US)
5,873,096 A 2/1999 Lim et al.
(*) Notice: Subject to any disclaimer, the term of this gag éga é gg i 18/{ iggg Eomuk?nlg et al.
‘ ‘ ; ’ ram <t al.
%aglg 1lsszx]§e1;deg g;' adjusted under 35 6,092,083 A 7/2000 Brodersen et al
S5.C. 154(b) by O days. 6,161,149 A 12/2000 Achacoso et al.
: : : : : 6,169,534 Bl 1/2001 Raftel et al.
Lhis patent 1s subject to a terminal dis- 6,178,425 Bl 1/2001 Brodersen et al.
claimer. 6,189,011 B1 2/2001 Lim et al.
6,216,135 Bl 4/2001 Brodersen et al.
(21) Appl. No.: 13/554,884 6,233,617 Bl 5/2001 Rothwein et al.
6,266,669 Bl 7/2001 Brodersen et al.
(22) Filed: Jul. 20, 2012 0,295,530 Bl 9/2001 Ritchie et al.
6,324,568 B1 11/2001 Diec
. . e 6,324,693 Bl 11/2001 Brodersen et al.
(65) Prior Publication Data 6,336,137 Bl 1/2002 Leeetal
US 2012/0290534 A1~ Nov. 15,2012 D454,139 5 372002 Feldcamp
(Continued)
Primary Examiner — Etienne Leroux
Related U.S. Application Data (74) Attorney, Agent, or Firm — Zilka-Kotab, PC
(63) Continuation of application No. 11/832,549, filed on (57) ABSTRACT
Aug. 1, 2007. In accordance with embodiments, there are provided mecha-
(60) Provisional application No. 60/827,875, filed on Oct. nisms and methods for applying a group of instructions to
7 2006 metadata 1n the context of an on-demand database service.
j These mechanisms and methods for applying a group of
(51) Int. Cl. instructions to metadata can enable embodiments that ensure
GO6F 17730 (2006.01) that “all or none” of the operations corresponding to the
(52) U.S.CL grouped 1nstructions are performed. The ability of embodi-
@) CIN GOG6F 17/30525 (2013.01) ~ ments to provide such leature can prevent a scenario where
(58) Field of Classification Search only a portion of a desired effect 1s accomplished which, 1n

USPC oo 707/615, 999.008. 2. 3. 706, 628 turn, may complicate any et

‘ort to undo the same.

See application file for complete search history. 9 Claims, 9 Drawing Sheets

| 102
RECEIVING AT LEAST ONE INSTRUCTION
INDICATING AT LEAST ONE OPERATION TGO
BE PERFORMED ON METADATA 5

— 104

PCRFORMING THE GPERATION ON THE
M TADATA ASYNOHRONOUSLY WITH
RESPECT TO AT LEAST ONE OTHER
QPERATION PERFORMED BY THE
SUBSCRIBER

%m(}

US 9,058,361 B2

Page 2
(56) References Cited 2002/0022986 A1 2/2002 Coker et al.
2002/0029161 Al 3/2002 Brodersen et al.
U.S. PATENT DOCUMENTS 2002/0029376 Al 3/2002 Ambrose et al.
2002/0035577 Al 3/2002 Brodersen et al.
6,367,077 Bl 4/2002 Brodersen et al. 2002/0042264 Al 4/2002 Kim
6393.605 Bl 5/2002 Loomans 2002/0042843 Al 4/2002 Diec
6,405,220 Bl 6/2002 Brodersen et al. 2002/0072951 Al 6/2002 Lee et al.
6,434,502 B1* 82002 Harrisonc.o....... 702/122 2002/0082892 Al 6/2002 Raffe] et al.
6,434,550 Bl /7002 Warner et al. 2002/0129352 Al 9/2002 Brodersen et al.
6,446,089 Bl 0/2002 Brodersen et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6.535.909 Bl 3/2003 Rust 2002/0143997 Al 10/2002 Huang et al.
6.549.908 Bl 4/2003 Loomans 2002/0162090 Al 10/2002 Parnell et al.
6.553.563 B2 4/2003 Ambrose et al. 2002/0165742 Al 11/2002 Robins
6,560.461 Bl 5/2003 Fomukong et al. 2003/0004971 Al 1/2003 Gong et al.
6.574.635 B2 6/2003 Stauber et al. 2003/0018705 Al 1/2003 Chen et al.
6,574,655 Bl 6/2003 Libert et al. wovvvvevvenvii, 709/200 2003/0018830 Al 1/2003 Chen et al.
6,577,726 Bl 6/2003 Huang et al. 2003/0066031 Al 4/2003 Laane
6.601,087 Bl 7/2003 Zhu etal. 2003/0066032 Al 4/2003 Ramachandran et al.
6,604,117 B2 82003 Lim etal. 2003/0069936 Al 4/2003 Warner et al.
6.604.128 B2 872003 Diec 2003/0070000 Al 4/2003 Coker et al.
6.609.150 B2 82003 Lee et al. 2003/0070004 Al 4/2003 Mukundan et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0070005 Al 4/2003 Mukundan et al.
6,633,835 Bl * 10/2003 Moranetal.oc....... 702/190 2003/0074418 Al 4/2003 Coker
6.654.032 Bl 11/2003 Zhu et al. 2003/0120675 Al 6/2003 Stauber et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0151633 Al 82003 George et al.
6.665.655 Bl 12/2003 Warner et al. 2003/0159136 Al 82003 Huang et al.
6.684438 B2 2/2004 Brodersen et al. 2003/0182328 Al* 9/2003 Paquette et al. 707/999.204
0,704,692 Bl 3/2004 Banerjeeetal. 702/189 2003/0187921 Al 1072003 Diec
6.711.565 Bl 3/2004 Subramaniam et al. 2003/0189600 Al 10/2003 Gune et al.
6,714,979 B1* 3/2004 Brandtetal. ... 709/225 2003/0204427 Al 10/2003 Gune et al.
6,724,399 Bl 4/2004 Katchour et al. 2003/0206192 Al 11/2003 Chen et al.
6728702 Bl 4/2004 Subramaniam et al. 2003/0225730 Al 12/2003 Warner et al.
6728960 Bl 4/2004 Loomans 2004/0001092 Al 1/2004 Rothwein et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2004/0010489 AL 12004 Rio
6,732,100 Bl 5/2004 Brodersen et al. 2004/0015981 Al 1/2004 Coker et al.
6,732,111 B2 5/2004 Brodersen et al. 2004/0027388 Al 2/2004 Berg et al.
6.754.681 B2 6/2004 Brodersen et al. 2004/0128001 Al 7/2004 Levin et al.
6,763.351 Bl 7/2004 Subramaniam et al. 2004/0186860 Al 9/2004 ILee et al.
6.763.501 Bl 7/2004 Zhu et al. 2004/0193510 Al 9/2004 Catahan, Jr. et al.
6,768,904 B2 7/2004 Kim 2004/0199489 Al 10/2004 Barnes-Leon et al.
6,772,229 Bl /2004 Achacoso et al. 2004/0199536 A1 10/2004 Barnes Leon et al.
6.782.383 B2 8/2004 Subramaniam et al. 2004/0199543 Al 10/2004 Braud et al.
6,804,330 B1 10/2004 Jones et al. 2004/0215629 Al* 10/2004 Dettinger etal. 707/100
6,826,565 B2 11/2004 Ritchie et al. 2004/0249854 A1 12/2004 Barnes-Leon et al.
6,826,582 B1 11/2004 Chatterjee et al. 2004/0260534 Al 12/2004 Pak et al.
6.826.745 B2 11/2004 Coker et al. 2004/0260659 Al 12/2004 Chan et al.
6,829,655 Bl 12/2004 Huang et al. 2004/0268299 Al 12/2004 Lei et al.
6.842.748 Bl 1/2005 Warner 2005/0050555 Al 3/2005 Exley et al.
6.850.895 B2 2/2005 Brodersen et al. 2005/0065925 Al* 3/2005 Weissman et al. 707/999.004
6,850,949 B2 /2005 Warner et al. 2005/0091098 Al 4/2005 Brodersen et al.
7,062,502 Bl 6/2006 Kesler 2005/0108186 A1* 5/2005 Anderson 707/999.001
7.181,758 Bl 2/2007 Chan 2005/0223022 Al* 10/2005 Weissman et al. 707/999.102
7.289.976 B2 10/2007 Kihneman et al. 2006/0021019 Al 1/2006 Hinton et al.
7340411 B2 3/2008 Cook 2006/0047713 Al* 3/2006 Gornshtein etal. ... 707/999.202
7356482 B2 4/2008 Frankland et al. 2006/0200470 Al* 9/2006 Lacapraetal. ... 707/10
7.401,094 Bl 7/2008 Kesler 2007/0088741 Al* 4/2007 Brooksetal. 707/999.103
7.412.455 B2 8/2008 Dillon 2007/0179973 Al* 82007 Brodieetal. ... 707/104.1
7.508,789 B2 3/2009 Chan 2008/0249972 Al 10/2008 Dillon
7,620,655 B2 11/2009 Larsson et al. 2009/0063415 Al 3/2009 Chatfield et al.
7698.160 B2 4/2010 Beaven et al. 2009/0100342 Al 4/2009 Jakobson
7,721,259 B2* 5/2010 Heinke etal. 717/121 2009/0177744 Al 72009 Marlow et al.
8,015,495 B2 9/2011 Achacoso et al. 2013/0218948 Al 8/2013 Jakobson
8,082,301 B2 12/2011 Ahlgren et al. 2013/0218949 Al 82013 Jakobson
8,095413 Bl 1/2012 Beaven 2013/0218966 Al 8/2013 Jakobson
8,095,594 B2 1/2012 Beaven et al. 2014/0359537 A1 12/2014 Jackobson et al.
8,275,836 B2 9/2012 Beaven et al. 2015/0006289 Al 1/2015 Jakobson et al.
8,457,545 B2 6/2013 Chan 2015/0007050 Al 1/2015 Jakobson et al.
8,484,111 B2 7/2013 Frankland et al.
2001/0044791 Al 11/2001 Richter et al. * cited by examiner

U.S. Patent Jun. 16, 2015 S

heet 1 of 9

HRECEIVING AT LEAST ONE INSTRUCTION

INDICATING AT LEAST ONE O

PERATION TO

Sk PERFORMED ON METAUATA

ii
=

FERFORMING THE OPERATON ON THE

M TADATA ASYNUOHRONO

LISLY W

RESPECT TO AT LEAST ONE OThER

OPERATION PERFORME
SUBSCRIBER

ii

FIGURE

) BY THE

1

102

104

US 9,058,361 B2

<>T@

U.S. Patent Jun. 16, 2015 Sheet 2 of 9 US 9,058,361 B2

<:1§:U

L0Z

AT RECEIVE ™

" REQUEST

~. TOMODIFY
“METADATAZ.~

[y
iiiiiiiiiiiiiiiiiiiiii

| YES
204

~~ REQUEST ™
. PERMISSIBLE?

Y
iii

2086 N

MESRSAGLE

208
PROCESS REQUEST ¥

PROVIDE Pl

CONFIRMATION TO
USER

FIGURE 2A

S. Patent un. 16, 2015 Sheet 3 of 9 US 9.058.361 B2

-
L L I B B DN B B I O B B B O O DO O I O I B O I B O O I O B D O I B O B O B B O B B O B O BN B BN B B N B B N N B N A R N

RECEIVE
UsER STATUS

-
‘il. liiiiiiiiii‘liii‘ihilil‘i-iil
4 &
iiiii'!‘i‘i‘i‘iii‘i‘ii‘i‘l‘i'i‘il‘i‘iiiiiii‘i‘i'!'ii‘iii‘iiiiiii‘iiiliiiiiiiiiiiiiiiiiii

:

-

-

-

-

-

-

-

-

-

-

:

-

-

-

-

-

-

-

-

-

L] -
i:i:i:i:iliiiiiiiiii'liiiiiii'iiiiiii'lii'iiiiiiii‘liiiliiiiiiiiii!iiiiiiiiiii'iiiliiiiiiiiiiiiiiiiiiii

- &
-
- -

mINLDY

DISCARD STATUS
TRAUKING DATA
S TRUCTURE/SEND
ERRUOR MESSAGE

C LI DK BN]

URE 2B

U.S. Patent Jun. 16, 2015 Sheet 4 of 9 US 9,058,361 B2

INSPECT REQUEST

304

S ASYNCHRONOUS™
. REQUEST?

;;

306 YES 308

111111

PROCESDS ReQUEREST EXAMINE THREAD
oY NURRONOUSLY PO

I e e T e

310

 UREATE DATABASE
ROV ANLY INDICATE
L THAT THE RQUEST

CREATE DATABADE
ROV INDICATING THAT
REQUEST 15 BEING
HANDLED AND SEND
REQUEST TO THREAD
POOL

1> NOT BEING
FANDLED ANLD
QUELE REQUEST

U.S. Patent Jun. 16, 2015 Sheet 5 of 9 US 9,058,361 B2
<)ij(}

-
-
L]
L]
-
-
-
L]
-
-
-

n
L] -

-
- LI)
L] ii
- 4
L]

. RECEIVING A GROUP OF INSTRUCTIONS |

INDICATING AT LEAST ONE OPERATION TO |

| BE PERFORMED ON A PLURALITY OF |
INSTANCES OF METADATA

ii

404

CONDITIONALLY PERFORMING AT LEAST
- ONE OPERATION BASED ON WHETHER AT |

LEAST ONE OF THE INSTRUCTIONS IS
HERMISSIBLE

FIGURE 4

S. Patent un. 16, 2015 Sheet 6 of 9 US 9.058.361 B2

= & k&

4 bk h h kv ko hh ko hh kA hhh ko hh ko hh kb hhE hhE h oy hh h e h hd h Ak h ke h hh h oy hh h hh hdh Ak hhh h hh ko Ak

RECEIVE MULTIPLE
REQUESTS 1O MODIFY
METADATA

LI B N I N NN N R B N I N NN N N N N B N N I B B N B B D N I D N N B B B I B LN B R N B B N N I N N N B N N I N N N N B N B B B B I B B

-
L]
-
-
L]
-
-

o F

o d o ko FF F FF FF kS
o d o ko FF F FF FF kS

L
*

*
*

[
o o r o F F o F F kA F P

L

LR R I L L L L L L L LR R

PROCEDSS
PERAMISSIRLE

kb kA Pk

REQUESTS

o

[

L

*

ko F F bk
L

*
*
[

[]
[]
-

[

o o ko Ak F

o o ko Ak F

obELECT HIRST Ve
REQUEST

4 bk h h kv ko hh ko hh ok d hhd h o hh ko hh kb hhd hhh h oy kR h hh b h Ak kR h R d h oy h ko Rk Ak hhh h R A

*
& o ok F ok FF F ko

* o FF F FF FFF ko F
L
*

[]
[]
 F kA F

L
r

L

L

4 h k1 h bk hhhhhhE ok hh o hE o ko

URE OA

S. Patent un. 16, 2015 Sheet 7 of 9 US 9,058,361 B2

LI B B I B B I B B B B BN B I O D I O B B O B I O B O O DO O DO N I D B O D N O O B B B B B B DO B BN B BN DL B B B N B B B B N TN

SEND ERROR
MESOAGE -

ek ok ohh hhhohd ooy h bk E o hh A h hhhoh dhh A hh oy h ko E o h o h ok h o h ko h hhh o h hEh hh ko

 r ok bk kb kR

*

[]

a
L

-
L]
-
-
-
-
-
L]
-
-
-
-
-
-
-

ANOTHER
REQUEST IN P
GROUPY

AND PROVIDE
CONFIRMATION 10O
SUBSURIBER ‘

LK I B B B B B T B B N B B B BN DR DK RN RN B B B B R B B N B R
-
L]
L]
-
- -
L] L]
- L]
iiiii
L B]
LR
L B | L]
LR
- -
LI
- -
L] L]
LoL . L LL .
n
L]
- -
-
1 2]
- -
L] - - -
bk h
LN]
ii1ii
4 4
n
LI

o F ok o F ko o ko F ko Ak ko kP ko ko ko ko ko ko k kF ko ko ko k F ko ko ko F ko ko ko ko ko k F ko kT

=0T NEXT
REQUEST

= o F ok ko ko kA

b o ok Ak r o F ok ko

ok o o A F

LB B BB BB B DN B O B O D B DL B B O D D BB DU B OB B B D DO O DB B B O DO B DU DO R B DB DL U DE D N DB O DR O DL B IR]

GURE 5B

U.S. Patent Jun. 16, 2015 Sheet 8 of 9 US 9,058,361 B2

0L 024

G£0

1Tenant

aysiem
Lata
Storage

Hrogram
Lode

 otorage

648

Frocessor
System

Process Space

Application
Platform

Noelwork :
-
-
-
. -
-
ﬂ @a aC@ ii

ovironment 610

aaaaaaaaaaa

Nelwork
bid

iiser

| System
' 01

GURE ©

S. Patent un. 16, 2015 Sheet 9 of 9 US 9.058.361 B2

ok ok ko hd b ohh o

LI I B N I] 4 4 4 b hh kAo

o ko r kF

r

& ok d F F F &

ko hhovhh o dd A h o h o dh sk h hdd Ad d A hh h kA hdd d b hd hh oy h b d R h hdhd AR d Ak

~ {14
= {16

a
o ko d FF ko ko kA

v bk bk ko d Pk bk bk d bk kPR b bk d kRS

L DL N B N NE BN B IR DR I BERE IR DR N DENE B DR I RENE BN B BE B IE DR BE B I N B BE N B N I BN B L B U0 BE R B B BE N NE B DL B O U B BOC B B N N L B B B IOE L B R DL BOK N BOC A B BAL B DK |

a o a o3 e

LI B B B L I O B

sptication

o ok d
o o d

r
b r ok kA o F ko bk d ok F ko bk ko ko F ko ko FkF ko ko ko ko k-l FF

enant Management

Hrocess
£39

System
Hrocess
102

Stup
Mechanism 73

o o o ol ko

*
b kA F ko kol

*
o ok d - F

o ok d - F

r
= &
= &

SEVE
aUtines 736

o & F o ok FFd o F
d & F & F & &

o ok d F F F kS
o ok d - F

nant 1 Tenant N
Frocess FOCEES

b o ok kA ko
o o ok A ko

ok d ko ko kAP
]

o d o+ F

LEERE I BE I EERE BN B B B IE DR B B IR B DR BE DR DR B I DR B B B UL DR R L IO B RE DAE B L B L B BECIOE B B NC IO IR B B B DAL B B 1 LIEEE I B I DR RE I R IR DR I I B IR D I DR I B I DR B B L B I DD DL B I BE R DL B IE DERE BN DR IR DR I BEDE IR DR I DR R BE B I BE X DR B BE B IE D L BE N BE DN BN B BE B IR DL R B B IR BE I L B BE REE DAL BN BAE B B U DR IOC B L N B B B B B B I B AL B DAL N DA AL B DAL B BOC DO BN

b
&
o)
s

NI

F

L] LI R N R R LR LR LR L L LR LRl LR LR LR LN R LR LNl LRl LR LR LN LR R LR L RN R R REE LN RN LN RN -

Ty
o d o F o b kr ok kFd ko ko ko ko F ko kFkd FF kk FFF o ko F ko

P

o ok d o F ok ko ko F FF A FF
a

a2 & o2

- NVITorme o
510

Nebwork
614

1 4 b 44 5 h v hdhh b h ko hh hhdE b Eh T LB UL BB B B B DN O B B OO O B B DL D OO IO O DL B D O D BN B BN B
Ll

Frocessor Memory
System §12, System 8128

-
-
L]
-
-
-
L]
-

Cutput
system 812D

Sysiem 612C

F & o F ko

F oo o r ko d o F ko Fr ko d ko ke d

US 9,058,361 B2

1

METHOD AND SYSTEM FOR APPLYING A
GROUP OF INSTRUCTIONS TO METADATA

CLAIM OF PRIORITY

This application 1s a continuation of U.S. application Ser.
No. 11/832,549, filed Aug. 1, 2007, which claims the benefit
of U.S. Provisional Patent Application No. 60/827,873, filed

Oct. 2, 2006, the entire contents of which are incorporated
herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The current invention relates generally to applying to
istructions to metadata 1n a database network system.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of 1ts
mention in the background section. Similarly, a problem
mentioned 1n the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized 1n the prior art.
The subject matter 1n the background section merely repre-
sents different approaches, which 1n and of themselves may
also be inventions.

In conventional database systems, users access their data
resources 1n one logical database. A user of such a conven-
tional system typically retrieves data from and stores data on
the system using the user’s own systems. A user system might
remotely access one of a plurality of server systems that might
in turn access the database system. Data retrieval front the
system might include the 1ssuance of a query from the user
system to the database system. The database system might
process the request for information received 1n the query and
send to the user system information relevant to the request.

During use, a user often desires to modily metadata to
tailor use of such database systems for a particular applica-
tion. Non-limiting examples of such metadata may include,
but are not limited to an object, field, etc. In some situations,
the user may desire to modily more than one metadata
instance to provide some desirable effect. In such situations,
an 1ssue may arise when one or more of the requested modi-
fications 1s impermissible (and thus not performed), while
other permissible modifications are carried out. This can
result 1n only a portion of the desired effect being accom-
plished, and further complicate any effort to undo the modi-
fication(s) performed. There 1s thus a need for addressing
these and/or other i1ssues.

BRIEF SUMMARY

In accordance with embodiments, there are provided
mechanisms and methods for applying a group of instructions
to metadata 1n the context of an on-demand database service.
These mechanisms and methods for applying a group of

10

15

20

25

30

35

40

45

50

55

60

65

2

instructions to metadata can enable embodiments that ensure
that “all or none” of the operations corresponding to the

grouped 1nstructions are performed. The ability of embodi-
ments to provide such feature can prevent a scenario where
only a portion of a desired effect 1s accomplished which, 1n
turn, may complicate any effort to undo the same.

In an embodiment and by way of example, a method for
applying a group of instructions to metadata in the context of
an on-demand database service 1s provided. The method
embodiment includes receiving a group of instructions 1ndi-
cating at least one operation to he performed on a plurality of
instances of metadata associated with an environment of a
subscriber of an on-demand database service. In use, the at
least one operation 1s conditionally performed on the
instances of metadata associated with the environment of the
subscriber, based on whether at least one of the instructions 1s
permissible.

While the present invention 1s described with reference to
an embodiment 1n which techniques for applying a group of
instructions to metadata are implemented 1n a system having
an application server providing a front end for an on-demand
database service capable of supporting multiple tenants, the
present invention 1s not limited to multi-tenant databases nor
deployment on application servers. Embodiments may be
practiced using other database architectures, 1.e.,
ORACLE®, DB2® by IBM and the like without departing
from the scope of the embodiments claimed.

Any of the above embodiments may be used alone or
together with one another 1n any combination. Inventions
encompassed within this specification may also include
embodiments that are only partially mentioned or alluded to
or are not mentioned or alluded to at all 1n this brief summary
or in the abstract. Although various embodiments of the
invention may have been motivated by various deficiencies
with the prior art, which may be discussed or alluded to 1n one
or more places 1n the specification, the embodiments of the
invention do not necessarily address any of these deficiencies.
In other words, different embodiments of the invention may
address different deficiencies that may be discussed 1n the
specification. Sonic embodiments may only partially address
some deficiencies or just one deficiency that may be discussed
in the specification, and some embodiments may not address
any of these deficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings like reference numbers are used
to refer to like elements. Although the following figures
depict various examples of the invention, the mnvention 1s not
limited to the examples depicted in the figures.

FIG. 1 1llustrates a method for asynchronously performing,
an operation on metadata 1n the context of an on-demand
database service, 1n accordance with one embodiment.

FIGS. 2A and 2B show a method for handling the receipt of
a request to modily metadata, 1n accordance with another
embodiment.

FIG. 3 shows a method for processing requests for modi-
tying metadata, in accordance with another embodiment.

FIG. 4 shows a method for performing a group of opera-
tions on metadata context of an on-demand database service,
in accordance with one embodiment.

FIGS. 5A-5B show a method for performing a group of
operations on metadata in the context of an on-demand data-
base service, 1n accordance with another embodiment.

FIG. 6 illustrates a block diagram of an example of an
environment wherein an on-demand database service might
be used.

US 9,058,361 B2

3

FIG. 7 1llustrates a block diagram of an embodiment of
clements of FIG. 6 and various possible interconnections
between these elements.

DETAILED DESCRIPTION

General Overview

Systems and methods are provided for asynchronously
performing an operation on metadata. In the context of the
present description, the term “asynchronous performance”
when used to describe an operation conducted on metadata
associated with an on-demand database service refers to per-
forming any operation, at least 1n part, independently of any
other operation performed 1n the on-demand database ser-
vice. Such independent performance may be any one or more
of temporally independent, independent by control, indepen-
dent 1n location or the like.

During use, a subscriber often desires to modily metadata
(c.g. an object, field, etc.) to tailor use of an on-demand
database service for a particular application. While such
metadata may be modified using a web-based interface or the
like by creating, adding to, deleting, changing, etc. the same,
there 1s also a desire to be able to modity such metadata 1n a
more automated manner (e.g. using a schema tool, etc.). In
any case, 1t 1s desirable that the on-demand database service
be available for other operations while such modifications are
being implemented. For example, in the presence of any
attempt to modily metadata and, more particularly a large
number of metadata instances, the on-demand database ser-
vice may be more apt to “hang” due to a lack of necessary
resources and may further exhibit an 1mabaility to perform any
additional services requested by the subscriber.

The following exemplary embodiments illustrate methods
and mechanism that enable asynchronously performance of
an operation on metadata to address the foregoing need.

FIG. 1 illustrates a method 100 for asynchronously per-
forming an operation on metadata in the context of an on-
demand database service, in accordance with one embodi-
ment. In the context of the present description, such
on-demand database service may include any service that
relies on a database that 1s accessible over a network. Various
examples of such an on-demand database service will be set
forth in the context of different embodiments that will be
described during reference to subsequent figures.

In one embodiment, the atorementioned on-demand data-
base service may include a multi-tenant database system. As
used herein, the term multi-tenant database system refers to
those systems 1n which various elements of hardware and
soltware ol the database system may be shared by one or more
customers. For example, a given application server may
simultaneously process requests for a great number of cus-
tomers, and a given database table may store rows for a
potentially much greater number of customers.

As shown 1 operation 102, at least one instruction 1s
received indicating at least one operation to be performed on
metadata associated with an environment of a subscriber (1.¢.
any person or entity, etc.) of an on-demand database service.
In the context of the present description, the foregoing
instruction may include any data, code, etc. that 1s capable of
being received and/or processed for the purpose of prompting
the operation to be performed on the metadata. In various
embodiments, the operation may include a modification (e,g.
creating, adding, deleting, changing, etc.), processing, and/or
any other operation that involves the metadata, at least in part.
Still yet, the metadata may include a configuration, object,
field, default value, name, data type, required indicator,
default value schema, and/or any other data that 1s capable of

10

15

20

25

30

35

40

45

50

55

60

65

4

being used to describe other data. Some non-limiting
examples of operations that may be performed on metadata
include adding new contacts, changing account information,
etc.

In one embodiment, the instruction may be received from a
user using a web-based interface. For example, such interface
may allow a user to manually mnitiate the operation on the
metadata by selecting each operation (e.g. modification, etc.)
and metadata to be subjected to the operation, using an mput
device. In other embodiments, the instruction may be
received 1n a more automated manner. For example, the
istruction may be recerved from an application 1n response
to a rule being triggered, as a result of a process configured by
a user, etc. A non-limiting example of a tool that may be used
for such purpose includes a schema tool, a third-party pro-
grammable application, etc. In another embodiment, the
istruction may be received utilizing an application program
interface (API) that 1s capable of receiving instructions from
a variety of sources.

Next, 1n operation 104, the operation 1s performed on the
metadata associated with the environment of the subscriber
asynchronously with respect to at least one other operation
performed by the subscriber using the on-demand database
service. In the context of the present description, the afore-
mentioned environment of the subscriber may include any
aspect of the on-demand database service that 1s associated
with the subscriber. For example, such environment may be
different depending on a particular type of on-demand data-
base service application to which the subscriber subscribes.
Various examples of applications of an on-demand database
service will be set forth 1n the context of different embodi-
ments that will be described during reference to subsequent
figures.

In the context of the present description, the term “asyn-
chronous performance” when used to describe an operation
conducted on metadata associated with an on-demand data-
base service refers to performing any operation, at least in
part, independently of any other operation performed 1n the
on-demand database service. Such independent performance
may be any one or more of temporally independent, indepen-
dent by control, independent in location or the like. Of course,
in various embodiments, such other operation may include
any operation that 1s either similar to or different from that
associated with the instruction(s) received 1n operation 102.
By this design, the subscriber may independently perform the
other operation without being necessarily affected by the
performance of the operations associated with the
istruction(s) recetved 1n operation 102.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
tollowing information is set forth for illustrative purposes and
should not be construed as limiting 1n any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIGS. 2A and 2B show a method 200 for handling the
receipt of a request to modily metadata, 1n accordance with
another embodiment. As an option, the present method 200
may be implemented in the context of the functionality of
FIG. 1. Of course, however, the method 200 may be carried
out 1n any desired environment. The alorementioned defini-
tions may apply during the present description.

As shown, 1t 1s first determined whether a request has been
received to modily (e,g. create, add, delete, change, etc.)
metadata. See decision 202. In various embodiments, such
request may be manually or automatically generated. Further,

US 9,058,361 B2

S

in one embodiment, such request may be directed to an on-
demand database service, and include one or more instruc-
tions for performing one or more operations on the metadata.

Upon receipt of such a request, 1t 1s determined whether the
request 1s permissible. Note decision 204. For example, it
may be determined whether the instruction(s)/operations) 1s
permissible. In one embodiment, such decision may be based
on a status and associated access rights of the subscriber that
made the request, rules surrounding the modification of the
metadata (e.g. s1ze limaits, etc,), rules surrounding the request
itsell (e,g. formatting, protocol 1ssues, etc,), etc. It it 1s deter-
mined that the request 1s impermissible, an error message 1s
sent to the subscriber (see operation 206) and the underlying
instruction(s)/operation(s) are disallowed. To this end, the
operation associated with the request 1s conditionally per-
formed on the metadata, based on the determination of opera-
tion 204.

On the other hand, i1 it 1s determined that the request 1s
permissible per decision 204, the method 200 continues by
iitiating the processing of the request. See operation 208.
Such processing results 1n the performance of any necessary
operation on the metadata. One example of an execution of
operation 208 will be set forth 1n the context of a different
embodiment that will be described during reference to FI1G. 3.

In further response to the receipt of the request and asso-
ciated mstruction(s), etc., a confirmation message 1s provided
to the subscriber that the related processing has been initiated.
Note operation 210. With the processing pending, a user may,
at any time request a status of the processing. Such request,
for example, may be sent to the on-demand database service
via a web-based interface by selecting a status icon or the like.

Once 1t 1s determined that the on-demand database service
has recetved such status request (see decision 212), the status
1s provided in the form of a status message. See operation 214.
In various embodiments, the status may range from a simple
completed/not complete indication, to a more detailed status
that includes information on how/when a request was com-
pleted or why a request has not yet been completed. Non-
limiting examples of such status may include “request
received,” “request pending,” “request completed,” etc.

In one optional embodiment, requests may be tracked for a
limited amount of time, and thereatiter discarded. This may be
helpful 1n limiting an amount of resources (e.g. storage, etc.)
required to administer the foregoing status checking func-
tionality. In such embodiment, 1t may be determined, after the
request processing has been imtiated, whether a predeter-
mined amount of time (e.g. 24 hours, etc.) has elapsed. Note
decision 216. If so, any status tracking data structure may be
discarded, as indicated in operation 218. To this end, the
status message 1s conditionally sent to the subscriber, based
on a time period within which the status request 1s recerved.

FIG. 3 shows a method 300 for processing requests for
moditying metadata, in accordance with another embodi-
ment. As an option, the present method 300 may be imple-
mented 1n the context of the functionality of FIGS. 1-2. For
example, the method 300 may be used to process a large
number of requests at least a portion of which were recerved
via the method 200 of FIGS. 2A-2B. Of course, however, the
method 300 may be carried out 1n any desired environment.
Yet again, the alorementioned definitions may apply during
the present description.

In one embodiment, any requests received (e.g. via the
method 200 of F1G. 2A/2B, etc.) may be queued (not shown).
Further, each request may be pulled from such queue for
processing 1n accordance with the method 300 of FIG. 3. As
shown, each request may be inspected, as set forth 1n opera-
tion 302. Such inspection may involve a header of the request

10

15

20

25

30

35

40

45

50

55

60

65

6

or any other portion that indicates whether the request 1s an
asynchronous request (which may be accompanied by an
istruction, etc.).

In the present embodiment, the asynchronous request may
be one that prompts an operation on metadata which does not
necessarily have to be completed 1n real-time. For example,
such an asynchronous request may be one that 1s recerved via
a schema tool or the like (as opposed to a human subscriber,
etc.). Thus, unlike a human subscriber request, such a request
may be delayed via asynchronous processing without neces-
sarily negatively impacting a subscriber experience.

If 1t 1s determined that the request 1s not an asynchronous
request per decision 304, the request may be handled by a
synchronous process. See operation 306. In one embodiment,
such synchronous process may be allocated with suificient
resources to allow for real-time, near-real time, etc. process-
ing of the request.

On the other hand, 11 1t 1s determined that the request 1s an
asynchronous request per decision 304, the request may be
handled by an asynchronous process. Such asynchronous
process may include a thread pool that 1s allocated a finite
amount of a local resources (e.g. one or more application
server, etc:). In such embodiment, such thread pool may be
inspected before assigning a request to the same. See opera-
tion 308.

In conjunction with such inspection, it 1s determined
whether the local thread pool has any spare capacity or at least
enough capacity to process the request 1n real-time. See deci-
sion 310. IT so, a request-tracking data structure 1s updated
(e.g. a row 1s created) to reflect that the present request 1s
being handled by the local thread pool. Note operation 312.

In use, such data structure may be used for status checking
(e.g., see operations 212-214 of FI1G. 2A/2B, efc.), managing
request processing, etc. In various embodiments, the tracking
data structure may include a variety of fields such as a request
identifier (assigned by the service), requested operation/
metadata 1dentifier, status information, an indication as to
whether the corresponding request has been allocated to a
resource (e.g. a thread, etc.), etc.

However, 11 1t 1s determined that the local thread pool does
not have any spare capacity or not enough capacity to process
the request per decision 310, the request processing-tracking
data structure 1s updated to reflect that the present request 1s
not being handled by the local thread pool. Note operation
314. To this end, such requests may be queued and other
resources (€.g. back-up resources such as a batch server, etc.)
may be notified of the fact that the present request requires
processing. In any case, whether the request 1s processed by
the local thread pool or using other resources, the metadata
may be modified and values associated with the metadata may
be updated 1n response to such metadata modification.

As the request processing 1s completed, the aforemen-
tioned data structure may be updated to reflect such status.
Further, any database rows that retlect the completed status
may be deleted after a predetermined amount of time (e.g. 24
hours). See, for example, operations 216-218 of FIG. 2A/2B.

FIG. 4 shows a method 400 for applying a group of instruc-
tions to metadata in the context of an on-demand database
service, 1 accordance with one embodiment. As an option,
the present method 400 may be implemented 1n the context of
the functionality of FIGS. 1-3. For example, the method 400
may or may not incorporate the various features of the previ-
ous embodiments where, instead of just one instruction being
received at a time, a group of 1nstructions may be recerved. Of
course, however, the method 400 may be carried out 1n any
desired environment. The atorementioned definitions may
apply during the present description.

US 9,058,361 B2

7

As shown, a group of istructions may be received indicat-
ing at least one operation to be performed on a plurality of
instances of metadata associated with an environment of a
subscriber of an on-demand database service. See operation
402. With respect to each of the terms set forth 1n operation
402, corresponding definitions may be found, where appli-
cable, during the description of FIG. 1 above.

Further, 1t should be noted that the group may be defined in
any desired manner. For example, in one embodiment, a
subscriber may manually enter the instructions (e.g. by
requiring one or more modifications to metadata, etc.). Thus,
the group may, in such embodiment, be subscriber-defined.

In other embodiments, the group may be defined as a
function of the metadata and/or the operations to be per-
formed. For example, a first operation to certain metadata
may require a second operation on such metadata (e.g. due to
dependencies, etc.). In such case, the corresponding mnstruc-
tions may be considered grouped.

Thereafter, the operation 1s conditionally performed on the
instances ol metadata associated with the environment of the
subscriber, based on whether at least one of the instructions 1s
permissible. See operation 404. Again, with respectto each of

the terms set forth 1n operation 404, corresponding definitions
may be found, where applicable, during the description of
FIG. 1 above.

Further, the instructions may be deemed permissible based
on any desired criteria. For example, a plurality of rules may
dictate such permissibility. In various embodiments, such
rules may involve the modification of the metadata (e.g. size
limits, etc.), the request itsell (e.g. formatting, protocol
1ssues, etc,), and/or any other aspect.

Thus, 1n one embodiment, the operation may not necessar-
1ly be performed on the instances of metadata, if at least one
of the instructions 1s impermissible. In other words, all of the
instructions of the group may be required to be permissible, 1n
order for the operation(s) to be applied. The ability of embodi-
ments to provide such feature can thus prevent a scenario
where only a portion of a desired effect 1s accomplished
which, 1n turn, complicates any effort to undo the partial
modification, etc.

More 1llustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
tollowing information is set forth for illustrative purposes and
should not be construed as limiting 1n any manner. Any of the

tollowing features may be optionally incorporated with or
without the exclusion of other features described.

FIGS. SA-5B show a method 500 for applying a group of
instructions to metadata in the context of an on-demand data-
base service, 1n accordance with another embodiment. As an
option, the present method 500 may be implemented 1n the
context of the functionality of FIGS. 1-4. Of course, however,
the method 500 may be carried out 1n any desired environ-
ment. The aforementioned definitions may apply during the
present description.

As shown, multiple requests are recerved. See operation
502. It 1s then determined whether the requests are members
of a group. See decision 504.

To accomplish this, each request of a group may be flagged
as such. This may be done by asserting a bit 1n association
with the request, tagging the request, sending the request via
a protocol that indicates the group status, 1f any, etc. In one
embodiment, any such data structure or protocol may include
a group 1dentifier that uniquely 1dentifies an associated group.
In other embodiments, any of the foregoing may be accom-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

plished via a mechanism (e.g. data structure, etc.) that 1s
separate from the request itself, and possibly be stored at a
central location, etc.

In any case, 11 1t 1s determined that the requests are not part
of a group, such requests may simply be processed. See
operation 506. In one embodiment, such processing may
involve an operation on metadata in accordance with an
instruction accompanying the request. In another embodi-
ment, such processing may include any of the techniques set
torth earlier during reference to FIGS. 1-3. In such situations
where the requests are not part of a group, each request that 1s
permissible may be processed irrespective of any other of the
multiple requests being deemed impermissible.

IT 1t 1s determined that the requests are indeed part of a
group, a first request 1s selected. See operation 505. Further, 1t
1s first determined whether such request 1s permissible, as
indicated 1n decision 506. Again, such permissibility may be
based on any desired criteria, such as that set forth above 1n
describing FIGS. 2A/2B, 4, efc.

If the present request 1s deemed 1impermissible, an error
message 1s sent to the subscriber. Further, the method 500
terminates and none of the requests of the group are pro-
cessed.

I1, however, the present request 1s deemed permissible, 1t 1s
determined whether another request 1s included in the group.
See decision 512. If so, a next request 1s selected 1n operation
516. Further, operations 506-512 are repeated accordingly.
Upon 1t being determined that no other request 1s included 1n
the group 1n decision 512 (and thus, each of the requests of the
group are permissible), all of the requests of the group are
processed and a confirmation message 1s sent to the sub-
scriber. Note operation 514.

System Overview

FIG. 6 1llustrates a block diagram of an environment 610
wherein an on-demand database service might be used. As an
option, any of the previously described embodiments of the
foregoing figures may or may not be implemented in the
context of the environment 610. Environment 610 may
include user systems 612, network 614, system 616, proces-
sor system 617, application platform 618, network interface
620, tenant data storage 622, system data storage 624, pro-
gram code 626, and process space 628. In other embodiments,
environment 610 may not have all of the components listed
and/or may have other elements instead of, or 1n addition to,
those listed above.

Environment 610 i1s an environment 1n which an on-de-
mand database service exists. User system 612 may be any
machine or system that 1s used by a user to access a database
user system. For example, any of user systems 612 can be a
handheld computing device, a mobile phone, a laptop com-
puter, a work station, and/or a network of computing devices.
As 1llustrated i FIG. 6 (and in more detail in FIG. 7) user
systems 612 might interact via a network with an on-demand
database service, which 1s system 616.

An on-demand database service, such as system 616, 1s a
database system that 1s made available to outside users that do
not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be available
for their use when the users need the database system (e.g., on
the demand of the users). Some on-demand database services
may store information from one or more tenants stored nto
tables of a common database 1mage to form a multi-tenant
database system (AITS). Accordingly, “on-demand database
service 616” and “system 616 will be used interchangeably
herein. A database image may include one or more database
objects. A relational database management system (RDMS)
or the equivalent may execute storage and retrieval of infor-

US 9,058,361 B2

9

mation against the database object(s). Application platform
618 may be a framework that allows the applications of sys-
tem 616 to run, such as the hardware and/or software, e.g., the
operating system. In an embodiment, on-demand database
service 616 may include an application platform 618 that
enables creation, managing and executing one or more appli-
cations developed by the provider of the on-demand database
service, users accessing the on-demand database service via
user systems 612, or third party application developers
accessing the on-demand database service via user systems
612.

The users of user systems 612 may differ in their respective
capacities, and the capacity of a particular user system 612
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
1s using a particular user system 612 to interact with system
616, that user system has the capacities allotted to that sales-
person. However, while an administrator 1s using that user
system to 1nteract with system 616, that user system has the
capacities allotted to that administrator. In systems with a
hierarchical role model, users at one permission level may
have access to applications, data, and database information
accessible by a lower permission level user, but may not have
access to certain applications, database information, and data
accessible by a user at a higher permission level. Thus, dii-
terent users will have different capabilities with regard to
accessing and modifying application and database informa-
tion, depending on a user’s security or permission level,

Network 614 1s any network or combination of networks of
devices that communicate with one another. For example,
network 614 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropnate
configuration. As the most common type of computer net-
work 1n current use 1s a TCP/IP (Transier Control Protocol
and Internet Protocol) network, such as the global internet-
work of networks often referred to as the “Internet” with a
capital “I,” that network will be used 1n many of the examples
herein. However, 1t should be understood that the networks
that the present invention might use are not so limited,
although TCP/IP 1s a frequently implemented protocol.

User systems 612 might communicate with system 616
using TCP/IP and, at a higher network level, use other com-
mon Internet protocols to communicate, such as HT'TP, FTP,
AFS, WAP, etc. In an example where HT'TP 1s used, user
system 612 mightinclude an HTTP client commonly referred
to as a “browser” for sending and receiving H1 TP messages
to and from an HTTP server at system 616. Such an HT'TP
server might be implemented as the sole network interface
between system 616 and network 614, but other techniques
might be used as well or 1nstead. In some 1implementations,
the interface between system 616 and network 614 includes
load sharing functionality, such as round-robin HT'TP request
distributors to balance loads and distribute incoming HTTP
requests evenly over a plurality of servers. At least as for the
users that are accessing that server, each of the plurality of
servers has access to the MTS’ data; however, other alterna-
tive configurations may be used instead.

In one embodiment, system 616, shown in FIG. 6, imple-
ments a web-based customer relationship management
(CRM) system. For example, 1n one embodiment, system 616
includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, webpages and other information to and
from user systems 612 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.

10

15

20

25

30

35

40

45

50

55

60

65

10

With a multi-tenant system, data for multiple tenants may be
stored 1n the same physical database object, however, tenant
data typically 1s arranged so that data of one tenant 1s kept
logically separate from that of other tenants so that one tenant
does not have access to another tenant’s data, unless such data
1s expressly shared. In certain embodiments, system 616
implements applications other than, or 1n addition to, a CRM
application. For example, system 616 may provide tenant
access to multiple hosted (standard and custom) applications,
including a CRM application. User (or third party developer)
applications, which may or may not include CRM, may be
supported by the application platform 618, which manages
creation, storage of the applications into one or more database
objects and executing of the applications 1n a virtual machine
in the process space of the system 616.

One arrangement for elements of system 616 1s shown 1n
FIG. 7, including a network interface 620, application plat-
form 618, tenant data storage 622 for tenant data 623, system
data storage 624 for system data accessible to system 616 and
possibly multiple tenants, program code 626 for implement-
ing various functions of system 616, and a process space 628
for executing MIS system processes and tenant-specific pro-
cesses, such as running applications as part of an application
hosting service. Additional processes that may execute on
system 616 include database indexing processes.

Several elements in the system shown 1n FIG. 6 include
conventional, well-known elements that are explained only
briefly here. For example, each user system 612 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. User
system 612 typically runs an HTTP client, e.g., a browsing
program, such as Microsoit’s Internet Explorer browser,
Netscape’s Navigator browser, Opera’s browser, or a WAP-
enabled browser in the case of a cell phone, PDA or other
wireless device, or the like, allowing a user (e.g., subscriber of
the multi-tenant database system) of user system 612 to
access, process and view information, pages and applications
available to 1t from system 616 over network 614. Each user
system 612 also typically includes one or more user interface
devices, such as a keyboard, a mouse, trackball, touch pad,
touch screen, pen or the like, for interacting with a graphical
user interface (GUI) provided by the browser on a display
(e.g., amonitor screen, LCD display, etc.) 1n conjunction with
pages, forms, applications and other information provided by
system 616 or other systems or servers. For example, the user
interface device can be used to access data and applications
hosted by system 616, and to perform searches on stored data,
and otherwise allow a user to interact with various GUI pages
that may be presented to a user. As discussed above, embodi-
ments are suitable for use with the Internet, which refers to a
specific global internetwork of networks. However, it should
be understood that other networks can be used instead of the

Internet, such as an intranet, extranet, a virtual private net-
work (VPN), a non-TCP/1P based network, any LAN or

WAN or the like.

According to one embodiment, each user system 612 and
all of 1ts components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 616 (and additional instances of
an MTS, where more than one 1s present) and all of their
components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor system 617, which may
include an Intel Penttum® processor or the like, and/or mul-

US 9,058,361 B2

11

tiple processor unit. A computer program product embodi-
ment includes a machine-readable storage medium (media)
having istructions stored thereon/in which can be used to
program a computer to perform any of the processes of the
embodiments described herein. Computer code for operating
and configuring system 616 to intercommunicate and to pro-
cess webpages, applications and other data and media content
as described herein are preferably downloaded and stored on
a hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as 1s well known, such as a ROM
or RAM, or provided on any media capable of storing pro-
gram code, such as any type of rotating media including
floppy disks, optical discs, digital versatile disk (DVD), com-
pact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanosystems (1including molecular
memory ICs), or any type of media or device suitable for
storing instructions and/or data. Additionally, the entire pro-
gram code, or portions thereof, may be transmitted and down-
loaded from a software source over a transmission medium,
¢.g., over the Internet, or from another server, as 1s well
known, or transmitted over any other conventional network
connection as 1s well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
IP, HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for implementing embodi-
ments of the present invention can be implemented 1n any
programming language that can be executed on a client sys-
tem and/or server or server system such as, for example, C,
C++, HI'ML, any other markup language, Java™, JavaScript,
ActiveX, any other scripting language, such as VBScript, and
many other programming languages as are well known may
be used. (Java™ 15 a trademark of Sun Microsystems, Inc.),

According to one embodiment, each system 616 1s config-
ured to provide webpages, forms, applications, data and
media content to user (client) systems 612 to support the
access by user systems 612 as tenants of system 616. As such,
system 616 provides security mechanisms to keep each ten-
ant’s data separate unless the data 1s shared. If more than one
MTS 1s used, they may be located in close proximity to one
another (e.g., 1n a server farm located 1n a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located 1n city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” 1is
meant to include a computer system, mcluding processing,
hardware and process space(s), and an associated storage
system and database application (e.g., OODBMS or
RDBMS) as 1s well known 1n the art. It should also be under-
stood that “server system”™ and “server” are often used inter-
changeably herein. Similarly, the database object described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 7 also 1llustrates environment 610. However, 1in FIG.
7 elements of system 616 and various interconnections in an
embodiment are further illustrated. FIG. 7 shows that user
system 612 may include processor system 612A, memory
system 6128, input system 612C, and output system 612D.
FIG. 7 shows network 614 and system 616, FI1G. 7 also shows
that system 616 may include tenant data storage 622, tenant
data 623, system data storage 624, system data 625, User
intertace (UI) 730, Application Program Interface (API) 732,

10

15

20

25

30

35

40

45

50

55

60

65

12

PL/SOQL 734, save routines 736, application setup mecha-
nism 738, applications servers 1000,-1000,, system process
space 702, tenant process spaces 704, tenant management
process space 710, tenant storage area 712, user storage 714,
and application metadata 716. In other embodiments, envi-
ronment 610 may not have the same elements as those listed
above and/or may have other elements instead of, or in addi-
tion to, those listed above.

User system 612, network 614, system 616, tenant data
storage 622, and system data storage 624 were discussed
above 1 FIG. 6. Regarding user system 612, processor sys-
tem 612 A may be any combination of one or more processors.
Memory system 612B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 612C may be any combination of input devices,
such as one or more keyboards, mice, trackballs, scanners,
cameras, and/or interfaces to networks. Output system 612D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 7, system 616 may include a network interface
620 (of FIG. 6) implemented as a set of HI'TP application
servers 700, an application platform 618, tenant data storage
622, and system data storage 624. Also shown 1s system
process space 702, including individual tenant process spaces
704 and a tenant management process space 710. Each appli-
cation server 1000 may be configured to tenant data storage
622 and the tenant data 623 therein, and system data storage
624 and the system data 625 therein to serve requests of user
systems 612. The tenant data 623 might be divided into 1ndi-
vidual tenant storage areas 712, which can be either a physical
arrangement and/or a logical arrangement of data. Within
cach tenant storage area 712, user storage 714 and application
metadata 716 might be similarly allocated for each user. For
example, a copy of a user’s most recently used (MRU) 1tems
might be stored to user storage 714. Similarly, a copy of MRU
items for an entire organization that 1s a tenant might be stored
to tenant storage area 712. A UI 730 provides a user interface
and an API 732 provides an application programmer interface
to system 616 resident processes to users and/or developers at
user systems 612. The tenant data and the system data may be
stored 1n various databases, such as one or more Oracle™
databases.

Application platform 618 includes an application setup
mechanism 738 that supports application developers’ cre-
ation and management of applications, which may be saved as
metadata into tenant data storage 622 by save routines 736 for
execution by subscribers as one or more tenant process spaces
704 managed by tenant management process 710 {for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 732. A detailed description of
some PL/SOQL language embodiments 1s discussed in com-

monly owned co-pending U.S. Provisional Patent Applica-
tion 60/828,192 entitled, PROGRAMMING LANGUAGE

METHOD AND SYSTEM FOR EXTENDING APIS TO
EXECUTE IN CONJUNCTION WITH DATABASE APIS,
by Craig Weissman, filed Oct. 4, 2006, which 1s incorporated
in 1ts entirety herein for all purposes. Invocations to applica-
tions may be detected by one or more system processes,
which manages retrieving application metadata 716 for the
subscriber making the invocation and executing the metadata
as an application in a virtual machine.

Each application server 700 may be communicably
coupled to database systems, e.g., having access to system
data 625 and tenant data 623, via a different network connec-
tion. For example, one application server 700, might be
coupled via the network 614 (e.g., the Internet), another appli-

US 9,058,361 B2

13

cation server 700,,, might be coupled via a direct network
link, and another application server 700 ,,might be coupled by
yet a different network connection. Transter Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com-
municating between application servers 700 and the database
system. However, 1t will be apparent to one skilled 1n the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain embodiments, each application server 700 1s
configured to handle requests for any user associated with any
organization that 1s a tenant. Because 1t 1s desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there 1s preferably no server aflinity
for a user and/or organization to a specific application server
700. In one embodiment, therefore, an interface system
implementing aloud balancing function (e.g., an FS Big-IP
load balancer 1s communicably coupled between the applica-
tion servers 700 and the user systems 612 to distribute
requests to the application servers 700. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 700. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, 1n
certain embodiments, three consecutive requests from the
same user could hit three different application servers 700,
and three requests from different users could hit the same
application server 700. In this manner, system 616 1s multi-
tenant, wherein system 616 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 616 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., 1n tenant data stor-
age 622). In an example of a MTS arrangement, since all of
the data and the applications to access, view, modily, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales etforts and cycles from any
of many different user systems. For example, 1f a salesperson
1s visiting a customer and the customer has Internet access 1n
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive 1n the

obby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given orgamization
that 1s a tenant. Thus, there might be some data structures
managed by system 616 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 616 might also maintain system level
data usable by multiple tenants or other data. Such system
level data might include industry reports, news, postings, and
the like that are sharable among tenants.

In certain embodiments, user systems 612 (which may be
client systems) communicate with application servers 700 to
request and update system-level and tenant-level data from

10

15

20

25

30

35

40

45

50

55

60

65

14

system 616 that may require sending one or more queries to
tenant data storage 622 and/or system data storage 624. Sys-
tem 616 (e.g., an application server 700 1n system 616) auto-
matically generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 624 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table’ 1s one representation of
a data object, and may be used herein to simplity the concep-
tual description of objects and custom objects according to
the present invention. It should be understood that “table” and
“object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields 1n a viewable schema. Each row
or record of a table contains an mstance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for Account, Contact, Lead, and
Opportunity data, each containing pre-defined fields. It
should be understood that the word “entity” may also be used
interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom 1ndex fields. U.S. patent application Ser. No. 10/817,161,
filed Apr. 2, 2004, entitled “Custom Entities and Fields 1n a
Multi-Tenant Database System”, and which 1s hereby incor-
porated herein by reference, teaches systems and methods for
creating custom objects as well as customizing standard
objects 1n a multi-tenant database system. In certain embodi-
ments, for example, all custom entity data rows are stored in
a single multi-tenant physical table, which may contain mul-
tiple logical tables per organization. It 1s transparent to cus-
tomers that their multiple “tables™ are 1n fact stored 1n one
large table or that their data may be stored 1n the same table as
the data of other customers.

While the invention has been described by way of example
and 1n terms of the specific embodiments, 1t 1s to be under-
stood that the invention 1s not limited to the disclosed embodi-
ments. To the contrary, 1t 1s mtended to cover various modi-
fications and similar arrangements as would be apparent to
those skilled 1n the art. Therefore, the scope of the appended
claims should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.

The mvention claimed 1s:

1. A method, comprising:

identifying, at a database system, that a rule has been
triggered;

in response to the rule being triggered, recerving, at the
database system from an application running on the
database system, a first request including a first istruc-
tion 1ndicating an operation to be performed on a set of
first metadata, wherein the set of first metadata includes
a name, a data type, and an object name, and describes a
portion of data stored by the database system, and
wherein the first request indicates that the operation 1s to
be handled by an asynchronous process;

US 9,058,361 B2

15

based on the first instruction:

performing the operation on the set of first metadata;

prompting, by the database system, a subscriber of the

database system for user mput;
receiving, at the database system, the user imput from the
subscriber, the user mput including a second request
including a second instruction indicating a modification
to be performed on a set of second metadata that speci-
fies a data type for another portion of data stored by the
database service, wherein the second request indicates
that the modification 1s to be handled by a synchronous
Process;

determining whether the modification 1s permissible using,
a rule that indicates a size limit associated with the set of
second metadata;

performing the modification to the set of second metadata,

when 1t 1s determined that the modification 1s permis-
sible:

wherein the asynchronous process includes a thread pool

that 1s allocated a finite amount of a local resources such
that the at least one first istruction 1s only processed
when the local thread pool has suflicient capacity to
process the at least one first instruction and 1s only pro-
cessed 1n at least near-real time when, 1n response to
receipt of the first request, the local thread pool has the
suilicient capacity to process the at least one first instruc-
tion;

wherein the synchronous process 1s automatically allo-

cated with suificient resources to process the second
instruction such that the second instruction 1s processed
in at least near-real time.

2. The method of claim 1, wherein the first instruction 1s
received utilizing an application program interface (API).

3. The method of claim 1, and further comprising sending
a confirmation message to the subscriber, in response to the
receipt of the second instruction.

4. The method of claim 1, and further comprising recerving,
a status request from the subscriber.

5. The method of claim 4, and further comprising sending,
a status message to the subscriber, in response to the receipt of
the status request.

6. The method of claim 5, wherein the status message 1s
conditionally sent to the subscriber, based on a time period
within which the status request 1s recerved.

7. The method of claim 1, wherein the database system
includes a multi-tenant database system.

8. A non-transitory machine-readable medium carrying
one or more sequences ol mnstructions which, when executed
by one or more processors, cause the one or more processors
to carry out the steps of:

identifying, at a database system, that a rule has been

triggered;

in response to the rule being triggered, receving, at the

database system from an application running on the
database system, a first request including a first instruc-
tion indicating an operation to be performed on a set of
first metadata, wherein the set of first metadata includes
a name, a data type, and an object name, and describes a
portion of data stored by the database system, and
wherein the first request indicates that the operation 1s to
be handled by an asynchronous process; and

based on the first instruction:

performing the operation on the set of first metadata;

prompting, by the database system, a subscriber of the

database system for user mput;

receiving, at the database system, the user input from the

subscriber, the user mput including a second request

10

15

20

25

30

35

40

45

50

55

60

65

16

including a second instruction indicating a modification
to be performed on a set of second metadata that speci-
fies a data type for another portion of data stored by the
database service, wherein the second request indicates
that the modification 1s to be handled by a synchronous
process;
determining whether the modification 1s permissible using,
a rule that indicates a size limit associated with the set of
second metadata;
performing the modification to the set of second metadata,
when 1t 1s determined that the modification 1s permis-
sible;
wherein the asynchronous process includes a thread pool
that 1s allocated a finite amount of a local resources such
that the at least one first instruction 1s only processed
when the local thread pool has sufficient capacity to
process the at least one first instruction and 1s only pro-
cessed 1n at least near-real time when, 1n response to
receipt of the first request, the local thread pool has the
suificient capacity to process the at least one first instruc-
tion;
wherein the synchronous process 1s automatically allo-
cated with suificient resources to process the second
instruction such that the second instruction 1s processed
in at least near-real time.
9. An apparatus, comprising:
a processor; and
one or more stored sequences of instructions which, when
executed by the processor, cause the processor to carry
out the steps of:
identifying, at a database system, that a rule has been
triggered;
in response to the rule being triggered, recerving, at the
database system from an application running on the
database system, a first request including a first
instruction indicating an operation to be performed on
a set of first metadata,
wherein the set of first metadata includes a name, a data
type, and an object name, and describes a portion of data
stored by the database system, and wherein the first
request indicates that the operation s to be handled by an
asynchronous process; and
based on the first instruction:
performing the operation on the set of first metadata;
prompting, by the database system, a subscriber of the
database system for user input;
receiving, at the database system, the user input from the
subscriber, the user input including a second request
including a second 1nstruction indicating a modifica-
tion to be performed on a set of second metadata that
specifies a data type for another portion of data stored
by the database service, wherein the second request
indicates that the modification 1s to be handled by a
synchronous process;
determining whether the modification 1s permissible
using a rule that indicates a size limit associated with
the set of second metadata;
performing the modification to the set of second meta-
data, when it 1s determined that the modification 1s
permissible;
wherein the asynchronous process includes a thread
pool that 1s allocated a finite amount of a local
resources such that the at least one first instruction 1s
only processed when the local thread cool has suili-
cient capacity to process the at least one first instruc-
tion and 1s only processed in at least near-real time
when, 1n response to receipt of the first request, the

US 9,058,361 B2
17 18

local thread pool has the sufficient capacity to process
the at least one first instruction;

wherein the synchronous process 1s automatically allo-
cated with suilicient resources to process the second
instruction such that the second instruction 1s pro- 3
cessed 1n at least near-real time.

G x e Gx o

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,058,361 B2 Page 1 of 1
APPLICATION NO. : 13/554884

DATED : June 16, 2015

INVENTOR(S) : Benji Jasik et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims:
At column 16, claim 9, line 64; replace “cool” with --pool--.

Signed and Sealed this
Fifth Day of January, 2016

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

