12 United States Patent

Agrawal et al.

US009053231B2

US 9,053,231 B2
Jun. 9, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR ANALYZING
OPERATIONS IN A MULTI-TENANT
DATABASE SYSTEM ENVIRONMENT

Inventors: Sonali Agrawal, San Carlos, CA (US);
Walter Macklem, San Francisco, CA
(US); Reena Mathew, San Francisco,
CA (US); Simon Y. Wong, San Carlos,

CA (US)

Assignee: salesforce.com, inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 108 days.

Appl. No.: 12/987,533

Filed: Jan. 10, 2011
Prior Publication Data
US 2011/0302212 Al Dec. 8, 2011

Related U.S. Application Data

Provisional application No. 61/352,280, filed on Jun.
7, 2010.

Int. CI.

GOGF 17/30 (2006.01)
GOGF 11/36 (2006.01)
GOGF 7/00 (2006.01)
U.S. CL

CPC ... GO6F 11/3636 (2013.01); GO6F 17/30371
(2013.01); GO6F 17/3051 (2013.01)

Field of Classification Search
CPC GO6F 17/3051; GO6F 17/30371; GO6F

11/3636
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Lim et al.
5,918,159 A 6/1999 Fomukong et al.
5,963,953 A 10/1999 Cram et al.
6,092,083 A 7/2000 Brodersen et al.
6,169,534 Bl 1/2001 Raftel et al.
(Continued)
OTHER PUBLICATIONS

Salesforce.com, “The Force.com Multitenant Architecture, Under-
standing the Design of Salesforce.com’s Internet Application Devel-
opment Platform,” Whitepaper, 2008, pp. 1-16.*

Primary Examiner — Jung Kim
Assistant Examiner — James J Wilcox

(74) Attorney, Agent, or Firm — Ingrassia Fisher & Lorenz,
P.C.

(57) ABSTRACT

A system and method for analyzing operations 1n a multi-
tenant database system environment 1s provided. The system
may include a database storing tenant application data and
common application data, the tenant application data and
common application data controlling a creation, read, update,
deletion or undeletion of an object 1n the multi-tenant data-
base system environment. The system may further include a
processor to analyze the tenant application data and common
application data to identify therein where the object 1s being
modified, and generate a report identifying potential errors or
side effects which may affect the object based upon the ana-
lyzed tenant application data and common application data.

20 Claims, 4 Drawing Sheets

L.
=
-

310

Identify an object in the multi-tenant

. database system
32& Analyzing common application data
330 Analyzing tenant application data
]
340 Generate a Report

US 9,053,231 B2

Page 2
(56) References Cited 8,095,594 B2 1/2012 Beaven et al.
8,275,836 B2 9/2012 Beaven et al.
U.S. PATENT DOCUMENTS 8,797,178 B2* 82014 Kansaletal. ... 340/870.07
2001/0044791 Al 11/2001 Richter et al.
6,178,425 Bl 1/2001 Brodersen et al. 2002/0072951 Al 6/2002 Lee et al.
6.189.011 Bl 2/2001 Lim et al. 2002/0082892 Al 6/2002 Raffel
6,216,135 B1 4/2001 Brodersen et al. gggggiigggf i; lggggg grobdersen_et alt. 1
6,233,617 Bl 5/2001 Rothwein et al. 1 ubramanian €t al.
6,266,669 Bl 7/2001 Brodersen et al. 2002/0143997 Al 10/2002 Huang et al.
6.295.530 Bl 9/2001 Ritchie et al. 2002/0162090 Al 10/2002 Parnell et al.
6.324.568 Bl 11/2001 Diec et al. 2002/0165742 Al 11/2002 Robbins
6,324,693 Bl 11/2001 Brodersen et al. 388%88%28; i; %88; gﬁng -
6,336,137 Bl 1/2002 Lee et al. 1 en et al.
D454,139 S /2002 Feldeamn et al 2003/0018830 Al 1/2003 Chen et al.
6,367,077 Bl 4/2002 Broderselil et al. 2003/0066031 Al 4/2003 Laane et al.
6393.605 Bl 5/2002 Loomans 2003/0066032 Al 4/2003 Ramachandran et al.
6405220 Bl 6/2002 Brodersen et al. 2003/0069936 Al 4/2003 Warner et al.
6.434.550 Bl 8/2002 Warner et al. 2003/0070000 A1 4/2003 Coker et al.
6,446,089 Bl 9/2002 Brodersen et al. 2003/0070004 Al 4/2003 Mukundan et al.
6,535,868 B1* 3/2003 Galeazzietal.cc........... 1/1 gggyggggggg i., jgggg I&dulicmcia; et al.
6,535,909 B1 3/2003 Rust 1 oker et al.
6,539,396 B1* 3/2003 Bowman-Amuah 707/769 ggggfgg?gg i; ggggg (S}tauber ett all.
6,549,908 B1 4/2003 Loomans 1 eorge et al.
6.553.563 B2 4/2003 Ambrose et al. 2003/0159136 Al 8/2003 Huang et al.
6,560,461 Bl 5/2003 Fomukong et al. 2003/0187921 Al 10/2003 Diec et al.
6.574.635 B2 6/2003 Stauber et al. 2003/0189600 Al 10/2003 Gune et al.
6.577.726 Bl 6/2003 Huane et al. 2003/0204427 Al 10/2003 Gune et al.
6.601,087 Bl 7/2003 Zhu e%al* 2003/0206192 Al 11/2003 Chen et al.
6.604.117 B2 8/2003 Lim etal. 2003/0225730 Al 12/2003 Warner et al.
6.604,128 B2 8/2003 Diec 2003/0233404 Al 12/2003 Hopkins
6,609,150 B2 8/2003 Lee et al. 2004/0001092 Al 1/2004 Rothwein et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2004/0010489 Al 12004 Rio et al.
6.654.032 Bl 11/2003 Zhu ;f al 2004/0015981 Al 1/2004 Coker et al.
6,665,648 B2 12/2003 Brodersen et al. 2004/0027388 Al 2/2004 Berg et al.
6.665.655 Bl 12/2003 Warner et al. 2004/0128001 Al 7/2004 Levin et al.
6,684,438 B2 2/2004 Brodersen et al. 2004/0181560 Al* 9/2004 Romanufaetal. 707/202
6711565 Bl 3/2004 Subramaniam et al. 2004/0186860 Al 9/2004 Lee et al.
6724399 Bl 4/2004 Katchour et al. 2004/0193510 Al 9/2004 Catahan et al.
6,728,702 Bl 4/2004 Subramaniam et al. 2004/0199489 A1 10/2004 Barnes-L.eon et al.
6,728,960 Bl 4/2004 T.oomans et al. 2004/0199536 A1 10/2004 Barnes Leon et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2004/0199543 Al 10/2004 Braud et al.
6,732,100 Bl 5/2004 Brodersen et al. 2004/0210909 A1 10/2004 Dominquez, Jr. et al.
6,732,111 B2 5/2004 Brodersen et al. 2004/0249854 A1 12/2004 Barnes-Leon et al.
6,754,681 B2 6/2004 Brodersen et al. 2004/0260534 A1 12/2004 Pak et al.
6,763,351 B1 7/2004 Subramaniam et al. 2004/0260659 Al 12/2004 Chan et al.
6,763,501 B1 ~ 7/2004 Zhu et al. 2004/0268299 Al 12/2004 Lei et al.
6,768,904 B2 7/2004 Kim | 2005/0039033 Al* 2/2005 Meyersetal. 713/193
6,782,383 B2 82004 Subramaniam et al. 2005/0050555 A1 3/2005 Exley et al.
6,799,184 B2* 9/2004 Bhattetal. 707/718 5005/0065975 A 32005 Weissman of a
6,804,330 B1 10/2004 Jones et al. ; man et a .
OV, nes 2005/0091098 Al 4/2005 Brod t al.
0,826,565 B2 1172004 Ritchie et al 2005/0223022 Al 10/2005 \ngis:mrsae.nn Zt 3
6,826,582 B1 11/2004 Chatterjee et al. 5005/0283478 AT 17/9005 Choi et al
0,826,745 B2 112004 L oker 2006/0206834 Al 9/2006 Fisher f 4l
6,829,655 B1 12/2004 Huang et al. - isher et al.
6,842,748 Bl 1/2005 Warner et al. 2006/0235714 Ajh:k 10/2006 Adinolfietal. 705/1
6,850,895 B2 2/2005 Brodersen et al. 2006/0235715 Al 10/2006 Abramsetal. 705/1
6,850,949 B2 2/2005 Warner et al. 2008/0162491 Al* 7/2008 Beckeretal. 707/10
7,127,461 Bl * 10/2006 Zhuetal.c.............. 707/694 2008/0243867 Al* 10/2008 Janedittakarn et al. 707/10
7,149,728 B1* 12/2006 Feinbergetal. 1/1 2009/0282045 Al* 11/2009 Hsiehetal. ... 707/9
7,340,411 B2 3/2008 Cook 2010/0106752 Al* 4/2010 Eckardtetal. 707/805
7,620,655 B2 11/2009 Larsson et al. 2010/0162231 Al* 6/2010 Lancharesetal. T17/177
7,698,160 B2 4/2010 Beaven et al. 2010/0306249 Al1* 12/2010 Hill etal.ccovvvvevn..... 707/769
7,788,228 B2* 8/2010 Feinbergetal. 707/640 2011/0252009 Al1* 10/2011 Simonsetal. 707/694
8,082,301 B2 12/2011 Ahlgren et al.
8,095,413 Bl 1/2012 Beaven * cited by examiner

US 9,053,231 B2

Sheet 1 of 4

Jun. 9, 20135

U.S. Patent

o fr..m . e o : e 4 e
-, L S T, s e R
“ENICAR . ey e - i ey
: : R il - e P
B s T .,y P i

HAOMION]

001

. wummo

051 A N»\mwﬁ Uy stone.lrs a {)

ddy

ddy

ZIUBUD |, [JuBUd |,

_ _ —

Y =

S EqEIEq JUET T-IIA

US 9,053,231 B2

Sheet 2 of 4

Jun. 9, 20135

U.S. Patent

¢ 9l

VOLL |

WI0OMIIN

P.. soundfy | 90 xossadoag

WASAQ sunpedp

Z01

| | aozATRUY

ddy
7iueud |,

suopeIad)

ddvy
[RULLAIEN)

d091

S EqEIE e TN

¢ VLVd

m@Eﬁ,mL

mmmﬁwgaha

_ BIEDEISA

BlePUIo A
ueud I,

[jueud .

dg8¢e _\/Qe7

U.S. Patent

310

320

330

340

||||||||

||||||

Jun. 9, 2015 Sheet 3 of 4

FIG. 3

||||||||

ldentify an object in the multi-tenant
database system

Analyzing common application data

aaaaaaaaaaaaaaaaaaaa

||||||||

[EXELN]

||||||||||||||

Generate a Report

US 9,053,231 B2

O
-

U.S. Patent Jun. 9, 2015 Sheet 4 of 4 US 9,053,231 B2

#

ek,

sdate, o

'.:! : i‘j.;?... .

wE

al

W

,?ﬁ

ek

-k

ed

B R L

Lk

DT FIEN D

-
-

e
5

o

g

L

anon

i

E
1

firk

=

0

% e &
5

Feverniuse

3
e
=

i

éﬁff@%;;%f"

] .;?;
|

E;

-

4

{

ﬁ
e e 2 i e

i
¥
fil

Exsein
:

0

FIG. 4

US 9,053,231 B2

1

SYSTEMS AND METHODS FOR ANALYZING
OPERATIONS IN A MULTI-TENANT
DATABASE SYSTEM ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit of U.S. provisional
patent application Ser. No. 61/352,280, filed Jun. 7, 2010, the
entire content of which 1s incorporated by reference herein.

TECHNICAL FIELD

The following relates to data processing systems and pro-
cesses, and more particularly relates to systems and processes
for analyzing operations in a multi-tenant database system
environment.

BACKGROUND

Modern software development 1s evolving away from the
client-server model toward “cloud”-based processing sys-
tems that provide access to data and services via the Internet
or other networks. In contrast to prior systems that hosted
networked applications on dedicated server hardware, the
cloud computing model allows applications to be provided
over the network “as a service” supplied by an infrastructure
provider. The infrastructure provider typically abstracts the
underlying hardware and other resources used to deliver a
customer-developed application so that the customer no
longer needs to operate and support dedicated server hard-
ware. The cloud computing model can often provide substan-
t1al cost savings to the customer over the life of the application
because the customer no longer needs to provide dedicated
network inirastructure, electrical and temperature controls,
physical security and other logistics in support of dedicated
server hardware.

Although multi-tenant platforms can provide substantial
benefits, they can be relatively difficult to design and develop.
The often competing demands of integration and isolation
between tenants, for example, can lead to any number of
challenges 1n design and implementation. For example, while
cach tenant writes their own application code for their respec-
tive customer-developed application, the “cloud”-based pro-
cessing system also contains application code which 1s uni-
versal to all of the tenants. Accordingly, 1t can be difficult at
times to de-bug errors or determine a cause of a side-eflect
alfecting a customer-developed application.

DESCRIPTION OF THE DRAWING FIGURES

Exemplary embodiments will hereinafter be described in
conjunction with the following drawing figures, wherein like
numerals denote like elements, and

FI1G. 11s ablock diagram of an exemplary multi-tenant data
processing system;

FIG. 2 1s a block diagram of another exemplary multi-
tenant data processing system;

FI1G. 3 1s a flow chart 1llustrating an exemplary method of
performing an operations analysis within the multi-tenant
data processing system; and

FIG. 4 1s an exemplary user interface for performing an
operations analysis within the multi-tenant data processing
system.

DETAILED DESCRIPTION

According to various exemplary embodiments, systems
and methods are provided to analyze operations in a multi-
tenant database system environment.

10

15

20

25

30

35

40

45

50

55

60

65

2

Turning now to FIG. 1, an exemplary multi-tenant appli-
cation system 100 suitably includes a server 102 that dynami-
cally creates virtual applications 128A-B based upon data
132 from a common database 130 that 1s shared between
multiple tenants. Data and services generated by the virtual
applications 128 A-B are provided via network 145 to any
number of client devices 140A-B, as desired. Each virtual
application 128 A-B i1s suitably generated at run-time using a
common platform 110 that securely provides access to data
132 in database 130 for each of the various tenants subscrib-
ing to system 100. The multi-tenant application system 100
may also include any number of content delivery networks
(“CDNs”) 160A-B, as desired. The CDNs 160A-B may con-
tain a copy of at least some of the data 132 which may be
accessible via the network 145. The multi-tenant application

system 100 may also employ any number of proxy servers
170A-B which may be used to direct traffic between the

server 102 and the CDNs 160A-B.

A “tenant” generally refers to a group of users that shares
access to common data within database 130. Tenants may
represent customers, customer departments, business or legal
organizations, and/or any other entities that maintain data for
particular sets of users within system 100. Although multiple
tenants may share access to a common server 102 and data-
base 130, the particular data and services provided from
server 102 to each tenant can be securely 1solated from those
provided to other tenants, as described more tully below.
However, the applications 128 A-B, which are generally writ-
ten by the customer, may also share common application data
in the database 130. The multi-tenant architecture allows
different sets of users to share functionality without necessar-
1ly sharing each other’s data 132.

Database 130 1s any sort of repository or other data storage
system capable of storing and managing data 132 associated
with any number of tenants. Database 130 may be imple-
mented using conventional database server hardware. In vari-
ous embodiments, database 130 shares processing hardware
104 with server 102. In other embodiments, database 130 1s
implemented using separate physical and/or virtual database
server hardware that communicates with server 102 to per-
form the various functions described herein.

Server 102 1s implemented using one or more actual and/or
virtual computing systems that collectively provide a
dynamic application platform 110 for generating virtual
applications 128 A-B. Server 102 operates conventional com-
puting hardware 104, such as a processor 105, memory 106,
input/output features 107 and the like. Processor 105 may be
implemented using one or more of microprocessors, micro-
controllers, processing cores and/or other computing
resources spread across any number of distributed or inte-
grated systems, including any number of “cloud-based” or
other virtual systems. Memory 106 represents any non-tran-
sitory short or long term storage capable of storing program-
ming instructions for execution on processor 105, including
any sort of random access memory (RAM), read only
memory (ROM), tlash memory, magnetic or optical mass
storage, and/or the like. Input/output features 107 represent
conventional interfaces to networks (e.g., to network 145, or
any other local area, wide area or other network), mass stor-
age, display devices, data entry devices and/or the like. In a
typical embodiment, application platform 110 gains access to
processing resources, communications interfaces and other
teatures of hardware 104 using any sort of conventional or
proprietary operating system 108. As noted above, server 102
may be implemented using a cluster of actual and/or virtual
servers operating 1n conjunction with each other, typically 1n

US 9,053,231 B2

3

association with conventional network communications,
cluster management, load balancing and other features as
appropriate.

The server 102 also includes an operations analyzer 150.
The operations analyzer 150 analyzes objects that users may
interact with 1n the multi-tenant database system 100 through
client devices 140A-B. The objects may be, for example, one
or more of the following: an account, an opportunity and a
lead. User’s of the system may also define custom objects that
are specific to their own application. Each of the objects may
have one or more data fields. Each istance of an object may
be called a record. Further, each object may be represented by
a table. The objects may be interacted with by a user, for
example, by creating the object, reading the object, updating
an existing object and deleting or undeleting an object. These
operations may be referred to as “CRUD” operations (Create,
Read, Update, Delete/undelete). The operations analyzer 150
generates a report detailing what 1s affecting the object 1n the
system 100, as discussed in further detail below. In another
embodiment the operations analyzer may be operable on the
client devices 140A-B or on another server (not illustrated).

FI1G. 2 illustrates another exemplary multi-tenant applica-
tion system 200 in accordance with an embodiment. The
multi-tenant application system 200 includes client devices
140A-B, network 145, CDNs 160A-B and proxy servers
170A-B similar to those described above. The multi-tenant
application system 200 further includes a server 102 that
dynamically creates virtual applications 128 A-B based upon
data 132 from a common database 130 that 1s shared between
multiple tenants. Data and services generated by the virtual
applications 128 A-B are provided via network 145 to any
number of client devices 140A-B, as desired. Each virtual
application 128A-B 1s suitably generated at run-time using a
common platform 110 that securely provides access to data
132 1n database 130 for each of the various tenants subscrib-
ing to system 100.

Data 132 may be organized and formatted 1n any manner to
support multi-tenant application platform 110. In various
embodiments, data 132 1s suitably organized into a relatively
small number of large data tables to maintain a semi-amor-
phous “heap”-type format. Data 132 can then be organized as
needed for a particular virtual application 128 A-B. In various
embodiments, conventional data relationships are established
using any number of p1vot tables 234 that establish indexing,
uniqueness, relationships between entities, and/or other
aspects of conventional database organization as desired.

Further data manipulation and report formatting 1s gener-
ally performed at run-time using a variety ol meta-data con-
structs. Metadata within a universal data directory (UDD)
236, for example, can be used to describe any number of
forms, reports, worktflows, user access privileges, business
logic and other constructs that are common to multiple ten-
ants. Tenant-specific formatting, functions and other con-
structs may be maintained as tenant-specific metadata
238A-B for each tenant, as desired. Rather than forcing data
132 mto an intlexible global structure that 1s common to all
tenants and applications, then, database 130 1s organized to be
relatively amorphous, with tables 234 and metadata 236-238
providing additional structure on an as-needed basis. To that
end, application platform 110 suitably uses tables 234 and/or
metadata 236, 238 to generate “virtual” components of appli-
cations 128 A-B to logically obtain, process, and present the
relatively amorphous data 132 from database 130.

Application platform 110 1s any sort of soitware applica-
tion or other data processing engine that generates virtual
applications 128 A-B that provide data and/or services to cli-
ent devices 140A-B. Virtual applications 128A-B are typi-

10

15

20

25

30

35

40

45

50

55

60

65

4

cally generated at run-time 1n response to queries recerved
from client devices 140A-B. In the example 1llustrated 1n
FIG. 2, application platform 110 includes a bulk data process-
ing engine 212, a query generator 214, a search engine 216
that provides text indexing and other search functionality, and
a runtime application generator 220. Each of these features
may be implemented as a separate process or other module,
and many equivalent embodiments could include different
and/or additional features, components or other modules as
desired.

Runtime application generator 220 dynamically builds and
executes virtual applications 128A-B 1n response to specific
requests receirved from client devices 140A-B. Virtual appli-
cations 128A-B created by tenants are typically constructed
in accordance with tenant-specific metadata 238, which
describes the particular tables, reports, interfaces and/or other
features of the particular application. In various embodi-
ments, each virtual application 128 A-B generates dynamic
web content that can be served to a browser or other client
program 142A-B associated with client device 140A-B, as
appropriate.

Application generator 220 suitably interacts with query
generator 214 to efficiently obtain multi-tenant data 132 from
database 130 as needed. In a typical embodiment, query gen-
erator 214 considers the identity of the user requesting a
particular function, and then builds and executes queries to
database 130 using system-wide metadata 236, tenant spe-
cific metadata 238, pivot tables 234 and/or any other available
resources. (Query generator 214 in this example therefore
maintains security of the multi-tenant database 130 by ensur-
ing that queries are consistent with access privileges granted
to the user that mnitiated the request.

Data processing engine 212 performs bulk processing
operations on data 132 such as uploads or downloads,
updates, online transaction processing and/or the like. In
many embodiments, less urgent bulk processing of data 132
can be scheduled to occur as processing resources become
available, thereby giving priority to more urgent data process-
ing by query generator 214, search engine 216, virtual appli-
cations 128A-B and/or the like. Again, the various compo-
nents, modules and inter-relationships of other application
plattorms 120 may vary from the particular examples
described herein.

In operation, then, developers use application platform 110
to create data-driven virtual applications 128 A-B for the ten-
ants that they support. Such applications 128 A-B may make
use of interface features such as tenant-specific screens 224,
umversal screens 222 or the like. Any number of tenant-
specific and/or universal objects 226 may also be available for
integration into tenant-developed applications 128 A-B. Data
132 associated with each application 128A-B 1s provided to
database 130, as appropriate, and stored until requested,
along with metadata 138 that describes the particular features
(e.g., reports, tables, functions, etc.) of tenant-specific appli-
cation 128 A-B until needed.

Data and services provided by server 102 can be retrieved
using any sort of personal computer, mobile telephone, tablet
or other network-enabled client device 140 on network 145.
Typically, the user operates a conventional browser or other
client program 242 to contact server 102 via network 145
using, for example, the hypertext transport protocol (HTTP)
or the like. The user typically authenticates his or her identity
to the server 102 to obtain a session i1dentification (*“Ses-
sionlD”) that identifies the user 1n subsequent communica-
tions with server 102. When the identified user requests
access to a virtual application 128 A-B, application generator
220 suitably creates the application at run time based upon

US 9,053,231 B2

S

metadata 236 and 238, as appropriate. Query generator 214
suitably obtains the requested data 132 from database 130 as
needed to populate the tables, reports or other features of
virtual application 128 A-B. As noted above, the virtual appli-
cation 128 A-B may contain Java, ActiveX or other content
that can be presented using conventional client software
142A-B running on client device 140A-B; other embodi-
ments may simply provide dynamic web or other content that
can be presented and viewed by the user, as desired.

As discussed above, the server 102 includes an operations
analyzer 150 which analyzes what affects an object in the
system 100 and generates a report thereon. Each object,
depending upon the CRUD operation being performed
thereon, may be affected by multiple layers of the multi-
tenant database system 100. Accordingly, when an error
occurs during one of the CRUD operations, 1t can be ditficult
to 1dentity the problem. Furthermore, when CRUD opera-
tions occur on the object various side-effects can occur which
may be difficult to trace. Accordingly, the multi-tenant system
150 utilizes operations analyzer 150 to 1dentity where within
the multi-tenant database system 100 the object 1s affected.

For example, the operations analyzer 150 may evaluate
customer written code that affects an object before the object
1s saved (1.e., pre-trigger) to the database 130. The code may
be written by a customer, for example, in the Apex® program-
ming language. The customer written code may, for example,
validate the object, manipulate the object in some way or
cancel the save operation. The customer written code may
also make call-outs to other objects to be updated or deleted
based upon pre-trigger customer written rules associated with
a first object.

The operations analyzer 150 may also analyze system and
custom validation rules or formula relating to the object
betfore the object can be saved. System validation rules are
rules that are universal to all of the tenants in the multi-tenant
database system 100. In contrast, custom validation rules and
formula are written by each tenant. An example of a system
rule 1s that an end date for an action associated with an object
can not be before a start date, or that a name associated with
an object cannot be null. The validation rules or formula may
also be based upon a status of an object. For example, the
status may be “New,” “Open,” or “Closed.” However, any
status may be associated with each object. A rule based upon
a status may be, for example, a status dependent validation
rule which, for example, may require an opportunity (1.e., the
object) to have a signed contract before the opportunity can be
closed. Another status dependent action, for example, 1s that
an object may not be able to be opened until an invoicing
address has been provided.

The operations analyzer 150 can also evaluate dependent
lookups or foreign key links where a first object may be
dependent upon a second object betfore the first object can be
saved. For example, 11 a user 1s attempting to add a line item
(1.e., the first object) to an opportunity (1.¢., the second object)
the operations analyzer may evaluate a status of the opportu-
nity. For example, the addition of the line 1tem to the oppor-
tunity may depend upon whether the opportunity 1s an open
opportunity.

The operations analyzer 150 also evaluates various assign-
ment, workiflow, escalation and system rules as in further
detail below. These rules may cause an action to occur based
upon data associated of the object aiter the object1s saved. For
example, a data field associated with the object may trigger an
email message to be sent. The operations analyzer 150 evalu-
ates the object to determine which rules are affecting the
object. Accordingly, 11 an unexpected action 1s triggered, or 1f
a user believed an action should have been triggered, the

10

15

20

25

30

35

40

45

50

55

60

65

6

operations analyzer 150 can generate a report 1llustrating all
of the various rules which are affecting the object so that the
user can easily trace the source of the error.

As discussed above, the operations analyzer 150 may
evaluate assignment rules. For example, if the object 1s a
record of a sales opportunity the object may be assigned to a
different sales representative depending upon a state of a field
associated with the object. For example, the object may be
assigned to different users based upon a geographical loca-
tion or monetary value associated with the sales opportunity.

Workflow rules, similar to the assignment rules, may cause
an object to be modified based upon a state of the object or a
data field associated with the object. For example, after the
object 1s saved, the worktlow rules may look at a state or data
field associated with the object, and based upon the state or
data field trigger an update of the same state or data field or
another state or data field associated with the present object or
another object. Workilow rules may also trigger an action. For
example, after the object 1s saved, the worktlow rules may
trigger an email, create an object within the system 100 or
some other action based upon a state of the object or a data
field associated with the object.

The operations analyzer 150 may also evaluate escalation
rules associated with an object. For example, an object may
have a deadline associated with it. The escalation rule may
trigger email reminders as the deadline approaches. In
another embodiment, 1f a condition 1s met a message may be
sent to a superior. For example, if the user does not meet the
deadline associated with an object a message may be sent to
a manager of the user.

The operations analyzer 150 can also evaluate system
defined rules which may be associated with an object. The
system defined rules may be rules universal to all of the
tenants of the multi-tenant database system 100. For example,
the system rules may determine that a entered zip ode 1s 1n a
proper format, that a billing zip code 1s in the billing state or
that the state or country code 1s valid.

For each of the pre and post trigger events (1.e., pre save and
post save), the operations analyzer 150 can also determine an
amount of time or processing power used to perform the
actions and generate a report thereon. Accordingly, the opera-
tions analyzer 150 can analyze the performance or efficiency
of the CRUD operations.

In some instances the CRUD operations may trigger a
recursive operation on an object. For example, a post-trigger
rule may cause a field associated with an object to be updated.
The updated field may cause another pre-trigger rule or a
post-trigger rule, or multiple rules. Accordingly, 1n one
embodiment, the operations analyzer 150 will also report
when a recursive save of an 1dentified object may occur and
note which other objects may trigger a recursive save of the
identified object.

FIG. 3 1s a flow chart illustrating an exemplary operation of
the operations analyzer 150. The operations analyzer 150 first
identifies an object of interest. (Step 310). In one embodi-
ment, for example, an administrator of the system 100 may
select which object to analyze through a user interface, as
discussed in further detail below. The operations analyzer 150
may also 1dentity which CRUD operation to look for with
respect to the identified object. In one embodiment, for
example, administrator of the system 100 may select which
CRUD operation to look for through a user interface, as
discussed 1n further detail below. The operations analyzer 150
may evaluate only one of the CRUD operations, any subset of
the CRUD operations or all of the CRUD operations simul-
taneously. To evaluate where the identified object 1s affected
by the selected CRUD operations, the operations analyzer

US 9,053,231 B2

7

150 may parse and trace through the database 130. (Step 320
and 330). The operations analyzer 150 may parse and trace
through tenant common and system wide application data
(e.g., pivot table 234 and universal data directory 236 1n Step
320) and tenant specific application data (e.g., tenant meta-
data 238 A-B 1n Step 330). In one embodiment, for example,
the tenant metadata may have backpointers to the objects they
are applicable to. These “backpointers™ can be a column on a
table that defines the metadata, where the column stores the
object type. In one embodiment, for example, the object type
information may be represented directly in the code. When
the code 1s saved to the system, the code 1s complied. While
the code 1s being compiled, the code may be parsed to deter-
mine object types and store the object type information in a
code table. The code table allows the object type to be queried
without having to re-parse the code. The operations analyzer
may then generate a report detailing how the object 1s affected
by the CRUD operations. (Step 340). As discussed above, the
CRUD operations may include pre and post trigger validation
rules, worktlow rules and recursive save operations.

FI1G. 4 illustrates an exemplary user interface 400 for an
operations analyzer 150. The user interface 400 includes an
interface 410 for a user to select an object to perform the
analysis thereon. The user mterface 400 can also include an
interface 420 for selecting a CRUD operation to analyze. As
discussed above, any single CRUD operation or any combi-
nation of the CRUD operations may be selected to be ana-
lyzed. While the interfaces 410 and 420 1llustrated 1n FIG. 4
are pull down menus, any other type of interface may be used.
The user iterface 400 may also include an interface 430 to
initiate the operations analysis. Upon selection of the inter-
tace 430, the operations analyzer 150 generates a report 440
as discussed herein. The report 440 may be generated within
the user interface 400, as illustrated 1mn FIG. 4, or may be
generated at a separate location. For example, the report 440
may be generated and save in the database 130 for later
analysis.

Generally speaking, the various functions and features of
method 300 may be carried out with any sort of hardware,
soltware and/or firmware logic that 1s stored and/or executed
on any platform. Some or all of method 300 may be carried
out, for example, by logic executing within system 100 1n
FIG. 1. For example, various functions shown in FIG. 3 may
be 1mplemented using software or firmware logic that 1s
stored in memory 106 and executed by processor 103 as part
of application platform 110. The particular hardware, sofit-
ware and/or firmware logic that implements any of the vari-
ous functions shown in FIG. 3, however, may vary from
context to context, implementation to implementation, and
embodiment to embodiment 1n accordance with the various
features, structures and environments set forth herein. The
particular means used to implement each of the various func-
tions shown 1n FIG. 3, then, could be any sort of processing,
structures that are capable of executing software and/or firm-
ware logic 1n any format, and/or any sort of application-
specific or general purpose hardware, including any sort of
discrete and/or integrated circuitry.

The term “exemplary” 1s used herein to represent one
example, instance or illustration that may have any number of
alternates. Any implementation described herein as “exem-
plary” should not necessarily be construed as preferred or
advantageous over other implementations.

Although several exemplary embodiments have been pre-
sented 1n the foregoing description, 1t should be appreciated
that a vast number of alternate but equivalent variations exist,
and the examples presented herein are not intended to limat
the scope, applicability, or configuration of the invention in

10

15

20

25

30

35

40

45

50

55

60

65

8

any way. To the contrary, various changes may be made in the
function and arrangement of the various features described
herein without departing from the scope of the claims and
their legal equivalents.

What 1s claimed 1s:

1. A system for analyzing operations in a multi-tenant

database system environment, comprising:

a database storing tenant application code, the tenant appli-
cation code umique and accessible to only one of a plu-
rality of tenants of the multi-tenant database system, and
storing common application code, the common applica-
tion code common and accessible to a plurality of ten-
ants of the multi-tenant database system, the tenant
application code and common application code both
controlling a modification of an object 1n the multi-
tenant database system environment; and

a processor to:
identify the object 1n the multi-tenant database system

environment;

tracing through the tenant application code to identify
therein every instance where system rules modity the
object before and after the object 1s saved,
tracing through the common application code to identify
therein every instance where tenant rules modity the
object before and after the object 1s saved, and
generate a debugging report identifying every instance
in the tenant application code and the common appli-
cation code where the object 1s being modified.
2. The system of claim 1, wherein the generated debugging,
report 1dentifies a pre-trigger rule associated with the object.
3. The system of claim 2, wherein the pre-trigger rule 1s one
of a customer written validation rule and a system validation
rule which validates a data field associated with the object
betore the object 15 saved.
4. The system of claim 1, wherein the generated debugging
report 1identifies a post-trigger rule associated with the object.
5. The system of claim 4, wherein the post-trigger rule 1s
one of an assignment rule, a workilow rule and an escalation
rule which causes an action after the object 1s saved.
6. The system of claim 5, wherein the action 1s an update to
the object.
7. The system of claim 5, wherein the action 1s creation,
read, update, deletion or undeletion of a second object.
8. The system of claim 1, wherein the generated debugging,
report 1dentifies a recursive save of the object.
9. The system of claim 1, wherein the modification 1s one of
a creation, read, update, deletion or undeletion operation on
the object.
10. A method for analyzing operations in a multi-tenant
database system environment by a processor, comprising:
identifying, by the processor, an object 1n the multi-tenant
database system environment;
tracing through, by the processor, common application
code, the common application code accessible to a plu-
rality of tenants of the multi-tenant database system, to
identily therein every instance where system rules
modily the object before and after the object 1s saved;
tracing through, by the processor, tenant application code,
the tenant application code unique and accessible to only
one specific tenant of the multi-tenant database system,
to 1dentily therein every instance where tenant rules
modily the object before and aifter the object 1s saved;
and
generating, by the processor, a debugging report identify-
ing every mstance i the common application code and
tenant application code where the object 1s being modi-

fied.

US 9,053,231 B2

9

11. The method of claim 10, further comprising identifying
a pre-trigger rule which validates a data field associated with
the object before the object 15 saved.

12. The method of claim 11, further comprising identifying
a post-trigger rule which causes an action after the object 1s
saved.

13. The method of claim 12, wherein the action 1s an update
to the object.

14. The method of claim 12, wherein the action 1s creation,
read, update, deletion or undeletion of a second object.

15. The method of claim 12, further comprising determin-
ing a processing time associated with each pre-trigger rule
and post trigger rule,

wherein the generating a report further comprises reporting
the determined processing time associated with each
pre-trigger rule and post trigger rule.

16. The method of claim 10, further comprising identifying
a recursive save of the object.

17. The method of claim 10, further comprising parsing the
respective application code to 1identity to identity system and
tenant rules which atfect the object before and after the object
1s saved.

10

15

20

10

18. A user interface for visualizing create, read, update,
delete and undelete (“CRUD”) operations aifecting an object
in a multi-tenant database system environment, comprising;:

a display, comprising;:

an 1nterface for selecting an object;

an 1nterface for causing the generation of a debugging
report identilying each instance 1n tenant application
code unique and accessible to only one of a plurality
of tenants of the multi-tenant database where system
rules modity the object before and after the object 1s
saved and for identifying each instance in common
application code common and accessible to a plurality
of tenants of the multi-tenant database system where
system rules modily the object before and after the
object 1s saved by tracing through both the tenant
application code and common application code.

19. The user interface of claim 18, wherein the report
provides a link to tenant specific code or tenant common code
where the selected object 1s atfected by the selected CRUD
operation.

20. The user interface of claim 18, wherein the user inter-
face 1s presented to an administrator of the multi-tenant data-

base system.

	Front Page
	Drawings
	Specification
	Claims

