12 United States Patent

Swift et al.

US009053167B1

US 9,053,167 B1
Jun. 9, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

2007/0067435 Al
2008/0091740 Al

STORAGE DEVICE SELECTION FOR
DATABASE PARTITION REPLICAS

Applicant: Amazon Technologies, Inc., Reno, NV

(US)

Inventors: Bjorn Patrick Swift, Seattle, WA (US);
Wei Xiao, Kirkland, WA (US); Stuart
Henry Seelye Marshall, Scattle, WA
(US); Stefano Stefani, Issaquah, WA
(US); Timothy Andrew Rath, Scattle,
WA (US); David Alan Lutz, Renton,
WA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 131 days.

Appl. No.: 13/922,001

Filed: Jun. 19, 2013

Int. CI.

Gool’ 17/00 (2006.01)

Gool’ 17/30 (2006.01)

U.S. CL

CPC i, GO6F 17/30584 (2013.01)

Field of Classification Search

CPC e GO6F 17/30

USPC e, 70°7/600-899

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3/2007 Landis et al.
4/2008 Le Merrer et al.

2008/0263001 Al 10/2008 Lohman et al.
2011/0178985 Al* 7/2011 San Martin Arribas
etal. ..., 707/636
2011/0191299 Al* 82011 Huynh Huuetal. ... 707/646
2012/0109852 Al 5/2012 Lingam et al.
2012/0131093 Al 5/2012 Hamano et al.
2012/0166424 Al 6/2012 Annapragada
2012/0210047 Al 8/2012 Peters et al.
2012/0323852 Al 12/2012 Jain et al.
2013/0311424 Al* 11/2013 Bartolome Rodrigo 707/609

* cited by examiner

Primary Examiner — Isaac M Woo

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

A system that implements a data storage service may store
data 1n multiple replicated partitions on respective storage
nodes. The selection of the storage nodes (or storage devices
thereol) on which to store the partition replicas may be per-
tformed by administrative components that are responsible for
partition management and resource allocation for respective
groups ol storage nodes (e.g., based on a global view of
resource capacity or usage), or the selection of particular
storage devices of a storage node may be determined by the
storage node 1tself (e.g., based on a local view of resource
capacity or usage). Placement policies applied at the admin-
istrative layer or storage layer may be based onthe percentage
or amount of provisioned, reserved, or available storage or
IOPS capacity on each storage device, and particular place-
ments (or subsequent operations to move partition replicas)
may result in an overall resource utilization that 1s well bal-
anced.

20 Claims, 16 Drawing Sheets

store metadata about each of the storage nodes of a
distributed data storage system, including metadata indicating
an amount of IOPS capacity for each of the storage nodes

110

receive a request from a storage system client to sfore
at least a portion of a database fable in the storage system

120

determine that a given one of the storage nodes

is a potential host for the fable (or portion thereof),
dependent on the stored metadata and on additional

information recetved from the given storage node

130

send the table (or portion thereof)
{o the given node for storage

140

U.S. Patent Jun. 9, 2015 Sheet 1 of 16 US 9,053,167 B1

Sstore metadata about each of the storage nodes of a
distributed data storage system, including metadata indicating
an amount of IOPS capacity for each of the storage nodes
110

receive a request from a storage system client to store
at least a portion of a database table in the storage system
120

determine that a given one of the storage nodes
IS a potential host for the table (or portion thereof),
dependent on the stored metadata and on additional
information received from the given storage node
130

send the table (or portion thereof)
to the given node for storage
140

FIG. 1

U.S. Patent Jun. 9, 2015 Sheet 2 of 16 US 9,053,167 B1

200

client client
209 205

Web Web Web
service A server service B
225 235 245

Web
service C

299

FIG. 2

U.S. Patent Jun. 9, 2015 Sheet 3 of 16 US 9,053,167 B1

storage service client storage service client
310a S 310n

network
320

Web services platform 330

external

front end module auto admin instance(s) Workfiow
340 350 component
370

storage node storage node
instance Instance

360a S 360

FIG. 3

U.S. Patent Jun. 9, 2015

front end module
340

request parsing & throttling
410

authentication/metering
419

request dispatching
425

partition map cache
430

message bus | dynamic configure
439 440

FIG. 4A

storage node instance
360

message bus| dynamic configure
439 440

partition manager
470

replication & failover
479

storage APl
480

storage engine
485

FIG. 4C

Sheet 4 of 16

auto admin instance
350

visibility and control
445

heat balancing anomaly control
490 499

resource allocation
460

message bus | dynamic configure
439 440

partition management scheduler
420

admin console
469

FIG. 4B

US 9,053,167 B1

U.S. Patent Jun. 9, 2015 Sheet 5 of 16 US 9,053,167 B1

invoke Create Iable workflow; input
parameters include table identifier,

partition identifiers, and table name
210

update table status to “creating”
220

any old
partitions exist for this
table name?

230

delete old partitions
939

create partitions for the table (includes
selecting nodes, creating replicas for
each partition, provisioning resources for each

partition replica, and updating metadata
for the replicas in a Partitions table)
240

update metadata for the table in a Nodes table
290

update table status to “active”

260

FIG. 5

U.S. Patent Jun. 9, 2015 Sheet 6 of 16 US 9,053,167 B1

a data storage service Initiates
the partitioning of a table
maintained in a non-relational data

store on behalf of a client
610

multiple
items in the table share a
hash key attribute value?
620

o

yes the data store divides the items
in the table into two or more

partitions dependent on a hash of
the data store divides the ifems

in the table into two or more partitions
dependent first on a hash of their hash
key aftribute values and then on their
respective range key attribute values
640

their hash key attribute values
630

the data store stores each of
the two or maore partitions on a
respective storage node
630

the data store replicates each of
the two or more partitions on one or
more additional storage nodes
660

FIG. 6

U.S. Patent Jun. 9, 2015 Sheet 7 of 16 US 9,053,167 B1

receive request to move a replica of a partition
710

create destination replica
720

while a replica of the source partition is live,
copy the table data from the source replica
to the destination replica using file copy
mechanism or other physical copy mechanism
/30

perform a catch-up operation to reconcile any
changes to replica data not yet reflected in copy
740

direct traffic away from copied replica
and toward designation replica
790

FIG. 7

U.S. Patent Jun. 9, 2015 Sheet 8 of 16 US 9,053,167 B1

receive a request to split a partition
810

while original replicas of the source partition are live,
initiate creation of one or more destination replicas
820

copy the source partition to the destination replicas
using a physical copy mechanism, bring up-to-date
830

propagate a special “write” (or “split’) command
to divide the replicas into new replica groups
and designate each replica group as handling
a respective portion of the split partition
840

elect one or more masters for
each of the new replica groups
890

each replica group handles requests directed
to a respective portion of the original partition
860

perform logical reclamation of unused

portions of split partition replicas
870

FIG. 8

U.S. Patent Jun. 9, 2015 Sheet 9 of 16 US 9,053,167 B1

admin component receives request to store a table (or a
partition/replica thereof) in a distributed storage system
910

admin component selects ten storage nodes at random,
and applies filter criteria to them based on stored
metadata about their respective IOPS capacities
920

any
storage nodes eligible
for hosting?
930

yes

admin component sends message to an eligible storage
node to see If it can host the table (or partition/replica),
includes its current and/or projected storage requirements
940

storage
node identifies eligible
storage device(s)?
920

o

yes

storage node returns indication that it cannot serve as host
960

storage node retums

more T .
es . o indication that it can
eligible st%r?ge nodes: serve as host

929

0

admin component stores table (or

partition/replica) on storage node
980

FIG. 9

U.S. Patent Jun. 9, 2015 Sheet 10 of 16 US 9,053,167 B1

storage node receives a request to reserve capacity for
storing a table (or a partition/replica thereof), includes
current/projected storage requirements and reservation 1D
1010

storage node altempis to identify a storage device/volume
with avallable storage capacity within a given range

1020

storage
try another node selects a device/
range volume with available capacity in
1035 range, adds to result set?
1030

ves

identifiec
storage device(s)/

volume(s) sufficient?
1040

yes

storage node reserves Mo

the set of storage
devices/volumes for
the table (or partition/

more
device(s)/volume(s) in
the given range?
1050

ves

replica) until a timeout
period expires, returns
acknowledgement,

. . . no
including reservation 1D try another range
1060 1095

Storage node
stores table (or partition
replica) to identified storage
device(s)/volume(s)?

reservation
times out?

1080

yes
reservation released
placement operation without completing
complete placement operafion

1075 1089 FIG. 10

U.S. Patent Jun. 9, 2015 Sheet 11 of 16 US 9,053,167 B1

admin component stores mappings of tables, pariitions,

and replicas to storage nodes and/or individual storage

devices or virtual storage volumes of each storage node
1110

admin component gathers resource related metadata for
each of the storage nodes and/or individual storage devices
or virtual storage volumes of each storage node
1120

admin component stores gathered metadata
locally for consistent view of local metadata
1130

admin component pushes gathered metadata
to one or more other admin components for

eventually consistent view(s) of global metadata
1140

admin component determines potential placement
for a table (or partition/replica thereof) on a particular
Sstorage node and/or particular storage devices or virtual
storage volumes based on known and/or projected
requirements and local and/or global metadata

1150

admin
component confirms
potential placement with

storage node?
1160

no

yes

admin component stores table (or partition/replica)
on the particular storage node or device(s)/volume(s)

1170

FIG. 11

U.S. Patent Jun. 9, 2015 Sheet 12 of 16 US 9,053,167 B1

admin component contacts a storage node to obtain
resource related metadata about individual storage

devices or virtual storage volumes of the storage node
1210

admin component receives the resource related metadata

from the storage node, stores locally in memory
1220

admin
component responsible for
more storage nodes?
1230

yes

fo

admin component receives resource related metadala
from other admin components, stores locally in memory
1240

admin component creates n-dimensional representation
of resource capacity and/or usage for at least its nodes
based on the stored resource related metadata
1250

admin component receives request to place a table
(or a partition or replica thereof) in storage
1260

admin component determines placement for the table (or

partition/replica) based on the n-dimensional representation
1270

FIG. 12

US 9,053,167 B1

Sheet 13 0f 16

Jun. 9, 20135

U.S. Patent

&L Ol

00€}

abesn ysip
60 80 .0 90 GO 70 £0 ¢ 0 L0 0
I_l - e . l_l + ““ Q
.I.I_IIIII lllllll -4 + + .ll.t
+ .._..._.._.._.__. N e + N + +_ o° + +
’ « + o’ +
’ + + . T + 4 o t
.!-_ Ja + + r o+ .ﬂ.tt..__-. 4+ -+ +
4
s -+ . + + I_I =+ “‘ 4~ + +
0ES L~ . o 4 etTh + + 00¢
sopou % ¥ * s R
+ » +
N paZiinnN-19purl err 4 tii + +t\.ﬂ + 4 + +
- »
Ajawanxa el + e + L+ ...u......+ ++ " P
l:ll:l.l.llll.l.l.l_l‘l_l + ‘_l.lf -+ =+ + +
+ + ’+t +
+ + + 4+ .“_u.t._.+ + + + + 00¥
-+ o’
+ +
T PR + * T
<+ |_|+.l.‘.l + + e ¥ X L R B K X N Yegreay
+ + et + T L + T
+ -+ + Y e + Y
+++____..__..__.+ T+ + P T >
>
uonezijin 10b.e] .._...___.....___.+ oo+ + + +-a.... + + + + OQ@...
Q“M\Jh ‘_“.‘ ""'. e .‘_“
J “ "ll..l..' 'll"‘ll'-'.
‘_‘
(
R 0z} .
.___.__..___.._.. + SOPOU pPazZijin-i1spun
&
&
o’ 008
+
000}

SdOl

U.S. Patent Jun. 9, 2015 Sheet 14 of 16 US 9,053,167 B1

admin component receives request from a client to place a
table (or a partition or replica thereof) in storage
1410

admin component determines known and/or projected
resource requirements (e.q., for storage and/or [OPS)
for the table (or partition/replica thereof)
1420

admin component accesses an n-dimensional
representation of resource capacity and/or
usage for at least its own storage nodes

1430

admin component determines ideal (or target) resource
utilization for the resources represented in the n-dimensions
1440

admin component determines ideal (targeft)
placement for table (or partition/replica) based on
current and/or projected resource requirements
1450

admin component determines storage nodes and/or
individual storage devices/volumes closest to the ideal
placement for the table in the n-dimensional representation
1460

FIG. 14

U.S. Patent Jun. 9, 2015 Sheet 15 of 16 US 9,053,167 B1

admin component (or balancing process thereof) accesses
an n-dimensional representation of resource capacity
and/or usage for at least its own storage nodes
1510

admin component determines known and/or
projected resource capacity requirements (e.q.,
for storage and/or IOPS) for the storage nodes
1520

admin component determines current and/or projected
deviations from ideal (or target) resource utilization for the
Storage node resources represented in the n-dimensions

1530

admin component determines highest priority partition
management operations to move toward ideal resource
utilization, based on the relative deviations

1540

admin component initiates performance of at least some
of the highest priority partition management operations
1550

FIG. 15

U.S. Patent Jun. 9, 2015 Sheet 16 of 16 US 9,053,167 B1

computing node 1600

pProcessor processor pProcessor

1610a 161006 - 1610n

I/0 Interface
1630

memory network -
1620 interface | | "P4/o! ;‘g)“t
1640 1650

program

instructions
1625

\/

to/from
communication
devices, external
storage devices,
input/output devices
ana/or other
computing devices

FIG. 16

US 9,053,167 Bl

1

STORAGE DEVICE SELECTION FOR
DATABASE PARTITION REPLICAS

BACKGROUND

Several leading technology organizations are mvesting 1n
building technologies that sell “software-as-a-service”. Such
services provide access to shared storage (e.g., database sys-
tems) and/or computing resources to clients, or subscribers.
Within multi-tier e-commerce systems, different resources
may be allocated to subscribers and/or their applications from
whole machines, to CPU, to memory, to network bandwidth,
and to I/O capacity.

Database systems managing large amounts of data on
behalf of users may distribute and/or replicate that data across
two or more machines, often 1n different locations, for any of
a number of reasons, including security 1ssues, disaster pre-
vention and recovery issues, data locality and availability
1ssues, etc. These machines may be configured 1n any number
of ways, including as a shared resource pool. For example, a
database table may be split into two or more partitions, each
of which may bereplicated, and each replica may be stored on
a different machine. If a partition gets too large, it may be split

into smaller partitions (each stored on a different machine) or
moved to another machine.

Interaction between client applications and database serv-
ers typically includes read operations (read-only queries),
write operations (to store data), and update operations that
can be conceptualized using a read-modify-write workilow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow diagram 1illustrating one embodiment of a
method for placing a database table (or portion thereof) on a
given storage node of a distributed database system.

FI1G. 2 1s a block diagram 1llustrating one embodiment of a
system that provides various Web-based services to clients.

FI1G. 3 15 a block diagram 1llustrating one embodiment of a
system architecture that 1s configured to implement a Web
services-based data storage service.

FIGS. 4A-4C are block diagrams 1llustrating various com-
ponents ol a Web services platform, according to one embodi-
ment.

FIG. 5 1s a flow diagram 1illustrating one embodiment of a
workilow for creating a table.

FIG. 6 1s a tlow diagram illustrating one embodiment of a
method for partitioning a table maintained in a non-relational
data store.

FI1G. 7 1s a tlow diagram 1illustrating one embodiment of a
method for moving a replica of a partition of a table being
maintained by a data storage service on behalf of a storage
service client while the partition 1s “live”.

FIG. 8 1s a flow diagram illustrating one embodiment of a
method for splitting a partition of a table being maintained by
a data storage service 1n response to a request to do so.

FIG. 9 1s a flow diagram illustrating one embodiment of a
method for selecting a storage node on which to store a table
(or a partition or partition replica thereof).

FI1G. 10 1s a flow diagram 1llustrating one embodiment of a
method for determining one or more storage devices or logi-
cal storage volumes of a storage node on which to store a table
(or a partition or partition replica thereotd).

FI1G. 11 1s a flow diagram 1llustrating one embodiment of a
method for selecting a storage node or particular storage
devices/volumes on which to store a table (or a partition or
partition replica thereof) based, at least 1n part, on resource

10

15

20

25

30

35

40

45

50

55

60

65

2

related metadata gathered from one or more storage nodes of
a distributed data storage system.

FIG. 12 1s a tlow diagram 1illustrating one embodiment of a
method for creating a multi-dimensional representation of
resource capacity and/or usage and determiming placement of
a table (or a partition or partition replica thereot) based, at
least i part, on the multi-dimensional representation.

FIG. 13 illustrates an example scatter graph depicting
IOPS and disk usage for the storage devices/volumes of a
distributed data storage system according to one embodi-
ment.

FI1G. 14 1s a flow diagram 1illustrating one embodiment of a
method for placing a table (or a partition or partition replica
thereol) on particular storage nodes and/or individual storage
devices/volumes based on a multi-dimensional representa-
tion of resource capacity and/or usage.

FIG. 15 1s a tlow diagram 1illustrating one embodiment of a
method for performing a resource balancing operation 1n a
distributed data storage system.

FIG. 16 1s a block diagram 1illustrating a computing node
that implements one or more of the techniques described
herein for managing partitions of various tables and/or sched-
uling partition management operations in a distributed data-
base system, according to various embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not mtended to limit embodiments to the
particular form disclosed, but on the contrary, the intention 1s
to cover all modifications, equivalents and alternatives falling,
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” 1s used 1n a permissive sense (1.€., meaning
having the potential to), rather than the mandatory sense (1.¢.,
meaning must). Similarly, the words “include”, “including”,
and “includes™ mean including, but not limited to.

DETAILED DESCRIPTION

The systems and methods described herein may be
employed 1n various combinations and 1n various embodi-
ments to implement a Web-based service that provides data
storage services to storage service clients (e.g., user, subscrib-
ers, or client applications that access the data storage service
on behalf of users or subscribers). The service may in some
embodiments support the seamless scaling of tables that are
maintained on behalf of clients 1n a non-relational data store,
¢.g., a non-relational database. The service may provide a
high level of durability and availability through replication, in
some embodiments. For example, 1n some embodiments, the
data storage service may store data in multiple partitions (e.g.,
partitions that each contain a subset of the data 1n a table being
maintained on behalf of a client), and may store multiple
replicas of those partitions on respective storage devices or
virtual storage volumes of different storage nodes. As
described herein, the selection of particular storage nodes
and/or storage devices (or volumes) on which to store each
table, partition, or replica may be determined locally (e.g., by
the storage nodes themselves), centrally (e.g., by a compo-
nent that manages and/or allocates resources for multiple
storage nodes using global criteria), or by various combina-
tions of local and global resource management and allocation
processes, 1n different embodiments.

US 9,053,167 Bl

3

In some embodiments, the service may support automatic
live repartitioning of data in response to the detection of
various anomalies (e.g., failure or fault conditions, hot spots,
or 1increases 1n table size and/or service request throughput),
and/or explicit (e.g., pro-active and/or subscriber-imitiated)
live repartitioning of data to support planned or anticipated
table size and/or throughput increases. In other words, the
service may in some embodiments initiate the re-sizing (scal-
ing) and/or repartitioning of a table programmatically 1n
response to recerving one or more requests to store, retrieve,
modily, or delete 1items in the scalable table. In some embodi-
ments, a table may be repartitioned 1n response to crossing a
pre-determined maximum threshold for the amount or per-
centage ol resources (e.g., storage resource capacity or
throughput capacity) that are provisioned to implement vari-
ous tables, partitions, and replicas on the storage devices (or
logical volumes) of a storage node. As used herein, the term
“repartitioning’ may be used to describe any of a variety of
types ol partition management operations, in different
embodiments. For example, repartitiomng a table may
include splitting a partition (or one or more replicas of a
partition) into multiple smaller partitions and/or moving one
or more partitions (or replicas thereot) from one storage node
(or storage device) to a different storage node (or storage
device).

In various embodiments, the data storage service described
herein may provide an application programming intertace
(API) that includes support for some or all of the following
operations on the data 1n a table maintained by the service on
behalf of a storage service client: put (or store) an 1tem, get (or
retrieve) one or more items having a specified primary key,
delete an 1item, update the attributes in a single 1tem, query for
items using an index, and scan (e.g., list items) over the whole
table, optionally filtering the items returned. The amount of
work required to satisty service requests that specily these
operations may vary depending on the particular operation
specified and/or the amount of data that 1s accessed and/or
transierred between the storage system and the client 1n order
to satisiy the request.

In some embodiments, the service (and/or the underlying
system that implements the service) may support a strong
consistency model, 1n addition to supporting eventually con-
sistent read operations. In some embodiments, service
requests made via the API may include an indication of one or
more user preferences, such as a preferred consistency model,
a preferred service request throughput level, or a service
request throughput level for which a guarantee 1s requested.
In other embodiments, some or all of these user preferences
may be specified when a table 1s created, or may be client-
specific, account-specific, specific to various table types, or
specified by system-wide default values, rather than being
specified on a per-request basis. The API may support
extreme scaling and/or more predictable performance than
that provided by prior data storage systems and services.

In various embodiments, the systems described herein may
store data in replicated partitions on multiple storage nodes
(which may be located in multiple data centers) and may
implement a single master failover protocol. For example,
cach partition may be replicated on two or more storage nodes
(or storage devices thereol) 1n a distributed database system,
where those replicas make up a replica group. In some
embodiments, membership 1n various replica groups may be
adjusted through replicated changes, and membership and
other updates 1n the system may be synchronized by synchro-
nizing over a quorum of replicas in one or more data centers
at fallover time.

10

15

20

25

30

35

40

45

50

55

60

65

4

As described herein, when a database table 1s created,
various resources may be provisioned for the implementation
of that table, including storage resources (e.g., disk capacity),
and throughput capacity (which may, e.g., be specified 1n
terms of mput/output requests per second, or IOPS, for read
operations and/or write operations). If the table 1s divided into
two or more partitions (e.g., 1f various data items are stored on
different ones of the partitions according to their primary key
values), the provisioned resources may also be divided among
the partitions. For example, 1f a database table 1s divided 1nto
two partitions, each partition may have access to half of the
total amount of storage and/or throughput resources that are

provisioned and/or committed for the implementation of the
table.

In some embodiments, a partition replica may be assigned
to a particular storage node based (at least 1n part) on whether
there 1s enough storage capacity for the anticipated size of the
partition replica and/or on whether there 1s enough provi-
sioned throughput capacity for the anticipated work load
directed to the partition replica. For example, the anticipated
s1ze or throughput requirements for the partition replica may
be based on mformation included 1n a request to create the
table (or a partition thereot), on usage history for the client on
whose behalf the table (or partition) was created, or on a
history of accesses that target the table, the partition, or the
replica 1itself (e.g., 1f this 1s a partition replica that 1s being
reassigned as part of a move operation). In some embodi-
ments, 1f the partition replica 1s assigned to a particular stor-
age node based largely on 1ts anticipated size, there may or
may not be enough throughput capacity for the partition rep-
lica on the selected storage node (or storage device thereot).
For example, a disk to which the partition replica 1s assigned
may be oversubscribed 1n terms of IOPS, the actual number of
IOPS may be more than was expected, or the provisioned (or
committed) number of IOPS may have grown after the parti-
tionreplica was created (e.g., using an Updatelable operation
to increase the provisioned throughput capacity for read
operations and/or write operations). In some embodiments,
an UpdateTable operation may be invoked by a client through
a graphical user mterface (GUI). In other embodiments, an
UpdateTable operation may be mvoked through an
UpdateTable API whose inputs include an i1dentifier of the
table for which additional throughput capacity 1s desired, a
desired (e.g., increased) number of IOPS for read operations
and/or a desired (e.g., increased) number of IOPS for write
operations. In some embodiments, 1 the partition replica 1s
assigned to a particular storage node based largely on 1ts
anticipated throughput requirements, there may or may notbe
enough storage capacity for the partition replica on the
selected storage node (or storage device thereot). In some or
all of these cases, the partition replica may need to be moved
to another storage node (or storage device) or split mnto two
new (smaller) partitions, each of which may be hosted on a
different storage device (or storage node).

Note that while several techmques for identifying candi-
date partition management operations, determining an order
in which to perform them, and/or selecting appropriate stor-
age nodes (or storage devices/volume thereol) on which to
store partitions are described herein 1n terms of splitting or
moving replicas of various database table partitions, these
techniques may be more generally applicable 1n any situation
and/or at any time 1n which a re-sizeable collection of data
(e.g., a collection of data for which a fluctuating, “bursty”, or
otherwise variable amount of storage, throughput, or other
resources may be provisioned and/or consumed over time) 1s
stored 1n a distributed data storage system.

US 9,053,167 Bl

S

As described 1n more detail herein, moving a partition
replica may involve creating one or more copies of a partition
(or partition replica) on respective storage nodes (or storage
devices thereol) and then redirecting at least some of the
subsequent requests that target the partition to the new copy
(or copies). Note that 1n some embodiments, an operation to
split a partition may consume more resources than an opera-
tion to move a partition of similar size. For example, in some
embodiments, splitting a partition into two new partitions
may include duplicating all of the replicas of the partition
(1.e., doubling the number of replicas), and then dividing each
of them 1n half. In other words, an operation to split a partition
may affect all of the replicas in the replica group and an
additional complete set of replicas (at least until the split
operation 1s completed).

In some embodiments of the distributed database systems
described herein, each storage node may include multiple
storage devices or logical volumes, each of which stores
various partition replicas. For example, in one embodiment
cach storage node of the distributed database system may
include five storage devices or logical storage volumes. In
some embodiments, one or more mechanisms may be imple-
mented on each of the storage nodes for determining, on a
local level (e.g., on a storage node basis) whether and/or how
to split a partition or move a partition (or a given replica of a
partition), based on the current utilization of provisioned
resources and/or other information. For example, one of the
storage nodes may be configured to determine that a partition
for which a replica 1s stored on one of its storage devices (e.g.,
disks) or logical storage volumes should be split into two new
partition, and may divide the data in the partition by hash
ranges, by key space ranges, or using other criteria to divide
the data between the two new partitions. In another example,
a storage node may be configured to determine that one or
more partitions (or replicas thereot) should be moved from a
given storage device or logical storage volume to another
storage device or logical storage volume, e.g., 1n order to
reduce the amount of provisioned storage capacity or
throughput capacity on the given storage device or logical
storage volume.

In some embodiments, once a storage node has 1dentified a
candidate partition management operation to be performed
locally, 1t may send information about the candidate operation
to a central partition management scheduler. The central par-
tition management scheduler may apply a global prioritiza-
tion scheme across all candidate partition management opera-
tions to be performed on all of the storage nodes in the
distributed database system to determine the order (or relative
order) 1n which at least some of them should be performed. In
some embodiments, the order 1n which the candidate partition
management operations are scheduled for execution may be
dependent on whether they mvolve partition splitting opera-
tions or partition moving operations, among other things. For
example, partition splitting operations may be prioritized
over partition moving operations, 1n some embodiments. In
other embodiments, a balancer process running on a central
component (e.g., administrative component) may gather or
accesses information about each of the storage nodes 1n the
system (and/or their storage devices/volumes) in order to
determine whether to move any partitions or replicas to better
balance the resource utilization across the storage fleet (or at
least across a portion of the storage fleet). One such balancing
process 1s illustrated 1n FIG. 15 and described below.

In various embodiments, once a partition management
operation 1s requested (e.g., by a client process, by a balanc-
Ing process, by a fallover process, or as aresult of another type
of trigger), the destination storage nodes (and/or devices/

10

15

20

25

30

35

40

45

50

55

60

65

6

volumes thereotf) for those operations may be selected locally
(e.g., by the storage nodes themselves), centrally (e.g., by a
component that manages and/or allocates resources for mul-
tiple storage nodes using global criteria), or by various com-
binations of local and global resource management and allo-
cation processes. For example, various techniques may be
applied to select a storage node and/or particular storage
devices/volumes on which to place a particular table, parti-
tion, or replica as part of creating a table, partitioning a table
(e.g., at creation or later), replicating a table (or a partition
thereol), splitting a partition (or partition replica), or moving,
a partition (or partition replica), some of which are described
in detail herein.

One embodiment of a method for placing a database table
(or portion thereof) on a given storage node of a distributed
database system 1s illustrated by the tflow diagram in FIG. 1.
As illustrated at 110, 1n this example, the method may include
storing metadata about each of the storage nodes of a distrib-
uted data storage system (e.g., one that implements a distrib-
uted database system), including metadata indicating an
amount of IOPS capacity for each of the storage nodes (e.g.,
metadata indicating the total amount of IOPS capacity for
cach node, the amount of provisioned IOPS capacity for each
node, the amount of reserved 10PS capacity for each node,
and/or the amount of available IOPS capacity for each node).
The method may also include receiving a request from a
storage system client to store at least a portion of a database
table 1n the storage system, as 1n 120. For example, 1n some
embodiments, the request may be made as part of an opera-
tion to create a table, to split a table or a partition, or to move
a table (or a partition or replica thereof).

As 1illustrated in this example, the method may include
determining that a grven one of the storage nodes 1s a potential
host for the table (or portion thereot), dependent on the stored
metadata and on additional information recerved from the
given storage node, as 1n 130, and then sending the table (or
portion thereotf) to the given node for storage, as in 140. As
described in more detail below, 1n different embodiments, the
determination may include querying the storage node for
information, 1.e., contacting the storage node to obtain addi-
tional resource related metadata, to obtain an acknowledge-
ment or confirmation that the storage node has sufficient
resource capacity (e.g., in terms of storage capacity or IOPS
capacity) to host the table (or portion thereof), to obtain
conflrmation of a reservation for enough resource capacity to
host the table (or portion thereot), or to obtain other informa-
tion, or the storage node may send additional information
without being prompted to do so.

Various techniques described herein may be employed 1n
local or remote computing systems, including systems that
provide services to users (e.g., subscribers) over the Internet
or over other public or private networks, such as virtual pri-
vate networks and connections to services 1n a virtual private
cloud (VPC) environment. FIG. 2 illustrates a block diagram
of a system that provides various Web-based services to cli-
ents, according to one embodiment. In this example, system
200 includes one or more clients 205. In this example, the
clients 205 may be configured to interact with a Web server
235 via a communication network 215.

As 1llustrated 1n thus example, the Web server 235 may be
configured to process requests from clients 2035 for various
services, such as Web service A (225), Web service B (245),
and Web service C (2535), and to return results to the clients
205. Each of the web services may provide clients with one or
more of: computational resources, database services, data

US 9,053,167 Bl

7

storage services (e.g., maintaining data in one or more tables
on behalf of a client), or any other types of services or shared
resources.

One embodiment of a system architecture that 1s config-
ured to implement a Web services-based data storage service
such as that described herein s illustrated 1n FIG. 3. It1s noted

that where one or more 1nstances of a given component may
exi1st, reference to that component herein below may be made
in either the singular or the plural. However, usage of either
form 1s not intended to preclude the other. In various embodi-
ments, the components illustrated 1n FIG. 3 may be imple-
mented directly within computer hardware, as instructions
directly or indirectly executable by computer hardware (e.g.,
a microprocessor or computer system), or using a combina-
tion of these techniques. For example, the components of
FIG. 3 may be implemented by a distributed system including
a number of computing nodes (or simply, nodes), such as the
example computing node 1llustrated in FIG. 16 and described
below. In various embodiments, the functionality of a given
storage service system component may be implemented by a
particular computing node or may be distributed across sev-
eral computing nodes. In some embodiments, a given com-
puting node may implement the functionality of more than
one storage service system component.

Generally speaking, storage service clients 310a-310x
may encompass any type of client configurable to submit web
services requests to Web services platform 330 via network
320. For example, a given storage service client 310 may
include a suitable version of a web browser, or a plug-in
module or other type of code module configured to execute as
an extension to or within an execution environment provided
by a web browser to provide database or data storage service
clients (e.g., client applications, users, and/or subscribers)
access to the services provided by Web services platiform 330.
Alternatively, a storage service client 310 may encompass an
application such as a database application, media application,
oflice application or any other application that may make use
of persistent storage resources. In some embodiments, such
an application may include sufficient protocol support (e.g.,
for a suitable version of Hypertext Transier Protocol (HTTP))
for generating and processing web services requests without
necessarily implementing full browser support for all types of
web-based data. That 1s, storage service client 310 may be an
application configured to interact directly with Web services
platform 330. In various embodiments, storage service client
310 may be configured to generate web services requests
according to a Representational State Transter (REST)-style
web services architecture, a document- or message-based
web services architecture, or another suitable web services
architecture.

In some embodiments, storage service client 310 may be
configured to provide access to web services-based storage to
other applications in a manner that is transparent to those
applications. For example, storage service client 310 may be
configured to integrate with an operating system or file sys-
tem to provide storage 1n accordance with a suitable variant of
the storage model described herein. However, the operating
system or {ile system may present a different storage interface
to applications, such as a conventional file system hierarchy
of files, directories and/or folders. In such an embodiment,
applications may not need to be modified to make use of the
storage system service model described herein. Instead, the
details of interfacing to Web services platform 330 may be
coordinated by storage service client 310 and the operating
system or file system on behall of applications executing
within the operating system environment.

10

15

20

25

30

35

40

45

50

55

60

65

8

Storage service clients 310 may convey web services
requests to and receive responses from Web services platform
330 via network 320. In various embodiments, network 320
may encompass any suitable combination of networking
hardware and protocols necessary to establish web-based
communications between clients 310 and platform 330. For
example, network 320 may generally encompass the various
telecommunications networks and service providers that col-
lectively implement the Internet. Network 320 may also
include private networks such as local area networks (LANSs)
or wide area networks (WANs) as well as public or private
wireless networks. For example, both a given client 310 and
Web services platform 330 may be respectively provisioned
within enterprises having their own internal networks. In such
an embodiment, network 320 may include the hardware (e.g.,
modems, routers, switches, load balancers, proxy servers,
ctc.) and software (e.g., protocol stacks, accounting soitware,
firewall/security software, etc.) necessary to establish a net-
working link between given client 310 and the Internet as well
as between the Internet and Web services platform 330. It 1s
noted that 1n some embodiments, storage service clients 310
may communicate with Web services platform 330 using a
private network rather than the public Internet. For example,
clients 310 may be provisioned within the same enterprise as
the data storage service (and/or the underlying system)
described herein. In such a case, clients 310 may communi-
cate with platform 330 entirely through a private network 320
(e.g., a LAN or WAN that may use Internet-based communi-
cation protocols but which 1s not publicly accessible).

Generally speaking, Web services platform 330 may be
configured to implement one or more service endpoints con-
figured to recerve and process web services requests, such as
requests to access tables maintained on behalf of clients/users
by a database service or a data storage service, and/or the
items and attributes stored 1n those tables. For example, Web
services platform 330 may include hardware and/or software
configured to 1implement various service endpoints and to
properly recetve and process HTTP-based web services
requests directed to those endpoints. In one embodiment,
Web services platform 330 may be implemented as a server
system configured to receive web services requests from cli-
ents 310 and to forward them to various components that
collectively implement a data storage system for processing.
In other embodiments, Web services platform 330 may be
configured as a number of distinct systems (e.g., 1n a cluster
topology) implementing load balancing and other request
management features configured to dynamically manage
large-scale web services request processing loads.

As 1illustrated 1in FIG. 3, Web services platform 330 may
include a front end module 340 (which may be configured to
receive, authenticate, parse, throttle and/or dispatch service
requests, among other things), one or more administrative
components, or auto admin instances, 350 (which may be
configured to provide a variety of visibility and/or control
functions, as described 1n more detail herein), and a plurality
ol storage node instances (shown as 360a-360#), each of
which may maintain and manage one or more tables on behalf
of clients/users or on behalf of the data storage service (and 1ts
underlying system) itself. In some embodiments, each of the
multiple auto admin 1nstances may be responsible for man-
aging and/or allocating the resources of a subset of the storage
node mstances 360 (e.g., the storage capacity and/or through-
put capacity of the storage node instances 360 and/or their
underlying storage devices or virtual storage volumes). For
example, 1n some embodiments, each auto admin instance
350 may be configured to select a storage node and/or par-
ticular storage devices or virtual storage volumes on which to

US 9,053,167 Bl

9

place various tables, partitions, and replicas, which may
include recerving metadata about the storage nodes and/or
storage devices/volumes, recommendations of storage
devices/volumes on which to place the tables, partitions, and
replicas, confirmation of resource reservations, or other infor-
mation from the storage node 1nstances for which 1t provides
administrative functionality. Some of the functionality pro-
vided by each of these types of components 1s described in
more detail herein, according to various embodiments.

Note that 1n some embodiments, Web services platform
330 may include different versions of some of the compo-
nents illustrated 1n FIG. 3 to provide functionality for creat-
ing, accessing, and/or managing tables maintained in data-
base instances within a single-tenant environment than those
that provide functionality for creating, accessing, and/or
managing tables maintained in database instances within a
multi-tenant environment. In other embodiments, functional-
ity to support both multi-tenant and single-tenant environ-
ments may be included 1n any or all of the components 1llus-
trated 1n FIG. 3. Note also that in various embodiments, one or
more database instances may be implemented on each of the
storage nodes 360a-3607, and each may store tables on behalt
of clients. Some of these database instances may operate as 1f
they were 1n a multi-tenant environment, and others may
operate as 1f they were 1n a single-tenant environment. In
some embodiments, database instances that operate as 1n a
multi-tenant environment may be implemented on different
computing nodes (or on different virtual machines executing
on a single computing node) than database instances that
operate as 1n a single-tenant environment.

In various embodiments, Web services platform 330 may
be configured to support different types of web services
requests. For example, 1n some embodiments, platform 330
may be configured to implement a particular web services
application programming interface (API) that supports a vari-
ety of operations on tables that are maintained and managed
on behalf of clients/users by the data storage service system
(and/or data stored in those tables). Examples of the opera-
tions supported by such an API are described in more detail
herein.

In addition to functioning as an addressable endpoint for
clients’ web services requests, 1n some embodiments Web
services platform 330 may implement various client manage-
ment features. For example, platform 330 may coordinate the
metering and accounting of client usage of web services,
including storage resources, such as by tracking the identities
of requesting clients 310, the number and/or frequency of
client requests, the size of tables and/or items stored or
retrieved on behalf of clients 310, overall storage bandwidth
used by clients 310, class of storage requested by clients 310,
and/or any other measurable client usage parameter. Platform
330 may also implement financial accounting and billing
systems, or may maintain a database of usage data that may be
queried and processed by external systems for reporting and
billing of client usage activity. In some embodiments, plat-
form 330 may include a lock manager and/or a bootstrap
configuration (not shown).

In various embodiments, a database service or data storage
service may be implemented on one or more computing
nodes that are configured to perform the functionality
described herein. In some embodiments, the service may be
implemented by a Web services platform (such as Web ser-
vices platform 330 in FIG. 3) that 1s made up of multiple
computing nodes, each of which may perform one or more of
the functions described herein. Various collections of the
computing nodes may be configured to provide the function-
ality of an auto-admin cluster, a cluster of resources dedicated

10

15

20

25

30

35

40

45

50

55

60

65

10

to the data storage service, and a collection of external
resources (which may be shared with other Web services or
applications, 1n some embodiments).

In some embodiments, the external resources with which
the system interacts to provide the functionality described
herein may include an external workilow component, 1llus-
trated 1n FIG. 3 as external workilow component 370. Exter-
nal worktlow component 370 may provide a framework
through which other components interact with the external
workflow system. In some embodiments, Web services plat-
form 330 may include an access API built on top of that
framework (not shown). This interface may allow the system
to implement APIs suitable for the usage patterns expected to
be experienced by the data storage service. In some embodi-
ments, components or modules of the system that use external
worktlow component 370 may include these interfaces rather
than interfacing directly to the interfaces provided by external
workflow component 370. In some embodiments, the Web
services platform 330 may rely on one or more external (and
in some cases shared) resources, 1n addition to external work-
flow component 370. In some embodiments, external work-
flow component 370 may be used to perform distributed
operations, such as those that extend beyond a particular
partition replication group.

In some embodiments, the database systems described
herein may support seamless scaling of user tables 1n a “fully
shared nothing” type architecture. For example, 1n some
embodiments, each database partition may be implemented
as a completely independent parallel computation unit. In
such embodiments, the system may not provide distributed
coordination across partitions or support batch “put” opera-
tions and/or multi-statement transactions. In some embodi-
ments, as long as the workload distribution 1s well spread
across partitions, an increase 1n the number of partitions may
result in a larger usable table size and/or increased throughput
capacity for service requests. As described herein, 1n some
embodiments, live repartitioning (whether programmatic/au-
tomatic or explicitly mitiated) may be employed to adapt to
workload changes. In other words, 1n some embodiments,
repartitioning (including partition moving, partition splitting,
and/or other partition management operations) may be per-
formed while service requests directed to the affected parti-
tions continue to be received and processed (1.e. without
taking the source partition ofi-line).

In some embodiments, a service (and/or underlying sys-
tem) may support a variety ol service offerings and/or
throughput models. In some embodiments, the service may
support a committed work throughput offering and/or a best
cifort offering. In some embodiments, a committed work
throughput level may be specified 1n terms of a measure of
normalized, logical work units (or logical service request
units) over time, and may represent a work throughput level
that 1s guaranteed by the system. For example, 1n systems that
provide database or data storage services (e.g., 1in tables main-
tained on behalf of clients), a storage service client (e.g., a
client application, user, or subscriber having access to the
service) may specily a preference between multiple through-
put options that are offered by the service, according to a
variety of business models, subscription types, and/or pay-
ment models. For example, the client/user may indicate a
preferred throughput model for a particular table through a
parameter of a request to create the table, 1n some embodi-
ments. In other embodiments, a client/user may specily a
default throughput model for all tables created and main-
tained on their behalf by the data storage service. By support-
ing both a committed throughput model and a best effort
throughput model (for which no throughput guarantees are

US 9,053,167 Bl

11

made), the system may allow clients/users to make a trade-oif
between performance and cost, according to their needs and/
or budgets. Other types of services may support a committed
work throughput model and/or other throughput models.

A data storage service (and underlying system) that pro-
vides a committed throughput offering may be configured to
pre-allocate capacity and/or resources for the creation,
growth, and management of a table maintained on behalf of a
client/user in response to traific directed to the table, and not
to overbook the resources and/or capacity of the storage
node(s) on which that table 1s maintained. In some embodi-
ments, tables maintained by the service (and underlying sys-
tem) under a committed throughput model may be main-
tained 1n faster (and often more expensive) storage resources,
such as high performance media (e.g., flash memory or Solid
State Drive, or SSD, media), 1n order to provide extremely
low latencies when servicing requests from the client/user.
For example, the system may provide (and dedicate) a high
rat1o of fast/local memory to main (e.g., disk) memory for the
maintenance of those tables (and various partitions thereot).
While the storage resources allocated to a given table under a
committed throughput model may 1n some cases be underuti-
lized (at least some of the time), the client/user may value the
predictable performance afforded by the committed through-
put model more than the additional (and in some cases
wasted) costs of dedicating more resources than may always
be necessary for that table. Similarly, resources that are pre-
allocated to other types of services to support a committed
work throughput model may 1n some cases be underutilized
(at least some of the time), but may provide the client/user
with a predictable level of performance (e.g., 1 terms of
availability and/or responsiveness).

As described herein, 1n some embodiments the systems
described herein may support both a multi-tenant model and
a single-tenant model. In such some embodiments, the client/
user may indicate a preferred one of these tenancy models for
a particular table through a parameter of a request to create the
table. In other embodiments, a client/user may specily a
default or 1mitial tenancy model for all tables created and
maintained on their behalf by the data storage service.

FIGS. 4A-4C 1llustrate various elements or modules that
may be included 1n each of the types of components of Web
services platform 330, according to one embodiment. As
illustrated 1n FIG. 4A, front end module 340 may include one
or more modules configured to perform parsing and/or throt-
tling of service requests (shown as 410), authentication and/
or metering of service requests (shown as 415), dispatching
service requests (shown as 4235), and/or maintaining a parti-
tion map cache (shown as 430). In addition to these compo-
nent-specific modules, front end module 340 may include
components that are common to multiple types of computing
nodes that collectively implement Web services platform 330,
such as a message bus (shown as 435) and/or a dynamic
configuration module (shown as 440). In other embodiments,
more, fewer, or different elements may be included mn front
end module 340, or any of the elements 1llustrated as being
included 1n front end module 340 may be included 1n another
component of Web services platform 330 or 1n a component
configured to interact with Web services platform 330 to
provide the data storage services described herein.

As 1llustrated 1n FIG. 4B, auto admin instance 350 may
include one or more modules configured to provide visibility
and control to system administrators (shown as 443), or to
perform heat balancing (shown as 450), and/or anomaly con-
trol (shown as 455), resource allocation (shown as 460). In
some embodiments, resource allocation module 460, heat
balancing module 450, and/or anomaly control module 4355

10

15

20

25

30

35

40

45

50

55

60

65

12

may be configured to work separately or in combination to
perform selection, ordering, or scheduling of candidate par-
tition management operations (€.g., various partition splitting
operations or partition moving operations) and/or to select
destination storage nodes (and/or particular storage devices/
volumes) for those operations. In other embodiments, a cen-
tral partition management scheduler module 420 (which may
perform some or all of these partition management functions)
may be included in auto admin 1nstance 350, as illustrated in
FIG. 4B. Auto admin mstance 350 may also include an admin
console 465, through which system administrators may inter-
act with the data storage service (and/or the underlying sys-
tem). In some embodiments, admin console 465 may be the
primary point of visibility and control for the data storage
service (e.g., for configuration or reconfiguration by system
administrators). For example, admin console 465 may be
implemented as a relatively thin client that provides display
and control functionally to system administrators and/or
other privileged users, and through which system status indi-
cators, metadata, and/or operating parameters may be
observed and/or updated. In addition to these component-
specific modules, auto admin 1nstance 350 may also include
components that are common to the different types of com-
puting nodes that collectively implement Web services plat-
form 330, such as a message bus (shown as 435) and/or a
dynamic configuration module (shown as 440). In other
embodiments, more, fewer, or different elements may be
included 1n auto admin instance 350, or any of the elements
illustrated as being included in auto admin instance 350 may
be included 1n another component of Web services platform
330 or 1n a component configured to iteract with Web ser-
vices platform 330 to provide the data storage services
described herein.

As 1llustrated in FIG. 4C, storage node istance 360 may
include one or more modules configured to provide partition
management (shown as 470), to implement replication and
tallover processes (shown as 475), and/or to provide an appli-
cation programming interface (API) to underlying storage
(shown as 480). In some embodiments, the partition manager
4’70 (or another component of storage node instance 360) may
be configured to i1dentily candidate partition management
operations to be performed locally (e.g., on a given storage
node instance 360) based, ¢.g., on one or more measures of
the utilization of provisioned (or reserved) resources on the
storage devices or logical storage volumes of the storage node
instance. For example, the partition manager may be config-
ured to apply one or more resource utilization policies or
partition management policies to make local decisions about
which, 1t any, partitions or partition replicas stored on the
local storage devices or logical storage volumes should be
split or moved. Once the partition manager 470 (or another
component of storage node 1nstance 360) i1dentifies one or
more candidate partition management operations, informa-
tion about the candidate partition management operations
may be sent to an auto admin instance 330 (e.g., to a central
partition management scheduler 420 of an auto admin
instance 350), which may schedule the candidate partition
management operations for execution based on a global pri-
oritization across the distributed database system. In other
embodiments, resource utilization information may be sent
from each storage node instance 360 to an auto admin
instance 350 (e.g., to a central partition management sched-
uler 420 of an auto admin 1nstance 350), which may identify
candidate partition management operations, and may sched-
ule the candidate partition management operations for execu-
tion based on a global prioritization across the distributed
database system.

US 9,053,167 Bl

13

In some embodiments, the partition manager 470 (or
another component of storage node instance 360) may be
configured to provide metadata about the storage node and/or
its storage devices/volumes, recommendations of particular
storage devices/volumes on which to place tables, partitions,
and replicas, confirmation of resource reservations, or other
information to the auto admin instance 350 that provides
administrative functionality for the storage node instance
360. For example, in some embodiments, the partition man-
ager 470 (or another component of storage node instance 360)
may be configured to determine whether it can host a particu-
lar table, partition, or replica (e.g., based on the available
storage and/or throughput capacity of the storage node
instance), and/or to 1dentify the particular storage devices/
volumes on which a particular table, partition, or replica can
be placed.

As 1llustrated 1n this example, each storage node instance
360 may include a storage engine 485, which may be config-
ured to maintain (1.€. to store and manage) one or more tables
(and associated table data) in storage 480 (which 1n some
embodiments may be a non-relational database) on behalf of
one or more clients/users. In addition to these component-
specific modules, storage node instance 360 may include
components that are common to the different types of com-
puting nodes that collectively implement Web services plat-
form 330, such as a message bus (shown as 435) and/or a
dynamic configuration module (shown as 440). In other
embodiments, more, fewer, or different elements may be
included 1n storage node mstance 360, or any of the elements
illustrated as being included 1n storage node instance 360 may
be included 1n another component of Web services platform
330 or 1n a component configured to interact with Web ser-
vices platform 330 to provide the data storage services
described herein.

Note that 1n some embodiments, 1t may not be necessary to
perform some or all of the throttling, authentication, and/or
metering operations that would typically be provided by front
end module 340 1n multi-tenant environments for tables oper-
ating 1n a single-tenant environment. For example, the system
may be configured to elide these operations when servicing,
requests directed to tables 1n a single-tenant environment, but
to perform them when servicing requests directed to tables in
a multi-tenant environment. Stmilarly, 1n some embodiments,
some of the operations illustrated as being performed by auto
admin mstance 350 (e.g., heat balancing and/or resource allo-
cation) may or may not be applied 1n managing tables 1n a
single-tenant environment. However, other operations 1llus-
trated as being performed by auto admin instance 350 (or
various modules thereol) may be applied in the creation and/
or management of tables in both multi-tenant and single-
tenant environments.

Note that 1n various embodiments, the components 1llus-
trated 1n FIGS. 4A-4C may be implemented directly within
computer hardware, as instructions directly or indirectly
executable by computer hardware (e.g., a microprocessor or
computer system), or as a combination of these techniques.
For example, these components may be implemented by a
distributed system including any number of computing nodes
(or simply, nodes). In various embodiments, the functionality
of a given component may be implemented by a particular
node or distributed across several nodes. In some embodi-
ments, a given node may implement the functionality of more
than one of the component 1llustrated 1n FIGS. 4A-4C.

The systems underlying the data storage service described
herein may store data on behall of storage service clients
(e.g., client applications, users, and/or subscribers) in tables
containing items that have one or more attributes. In some

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments, the data storage service may present clients/
users with a data model in which each table maintained on
behalf of a client/user contains one or more 1tems, and each
item includes a collection of attributes. The attributes of an
item may be a collection of name-value pairs, 1n any order. In
some embodiments, each attribute 1n an 1tem may have a
name, a type, and a value. Some attributes may be single
valued, such that the attribute name 1s mapped to a single
value, while others may be multi-value, such that the attribute
name 1s mapped to two or more values. In some embodi-
ments, the name of an attribute may always be a string, but its
value may be a string, number, string set, or number set. The
following are all examples of attributes: “ImagelD”=1,
“Title”="flower”, “Tags”={“flower”, “jasmine”, ‘“white”},
“Ratings”={3, 4,2}. The items may be managed by assigning
cach item a primary key value (which may include one or
more attribute values), and this primary key value may also be
used to uniquely identify the item. In some embodiments, a
large number of attributes may be defined across the items 1n
a table, but each i1tem may contain a sparse set of these
attributes (with the particular attributes specified for one 1tem
being unrelated to the attributes of another item 1n the same
table), and all of the attributes may be optional except for the
primary key attribute(s). In other words, unlike 1n traditional
databases, the tables maintained by the data storage service
(and the underlying storage system) may have no pre-defined
schema other than their reliance on the primary key. Note that
in some embodiments, 1f an attribute 1s included 1n an 1item, its
value cannot be null or empty (e.g., attribute names and
values cannot be empty strings), and, and within a single 1tem,
the names of 1ts attributes may be unique.

In some embodiments, the systems described herein may
employ a somewhat limited indexing and/or query model 1n
order to provide massive (1.e. virtually unlimited) scaling,
predictability, and simplicity for users/subscribers or client
applications. For example, 1n some embodiments, data may
be mndexed and partitioned (e.g., partitioned 1n the underlying
database) by a primary key only. In such embodiments, the
primary key to be used for indexing data 1n a user table may
be specified by the user at the time that the table 1s created on
the user’s behall. Thereatter, the partitioning of the user’s
data may be handled by the system, and abstracted from the
user. In some embodiments, the primary key used for index-
ing data may consist of a single attribute hash key. In other
embodiments, the primary key used for indexing and/or par-
titioning data may be a composite key comprising a hash key
component and another component, sometimes referred to
herein as a range key component. In various embodiments,
queries may be supported against indexed attributes, and a
full table scan function may be provided (e.g., to support
troubleshooting). In some embodiments, users may define
secondary 1indexes for a table based on one or more attributes
other than those of the primary key, and then may query for
items using the indexes they have defined. For example, 1n
some embodiments the system may support the creation of
creating secondary indexes on-the-1ly (e.g., using a createln-
dex API), and these secondary indexes may scale automati-
cally based on storage requirements (e.g., 1ncreasing or
decreasing data volume) and/or read/write traffic. In some
embodiments, such secondary indexes may be asynchro-
nously updated as 1tems in the table are updated.

In various embodiments, the service (and/or the underlying
system) may enforce pre-determined size limits on table
names, items, attribute values, primary key values, and/or
attribute names. For example, in some embodiments, the total
s1ze of all the attribute names and values 1n an 1tem (1.e. the
row size) may be limited.

US 9,053,167 Bl

15

The database and data storage services described herein
(and/or the underlying system) may provide an application
programming interface (API) for requesting various opera-
tions targeting tables, 1tems, and/or attributes maintained on
behalf of storage service clients. In some embodiments, the
service (and/or the underlying system) may provide both
control plane APIs and data plane APIs. The control plane
APIs provided by the data storage service (and/or the under-
lying system) may be used to manipulate table-level entities,
such as tables and indexes and/or to re-configure various
tables (e.g., 1n response to the findings presented 1n a skew
report). These APIs may be called relatively infrequently
(when compared to data plane APIs). In some embodiments,
the control plane APIs provided by the service may be used to
create tables, import tables, export tables, delete tables,
explore tables (e.g., to generate various performance reports
or skew reports), modily table configurations or operating
parameter for tables (e.g., by modifying the amount of
throughput capacity, adding storage capacity for additional
read replicas, splitting partitions or moving partitions), and/or
describe tables. In some embodiments, control plane APIs
that perform updates to table-level entries may invoke asyn-
chronous workflows to perform a requested operation. Meth-
ods that request “description” information (e.g., via a descri-
beTables API) may simply return the current known state of
the tables maintained by the service on behalf of a client/user.
The data plane APIs provided by the data storage service
(and/or the underlying system) may be used to perform 1tem-
level operations, such as storing, deleting, retrieving, and/or
updating 1tems and/or their attributes, or performing index-
based search-type operations across multiple items 1n a table,
such as queries and scans.

The APIs provided by the service described herein may
support request and response parameters encoded 1n one or
more industry-standard or proprietary data exchange formats,
in different embodiments. For example, in various embodi-
ments, requests and responses may adhere to a human-read-
able (e.g., text-based) data interchange standard, (e.g., Java-
Script Object Notation, or JSON), or may be represented
using a binary encoding (which, in some cases, may be more
compact than a text-based representation). In various
embodiments, the system may supply default values (e.g.,
system-wide, user-specific, or account-specific default val-
ues) for one or more of the mput parameters of the APIs
described herein.

As noted above, the control plane APIs supported by the
service may include APIs that perform updates on tables (e.g.,
a CreateTable API and/or a DeleteTable API). In various
embodiments, these APIs may invoke asynchronous work-
flows to perform the requested operation. In addition, the
service may support methods that return the current known
state (e.g., a DescribeTables API) or that return various skew
metrics or reports (e.g., an Explorelable API). In some
embodiments, a common use model may be for a client to
request an action (e.g., using a CreateTable API), and then to
poll on 1its completion via the corresponding description API
(e.g., DescribeTables). Other supported methods may be used
to modily table configurations or parameters, e.g., an
UpdateTable API (which may be used to increase the provi-
sioned throughput capacity for a given table), a Pur-
chaseTableCapacity API (which may be used to increase the
provisioned storage capacity for a given table), a SplitTable
API (which may be used to explicitly invoke an operation to
split a table or any of its partitions), or a MoveTable API
(which may be used to explicitly invoke an operation to move
one or more tables, partitions of atable, or partition replicas of
a table).

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments 1n which the system provides data-
base or data storage services to clients, the system may pro-
vide an application programming interface (API) that
includes support for some or all of the following operations
on data maintained 1n a table by the service on behalf of a
storage service client: put (or store) an 1tem, get (or retrieve)
one or more items having a specified primary key, delete an
item, update the attributes 1n a single 1tem, query for items
using an index, and scan (e.g., list items) over the whole table,
optionally filtering the 1tems returned. For example, the data
storage service (and/or underlying system) described herein
may provide various data plane APIs for performing item-
level operations, such as a Putltem API, a Getltem (or Get-
Items) API, a Deleteltem API, and/or an Updateltem API, as
well as one or more index-based seek/traversal operations
across multiple items 1n a table, such as a Query API and/or a
Scan API. Note that the amount of work required to satisiy
service requests that specily these operations may vary
depending on the particular operation specified and/or the
amount of data that 1s accessed and/or transferred between the
storage system and the client in order to satisty the request.

In some embodiments, the system described herein may be
configured to create and execute a database instance in a
single-tenant environment on dedicated hardware (e.g., on a
dedicated storage device) or on particular ones of the storage
nodes in the system. In other embodiments, a database
instance 1n a single-tenant environment may be created and
may execute on a different virtual machine 1n a storage node
than other database 1instances that are created and that execute
on the same storage node. In some embodiments, the under-
lying software and/or hardware to implement the functional-
ity for performing database operations that target tables 1n
both types of environments (e.g., operations to store, retrieve,
or delete data) may be the same (or substantially similar).
However, since clients may be able to directly connect to
database 1nstances (and/or tables therein) in the single-tenant
environment, there may not be a need for the system to pro-
vide an intermediate layer to provide security or other utilities
required to support multi-tenancy. Instead, authentication
checks may be skipped and clients may submit requests to
perform operations on these tables directly to the underlying
storage node(s), e.g., on a low-latency path.

In some embodiments, a client may submit a request to
create a database instance (e.g., using a CreateDatabaseln-
stance API), and may submit a request for a description of a
database instance (e.g., using a DescribeDatabaselnstance
API), 1 response to which, the system may return a list of IP
addresses at which the client may directly connect to the
database instance (or a table therein) to perform various
operations (e.g., create table, put item, get item, etc.). In
general, a database 1nstance in a multi-tenant environment
may store tables for multiple different customers that all run
within the same database mstance. Therefore, the system may
be required to keep clients from being able to access each
other’s tables using various security and authentication
schemes. However, with a dedicated database instance 1n a
single-tenant environment, the client may be given a specific
IP address for the specific database istance, atter which the
client may configure a firewall group or another type of secu-
rity group to limit the clients that are able to connect to that
instance and/or create their own network connection to their
table(s), e.g., a TCP connection that conforms to one of vari-
ous open source protocols, in some embodiments.

In various embodiments, the systems described herein may
be configured to allocate a variety of resources (which may
include, for example, downstream services, database connec-
tions, input/output channels, computational resources, execu-

US 9,053,167 Bl

17

tion threads, a portion of system memory, disk memory or
other persistent storage resources, or any other constrained
resources) from one or more pools of resources to service
requests recerved by the system 1n order to provide services
requested by various clients. For example, i order to satisiy
a service request directed to a data storage system, a data
storage system may allocate one or more database connec-
tions, mnput/output channels, storage resource portions and/or
other resources for each normalized, logical work unit or
logical service request unit required to satisiy the request. In
some embodiments, the systems described herein may
include a Web service interface, an admission control sub-
system for use 1 a multi-tenant environment, a service
request subsystem for managing requests directed to tables in
a multi-tenant environment, and a service request subsystem
for managing requests directed to tables 1n a single-tenant
environment. The Web services interface may be configured
to receive requests for services from various clients and to
communicate with the admission control subsystem to facili-
tate the performance of those services on behalf of the clients.
For example, 1n some embodiments, the admission control
subsystem may be configured to determine which and/or how
many service requests that are directed to tables 1n a multi-
tenant environment to accept from various clients, and may
communicate with the approprate service request subsystem
to accept and/or service one or more received service
requests. In some embodiments, the maximum request rate
may be dynamically adjusted dependent on the current work
throughput rate and/or a target or commuitted work throughput
rate. In other embodiments, service requests may be managed
using work-based tokens. If a service request 1s accepted for
servicing by the admission control subsystem, the appropri-
ate service request subsystem may in turn be configured to
allocate (or initiate allocation of) one or more resources
needed to perform the requested services to those requests,
and/or to return results to the client via the Web services
interface.

Various techniques that may be implemented by a Web
server (or various components thereol) are described 1n more
detail below, according to different embodiments. In general,
any or all of the techniques described herein for managing the
processing of service requests on behalf of clients and/or the
management of tables, partitions, and replicas may be per-
formed by and/or implemented 1n a module that 1s a compo-
nent of a Web server. While several examples described
herein are directed to systems that provide services over the
Internet, 1n other embodiments, these techniques may be per-
formed by and/or implemented by various components of
another type of system that provides services to clients, and
that 1s configured to receive, accept, and/or service requests
on behalf of those clients.

As previously noted, a system that 1s configured to 1imple-
ment the data storage service described herein may rely on
one or more worktlows that are executed using an external
workilow service. FIG. 5 1llustrates one embodiment of such
a worktlow for creating a table. As illustrated at 510, the
method may include ivoking the Createlable Workilow
(e.g., 1n response to a request to create a table and subsequent
to generating metadata for the new table). As illustrated in this
example, 1n some embodiments, the table name, table 1den-
tifier, and/or partition i1dentifiers may all be passed to the
CreateTable workilow as inputs to that process. Note that this
(and/or any other service requests described herein) may
include an input parameter 1dentitying a particular subscriber,
such as an accountlD parameter. In such embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

18

value of this input parameter may be passed to any workflows
invoked 1n response to receiving the service request (e.g., the
CreateTable worktlow).

In some embodiments, a CreateTable workflow may allo-
cate one or more partitions for a new table, create two or more
replicas each for the partitions, and update the appropnate
metadata 1n response to creating the table. One embodiment
of such a workilow 1s illustrated by the flow diagram 1n FIG.
5. The workflow may be intended to be self-healing, 1n some
embodiments. In such embodiments, if the process fails
betore completion, the whole workflow may be rerun one or
more times until it succeeds. For example, each of the opera-
tions illustrated 1n FIG. 5 may be retried again and again in
response to a failure. Note that 1n this example, 1t 1s assumed
that the worktlow 1s 1nvoked only after determining that no
active table exists that has the specified table name.

As 1llustrated 1n this example, the workilow may include
updating the status of the table to “Creating’ to reflect the fact
that a workflow 1s currently working to create the table, as in
520. In some embodiments, the table status may be atomi-
cally updated to “Creating”. In such embodiments, 1if multiple
workflows attempt to perform this same table creation opera-
tion, only one will succeed, thus allowing the system to avoid
a race condition, 1n this case. The workflow may also include
determining whether any old partitions exist that include the
table name specified for the new table, as 1n 530. For example,
if a creation operation speciiying this table name has been
attempted (and failed) in the past, there may be remnant
partitions remaining in the system that should be deleted
betore proceeding with the rest of the CreateTable workflow.
In some embodiments, the worktlow may include querying
metadata (e.g., the Tables table) for any partitions associated
with this table name. For example, there may be remnants of
a previous failed attempt to create a table with this table name
in the system, including metadata for the table 1n one or more
metadata tables. For each partition found, there may be mul-
tiple replicas, and each of these replicas may be physically
deleted from the storage nodes on which they reside, as 1n
535.

I1 no partitions associated with the specified table name are
found (e.g., if this table creation operation has not been pre-
viously attempted and failed), shown as the negative exit from
530, or once such remnants have been deleted, the worktlow
may create one or more partitions for the new table, as 1n 540.
As previously described, in some embodiments, the number
of partitions created may be based on user mput, historical
data, and/or system-wide, client-specific, or application-spe-
cific defaults. As 1llustrated 1n FIG. 5, creating partitions for
the new table may include selecting nodes on which to store
multiple replicas of each of the partitions, creating the mul-
tiple replicas (which may include provisioning storage
resource capacity and/or throughput capacity for each replica
of each of the partitions), and updating the partition metadata
(e.g., updating a “Partitions table” to include the newly cre-
ated replicas and to indicate their locations). In some embodi-
ments, selecting the nodes on which to store the replicas may
include querying metadata to discover healthy nodes on
which replicas can be stored, and allocating replicas to vari-
ous ones of the healthy nodes using any of a variety of suitable
allocation algorithms. In some embodiments, the system may
support two or more flexible and/or pluggable allocation
algorithms, including, but not limited to, selecting the nodes
that have the most available storage space, selecting the nodes
experiencing the lightest workload (e.g., the nodes receiving
the fewest service requests), or selecting nodes at random
(which may minimize a herding effect in which all new par-
titions go to the most lightly loaded nodes). Note that various

US 9,053,167 Bl

19

methods for selecting the nodes on which replicas can be are
described in more detail below, according to different
embodiments.

As 1llustrated 1n FIG. §, the CreateTable workflow may
include updating node related metadata for the newly created
table (e.g., 1n a “Nodes table™), as 1n 350. For example, the
workilow may include reading all of the node locations of the
newly created replicas from the Partitions table (which was
updated 1n 540), and adding each of the newly created replicas
to the appropriate entries of the Nodes table. Once the table’s
partitions (and their replicas) have been created, and the
appropriate metadata has been updated to retlect the creation
of the new table, the workiflow may include updating the
status of the newly created table to “Active”, as 1n 560. In
some embodiments, updating the status of the newly created
table to “Active” may include decrementing a count of the
number of tables that are in the “Creating” state 1n the Sub-
scribers table described above.

As previously noted, in embodiments 1n which the primary
key 1s a simple key, the 1tem 1n a table being maintained on
behalf of a storage service client may partitioned using a hash
of the primary key value of each of the items, while 1n
embodiments in which the primary key 1s a composite key, the
data may be partitioned first by a hash of the hash key com-
ponent, and then by the range key component. FIG. 6 illus-
trates one embodiment of a method for partitioning table data
using simple and/or composite keys, according to one
embodiment. As illustrated at 610, in this example, the
method may include a data storage service (or a component of
the underlying system that implements a data store, such as a
storage node instance or administrative component) imitiating
the partitioning of a table maintained 1n a non-relational data
store on behalf of a storage service client.

If multiple items in the table share a hash key attribute
value, shown as the positive exit from 620, the method may
include the data store dividing the 1tems 1n the table that have
a given hash key attribute value into two or more partitions
(c.g., database partitions) dependent first on a hash of their
range key attribute values, and then on their range key
attribute values, as 1n 640. In other words, if the primary key
for the table 1s a composite key that includes hash key com-
ponent whose values may be used to 1dentily a group of items
and a range key component whose values may be used to
order items having the same hash key attribute values and
uniquely 1dentify each of those items, both the hash key
attribute value and the range key attribute value may be used
to partition the items in the table. For example, for a group of
items that have the same hash key attribute value, the first n
items 1n the group (when ordered by their respective range
key attribute values) may be assigned to one partition, the next
m 1tems in the group may be assigned to a second partition,
and so on. Note that in some embodiments, each partition may
include a portion of the items sharing one hash key attribute
value and may also include other 1tems having other hash key
attribute values.

If none of the items in the table share a hash key attribute
value, shown as the negative exit from 620, the method may
include the data store dividing the 1items in the table 1nto two
or more partitions dependent on a hash of their respective
hash key attribute values, as 1 630. For example, 11 the
primary key for the table 1s a simple key that includes hash key
component whose values may be used to uniquely 1dentily
cach of the items in the table, the items 1n the table may be
partitioned (1.e. assigned to one of a plurality of partitions)
dependent a hash of the hash key attribute value, but not
dependent on any other item attribute values. In some
embodiments, 11 the primary key 1s a composite key, but none

5

10

15

20

25

30

35

40

45

50

55

60

65

20

ol the 1tems 1n the table share a hash key attribute value (1.e. 1f
cach item has a unique hash key attribute value), the data store
may partition the items as if the primary key were a simple
key (1.e. 1t may partition the items 1n the table using the hash
key attribute value alone).

Once the data store has assigned all of the items to a
partition, the data store may store each of the partitions on a
respective storage node (e.g., a respective computing node or
storage device), as in 650, which may include provisioning
storage resource capacity and/or throughput capacity for each
of the partitions on their respective storage nodes. In some
embodiments, each partition of a single table may be stored
on a different storage node, while 1n other embodiments two
or more of the partitions may be maintained on the same
storage node. Note that various methods for selecting the
nodes on which the partitions are stored are described in more
detail below, according to different embodiments.

In various embodiments, each of the resulting partitions
may be replicated one or more times in the data storage
system, as 1 660, which may include provisioning storage
resource capacity and/or throughput capacity for each of the
replicas on respective storage nodes. Various methods for
selecting the node on which each of the partition replicas 1s
stored are described 1n more detail below, according to dif-
ferent embodiments. Note that in some embodiments, the
number of partitions into which the items of a given table are
partitioned may be pre-determined (e.g., it may be based on
user input/preferences, or historical data for a client, account,
or table type), while 1n other embodiments, the number of
partitions into which the items of a given table are partitioned
may be determined as the partitioning operation progresses,
¢.g., based on the number of items 1n each range of hash
results and/or the number of 1tems in each range of range key
attribute values. Note also that because the partitioning is
based on a hash result, the order in which groups of items may
be assigned and distributed among the available partitions
may be somewhat randomized. In some cases, e.g., 1f some
items are accessed much more frequently than others or some
groups of items include a higher number of items than others,
an 1nitial partitioning may result 1n hot spots. In such cases, a
partition management operation (€.g., a partitioning splitting
operation or a partition moving operation) may be performed
in order to more evenly distribute the items among the avail-
able partitions (e.g., with respect to data volume and/or ser-
vice request traffic). Note also that in some embodiments, the
items 1n a table may be partitioned using a single hash key
component and two or more range key components.

In one example of the partitioning of items 1n a given table,
the hash key attribute 1s a “User name™ attribute, and the range
key attribute 1s a “Message ID” attribute. In this example, the
given table stores multiple messages associated with each of
three user names (Bob, Sue, and Phil). In this example, some
partitions of the given table may include only items having the
same hash key attribute value. In this example, a partition
identified by a Partition ID value of A may store only mes-
sages having the hash key attribute value “Bob”. Note that this
partition may not store all of Bob’s messages, but only mes-
sages having Message ID values (1.e. range key attribute
values) 1-199. Another group of Bob’s messages (those with
range key attribute values 200-299) may be stored 1n a parti-
tion 1dentified by a Partition ID value of B. This partition may
also store messages having a hash key attribute value of
“Sue”, specifically, those messages having range key values
of 1-50. Yet another group of Bob’s messages (those with
range key attribute values 300-399) may be stored 1n a parti-
tion 1dentified by a Partition ID value of C. This partition may

US 9,053,167 Bl

21

also store messages having a hash key attribute value of
“Phal”, specifically, those messages having range key values
of 1-100.

In this example, a request to retrieve all of Bob’s messages
may retrieve messages 1-199 from partition A (which may be
maintained on a particular storage node), messages 200-299
from partition B (which may be maintained on a different
storage node), and messages 300-399 from partition C (which
may be maintained on yet another storage node). In some
embodiments, a request to retrieve all of these messages may
be terminated early (e.g., 11 response limit 1s reached), and the
remaining messages may be retrieved 1n response to a subse-
quent request.

As previously noted, 1n some embodiments, the data stor-
age service (and/or underlying system) described herein may
provide two different APIs for searching the data maintain in
tables on behalf of storage service clients: a Scan API and a
Query API. In some embodiments, the Scan API may be used
to request an operation that scans an entire table. A Scan
request may specily one or more {ilters to be applied to the
results of the scan operation, e.g., to refine the values returned
to the requestor following the complete scan. In some
embodiments, the Query API may support comparison opera-
tions to limit the search process to the data that matches the
supplied query conditions (e.g., conditions on the attributes of
the items). For example, a Query request may be used to find
all the data 1n a table that matches the parameters specified 1in
the request, up to a pre-defined limit (1t such a limit 1s imposed
by the system).

In various embodiments, a Scan API may be used to
retrieve one or more 1tems and attributes stored in a table on
behalf of a storage service client by performing a full scan
across the table. The 1tems returned may be limited by speci-
tying a filter. In some embodiments, the Scan API may sup-
port richer semantics than the Query API described above.
For example, 1t may support comparison operators such as
“CONTAINS”, “IS NULL”, “IN”, eftc.

In some embodiments, any or all of the metadata described
herein as being used 1n maintaining and managing tables on
behalf of a data storage service client (including any metadata
tables described herein) may be stored 1n the same scalable
data store (e.g., the same non-relational database) as that 1n
which the client/user tables are stored. For example, various
computing nodes may store user data (e.g., 1n tables main-
tained on behall of a user) and/or system data, including
metadata used by the data storage service, such as that
described above. Therefore, each node of the data model for
such a system may include an indicator of the type of the
node. For example, in one embodiment, each node may be
designated as a “storage node”, a “request router”, an “auto-
admin” node, or a “staging” node. In some embodiments, a
“storage node” may store user data in one or more tables
maintained by the data storage service, but metadata (e.g.,
data stored 1n one or more of a Tables Table, a Subscribers
Table, a Partitions Table, or a Nodes Table) may be hosted on
other types of nodes (e.g., “auto admin™ nodes and/or *“stag-
ing”” nodes). In other embodiments, such metadata may be
stored on one or more “‘storage nodes”, some of which may
also store user data. Each node may also include an 1dentifier
of the node, and one or more other elements. In some embodi-
ments, information about each replica may be represented in
the data model, and each replica in the data model may
include an identifier of the node on which the replica is
hosted, and one or more partition identifiers indicating the
partitions 1included in those replicas. For example, each par-
tition may be represented in the data model as a partition
clement, which may include its partition-1d. In various

10

15

20

25

30

35

40

45

50

55

60

65

22

embodiments, each node may host multiple replicas, and each
partition may be included in multiple replicas.

In various embodiments, there may be situations in which
a partition (or a replica thereol) may need to be copied, e.g.,
from one machine to another. For example, 11 there are three
replicas of a particular partition, each hosted on a different
physical or logical machine, and one of the machines fails, the
replica hosted on that machine may need to be replaced by a
new copy (replica) of the partition on another machine. In
another example, 11 a particular machine that hosts various
replicas of multiple partitions of one or more tables experi-
ences heavy traflic, one of the heavily accessed partition
replicas may be moved (e.g., using a copy operation followed
by an operation to redirect traffic) to a machine that 1s expe-
riencing less tratfic 1n an attempt to more evenly distribute the
system workload and improve performance. In some embodi-
ments, the data storage service (and/or underlying system)
described herein may perform replica moves and/or replica
copying using a physical copying mechanism (e.g., a physical
file system mechanism) that copies an entire partition replica
from one machine to another, rather than copying a snapshot
of the partition data row by row (as 1n a traditional logical
database partition copying operation).

As described 1n more detail herein, in some embodiments,
all write operations may be logged before being applied to a
particular partition (and/or various replicas thereot), and they
may be applied to the partition (1.e. to the replicas thereot)
periodically (e.g., 1n batches). In such embodiments, while a
partition replica 1s being copied, write operations targeting
the partition may be logged. During the copy operation, these
logged write operations may be applied to the partition at
periodic intervals (e.g., at a series of checkpoints). Once the
entire partition has been copied to the destination machine,
any remaimng logged write operations (€.g., any write opera-
tions performed since the last checkpoint, or any write opera-
tions that target portions of the partition that were copied to
the destination prior to those write operations being logged)
may be performed on the destination partition replica by a
final catch-up process. In some embodiments, the catch-up
process may examine the sequentially ordered write opera-
tions 1in the log to determine which write operations have
already been applied to the destination partition replica and
which, 1f any, should be applied to the destination partition
replica once the physical copying of the partition data 1s
complete. In such embodiments, unlike with traditional par-
tition copying or moving mechanisms, the data in the desti-
nation partition replica may be consistent following the
completion of the operation to move/copy the partition rep-
lica.

One embodiment of a method for moving (or copying) a
replica of a partition of a table being maintained by a data
storage service on behalf of a storage service client while the
partition 1s “live” 1s illustrated by the flow diagram 1n FI1G. 7.
In this example, the method may include a component of the
system that implements the data storage service receiving a
request to move a replica of a partition, as 1 710. For
example, the system may recerve an explicit request to move
a replica from a client/user or system administrator, or such a
request may be automatically generated 1n the system in
response to detecting an anomaly (as described 1n more detail
herein). As 1llustrated at 720, 1n response to recerving the
request to move the partition, the system may be configured to
create a new replica (which may be referred to as a destination
replica), while the partition 1s live (1.e. while one or more
replicas of the partition continue to accept and service
requests directed to the partition). In some embodiments,
creating a destination replica may include selecting a com-

US 9,053,167 Bl

23

puting node or storage device on which to create the destina-
tion replica, allocating memory on the computing node or
storage device for the destination replica, creating or updating
metadata associated with the partition and/or the destination
replica, and/or performing other functions appropriate for
creating the destination replica. Note that various methods for
selecting the nodes on which to create the destination replicas
are described in more detail below, according to different
embodiments.

As 1llustrated 1n this example, the method may include the
system copying table data from the replica being moved (or
from another source replica storing the same table data as the
replica being moved) to the destination replica using a file
copy mechanism or another physical copy mechanism while
one or more replicas of the partition are live, as in 730. In
other words, the replica may be copied to the new destination
replica using an operation that copies the physical locations
of the replica data, rather than using a logical copying opera-
tion (e.g., one that reads and copies table data on a row-by-
row basis).

As illustrated at 740, aiter performing the physical copying
operation, the method may 1nclude the system performing a
catch-up operation to reconcile any changes to the replica
data that were made during the copy operation but that are not
yet reflected 1n the new copy. This catch-up operation 1s
described 1n more detail below. Once the destination replica
has been created and populated, the method may include
directing traffic away from copied replica and toward the new
designation replica, as 1n 750. For example, the system may
configure the new destination replica to receive and service
requests targeting table data that was maintained on the par-
ticular partition replica and some or all service requests tar-
geting the partition may be directed away from the source
replica and toward the new destination replica.

Note that in some embodiments, information about a
requested move operation may be added to database table,
list, or other data structure that stores information about can-
didate partition management operations prior to the requested
move operation being scheduled for execution. In such
embodiments, a central partition management scheduler may
be configured to schedule the requested move operation for
execution according to a global prioritization scheme and 1n
light of other pending partition management operations for
which information is stored in the database table, list, or other
data structure (e.g., other partition management operations
requested by a client/user or system administrator, partition
management operations initiated by the system 1n response to
detecting an anomaly 1n the system, and/or candidate parti-
tion management operations that were 1dentified by various
storage nodes), as described herein.

In some embodiments, the storage engine for the underly-
ing data store of a data storage service (e.g. a non-relational
database) may store replica data 1n database files, and each
replica (and database file) may be associated with a recovery
log. In such embodiments, when a service request to modily
the replica data 1s recetved, it may be logged 1n the recovery
log belore being applied to the replica. In the case of a node
failure or system crash, the changes logged 1n the recovery log
may be reapplied to a previous snapshot or checkpoint of the
replica data to recover the contents of the replica. As noted
above, 1n some embodiments, the data storage service (and 1ts
underlying system) may support a replica move operation
and/or a replica copying operation that employs a physical
copy mechanism. In some such embodiments, the physical
copy mechanism may employ such a log, which may ensure
that the replica data that 1s moved to a new destination 1s
consistent.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some embodiments, the replica copying process
described above may be employed in partition splitting opera-
tions. For example, a partition may be split because 1t 1s large
(e.g., because 1t 1s becoming too big to fit on one machine)
and/or 1n order to keep the partition size small enough to
quickly rebuild the partitions hosted on a single machine
(using a large number of parallel processes) 1n the event of a
machine failure. A partition may also be split when 1t
becomes too “hot” (1.e. when 1t experiences a much greater
than average amount of traiffic as compared to other parti-
tions). For example, 11 the workload changes suddenly and/or
dramatically for a given partition, the system may be config-
ured to react quickly to the change. In some embodiments, the
partition splitting process described herein may be transpar-
ent to applications and clients/users, which may allow the
data storage service to be scaled automatically (i1.e. without
requiring client/user mtervention or initiation).

Note that 1n some embodiments, moving (or copying) a
replica of a partition 1n a cluster may be quicker than splitting
a partition, because the system may take advantage of the file
copying process described above for replica copying. Split-
ting a partition, on the other hand, may require logically
dividing the partition data 1n one underlying data structure
(e.g., one B-tree) mto two such data structures (e.g., two
B-trees), which 1s generally less efficient than moving an
entire replica, as described above. Therefore, in some
embodiments, a partition splitting process may include cre-
ating additional replicas of the partition, and thereafter man-
aging only a portion of the partition data on each replica. For
example, if there are three replicas of a given partition that 1s
to be split, the partition splitting process may include creating
three additional copies of the entire partition (e.g., using the
partition copying process described above). These resulting
s1X replicas may be split into two new replica groups of three
replicas, each of which may be configured to be responsible
for handling service requests directed to half of the original
partition data by invoking an operation to split the responsi-
bilities between the replica groups. For example, following
the operation to split the responsibilities, service requests
directed to data 1in a designated portion of the original parti-
tion may be accepted and serviced by replicas of a given
replica group, while service requests targeting the remaining
data of the original partition may be rejected by that replica.
In some embodiments, the partition data for which a given
replica 1s not responsible may eventually be removed (e.g., so
that the memory allocated to the replica for data 1t no longer
supports may be subsequently used to store new 1tems in the
replica), or the memory in which 1t was stored may be
reclaimed by the system (e.g., so that the memory allocated to
the replica for data it no longer supports may be subsequently
used by another partition). Removal of unsupported data or
reclamation of memory may be performed by background
tasks without affecting the performance of the data storage
system, and may be transparent to clients/users.

In some embodiments, each partition may be 1dentified by
a partition ID, which may be a unique number (e.g., a GUID)
assigned at the time the partition 1s created. A partition may
also have a version number that 1s incremented each time the
partition goes through a reconfiguration (e.g., 1n response to
adding or removing replicas, but not necessarily in response
to a master failover). When a partition 1s split, two or more
new partitions may be created, each of which may have a
respective new partition ID, and the original partition ID may
no longer be used. In some embodiments, a partition may be
split by the system using a split tool or process 1n response to
changing conditions. For example, a scheduled task of an auto
admin mstance may monitor partition sizes and “heat” (e.g.,

US 9,053,167 Bl

25

traific directed to each partition), and may apply policies that
determine when to use the splitting tool/process to perform a
split. In some embodiments, the splitting tool and auto admin
instance may avoid attempting two splits at the same time by
employing a lock manager.

In some embodiments, the momtoring component may
provide a list of partitions that meet the split criteria to the
splitting tool/process. In other embodiments, one or more
lists of candidate split operations (and/or move operations)
may be provided by various ones of the storage nodes in
response to a query or when the storage nodes detect a trigger
condition for a partition splitting operation or a partition
moving operation. The criteria may be based on partition size
and heat, where heat may be tracked by internally measured
metrics (such as IOPS), externally measured metrics (such as
latency), and/or other factors. In some embodiments, the
splitting tool/process may receive a request to split a partition
from the monitoring component that includes a partition 1D
and a version number for the partition to split, and a list of
machines (e.g., machines 1n the same cluster or storage silo
that are known to be lightly loaded) for the location(s) of the
new partitions/replicas. Including the version number as an
input to the splitting tool/process may ensure that the splitting
tool/process does not attempt to split a partition that has
already gone through one or more reconfigurations since the
last time 1t was evaluated against the split criteria, as the
splitting tool/process may reject the request if version number
does not match.

One embodiment of a method for splitting a partition of a
table being maintained by a data storage service on behalf of
a storage service client 1s illustrated by the flow diagram 1n
FIG. 8. In this example, the method may include a component
of the system that implements the data storage service receiv-
ing a request to split a partition, as in 810. For example, the
system may receive an explicit request to split the partition
from a client/user or system administrator, or such a request
may be automatically generated in the system 1n response to
detecting an anomaly (as described in more detail herein). As
described above, 1n some embodiments, splitting a partition
may 1nvolve creating additional replicas of the partition,
dividing the resulting collection of partition replicas into two
or more new replica groups, and then designating each of the
replica groups as managers of a respective portion of the
original partition. Therefore, as illustrated at 820, 1n response
to recerving the request to split the partition, the system may
be configured to 1mtiate creation of the one or more new
partition replicas (which may be referred to as destination
replicas), while one or more of the original replicas of the
source partition are live (1.e. while one or more of these
replicas continue to accept and service requests directed to
the partition). Note that various methods for selecting the
nodes on which to create the destination replicas are
described 1n more detaill below, according to different
embodiments.

As illustrated at 830, the method may include copying data
from one or more source partition replicas to the destination
replicas using a physical copy mechanism (such as that
described above). For example, the system may be configured
to copy the table partition data from one (or more) of the
original replicas of the partition to one or more of the desti-
nation replicas using a file copy mechanism, in some embodi-
ments. The method may also imnclude bringing the new repli-
cas (once populated) up-to-date (e.g., by performing a catch-
up operation, as described above).

As 1llustrated 1n this example, the method may include
propagating a special “write” command (1.e. a “split” com-
mand) to split the partition by dividing the resulting collection

[,

10

15

20

25

30

35

40

45

50

55

60

65

26

of replicas 1nto two or more new replica groups and designat-
ing (and/or configuring) each replica group as handling ser-
vice requests directed to a respective portion of the split
partition, as in 840. In some embodiments, the system may
take the source replicas out of use briefly while the command
to split the partition replicas 1s propagated to the storage
nodes on which the resulting collection of replicas are hosted.
In other words, the system may not accept other service
requests directed to the partition being split while the split
command 1s operating to configure the new replica groups to
receive subsequent service requests. In an example 1n which
a partition 1s being split into two new partitions, the split
command may instruct the replicas resulting from the copy
operation to split 1n half by designating each replica as
belonging to the first half of the range or the second half of the
range, thus forming two new replica groups. In other embodi-
ments, the split command may designate each replica as
belonging to one of more than two replica groups. Note that in
some embodiments, the special “split” command may not
require any special durability, while 1n others 1t may require
the same durabaility as any other replicated write operation, or
may have a different durability requirement than other repli-
cated write operations.

As 1llustrated 1n this example, once the “split” command
has been propagated and the new replica groups have been
established, 1f the system 1s a single master system or a
multi-master system, the method may include each of the new
replica groups electing one or more masters for the replica
group, as in 850. Subsequently, the replicas 1n each of the new
replica groups for the split partition (e.g., a replica group
made up of the original replicas, a replica group made up of
the destination replicas, or a replica group made up of any
other subset of the resulting replicas for the split partition)
may handle requests directed to a respective portion of the
original partition, as 1n 860. For example, each of the replicas
may reject requests for the table data that 1s now out of 1ts new
smaller range, and may return an indication that the replica
(or the node on which the replica 1s hosted) no longer hosts
that data. As described above, 1n some embodiments, the
system may be configured to perform a logical reclamation of
the unused portions of the resulting split partition replicas, as
in 870. For example, as requests to store new 1tems 1n the
partition are received, these new 1tems may be stored 1n loca-
tions 1n the table that (following the replica copying opera-
tion) held items stored in the original partition, but that are
now being managed as part of a different partition (i.e. one of
the two or more new partitions created by the split). In some
embodiments, the system may employ a background process
to logically free up space within each of the resulting partition
replicas, but that space may be consumed later 1f more 1tems
are added to the table that are assigned to the new partition
replicas according to their hash key attribute values and/or
range key attribute values. In some embodiments, a physical
memory reclamation operation may be performed, which
may return a portion of the memory that was previously
allocated to a large partition replica prior to the split to the
operating system. In such embodiments, a de-fragmentation
operation may also be performed.

Note that 1n some embodiments, information about a
requested split operation may be added to database table, list,
or other data structure that stores information about candidate
partition management operations prior to the requested split
operation being scheduled for execution. In such embodi-
ments, a central partition management scheduler may be con-
figured to schedule the requested split operation for execution
according to a global prioritization scheme and 1n light of
other pending partition management operations for which

US 9,053,167 Bl

27

information 1s stored 1n the database table, list, or other data
structure (e.g., other partition management operations
requested by a client/user or system administrator, partition
management operations initiated by the system in response to
detecting an anomaly 1n the system, and/or candidate parti-
tion management operations that were 1dentified by various
storage nodes), as described herein.

As noted above, the partition moving process described
above and illustrated 1 FIG. 7, and the partition splitting
process 1llustrated 1n FIG. 8 and described above may be
mitiated automatically (e.g., programmatically) i response
to detection of an anomaly 1n a system that implements a data
storage service, in some embodiments. For example, if a hot
spot develops on a particular computing node or storage
device 1n the system underlying the data storage service, the
system may be configured to split a hot partition for which a
replica 1s stored on that computing node or storage device
and/or move one or more partition replicas stored on that
computing node or storage device to another computing node
or storage device.

In some embodiments, the data storage service (and/or
underlying system) may be configured to detect anomalies in
the system while servicing requests from one or more storage
service clients. In some embodiments, the system may be
configured to automatically (e.g., programmatically) respond
to the detection of various types ol anomalies, such as by
scaling tables, moving partitions, splitting partitions, and/or
taking other actions not described herein. For example, if a
falled or faulty node (e.g., a computing node or storage
device) has been detected, the system may be configured to
replace the failed or faulty node with a new node and/or to
move any or all partitions that are hosted on the failed or
faulty node to the new node. As described herein, such amove
may 1n some embodiments be performed using a physical
copy operation. As previously noted, 1f a failed or faulty node
hosted a partition replica that was a master for its replica
group, the system may also be configured to elect a new

master for the replica group subsequent to copying the parti-
tion to the new node.

If a hot spot or increasing table/partition size 1s detected,
the system may be configured to add one or more new parti-
tions and corresponding replicas (e.g., on computing nodes or
storage devices other than the one on which the hot spot was
detected), and to move and/or split data that was hosted on the
heavily loaded computing node or storage device 1n one or
more of the new partitions or replicas. Similarly, if the system
has detected that a best effort throughput target (or another
user preference) 1s not being met or 1s 1n danger of not being,
met due to increasing tratfic or 1f the data volume 1s increasing,
beyond a targeted capacity for the table, the system may be
configured to throttle mcoming service requests while
attempting to correct the situation. Again, the system may be
configured to add one or more new partitions and correspond-
ing replicas (e.g., on computing nodes or storage devices
other than the one on which the hot spot was detected), and to
move and/or split data that was hosted on the heavily loaded
computing node or storage device 1in one or more of the new
partitions or replicas. Stmilarly, 1f a live repartitioning opera-
tion (e.g., a partition splitting operation or a partition moving,
operation) 1s explicitly requested (e.g., by a table owner), the
system may be configured to add or remove one or more
partitions and corresponding replicas accordingly, or to move
and/or split data that was hosted on a heavily loaded comput-
ing node or storage device 1n one or more partitions or repli-
cas. In any of these scenarios, the destination storage nodes
for new, split, or relocated partitions or replicas may be

10

15

20

25

30

35

40

45

50

55

60

65

28

selected using any of a variety of different resource allocation
techniques, including those 1llustrated 1n FIGS. 1 and 9-15
and described herein.

In general, once an anomaly has been detected and the
system has responded to and/or returned an indicator of that
anomaly, the system may resume (or continue) servicing
incoming requests. In some embodiments, the system may be
coniigured to continue operation (e.g., to continue servicing
incoming service requests) until or unless additional anoma-
lies are detected. If any additional anomalies are detected, any
or all of the operations described above for resolving such
anomalies may be repeated by the system 1n order to maintain
and manage tables on behalf of data storage service clients.
Note that in some embodiments, any or all of the operations
described above for resolving such anomalies may be per-
formed pro-actively (and automatically) by background tasks
while the data storage service 1s in operation, and may not
necessarily be performed in response to recerving any par-
ticular service requests.

As previously noted, the systems described herein may
provide storage services to clients, and may maintain data on
behalf of clients in partitions that are replicated on multiple
storage nodes. In some embodiments, these storage systems
may 1mmplement a single master failover protocol. In some
embodiments, membership 1n various replica groups may be
adjusted through replicated changes, and membership and
other updates 1n the system may be synchronized by synchro-
nizing over a quorum of replicas in one or more data centers
at faillover time using a replicated quorum version. In some
embodiments, a mechamsm for splitting a partition may uti-
lize failover quorum synchronization, external master locks,
and/or various methods for detecting and resolving log con-
flicts, including log snipping (e.g., deleting log records that
are on 1nvalid branches). The systems may implement a fault-
tolerant log shipping based replication mechanism that
includes such log contlict detection and resolution. In some
embodiments, log branching may be avoided through post-
tallover rejoins.

As described above, there may be various reasons why 1t
may be beneficial to split a partition (or the replicas thereot)
or to move one or more partitions or partition replicas to
different storage nodes (or storage devices thereot). In some
embodiments, the storage nodes of a distributed data storage
system (e.g., one that provides database services to clients)
may be configured to 1dentity candidate partition manage-
ment operations based on local conditions. For example, in
some embodiments, each storage node may periodically
query or examine all of 1ts storage devices (e.g., disks or
logical storage volumes) to determine what the current
resource utilization 1s (e.g., to determine how much of the
total capacity 1s provisioned for the use of various replicas on
cach of the storage devices). In other embodiments, the stor-
age nodes may continually monitor the resource utilization
for provisioned resources (€.g., using a background task).

In some embodiments, if a particular partition or partition
replica gets too big (e.g., 1f 1t approaches or exceeds a target
s1ze or a threshold on the amount of resources i1t consumes),
one or more of the partitions hosted on the storage node (or
storage device) may be split into two or more partitions and/or
one or more of the new partitions may be moved to another
node/device. In another example, one of the partition replicas
may be considered a candidate for being split or moved 11 the
provisioned (or reserved) storage capacity or the provisioned
(or reserved) throughput capacity for the storage node (or a
storage device thereofl) on which 1t 1s hosted reaches 80% of
its total capacity, or if the partition replica itself reaches a
pre-determined absolute size threshold (e.g., 2 GB of provi-

US 9,053,167 Bl

29

sioned storage). In some embodiments, there may be an upper
watermark (e.g., on the order of 80%) that triggers a split or
move operation, and a lower watermark (e.g., on the order of
60-70%) that serves as a target for the percentage of resources
on a storage node (or device) that are provisioned (or
reserved) for the use of various database tables at any given
time. In such embodiments, the goal of the partition manage-
ment operation may be to reduce the amount of provisioned
(or reserved) resources to (or just below) the lower water-
mark, so that there 1s excess capacity available to handle
tuture growth and/or temporary bursts in resource usage. For
example, 1f disk utilization (1n terms of provisioned or
reserved storage capacity) 1s greater than 80% of the total
capacity of a disk, a partition management operation may be
performed to attempt to move enough partition replicas off
the disk to reduce the disk utilization to 60%.

Note that, in some embodiments, the allocation of the
resource capacity of each storage device (or logical storage
volume) may be distributed among multiple different parti-
tion replicas that are hosted on the storage device/volume. In
one example, 11 the rate of mput/output operations that a
particular storage device 1s expected (and configured) to be
able to handle (e.g., 1ts provisioned capacity) 1s 1000 write
operations per second (1000 IOPS for writes), and the storage
device hosts 10 partition replicas, the storage device may 1n
some embodiments provision 100 IOPS for writes for each
partition replica. In other embodiments, the provisioned
throughput capacity may not be divided equally among the
partition replicas hosted on a given storage device. Note that
in some embodiments, the selection of partition replicas to be
split or moved may be performed based on the provisioned
resource capacity of each of the partition replicas, rather than
the actual resource capacity being used by each of the parti-
tion replicas. In other embodiments, the selection of partition
replicas to be split or moved may be based on the actual
resource capacity being used by each of the partition replicas.
Also note that, 1n some embodiments, a pre-determined tol-
erance level may specity a threshold or limit on the number of
partitions and/or the amount of provisioned resource capacity
that can be affected by a single candidate partition manage-
ment solution or by all partition management operations
being performed substantially concurrently (e.g., during the
same time period or overlapping time periods), which may
influence the selection of partition replicas to be split or
moved (e.g., this may influence the selection of a partition
management solution from among multiple potential parti-
tion management solutions).

In various embodiments, the order 1n which candidate par-
tition management operations are scheduled for execution
may be dependent on whether the operations include partition
splits or partition moves, whether they aim to reduce provi-
sioned storage capacity or reduce throughput capacity on a
storage device or logical volume, whether they contlict with
cach other, whether the total number of partitions (or replicas
thereot) mnvolved 1n partition management at any given time
exceeds a pre-determined limit, or whether they were
requested by clients. In some embodiments, determining
which, i any, partition replicas to split or move may include
determining a target amount by which to reduce a provisioned
resource (e.g., storage capacity or throughput capacity) on
one ol the storage devices or logical storage volumes on
which database partitions (or replicas thereof) are stored on a
given storage node. In some embodiments, the storage nodes
(or storage devices themselves) may be configured to make
local decisions about which of the partition replicas they host
to split or move (and how), and to present their decisions to a
central partition management scheduler component (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

30

module of an administrative component of a distributed data-
base system) as candidate partition management operations.
The central partition management scheduler may then deter-
mine the order in which to perform the candidate partition
management operations according to another partition man-
agement policy (e.g., a global resource management policy).
In other embodiments, other candidate partition management
operations may be introduced to the central partition manage-
ment scheduler through an explicit request from a customer or
a client application (e.g., through a GUI or API). In still other
embodiments, a central component (rather than the storage
nodes) may also be configured to determine the candidate
partition management operations. For example, in some
embodiments, storage nodes may send resource utilization
data to the central partition management scheduler or a
sweeper component/module thereot (e.g., periodically), and
the central partition management scheduler (or sweeper com-
ponent/module) may make the storage-node-level decisions
about which, 1f any, partition moving operations or partition
splitting operations should be performed on each storage
node and/or device (e.g., using any of the techniques
described herein and/or any other suitable techniques). In this
example, an event scheduler component/module of the cen-
tral partition management scheduler may then select various
partition management operations (events) to work on (e.g., 1t
may 1initiate the performance of selected candidate partition
management operations).

In some embodiments, the central partition management
scheduler may (e.g., during a given scheduling exercise)
select multiple candidate partition management operations to
be performed substantially concurrently (e.g., 11 two or more
can be scheduled without contlicts and/or without exceeding
a pre-determined upper limit on the number or percentage of
replicas that can be mvolved 1n partition management opera-
tions at the same time). In some embodiments, partition split-
ting operations and/or partition moving operation may be
performed by a background process, and such constraints or
limits may be applied to avoid having the partition manage-
ment operations 1nterfere too much with any concurrently
executing foreground processes that service customer
requests.

In some embodiments, a pre-determined global partition
management policy may specily that the central partition
management scheduler should schedule partition manage-
ment operations that include partition splitting operations
with a higher priority than those that involve partition moving
operations. For example, partition splitting operations may be
given higher priority than partition moving operations in sys-
tems 1n which delaying a recommended partition splitting
operation 1s likely to have a bigger impact on the customer/
client than delaying a recommended partition moving opera-
tion (e.g., if the situation 1s in danger of reaching a critical
point that could affect durability of the partition data). In
some embodiments, a pre-determined global partition man-
agement policy may specily that the central partition man-
agement scheduler should schedule partition moving opera-
tions that were triggered by a desire to manage and/or correct
storage capacity 1ssues with a higher priority than partition
moving operations that were triggered by a desire to manage
and/or correct throughput capacity issues. For example, 1n
some embodiments, 1f a given storage device (e.g., a disk) 1s
in danger of running out of space, a partition replica hosted on
that storage device may not be able to grow to meet future
needs or higher than expected storage capacity utilization,
which could affect (at least 1n the short term) the ability to
service customer requests directed to that partition replica at
all. By contrast, a shortage of throughput capacity for a par-

US 9,053,167 Bl

31

tition replica may be considered more of a performance
(rather than correctness) 1ssue, 1n some embodiments.

In some embodiments, local partition management deci-
sions (e.g., those made on the storage nodes and/or by the
central partition management scheduler, or a sweeper com-
ponent/module thereof, to 1dentily candidate partition man-
agement operations) and/or global prioritization decisions
(e.g., those made by the central partition management sched-
uler, or an event scheduler thereof, to determine the relative
priorities of candidate partition management operations) may
be based on a balancing process, rather than (or 1n addition to)
various threshold-based processes (e.g., those based on an
upper limit and/or a lower target for provisioned or reserved
resource capacity utilization). In such embodiments, a goal of
the local partition management decisions and/or global pri-
oritization decisions may be to maintain a balance between
various machines, storage nodes and/or storage devices in
terms ol throughput capacity and/or disk utilization (e.g.,
within some range centered around an average utilization).
For example, 1n some embodiments, these processes may be
configured to periodically compute an average resource uti-
lization for various machines, storage nodes and/or storage
devices in terms of throughput capacity and/or disk utilization
and to identify one or more candidate partition management
operations that, 11 performed, may cause the resource utiliza-
tion on each of those machines, storage nodes and/or storage
devices to be within a desired distance of the average resource
utilization (e.g., by defining upper and/or lower resource uti-
lization thresholds centered on the average resource utiliza-
tion).

Note that 1n some embodiments, a central partition man-
agement scheduler (or event scheduler thereol) may consider
all candidate partition management operations in the same
class as having equal priority (other than 11 those that would
result in contlicts). In other embodiments, candidate partition
splitting operations or candidate partition moving operations
in the same classes may be further prioritized within those
classes. For example, 1n some embodiments, split operations
or move operations that were explicitly requested by a client
(e.g., by a customer through a GUI or by a client application
through an API) may be given higher priority than candidate
partition management operations in the same classes that
were determined programmatically by the system. In another
example, split operations or move operations within a given
class may be prioritized by the sizes of the affected partitions
and/or by the rate at which the affected partitions are growing
(e.g., 1 terms of provisioned or reserved storage or through-
put capacity).

As described above, when performing various partition
management operations in a distributed data storage system
(e.g., operations to create tables, to partition tables, to repli-
cate table partitions, to split partitions, and/or to move parti-
tion replicas), one or more components of the distributed data
storage system (e.g., an administrative opponent or the stor-
age nodes themselves) may be configured to select a destina-
tion storage node (or individual storage devices or virtual
storage volumes thereof) on which to store a table (or a
partition or partition replica thereof). In some embodiments,
the selection process may be dependent on metadata about
storage nodes and/or storage devices/volumes, including
resource related metadata. For example, the selection process
may include a filtering operation to narrow the list of candi-
date storage nodes (or storage devices/volumes) based on the
amount or percentage of their resources (e.g., storage
resource capacity or IOPS capacity) that 1s available or that 1s
already provisioned (or reserved) for storing (and subse-
quently accessing) other data, as well as a confirmation or

10

15

20

25

30

35

40

45

50

55

60

65

32

reservation process that seeks to determine whether a poten-
t1al host for the table (or partition/replica) can, 1n fact, host the
table (or partition/replica). In some embodiments, providing
information about the current or projected size of a partition
replica that is to be placed 1n the storage fleet to a storage node
prior to providing the data for the partition replica to the
storage node may improve the local selection of a particular
storage device/volume by the storage node. In some embodi-
ments, 11 the projected size of a new or existing table or
partition/replica exceeds a pre-determined threshold size,
even 1f 1ts current size 1s below the threshold size, 1t may be
preemptively split as part of a placement operation (e.g., 1t
may be splitprior to being placed on a storage node or storage
device/volume).

In some embodiments, resource related metadata used 1n
determining the storage nodes (or storage devices/volumes
thereol) on which to place a partition replica may be main-
tained locally on each storage node. In other embodiments,
this information may be maintained by an administrative
node that performs various administrative tasks (e.g., parti-
tion management tasks and/or resource allocation tasks) for a
collection of storage nodes 1nstead of, or 1n addition to, stor-
ing this information on the storage nodes themselves. In some
embodiments, the storage nodes and corresponding adminis-
trative components may work together to determine the
placement of various tables (or partition/replicas thereof) in
the storage fleet. For example, in some embodiments, an
administrative component may select storage nodes at ran-
dom and provide IOPS capacity and storage capacity require-
ments for a table (or partition/replica) to one or more of the
randomly selected storage nodes. As described in more detail
below, each of these storage nodes may use local health
metadata to select one or more appropriate storage devices
(e.g., disks) or logical storage volumes on which to store the
table (or partition/replica). In some embodiments, the storage
node may reserve the selected storage devices/volumes for
the table (or partition/replica) until the administrative com-
ponent provides the data to be stored, or until a reservation
timeout period expires. In some embodiments, an adminis-
trative component may obtain resource related information
from the set of storage nodes for which 1t 1s responsible (and,
in some cases from other administrative components) and
may determine the appropriate storage devices (e.g., disks) or
logical storage volumes on which to store the table (or parti-
tion/replica) 1tself.

In various embodiments, the placement of tables, parti-
tions, and partition replicas 1n the storage layer may be made
based, at least 1n part, on a placement policy that encourages
the local and/or global balancing of resource unitization
across storage nodes and storage devices/volumes, that
encourages node diversity for the partitions and/or partition
replicas of each table, that encourages rack diversity for the
partitions and/or partition replicas of each table, and/or that
encourages diversity 1n the versions of software components
that implement any of the various database or partition man-
agement processes described herein for the storage nodes or
storage devices/volumes on which the partitions and/or par-
tition replicas of each table are stored.

One embodiment of a method for selecting a storage node
on which to store a table (or a partition or partition replica
thereol) 1s illustrated by the flow diagram in FIG. 9. As
illustrated at 910, 1n this example, the method may include an
administrative component of a distributed data storage sys-
tem (e.g., one that implements a non-relational database)
receiving a request to store a table (or a partition/replica
thereol) 1in a distributed storage system on behalf of a client
(e.g., a customer/subscriber or client application). As 1llus-

US 9,053,167 Bl

33

trated 1n this example, the method may include the adminis-
trative component (which may be similar to auto admin
istance 350 1n FIGS. 3 and 4) selecting ten of the storage
nodes (which may be similar to storage node instances 360 in
FIGS. 3 and 4) at random, and applying filter criteria to them
based, at least 1n part, on stored metadata about their respec-
tive IOPS capacities, as 1n 920. For example, the filter critenia
may be based on the amount or percentage of the IOPS
capacity of each node that i1s available, or the amount or
percentage ol the IOPS capacity of each node that 1s already
provisioned or reserved for the use of other tables (or parti-
tions/replicas). In other embodiments, the administrative
component may select some other number of storage nodes as
an 1nitial set of storage nodes that will be considered for
hosting the table (or partition/replica), or may use different
filter criteria to narrow the set of storage nodes that will be
considered for hosting the table (or partition/replica).

If there are not any storage nodes eligible for hosting
(based on the filter criteria), shown as the negative exit from
930, the method may include the administrative component
selecting ten more storage nodes (e.g., at random), and
repeating the operation 1illustrated at 920 for those storage
nodes. This 1s illustrated 1n FIG. 9 as the feedback from 930
to 920. Ifthere are storage nodes eligible for hosting (based on
the filter criteria), or once an eligible storage node 1s identified
alter selecting one or more additional sets of storage node
candidates (shown as the positive exit from 930), the method
may include the administrative component sending a mes-
sage to one of the eligible storage nodes to see 1t can host the
table (or partition/replica), as 1 940. As illustrated 1n this
example, the message may include the current and/or pro-
jected storage requirements for the table (or partition/rep-
lica). For example, the message may include an indication of
the current (e.g., observed and/or stored) storage capacity
requirements for an existing (and at least partially populated)
table (or partition/replica) that 1s being imported (e.g., from a
client or as part of an operation to restore the table/partition/
replica from a backup), moved, or split. In another example,
the message may include an indication of the expected (or
projected) storage capacity requirements for a new or existing,
table (or partition/replica) based on client hints or requests
(e.g., hints or requests made during creation of the table, or
estimates made later 1n anticipation of expected growth,
bursting, or other types of fluctuations 1n resource capacity
requirements), observed heat information for the table (or
various partitions/replicas thereol), machine learning (e.g.,
based on the velocity, or rate of change, 1n the storage capac-
ity consumed by the table/partition/replica), a history of stor-
age capacity requirements for tables maintained on behalf of
the same client, a default amount of storage that 1s assumed
tor all newly created (e.g., empty) tables or partitions/replicas
thereot, or a default amount of storage capacity growth that 1s
assumed for all tables/partitions/replicas, 1n different
embodiments.

If the eligible storage node 1dentifies one or more eligible
storage devices (shown as the positive exit from 9350), the
method may 1include the storage node returning an indication
that 1t can serve as host (as 1n 955), and the adminmistrative
component storing the table (or partition/replica), or initiat-
ing the storage of the table (or partition/replica), on the stor-
age node (as 1n 980). In thus example, 1dentitying eligible
storage devices may include identifying one or more disks or
virtual storage volumes on the storage node that (collectively)
meet the current and/or projected IOPS and storage capacity
requirements for the table (or partition/replica). I the eligible
storage node 1s not able to i1dentily eligible storage devices
(shown as the negative exit from 950), the method may

10

15

20

25

30

35

40

45

50

55

60

65

34

include the storage node returning an indication that 1t cannot
serve as host for the table (or partition/replica), as 1n 960.

If there are more eligible storage nodes (shown as the
positive exit from 970), the method may include the admin-
istrative component sending a message to another one of the
previously identified eligible storage nodes to see 11 it can host
the table (or partition/replica), and repeating the operations

illustrated 1n 940-970 or 1n 940-980 for the other storage
node. This 1s 1llustrated in FIG. 9 by the feedback from 970 to
940. I1 there are no additional eligible storage nodes (or once
all of the eligible storage nodes have been queried and have
returned an indication that they cannot host the table/parti-
tion/replica), the method may include the administrative
component selecting ten more storage nodes (e.g., atrandom)
and repeating the operations 1llustrated in 920-980, as appli-
cable, until a suitable placement 1s found for the table (or
partition/replica) or until all options have been exhausted and
an error 1s returned (not shown). This 1s 1llustrated in FI1G. 9
by the feedback from 970 to 920.

One embodiment of a method for determining one or more
storage devices or logical storage volumes of a storage node
on which to store a table (or a partition or partition replica
thereot) 1s illustrated by the flow diagram in FIG. 10. As
illustrated 1n this example, the method may include a storage
node of a distributed data storage system (e.g., one that imple-
ments a non-relational database) recerving a request to
reserve capacity for storing a table (or a partition/replica
thereot), as 1in 1010. The request may be received from an
administrative component of the distributed data storage sys-
tem, and may include an indication of the current and/or
projected storage requirements for the table (or partition/
replica) and a reservation ID (which may have been generated
by the administrative component as part of generating the
reservation request). In some embodiments, the administra-
tive component may be similar to an auto admin 1instance 350
illustrated 1n FIGS. 3 and 4, and the storage node may be
similar to storage node instances 360 1llustrated 1in FIGS. 3
and 4. As described above, the storage capacity information
included in the message may include current (e.g., observed
and/or stored) storage capacity requirements for an existing
table (or partition/replica) that 1s being imported, moved, or
split and/or an indication of the expected (or projected) stor-
age capacity requirements for a new or existing table (or
partition/replica) based on client hints or requests (e.g., hints
or requests made during creation of the table, or estimates
made later 1n anticipation of expected growth, bursting, or
other fluctuations 1n resource capacity requirements),
observed heat information for the table (or various partitions/
replicas thereot), machine learning (e.g., based on the veloc-
ity, or rate ol change, in the storage capacity consumed by the
table/partition/replica), a history of storage capacity require-
ments for tables maintained on behalf of the same client, or a
default amount of storage capacity growth that 1s assumed for
all tables/partitions/replicas, in different embodiments. In
some embodiments, 1f the amount of resource capacity (e.g.,
IOPS capacity or storage capacity) requested or projected by
a client 1s less than the amount of resource capacity typically
used by the client or projected by the system based on
observed resource consumption, observed rates of growth 1n
resource consumption, or other observations, the storage
node may be determined to attempt to reserve more resource
capacity for the table/partition/replica than was requested.

As 1llustrated 1n this example, the method may include the
storage node attempting to identify a storage device/volume
that has an amount of available storage capacity within a
given range, as 1 1020. For example, the storage node may
maintain metadata about 1ts storage devices or logical storage

US 9,053,167 Bl

35

volumes indicating which devices/volumes have available
capacity within different ranges (e.g., between 100-140 GB
available, between 70-100 GB available, etc.). In some
embodiments, the ranges may be pre-defined (and static) and
may be based on the storage capacity of the underlying physi-
cal storage devices (e.g., disks or SSDs). In some embodi-
ments, the storage node may first attempt to identily any
storage devices/volumes having the greatest amount of avail-
able storage capacity (e.g., available storage capacity within
the highest range), regardless of the current or projected stor-
age capacity requirements for the table (or partition/replica).
If the storage node 1s not able to 1dentily and select a storage
device or logical storage volume with available storage
capacity within the given range and add it to a result set
(shown as the negative exit from 1030), the method may
include the storage node trying to identily storage devices/
volumes that have an amount of available storage capacity in

another range (e.g., a lower storage capacity range). This 1s
illustrated in FI1G. 10 by the path from 1030 to 1035 and from

1035 to 1020.

As 1llustrated in this example, 1f the storage node 1s able to
identify and select a storage device or logical storage volume
with available storage capacity in the given range (e.g.,
selected randomly from among any storage devices/volumes
having available storage capacity within that range) and add it
to a result set of storage devices/volumes to be reserved for
storing the table/partition/replica (shown as the positive exit
from 1030), the method may include determining whether the
identified storage device(s)/volume(s) are sullicient to host
the table/partition/replica (as in 1040). If not (shown as the
negative exit from 1040), but there are more storage de-
vice(s)/volume(s) having available storage capacity within
the given range (shown as the positive exit from 1050), the
method may include repeating the operations illustrated as
1030-1050, as applicable, to attempt to identily suilicient
storage devices/volumes on the storage node to host the table/
partition/replica. This 1s 1llustrated 1n FIG. 10 by the feedback
from 1050 to 1030. If there are no additional storage de-
vice(s)/volume(s) having available storage capacity within
the given range (shown as the negative exit from 1050), the
method may include the storage node trying to identify stor-
age devices/volumes that have an amount of available storage
capacity 1n another range (e.g., a lower storage capacity
range). This 1s 1llustrated 1n FIG. 10 by the path from 1050 to
1055 and from 1055 to 1020. In other words, 1n this example,
1in response to a request to reserve capacity for a table, parti-
tion, or partition replica, the storage node may be configured
to 1dentily two or more storage devices/volumes on which to
store portions of the table, partition, or partition replica (e.g.,
to split the table, partition, or partition replica) 1f the storage
node 1s not able to i1dentily a single storage device/volume
that has suflicient storage capacity for storing the entire table,
partition, or partition replica. In other embodiments, 1f the
storage node 1s not able to 1dentify a single storage device/
volume that has suflicient storage capacity for storing the
entire table, partition, or partition replica, the storage node
may return an error (not shown).

As 1llustrated 1n this example, once the set of i1dentified
storage device(s)/volume(s) 1s sulficient to host the table (or
partition/replica), shown as the positive exit from 1040 (e.g.,
once the set of devices/volumes to be reserved 1s complete),
the method may include the storage node reserving the iden-
tified set of storage devices/volumes for the table (or parti-
tion/replica) until a reservation timeout period expires, and
returning an acknowledgement that the storage node can host
the table (or partition/replica) and has reserved suilicient
resources for hosting the table (or partition/replica), as in

10

15

20

25

30

35

40

45

50

55

60

65

36

1060. In some embodiments, the acknowledgement may
include the reservation ID that was included 1n the reservation
request and/or an indication of the reservation timeout period.

As 1llustrated 1n this example, 11 the storage node does not
immediately store the table (or partition/replica) to the 1den-
tified (and now reserved) storage device(s)/volume(s), €.g., in
response to a request to do so by the administrative compo-
nent, (shown as the negative exit from 1070), but the reser-
vation has not yet timed out (shown as the negative exit from
1080), the method may include the storage node continuing to
hold the reservation until the storage node stores the table/
partition/replica to the identified (reserved) storage device(s)/

volume(s), or until the reservation timeout period expires.
This 1s 1llustrated 1n FIG. 10 by the path {from 1080 to 1070 to

1075, or the path from 1080 to 1070, back to 1080 and then to
1085. As illustrated in FIG. 10, 11 and when the storage node
stores the table (or partition/replica) to the i1dentified (re-
served) storage device(s)/volume(s) (shown as the positive
ex1it from 1070), the placement operation may be complete (as
in 1075). On the other hand, 11 the storage node does not store
the table (or partition/replica) to the i1dentified (reserved)
storage device(s)/volume(s) before the reservation times out
(shown as the positive exit from 1080), the method may
include the storage node revoking the reservation on the 1den-
tified storage device(s)/volume(s) (e.g., releasing the
reserved resource capacity) without completing the place-
ment operation (as 1 1085). In some embodiments, if the
reservation timeout period expires betfore the table (or parti-
tion/replica) 1s stored on the identified (reserved) storage
device(s)/volume(s), the reservation may be renewed for one
or more additional reservation timeout periods, e.g., 1n
response to a request to do so by the administrative compo-
nent that made the original reservation request (not shown). In
some embodiments, the storage node may revoke a reserva-
tion (and release reserved resource capacity associated with
the reservation) prior to the reservation timeout period expir-
ing 1n response to a request (e.g., from the administrative
component that made the original reservation request) to
purge the reservation (not shown). For example, if the current
placement attempt 1s one of a group of placement attempts
being performed as part of an overall operation to store an
entire table (or multiple partitions or replicas thereot), but 1t
becomes clear (at some point) that the overall operation will
fail (e.g., that 1t will not be possible to successtully place the
entire table or all of the multiple partitions/replicas that are
the targets of the overall operation), the administrative com-
ponent may be configured to request that the storage nodes
purge any reservations that have already been made by one or
more individual placement attempts 1n support of the overall
storage operation.

As previously noted, in some embodiments, the responsi-
bility for determining placements for tables, partitions, and/or
replicas (and the functionality to make such determinations)
may lie largely (or wholly) 1n the administrative layer of a
distributed data storage system, rather than in the storage
layer. In some such embodiments, the administrative layer
may include multiple administrative components (which may
be similar to auto admin nstances 350 1n FIGS. 3 and 4), and
the administrative layer may maintain global resource related
metadata for components all the way down to the level of the
individual storage devices or logical storage volumes (e.g.,
not just at the storage node level). In some such embodiments,
the administrative components may not select potential stor-
age nodes to host a table (or partition/replica) at random, but
may 1nstead use this global metadata, along with any indica-
tions or projections of IOPS capacity and/or storage capacity
requirements for the table (or partition/replica) to select the

US 9,053,167 Bl

37

best storage nodes and/or storage devices/volumes for a table/
partition/replica placement (or at least storage nodes and/or
storage devices/volumes that are highly likely to be able to
host the table/partition/replica).

One embodiment of a method for selecting a storage node
or particular storage devices/volumes on which to store a
table (or a partition or partition replica thereof) based, at least
in part, on resource related metadata gathered from one or
more storage nodes of a distributed data storage system 1s
illustrated by the tlow diagram 1n FIG. 11. As 1llustrated at
1110, 1n this example, the method may 1nclude an adminis-
trative component of a distributed data storage system (e.g.,
one that implements a non-relational database) storing map-
pings ol tables, partitions, and replicas to storages nodes
and/or individual storage devices or virtual storage volumes
of each storage node. In some embodiments, the administra-
tive component may be similar to an auto admin 1instance 350
illustrated 1n FIGS. 3 and 4, and the storage node may be
similar to storage node mstances 360 1illustrated 1n FIGS. 3
and 4. As previously noted, 1n some embodiments, each
administrative component (e.g., auto admin mstance) may be
responsible for performing admimstrative operations for
multiple storage nodes (e.g., a subset of the storage node
instances in the distributed database system), which may
include storing this mapping information locally (e.g., n
memory).

As 1llustrated 1n this example, the method may include the
administrative component gathering resource related meta-
data for each of the storage nodes and/or imndividual storage
devices or virtual storage volumes of each storage node, as 1n
1120 (e.g., during health checks of the storage nodes for
which itisresponsible), and storing gathered metadata locally
for consistent view of local metadata, as in 1130. The method
may also include the administrative component pushing the
gathered metadata to one or more other administrative com-
ponents for eventually consistent view(s) of the global meta-
data (e.g., the metadata for all of the storage nodes managed
by the administrative component and the other administrative
components, as 1n 1140.

As 1llustrated 1n FIG. 11, the method may include the
administrative component determining a potential placement
for a table (or for a partition or partition replica thereof) on a
particular storage node and/or particular storage devices or
virtual storage volumes based on known and/or projected
resource requirements (e.g., storage capacity and/or IOPS
capacity requirements) and local and/or global metadata, as 1n
1150. In other words, rather than relying on an eligible stor-
age node to determine a potential placement on particular
ones of its storage devices or virtual storage volumes, this
determination may be performed by the administrative com-
ponent, in some embodiments. As 1llustrated in this example,
if the administrative component 1s not able to confirm the
potential placement with the particular storage node 1t has
selected (shown as the negative exit from 1160), the method
may include the administrative component repeating the
operation illustrated at 1150 to determine a potential place-
ment for the table (or partition/replica). Note that this may
result 1n the same potential placement or a different potential
placement, depending, e.g., on the reason that the adminis-
trative component was not able to confirm the originally
determined potential placement. For example, in some
embodiments, the distributed data storage system may
employ a reservation mechanism similar to that illustrated 1n
FIG. 10 and described above (or a different reservation
mechanism) or may send a different type of query to the
particular storage node in an attempt to confirm that the
particular storage node has enough space and/or IOPS capac-

10

15

20

25

30

35

40

45

50

55

60

65

38

ity to host the table/partition/replica (e.g., based on resource
requirements that are known and/or projected at the time).

This 1s 1llustrated 1n FIG. 11 by the feedback from 1160 to
1150.

In other embodiments, 1t the administrative component 1s
not able to confirm the potential placement with the particular
storage node 1t has selected (shown as the negative exit from
1160), the method may include the administrative component
repeating the operations 1llustrated at 1120-1150, which may
include gathering additional (or more current) information
from various storage nodes and/or other administrative com-
ponents prior to repeating its attempt to confirm a potential
placement for the table/partition/replica (e.g., the same
potential placement or a different potential placement). In
other words, 11 the potential placement cannot be confirmed
because i1t was based on what was (or has become) 1ncorrect
or out-of-date resource information for the particular storage
node, a more likely potential placement may be determined
alter gathering additional information. This alternatively 1s
illustrated 1n FIG. 11 by the dashed line from 1160 to 1120.

As 1llustrated in FIG. 11, 11 (or when) the administrative
component 1s able to confirm a potential placement with a
particular storage node (either the orniginally determined
potential placement or an alternate potential placement),
shown as positive exit from 1160, the method may include the
administrative component storing the table (or partition/rep-
lica) on the particular storage node or device(s)/volume(s), as
in 1170. Note that in some embodiments, the administrative
component may be configured to direct table/partition/replica
data to individual storage devices or logical storage volumes,
while 1n others, the administrative component may direct the
table/partition/replica data to the particular storage node
(with or without identiiying the individual storage devices or
logical storage volumes on which to store the data), and may
rely onthe storage node to make the final placement (e1ther on
the individual storage devices or logical storage volumes
identified by the admimstrative component or on other 1ndi-
vidual storage devices or logical storage volumes, as the
storage node sees fit) and to return a result (which may indi-
cate the individual storage devices or logical storage volumes

on which the data for the table/partition/replica was actually
placed).

As previously noted, in some embodiments, the adminis-
trative components (€.g., auto admin 1instances) of the admin-
istrative layer of a distributed data storage system may be
responsible for pulling resource related metadata (which may
also include the status of the storage devices and/or logical
storage volumes) of various storage nodes as part of doing
health checks on those storage nodes, and of theses adminis-
trative components (e.g., auto admin instances) may be
responsible for storing the metadata and status information
for the storage nodes for which 1t performs health checks,
along with mapping information for those storage nodes, 1n
memory. In some embodiments, the administrative compo-
nents may gossip among themselves, which may include each
administrative component pushing the set of metadata for
which it 1s responsible to other administrative components
and caching metadata received from 1ts peers. In such
embodiments, each administrative component may have a
blurred (or eventually consistent) global view of the resource
capacity and/or resource usage for the storage nodes and
storage devices/volumes for the entire storage fleet (or at least
for the storage nodes/devices/volumes for which a group of
administrative components are collectively responsible, e.g.,
the storage nodes/devices/volumes of a cluster of storage

US 9,053,167 Bl

39

nodes within the storage tleet, or the storage nodes/devices/
volumes located within a particular data center, availability
Zone, or region).

In some embodiments, i1f there 1s a failure of an adminis-
trative component (e.g., an auto admin nstance), or a mem-
bership change for a group of adminmistrative components, this
may not require that cached data be discarded. Instead, any
remaining administrative components may be assigned a new
set of storage nodes for which they are responsible and may
they may perform health checks on those storage nodes to
begin building up authoritative information about each of
those storage nodes. Once generated, this authoritative set of
information may be pushed to their peers (e.g., to other
administrative nodes), and any local data that was gathered by
the administrated components that were previously respon-
sible for those storage nodes may eventually be overwritten
by the administrative components that were more recently
assigned to those storage nodes. In some embodiments, 1n the
case that all admimistrative components fail, or when starting
a cold cluster, the dataset may be empty and the administra-
tive components may have to rebuild the map (e.g., by per-
tforming health checks on the storage nodes, which may take
approximately the same length of time as it takes to detect that
the storage nodes are healthy). While the map 1s empty, the
administrative components may return an empty candidate
list 1n response to a request to place a table/partition/replica in
storage. In that case, the client (e.g., a subscriber or a client
process) may back-ofl and retry the placement operation at a
later time.

In some embodiments that support gossiping, 1f the storage
fleet gets too large to effectively maintain a global view of the
resource capacity and/or resource usage for all of the storage
nodes (or storage devices/volumes thereol), gossiping may be
disabled, after which each administrative component may
make placement decisions based only on their own local
resource related metadata. In some embodiments, the pro-
cesses that place tables, partition, and/or replicas on particu-
lar storage nodes (or storage devices/volumes) may proac-
tively update the in-place map, 1.e., the mappings between
tables/partitions/replicas and the storage nodes (or storage
devices/volumes) on which they are placed when they are
placed, e.g., to reduce the inconsistency window for the stor-
age fleet. In some embodiments, snapshots of the storage
nodes (or storage devices/volumes), and/or the metadata
maintained on the storage nodes or administrative compo-
nents may be persisted at regular intervals, e.g., for monitor-
ing and/or analysis purposes.

One embodiment of a method for creating a multi-dimen-
sional representation of resource capacity and/or usage and
determining placement of a table (or a partition or partition
replica thereol) based, at least 1n part, on the multi-dimen-
sional representation is illustrated by the flow diagram 1n FIG.
12. As 1llustrated at 1210, 1n thus example, the method may
include an administrative component of a distributed data
storage system (e.g., one that implements a non-relational
database) contacting a storage node (e.g., one of a plurality of
storage nodes 1n the distributed data storage system) to obtain
resource related metadata about individual storage devices or
virtual storage volumes of the storage node. For example, in
various embodiments, the administrative component may
gather this information as part of a periodic health check on
the storage node instances for which it 1s responsible, which
may be performed periodically or 1n response to a failure, a
performance 1ssue, or another pre-determined trigger condi-
tion. In some embodiments, the administrative component
may be similar to an auto admin instance 350 illustrated in
FIGS. 3 and 4, and the storage node may be similar to storage

10

15

20

25

30

35

40

45

50

55

60

65

40

node istances 360 illustrated 1n FIGS. 3 and 4. As illustrated
in this example, the method may include the administrative
component recerving the resource related metadata from the
storage node, and storing 1t locally in memory, as in 1220. In
various embodiments, this resource related metadata may
indicate the amount or percentage of the storage capacity or
IOPS capacity that has already been provisioned or reserved
for storing (and subsequently accessing) data, the amount or
percentage of the storage capacity or IOPS capacity that 1s
available for the storage of data, or an observed or projected
growth rate for the provisioned (or reserved) storage capacity
or IOPS capacity, or may include a heat map (or other heat
information) indicating the distribution of storage or IOPS
capacity across the storage devices or logical storage volumes
of the storage node, an indicator of bursting activity, an 1ndi-
cation of pending (or candidate) partition management opera-
tions for the storage node and/or other resource related meta-
data for the storage node or its storage devices/volumes.

If the administrative component 1s responsible for more
storage nodes (shown as the positive exit from 1230), the
method may include the administrative component repeating
the operations illustrated at 1210 and 1220 for those addi-
tional storage nodes. This 1s illustrated 1n FIG. 12 by the
teedback from 1230 to 1210. If the administrative component
1s not responsible for more storage nodes, or once the admin-
istrative component has received resource related metadata
from all of the storage nodes for which 1t 1s responsible
(shown as the negative exit from 1230), the gathering of local
resource related metadata may be complete (for the time
being). As illustrated 1n this example, the method may also
include the administrative component receiving resource
related metadata from one or more other administrative com-
ponents (e.g., resource related metadata that 1s associated
with the storage nodes for which they are responsible and that
was gathered as part of health checks on those storage nodes),
and storing this additional metadata locally in memory, as 1n
1240.

As 1llustrated in FIG. 12, the method may include the
administrative component creating a multi-dimensional rep-
resentation of resource capacity and/or resource usage for at
least 1ts storage nodes (and, 1n some embodiments, the stor-
age nodes for which the other administrative components are
responsible), based, at least 1n part, on the stored resource
related metadata, as 1n 1250. For example, the administrative
component may generate one or more two-dimensional scat-
ter graphs or heat maps, or three-dimensional scatter graphs
or heat maps (e.g., where the values of the third vanable are
represented by color or a projection of “height”) using the
locally gathered metadata (e.g., a subset of the metadata
obtain from the storage nodes for which 1t 1s responsible) or
using the global metadata (e.g., a subset of the metadata
obtained from 1ts own storage nodes and from the storage
nodes for which the other administrative components are
responsible), in different embodiments.

As 1llustrated in this example, the method may include the
administrative component receiving a request to place a table
(or a partition or partition replica thereof) in storage, as 1n
1260. The method may include the administrative component
determining a placement for the table (or partition/replica)
based on the multi-dimensional representation, as i 1270.
Some examples of the use of a multi-dimensional represen-
tation of resource capacity and/or resource usage when deter-
mining a placement for various tables/partitions/replicas on
particular storage devices or storage devices/volumes (one of
which 1s 1llustrated 1n FI1G. 14) are described below. Note that
while FIG. 12 1llustrates an embodiment 1n which an admin-
istrative component “pulls” resource related metadata from

US 9,053,167 Bl

41

its storage nodes, 1n other embodiments, some or all of the
metadata described above and/or usable to generate a multi-
dimensional representation ol resource capacity and/or
resource usage may be “pushed” from the storage nodes (e.g.,
following performance of a periodic or otherwise triggered
local health check, or in response to another pre-determined
trigger condition).

One example of a scatter graph that depicts IOPS and disk
usage for the storage devices or logical storage volumes of a
distributed data storage system 1s illustrated in FIG. 13,
according to one embodiment. In this example, scatter graph
1300 1s a two-dimensional graph that indicates disk usage

(e.g., provisioned storage capacity for each disk), as mea-
sured along the x-axis, and IIOPS (e.g., provisioned IOPS
capacity for each disk), as measured along the y-axis, at a
particular point 1n time. In scatter graph 1300, each of the
crosses represents a particular storage device (e.g., a disk
drive), and 1ts placement within scatter graph 1300 indicates
the provisioned storage capacity and provisioned I0OPS
capacity for the particular storage device at the time depicted
in the graph. In this example, the maximum IOPS capacity for
cach disk 1s 1000 IOPS, and the disk usage 1s measured 1n
terms of a percentage of the total available storage capacity
tor each disk (e.g., on a scale from 0-1.0 1n increments o1 0.1,
or 10%). In this example, the diagonal line 1310 (e.g., the
target utilization line) represents an 1deal (or target) balance
for the utilization of the resources of the storage devices, such
that storage devices for which there 1s a high percentage of
storage capacity available (e.g., not yet provisioned for the
use of any particular table/partition/replica) also have a high
percentage of IOPS capacity available.

Ideally, the crosses representing the storage devices (e.g.,
the disk drives) would cluster around the target utilization line
1310. However, 1n this example, a large portion of the storage
devices are represented by crosses in the upper-lett and lower-
right corners of graph 1300. Those 1n the upper-left corner of
graph 1300 (labeled as under-utilized nodes 1320) have very
little (if any) available IOPS capacity, since most (or all) of the
IOPS capacity on these storage devices 1s already provisioned
tor the use of various tables/partitions/replicas, but they have
a large amount of available storage capacity (as evidenced by
the low percentages of provisioned storage capacity for these
nodes). The tables (or partitions/replicas) stored on these
nodes may (collectively) experience a lot of traffic (e.g., they
may be the targets of a lot of accesses by client applications),
but they may store very little data. In some embodiments, a
placement operation or a balancing type operation may deter-
mine that these under-utilized nodes 1320 can be used to store
additional tables/partitions/replicas 11 those tables/partitions/
replicas contain large amounts of cold data (e.g., data that 1s
essentially archival and 1s expected to be accessed rarely, 1f
ever). Conversely, the storage nodes represented by the
crosses 1n the lower-right corner of graph 1300 (labeled as
extremely under-utilized nodes 1330) have very little (if any)
available storage capacity, since most of the storage capacity
on these storage devices 1s already provisioned for the use of
various tables/partitions/replicas, but they have a large
amount of available IOPS capacity (as evidenced by the
smaller amounts of provisioned IOPS capacity for these
nodes). The tables (or partitions/replicas) stored on these
nodes may not experience much traific (e.g., they may not be
the targets of very many accesses by client applications), but
they may (collectively) store large amounts of data. In some
embodiments, a placement operation or a balancing type
operation may determine that these extremely under-utilized
nodes 1330 can be used to store additional tables/partitions/

10

15

20

25

30

35

40

45

50

55

60

65

42

replicas 1f those tables/partitions/replicas are small (and are
not expected to grow), but are accessed frequently.

In some embodiments, the distributed data storage systems
described herein may be configured to maintain position
information for all of the storage nodes and/or storage
devices/volumes 1n the storage fleet (or at least within a clus-
ter of storage nodes or another sub-set of the storage nodes in
the storage fleet, e.g., the storage nodes/devices/volumes
located within a particular data center, availability zone, or
region) with respect to a multi-dimensional space, such as
that 1llustrated 1n scatter graph 1300. In such embodiments, a
goal of the placement operations and/or balancing operations
described herein (e.g., the goal when creating a candidate
placement list for a table/partition/replica or when selecting a
placement from a candidate placement list) may be to 1dentify
a suitable placement for the table/partition/replica that moves
the overall resource utilization toward (rather than away
from) an 1deal or target resource utilization. In some embodi-
ments, this may include identifying an ideal placement for the
table/partition/replica 1n the multi-dimensional coordinate
system, using the m storage devices that are closest to the
ideal placement as the candidate hosts for the table/partition/
replica and selecting a suitable host for the table/partition/
replica from among the candidate hosts.

In some embodiments, the identification of candidate hosts
for a table/partition/replica and/or the selection of one of the
candidate hosts for the eventual placement of the table/parti-
tion/replica may take into account the position of the candi-
date hosts 1n the multi-dimensional coordinate system fol-
lowing the placement of the table/partition/replica, and/or 1ts
position subsequent to any projected changes in the I0PS
capacity requirements or storage capacity requirements for
the table/partition/replica.

In one example, 11 the information illustrated in FI1G. 13 1s
known, an approach to placing a partition replica may include
the following steps:

Identify a point A=(0, y), where the provisioned IOPS
capacity (y) 1s low if the partition replica to be placed
requires a large amount of IOPS capacity, or where the
provisioned IOPS capacity (v) 1s high 11 the partition
replica to be placed requires only a small amount of
IOPS capacity. In this example, the resulting available
IOPS capacity (following placement) may be in the
range of [0: (1000-partition_IOPS-IOPS_builer)],
where “partition_IOPS” represents the current or pro-
jected I0OPS capacity requirement for the partition rep-
lica to be placed, and “IOPS_bufler” represents an
amount ol IOPS capacity that1s to be left un-provisioned
(e.g., 1 order to handle bursts or unexpected growth).

Identify the m storage devices that are closest to point A.

Return the list of m storage devices as the placement can-
didate list for the partition to be placed.

Select one of the m storage devices on the placement can-
didate list as the destination for the partition replica (e.g.,
the storage device on the placement candidate list that
has the most available storage capacity, or a storage
device selected randomly from among the storage
devices on the placement candidate list that have suili-
cient storage capacity for the partition replica).

As 1llustrated 1n this example, the storage devices that are
to be considered for inclusion 1n the placement candidate list
may initially be i1dentified based only on the basis of the
required IOPS capacity for the partition replica to be placed,
and then one of the candidate storage devices may be selected
from among those candidate storage devices. As 1llustrated
above, the selection of the destination for the partition replica
may be based on the required storage capacity for the partition

US 9,053,167 Bl

43

replica to be placed, or may not actually take the projected
s1ze of the partition into account (e.g., 1t may merely attempt
to place the partition on the least-full drive for which there 1s
suificient IOPS capacity). However, in other embodiments, a
more advanced policy may 1dentify a point B=(X, y), where x
1s dependent on the current (or projected maximum) partition
s1ze. In such embodiments, searching for the storage devices
that are closest to point B may include excluding from the
search domain any storage devices on which the partition
replica to be placed would not fit. For example, when {itting a
partition replica that 1s projected to consume up to 1000
IOPS, and 5 GB of storage, the search domain may be defined
as including storage devices that meet the following criteria:
IOPS[0:5000], DISK][0:(70%-5 GB)]. In other words, the
search domain may include storage devices on which the
already provisioned IOPS capacity 1s 5000 IOPS or fewer
(such that the storage devices has at least 1000 I0OPS avail-
able), and on which the already provisioned storage capacity
1s no more than 70% of the total storage capacity for the
device less the 5 GB required for the partition replica to be
placed.

One embodiment of a method for placing a table (or a
partition or partition replica thereotl) on particular storage
nodes and/or individual storage devices/volumes based on a
multi-dimensional representation of resource capacity and/or
usage 1s 1llustrated by the flow diagram in FIG. 14. As 1llus-
trated 1n this example, the method may include an adminis-
trative component of a distributed data storage system (e.g.,
one that implements a non-relational database) receiving a
request from a client to place a table (or a partition or partition
replica thereof) in storage (e.g., on one of a plurality of
storage nodes in the distributed data storage system), as 1n
1410. In some embodiments, the administrative component
may be similar to an auto admin instance 350 illustrated in
FIGS. 3 and 4, and the storage nodes may be similar to storage
node instances 360 illustrated 1n FIGS. 3 and 4. As illustrated
in this example, the method may include the adminmstrative
component determining known and/or projected resource
requirements (e.g., requirement for storage capacity and/or
IOPS capacity) for the table (or partition/replica), as 1n 1420.
For example, in some embodiments, the request itself may
include an indication of the current (e.g., observed and/or
stored) storage capacity requirements for an existing table (or
partition/replica) that 1s being imported, moved, or split or an
indication of the expected (or projected) storage capacity
requirements for a new or existing table (or partition/replica)
based on client hints or requests (e.g., hints or requests made
during creation of the table, or estimates made later 1n antici-
pation of expected growth), observed heat information for the
table (or various partitions/replicas thereof), machine learn-
ing (e.g., based on the velocity, or rate of change, in the
storage capacity consumed by the table/partition/replica), a
history of storage capacity requirements for tables main-
tained on behalf of the same client, and/or a default amount of
storage capacity growth that 1s assumed for all tables/parti-
tions/replicas. In other embodiments, some or all of this infor-
mation may be obtained by the administrative component
from the storage nodes and/or from a memory 1n which the
information was stored following a previously performed
health check or other information gathering operation.

As 1llustrated 1n this example, the method may include the
administrative component accessing a multi-dimensional
representation of resource capacity and/or resource usage for
at least 1ts own storage nodes (e.g., for the overall resource
capacity or usage for each node and/or for the resource capac-
ity or usage for each of the individual storage devices or
logical storage volumes of each node), as 1 1430. For

10

15

20

25

30

35

40

45

50

55

60

65

44

example, the administrative component may access a two-
dimensional representation of provisioned resource capacity
for the individual storage devices of one or more storage
nodes, such as the scatter graph 1illustrated 1n FIG. 13, or a
representation of resource capacity or resource usage that
considers more than two resource related parameters (e.g.,
multiple two-dimensional graphs or heat maps, one or more
three-dimensional graphs or heat map, etc.). In different
embodiments, the multi-dimensional representations may
represent local conditions (e.g., those of the storage nodes for
which the administrative nodes 1s responsible) or global con-
ditions (e.g., those of the storage nodes for which the admin-
istrative nodes 1s responsible and of the storage nodes for
which other administrative nodes are responsible). The
method may also include the administrative component deter-
mining an 1deal (or target) resource utilization for the
resources represented in the multi-dimensional representa-
tion, as 1n 1440. For example, in the two-dimensional repre-
sentation of provisioned resource capacity illustrated in FIG.
13, the 1deal resource utilization 1s represented by target uti-
lization line 1310. For representations involving more than
two resource related parameters, the 1deal (or target) resource
utilization may be represented in other ways.

As 1llustrated 1n this example, the method may 1include the
administrative component determining an ideal (or target)
placement for table (or partition/replica) based on the current
and/or projected resource requirements for the table (or par-
tition/replica), based, at least 1n part, on the multi-dimen-
sional representation of the resource capacity or resource
utilization, as 1n 1450. For example, an 1deal (or target) place-
ment may be determined by 1dentiiying a particular location
in the graph such that the representation of a storage node or
device/volume at that location would be on (or near) a target
utilization line (or other representation of the ideal or target
resource utilization) based on the current resource require-
ments of the table/partition/replica and/or following any pro-
jected growth 1n the resource requirements of the table/parti-
tion/replica. In other words, an 1deal (or target) placement for
the table/partition/replica may be a location 1n the graph such
that a storage node or device/volume at that location in the
graph would move toward the target utilization line (or other
representation of the ideal or target resource utilization),
rather than away from 1t, following any projected growth in its
resource requirements, or a location in the graph that 1s on (or
very near) the target utilization line (or other representation of
the 1deal or target resource utilization) if no growth 1s
expected 1n its resource requirements.

As 1llustrated 1n this example, the method may 1include the
administrative component determining the storage nodes
and/or individual storage devices/volumes closest to the ideal
placement for the table 1n the multi-dimensional representa-
tion, as 1 1460. In some embodiments, the method may
include 1dentifying a storage node or device/volume that 1s
represented 1n the graph at a location nearest to the 1deal (or
target) placement location described above. For example, in
an embodiment that utilizes the example scatter graph 1llus-
trated 1n FIG. 13, 1f the storage capacity requirements for the
table/partition/replica are projected to grow, the administra-
tive component may be configured to place the table/parti-
tion/replica on a storage node or device/volume represented
by a point on the graph to the left of target utilization line 1310
(to allow for that growth without upsetting the overall
resource utilization of the storage fleet, or at least within a
cluster of storage nodes or another sub-set of the storage
nodes 1n the storage fleet, e.g., the storage nodes/devices/
volumes located within a particular data center, availability
zone, or region) and/or 11 the IOPS capacity requirements for

US 9,053,167 Bl

45

the table/partition/replica are projected to grow, the adminis-
trative component may be configured to place the table/par-
tition/replica on a storage node or device/volume represented
by a point on the graph below the target utilization line 1310
(to allow for that growth without upsetting the overall
resource utilization of the storage fleet, or at least within a
cluster of storage nodes or another sub-set of the storage
nodes 1n the storage tleet).

Note that 1n some embodiments, rather than creating a
multi-dimensional representation of the resource capacity
and/or resource usage ol the storage nodes (or storage
devices/volumes) of a distributed data storage system where
n 1s relatively large, the administrative components may be
configured to generate multiple different representations
involving fewer dimensions (e.g., fewer resource related fac-
tors) each. In such embodiments, the contributions of each of
these representations toward the placement of a table (or
partition/replica) may be weighted such that particular
resource related parameter values (or combinations of param-
cter values) have more influence on placement decisions than
others.

As previously noted, 1n some embodiments, a balancer
process (€.g., a balancer process running on an administrative
component) may gather or accesses information about each
of the storage nodes in the system (and/or their storage
devices/volumes) 1in order to determine whether to move any
partitions or replicas to better balance the resource utilization
across the storage fleet (or at least across a portion of the
storage fleet, such as across a cluster of storage nodes, or
across the storage nodes/devices/volumes located within a
particular data center, availability zone, or region). In other
words, a balancer process may be employed in order to deter-
mine partition management operations (e.g., operations to
split and/or move various partition replicas) to be performed
in order to move toward an 1deal (or target) resource utiliza-
tion that 1s more balanced at the system level (e.g., between
storage nodes). In some such embodiments, when the bal-
ancer process runs (e.g., periodically, or 1n response to vari-
ous trigger conditions), 1t may have a global view of the
resource capacity and resource usage in the system and may
prioritize work across the system, rather than locally. In one
embodiment, an example balancer policy may be configured
to 1nitiate a swap ol two partitions between storage nodes that
are represented as the two points 1n a graph (e.g., the scatter
graph illustrated in FIG. 13) that are furthest away from the
ideal or target utilization for the system (e.g., as represented
by target utilization line 1310 1n FIG. 13), on opposite sides of
the graph. In such embodiments, the balancer may be config-
ured to move a partition that 1s projected to consume a large
amount of storage capacity, but a small amount of I0PS
capacity from a storage device represented by a cross in the
lower right corner of the graph to a storage device represented
by a cross 1n the upper right corner of the graph.

One embodiment of a method for performing a resource
balancing operation 1n a distributed data storage system 1s
illustrated by the flow diagram 1n FIG. 15. As 1llustrated at
1510, 1n this example, the method may include an adminis-
trative component of a distributed data storage system (e.g.,
one that implements a non-relational database), or a balanc-
ing process thereot, accessing a multi-dimensional represen-
tation of resource capacity and/or resource usage for at least
its own storage nodes (e.g., for the overall resource capacity
or usage for each storage node and/or for the resource capac-
ity or usage for each of the individual storage devices or
logical storage volumes of each storage node). For example,
the balancer process may access a local or global representa-
tion of resource capacity and/or resource usage, as described

10

15

20

25

30

35

40

45

50

55

60

65

46

above, periodically or 1n response to a pre-defined trigger
condition (e.g., aiter a pre-defined number of partition man-
agement operations, such as operations to move a partition or
a replica thereof, or operations to split a partition or a replica
thereol) in order to maintain (or regain) a desired balance in
the resource utilization across the storage fleet, or at least
within a cluster of storage nodes or another sub-set of the
storage nodes 1n the storage tleet. In some embodiments, the
administrative component may be similar to an auto admin
instance 350 illustrated 1n FIGS. 3 and 4, and the storage
nodes may be similar to storage node instances 360 1llustrated
in FIGS. 3 and 4.

As 1llustrated 1n this example, the method may include the
administrative component (or a balancer process thereof)
determining the known and/or projected resource capacity
requirements (e.g., requirements for storage capacity and/or
IOPS capacity) for the storage nodes, as 1n 1520. For
example, the balancer process may be configured to deter-
mine, for each of the storage nodes, the amount or percentage
ol the storage capacity or IOPS capacity that has already been
provisioned (or reserved) for storing (and subsequently
accessing) data, the amount or percentage of the storage
capacity or IOPS capacity that 1s available for the storage of
data, an observed or projected growth rate for the provisioned
storage capacity or IOPS capacity, a heat map (or other heat
information) indicating the distribution of storage or IOPS
capacity across the storage devices or logical storage volumes
of the storage node, an indicator of bursting activity, an 1ndi-
cation of pending (or candidate) partition management opera-
tions for the storage node and/or other resource related meta-
data for the storage node or its storage devices/volumes, using
any ol the techniques described herein for gathering this
information (e.g., receiving this mformation from clients,
receiving this information from the storage nodes themselves
when performing health checks for the storage nodes, or
deriving this information from information received from
clients and/or the storage nodes), or using any other suitable
techniques for gathering this information.

As 1llustrated in FIG. 12, the method may include the
administrative component (or a balancer process thereof)
determining current and/or projected deviations from an 1deal
(or target) resource utilization for the storage node resources
represented 1n the multi-dimensional representation, as in
1530. For example, the administrative component may be
configured to determine the individual or aggregate (e.g.,
maximum, average, or median) distance(s) between points
representing the storage nodes or devices/volumes in a two-
dimensional graph (such as the scatter graph illustrated 1n
FIG. 13), and a representation of the ideal (or target) resource
utilization for the storage node resources represented in the
multi-dimensional representation (such as target utilization
line 1310 1 FIG. 13). The method may also include the
administrative component determining the highest priority
partition management operations to perform in order to move
the storage tleet (or at least the storage nodes within a cluster
ol storage nodes or another sub-set of the storage nodes 1n the
storage fleet) toward the 1deal (or target) resource utilization,
based on the relative deviations from the ideal (or target)
resource utilization representation of each of the storage
nodes or devices/volumes, as 1n 1540. For example, 1n some
embodiments, the administrative component (or balancer
process) may be configured to move partitions or partition
replicas that are currently hosted on the most heavily-utilized
storage nodes and/or individual storage devices/volumes to
storage nodes and/or individual storage devices/volumes that
are the most under-utilized. As illustrated 1n this example, the
method may include the adminmistrative component nitiating,

US 9,053,167 Bl

47

the performance of at least some of the highest priority par-
titton management operations, as in 1350. Note that after
performing one or more of the highest priority partition man-
agement operations, the administrative component (or bal-
ancer process) may be configured to repeat the operations
illustrated in FIG. 15 to assess the results (e.g., to determine
whether the operation(s) moved the storage fleet (or at least
the storage nodes within a cluster of storage nodes or another
sub-set of the storage nodes 1n the storage fleet) toward the
ideal or target resource utilization), or the admimstrative
component (or balancer process) may be configured to repeat
the operations illustrated in FIG. 15 periodically or in
response to another type of trigger condition, in different
embodiments.

One embodiment of a computing node that implements one
or more of the techniques described herein for placing tables,
partitions, or replicas on particular storage nodes or storage
devices/volumes 1n a data storage service (e.g., a distributed
database service) 1s 1llustrated by the block diagram in FIG.
16. Computing node 1600 may include functionality to pro-
vide any or all of the components of a system that implements
such a data storage service, or multiple computing nodes
similar to or different from computing node 1600 may col-
lectively provide this functionality, 1n different embodiments.
For example, 1n various embodiments, one or more comput-
ing nodes 1600 may implement any number of storage service
clients 310, a front end module 340, any number of auto
admin istances 350, any number of storage devices (such as
storage node 1nstances 360), and/or any other components of
a Web services platform 330, an auto admin cluster, or exter-
nal resources that interact with Web services platform 330
(such as external workflow component 370). Any number of
those storage node 1stances 360 may each host one or more
replicas of various data partitions and/or metadata associated
therewith. For example, any given storage node instance 360
may host a replica acting as master replica for its replica
group and/or a replica acting as a slave replica in 1ts replica
group. In various embodiments, any or all of the techniques
described herein for performing partitioning, repartitioning
(e.g., through partition splitting and/or partition moving),
replication, placement (of tables, partitions, or replicas), and/
or otherwise managing partition data may be performed by
one or more components of the storage node instances 360
that host a master replica and/or a slave replica, such as
partition manager 470 and replication and failover compo-
nent 475 illustrated 1n FIG. 4C or by one or more components
of a auto admin instance 350 (e.g., partition management
scheduler 420, which may include a sweeper component/
module and/or an event scheduler component/module).

In some embodiments that include multiple computing
nodes 1600, all of the computing nodes 1600 may include the
same or similar hardware components, software components,
and functionality, while in other embodiments the computing
nodes 1600 comprising a computing system configured to
implement the functionality described herein may include a
wide variety of hardware components, soltware components,
and functionality. In some embodiments, multiple computing
nodes 1600 that collectively implement a data storage service
may be components of a larger shared resource system or grid
computing system. It 1s noted that different elements of the
system described herein may be implemented by different
computing nodes 1600. For example, a computer system that
supports the functionality described herein for placing tables,
partitions, or replicas on particular storage nodes or storage
devices/volumes may be implemented on the same comput-
ing node 1600 on which a client (through which a customer or
subscriber may access the system) executes, or on another

10

15

20

25

30

35

40

45

50

55

60

65

48

computing node 1600, in different embodiments. In another
example, different subsystems (e.g., a Web service interface,
an admission control subsystem, a service request subsystem;
and/or one or more Web servers or other components) may be
implemented on or across multiple ones of the computing
nodes, and each of the computing nodes may be similar to
computing node 1600.

In the illustrated embodiment, computing node 1600
includes one or more processors 1610 coupled to a system
memory 1620 via an input/output (I/0) interface 1630. Com-
puting node 1600 further includes a network 1nterface 1640
coupled to I/0 interface 1630, and one or more 1nput/output
devices 1650. As noted above, 1n some embodiments, a given
node may implement the functionality of more than one com-
ponent of a system that manages and maintains data in tables
and 1n various partitions thereof (e.g., in a non-relational
database) on behalf of data storage service clients, such as
that described herein. In various embodiments, a computing
node 1600 may be a umiprocessor system 1ncluding one pro-
cessor 1610, or a multiprocessor system including several
processors 1610 (e.g., two, four, eight, or another suitable
number). Processors 1610 may be any suitable processor
capable of executing instructions. For example, 1n various
embodiments processors 1610 may be general-purpose or
embedded processors implementing any of a variety of
instruction set architectures (ISAs), such as the x86, Pow-
erPC, SPARC, or MIPS ISAs, or any other suitable ISA. In
multiprocessor systems, each of processors 1610 may com-
monly, but not necessarily, implement the same ISA. Simi-
larly, 1n a distributed computing system such as one that
collectively implements a data storage service, each of the
computing nodes may implement the same ISA, or individual
computing nodes and/or replica groups of nodes may 1mple-
ment different ISAs.

In some embodiments, system memory 1620 may include
a non-transitory, computer-readable storage medium config-
ured to store program instructions and/or data (shown as
program nstructions 1625 and data store 1635, respectively)
that are accessible by processor(s) 1610. In various embodi-
ments, system memory 1620 may be implemented using any
suitable memory technology, such as static random access
memory (SRAM), synchronous dynamic RAM (SDRAM),
nonvolatile/Flash-type memory, or any other type of memory.
In the 1llustrated embodiment, program instructions and data
implementing desired functions, methods or techniques (such
as functionality for placing tables, partitions, or replicas on
particular storage nodes or storage devices/volumes using
any or all of the mechanisms described herein), are shown
stored within system memory 1620 as code 16235. For
example, program instruction 1625 may include program
instructions that when executed on processor(s) 1610 imple-
ment any or all of a storage service client 310, a front end
module 340 (which may include a user interface), an auto
admin instance 350, a storage node 1nstance 360, an admin
console 465, a partition management partition management
scheduler 420, a request router, a staging host, one or more
metadata tables, an external workilow component 370, and/or
any other components, modules, or sub-modules of a system
that provides the data storage system and services described
herein. Program 1nstructions 16235 may also include program
instructions configured to implement additional functionality
of a system that implements a data storage service not
described herein.

It 1s noted that in some embodiments, code 1625 may
include instructions and data implementing desired functions
that are not directly executable by processor 1610 but are
represented or encoded 1n an abstract form that 1s translatable

US 9,053,167 Bl

49

to mstructions that are directly executable by processor 1610.
For example, code 1625 may include mstructions specified in
an ISA that may be emulated by processor 1610, or by other
code 1625 executable on processor 1610. Alternatively, code
1625 may include instructions, procedures or statements
implemented in an abstract programming language that may
be compiled or interpreted 1n the course of execution. As
non-limiting examples, code 1625 may include code speci-
fied 1n a procedural or object-oriented programming language
such as C or C++, a scripting language such as perl, a markup
language such as HITML or XML, or any other suitable lan-
guage.

Data storage 1635 may in various embodiments include
collections of data maintained by a data storage service on
behalf of its clients/users, and/or metadata used by a comput-
ing system that implements such a service, as described
heremn (including, but not limited to, tables managed and
maintained on behalf of clients/users of the service, metadata
tables, business rules, partition maps, routing tables, indexes,
namespaces and/or partitions thereof, service level agreement
parameter values, subscriber preferences and/or account
information, performance data, resource capacity data,
resource usage data, provisioned resource utilization data,
reserved resource data, resource reservation IDs, resource
reservation timeout period values, parameter values for vari-
ous partition management policies, limits, or constraints, and/
or information about candidate partition management opera-
tions).

In other embodiments, program instructions and/or data as
described herein for implementing a data storage service that
employs the techniques described above may be received,
sent or stored upon different types of computer-readable
media or on similar media separate from system memory
1620 or computing node 1600. Generally speaking, a com-
puter-readable medium may include storage media or
memory media such as magnetic or optical media, e.g., disk
or CD/DVD-ROM coupled to computing node 1600 via I/O
interface 1630. Program instructions and data stored on a
computer-readable storage medium may be transmitted to a
computing node 1600 for execution by a processor 1610a by
transmission media or signals such as electrical, electromag-
netic, or digital signals, which may be conveyed via a com-
munication medium such as a network and/or a wireless link,
such as may be implemented via network interface 1640.

In one embodiment, I/O mnterface 1630 may be configured
to coordinate 1/0 trailic between processor(s) 1610, system
memory 1620, and any peripheral devices 1n the computing,
node, including network interface 1640 or other peripheral
interfaces, such as input/output devices 16350. In some
embodiments, I/O interface 1630 may perform any necessary
protocol, timing or other data transtormations to convert data
signals from one component (e.g., system memory 1620) into
a format suitable for use by another component (e.g., proces-
sor 1610). In some embodiments, I/O itertace 1630 may
include support for devices attached through various types of
peripheral buses, such as a variant of the Peripheral Compo-
nent Interconnect (PCI) bus standard or the Universal Serial
Bus (USB) standard, for example. In some embodiments, the
function of I/O 1nterface 1630 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, 1n some embodiments some or all
of the functionality o1 IO interface 1630, such as an interface
to system memory 1620, may be incorporated directly into
processor 1610.

Network interface 1640 may be configured to allow data to
be exchanged between computing node 1600 and other
devices attached to a network (such as other computer sys-

10

15

20

25

30

35

40

45

50

55

60

65

50

tems, communication devices, input/output devices, or exter-
nal storage devices), or between other nodes 1n a system
providing shared computing services. In various embodi-
ments, network interface 1640 may support communication
via wired or wireless general data networks, such as any
suitable type of Ethernet network, for example; via telecom-
munications/telephony networks such as analog voice net-
works or digital fiber communications networks; via storage
area networks such as Fibre Channel SANs, or via any other
suitable type of network and/or protocol.

Input/output devices 1650 may, 1n some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computing nodes 1600. Multiple
input/output devices 1650 may be present 1n computing node
1600 or may be distributed on various computing nodes of a
system that 1s configured to implement a data storage service.
In some embodiments, similar input/output devices may be
separate from computing node 1600 and may interact with
one or more computing nodes of a system through a wired or
wireless connection, such as over network interface 1640.

Storage service clients (e.g., users, subscribers and/or cli-
ent applications) may interact with a data storage service such
as that described herein 1n various ways 1n different embodi-
ments, such as to submit requests for service (including, but
not limited to, requests to create and/or partition tables,
requests to store, retrieve and/or update items 1n tables, or
requests to split, move, or otherwise repartition a table), and
to receive results. For example, some subscribers to the ser-
vice may have physical access to computing node 1600, and
if so, may interact with various input/output devices 1650 to
provide and/or recerve information. Alternatively, other cli-
ents/users may use client computing systems to access the
system, such as remotely via network interface 1640 (e.g., via
the Internet and/or the World Wide Web). In addition, some or
all of the computing nodes of a system providing the service
may provide various feedback or other general types of infor-
mation to clients/users (e.g., 1n response to user requests) via
one or more mput/output devices 1650.

Those skilled 1n the art will appreciate that computing node
1600 1s merely 1llustrative and 1s not intended to limit the
scope of embodiments. In particular, the computing system
and devices may include any combination of hardware or
soltware that can perform the indicated functions, including
computers, network devices, internet appliances, PDAs,
wireless phones, pagers, etc. Computing node 1600 may also
be connected to other devices that are not illustrated, 1n some
embodiments. In addition, the functionality provided by the
illustrated components may 1n some embodiments be com-
bined in fewer components or distributed 1n additional com-
ponents. Similarly, 1n some embodiments the functionality of
some ol the illustrated components may not be provided
and/or other additional functionality may be available.

Those skilled 1n the art will also appreciate that, while
various items are illustrated as being stored 1n memory or on
storage while being used, these 1tems or portions of them may
be transierred between memory and other storage devices for
purposes ol memory management and data integrity. Alter-
natively, 1n other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computing system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as mstruc-
tions or structured data) on a computer-readable storage
medium or a portable article to be read by an appropnate
drive, various examples of which are described above. In

US 9,053,167 Bl

51

some embodiments, 1nstructions stored on a computer-read-
able storage medium separate from computing node 1600
may be transmitted to computing node 1600 via transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as a
network and/or a wireless link. Various embodiments may
turther include receiving, sending or storing instructions and/
or data implemented i1n accordance with the foregoing
description upon a computer-readable storage medium.
Accordingly, different embodiments may be practiced with
other computer system configurations.

Note that while several examples described herein are
irected to the application of various techniques in systems
hat include a non-relational database, 1n other embodiments
nese techniques may be applied 1n systems in which the
1stributed data store 1s implemented using a different storage
paradigm.

Those skilled i the art will appreciate that in some
embodiments the functionality provided by the methods dis-
cussed above may be provided in alternative ways, such as
being split among more soltware modules or routines or
consolidated into fewer modules or routines. Similarly, 1n
some embodiments 1llustrated methods may provide more or
less functionality than 1s described, such as when other 1llus-
trated methods instead lack or include such functionality
respectively, or when the amount of functionality that 1s pro-
vided 1s altered. In addition, while various operations may be
illustrated as being performed 1n a particular manner (e.g., 1n
serial or 1n parallel) and/or 1n a particular order, those skilled
in the art will appreciate that in other embodiments the opera-
tions may be performed 1n other orders and in other manners.
Those skilled 1n the art will also appreciate that the data
structures discussed above may be structured in different
manners, such as by having a single data structure split into
multiple data structures or by having multiple data structures
consolidated 1nto a single data structure. Similarly, 1n some
embodiments 1llustrated data structures may store more or
less information than is described, such as when other 1llus-
trated data structures mstead lack or include such information
respectively, or when the amount or types of information that
1s stored 1s altered. The various methods as depicted 1n the
figures and described herein represent illustrative embodi-
ments of methods. The methods may be implemented in
software, 1n hardware, or 1n a combination thereof 1n various
embodiments. Similarly, the order of any method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc., 1n various embodiments.

From the foregoing 1t will be appreciated that, although
specific embodiments have been described herein for pur-
poses of 1llustration, various modifications may be made
without deviating from the spirit and scope of the appended
claims and the elements recited therein. In addition, while
certain aspects are presented below 1n certain claim forms, the
inventors contemplate the various aspects in any available
claim form. For example, while only some aspects may cur-
rently be recited as being embodied 1n a computer readable
storage medium, other aspects may likewise be so embodied.
Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. Accordingly, various modifi-
cations and changes may be made as would be obvious to a
person skilled in the art having the benefit of this disclosure.
It 1s intended that the following claims be interpreted to
embrace all such modifications and changes and, accordingly,
the above description to be regarded 1n an 1llustrative rather
than a restrictive sense.

C
t
t
C

10

15

20

25

30

35

40

45

50

55

60

65

52

The mvention claimed 1s:

1. A system, comprising:

OnNe Or MOIre Processors;

a memory coupled to the one or more processors; and

a plurality of storage nodes, each of which comprises one
or more storage devices or logical storage volumes;

wherein the memory stores program instructions that when
executed by the one or more processors cause the one or
more processors to implement a distributed database
service;

wherein the distributed database service maintains data 1n
one or more partitions, and wherein to maintain the data
in the one or more partitions, the distributed database
service 15 configured to store two or more replicas of
cach of the one or more partitions on respective storage
devices or logical storage volumes of respective ones of
the plurality of storage nodes;

wherein an administrative component of the distributed
database service 1s configured to:

store metadata about each of the plurality of storage

nodes, wherein the metadata about each storage node
comprises an indication of an amount of provisioned
throughput capacity or an amount of available
throughput capacity for the storage node;
determine that a given one of the plurality of storage
nodes 1s a potential host for a particular partition
replica; and
in response to said determining, initiate storage of the
particular partition replica on the given storage node;
wherein to determine that the given storage node 1s a poten-
t1al host for a particular partition replica, the administra-
tive component 1s configured to:
receive an indication from the given storage node that
the given storage node has sulficient storage capacity
to host the particular partition replica; and
determine that the given storage node 1s a potential host
for a particular partition replica based, at least 1n part,
on the received indication and the stored metadata.

2. The system of claim 1, wherein to determine that the
given storage node 1s a potential host for a particular partition
replica, the administrative component 1s further configured
to:

send a message to the given storage node, wherein the

message specifies an amount of storage capacity associ-
ated with the particular partition replica; and

recerve a reply message from the given storage node 1ndi-

cating that the given storage node 1s able to host the
particular partition replica.

3. The system of claim 2, wherein the message comprises
an indication of a current amount of throughput capacity
required for the particular partition replica or a projected
amount of throughput capacity for the particular partition
replica.

4. The system of claim 2, wherein the message comprises
an indication of a current amount of storage capacity required
for the particular partition replica or a projected amount of
storage capacity for the particular partition replica.

5. The system of claim 2,

wherein the message comprises a reservation request

specilying a request to reserve suilicient resource capac-
ity to store the particular partition replica on the given
storage node; and

wherein the reply message comprises an acknowledge-

ment that the requested resource capacity has been
reserved for the particular partition replica by the given
storage node.

US 9,053,167 Bl

53

6. A method, comprising;:
performing by one or more computers:
storing metadata about one or more storage nodes of a
distributed data storage system, wherein the distrib-
uted data storage system stores data in one or more
partitions on respective storage devices or logical
storage volumes of the one or more storage nodes, and
wherein the metadata about each storage node com-
prises an indication of an amount of provisioned
throughput capacity or an amount of available
throughput capacity for the storage node;
determining that a given one of the one or more storage
nodes 1s a potential host for a particular partition; and
in response to said determining, initiate storage of the
particular partition on the given storage node;
wherein said determining comprises recerving an indica-
tion from the given storage node that the given storage
node has sullicient storage capacity to host the particular
partition; and

wherein said determining 1s based, at least in part, on the

received mdication and the stored metadata.

7. The method of claim 6, wherein said determiming further
comprises sending a message to the given storage node ndi-
cating an intent to store the particular partition on the storage
node, wherein the message comprises an imndication of a cur-
rent amount of storage capacity required by the particular
partition replica or a projected amount of storage capacity for
the particular partition replica.

8. The method of claim 7, wherein said determiming further
comprises receiving a reply message from the given storage
node, wherein the reply message comprises an 1identifier of a
storage device or logical storage volume having suificient
storage capacity to host the particular partition.

9. The method of claim 6, turther comprising, prior to said
determining;:

querying each of the one or more storage nodes to obtain

resource capacity information or resource usage nfor-
mation for the storage node;

receiving resource capacity imformation or resource usage

information from each of the one or more storage nodes;
and

storing the resource capacity information or resource usage

information received from each of the one or more stor-

age nodes as the metadata about the one or more storage
nodes.

10. The method of claim 6, wherein the metadata about
cach storage node further comprises an indication of an
amount or percentage of provisioned storage capacity, an
amount or percentage of reserved storage capacity, or an
amount or percentage of available storage capacity on the
storage node.

11. The method of claim 6, wherein the metadata about
cach storage node further comprises heat information for the
storage node or an 1ndication of bursting activity on the stor-
age node.

12. The method of claim 6, wherein the metadata about
cach storage node comprises an indication of an amount or
percentage of provisioned throughput capacity, an amount or
percentage ol reserved throughput capacity, an amount or

percentage of available throughput capacity, an amount or
percentage of provisioned storage capacity, an amount or
percentage of reserved storage capacity, or an amount or
percentage of available storage capacity for each of a plurality
of storage devices or logical storage volumes on the storage
node.

10

15

20

25

30

35

40

45

50

55

60

65

54

13. The method of claim 6,

wherein the method further comprises generating a multi-
dimensional representation of resource capacity or
resource usage for at least some of the one or more
storage nodes based, as least 1n part, on the stored meta-
data; and

wherein said determining 1s based, at least in part, on the
multi-dimensional representation.

14. The method of claim 13,

wherein the multi-dimensional representation comprises
an 1dication of a target resource utilization; and

wherein said determining comprises determining that stor-
ing the particular partition on the given storage node will
move a representation of a storage device or logical
storage volume of the given storage node 1n the multi-
dimensional representation closer to the indication of
the target resource utilization.

15. The method of claim 6, wherein said determining fur-
ther comprises, prior to said receiving:

selecting a set of storage nodes at random, wherein the

randomly selected set of storage nodes comprises the
given storage node;

determining that storage nodes 1n a subset of the randomly

selected set of storage nodes have sullicient available
throughput capacity for hosting the particular partition,
wherein the subset comprises the given storage node;
and

querying the given storage node to determine whether the

given storage node has sullicient storage capacity to host
the particular partition.
16. The method of claim 6, wherein said determining 1s
performed 1n response to recewving a request to store the
particular partition, and wherein the request to store the par-
ticular partition 1s part of an operation to create a table, an
operation to divide a table into two or more partitions, an
operation to replicate a partition, an operation to move a
partition, an operation to split a partition, or an operation to
move resource utilization in the distributed data storage sys-
tem toward a target resource utilization.
17. A non-transitory, computer-readable storage medium
storing program instructions that when executed on one or
more computers cause the one or more computers to perform:
receving, by a given one of a plurality of storage nodes of
a distributed data storage system that has suificient avail-
able throughput capacity for hosting a particular data
partition, a request to reserve resource capacity for host-
ing the particular data partition, wherein the request
comprises an indication of a current amount of storage
capacity required by the particular partition or a pro-
jected amount of storage capacity for the particular par-
tition, and wherein the distributed data storage system
stores data 1n one or more partitions on respective stor-
age devices or logical storage volumes on respective
ones of the plurality of storage nodes; and

determiming, by the given storage node, that a storage
device or logical storage volume of the given storage
node has suilicient available storage capacity for hosting
the particular data partition;

reserving, by the given storage node, the storage device or

logical storage volume for hosting the particular data
partition; and

returning, by the given storage node, an acknowledgement

that resource capacity has been reserved for hosting the
particular data partition;

wherein said determining 1s based, at least in part, on the

indication 1n the request and on resource related meta-

US 9,053,167 Bl

3

data for one or more storage devices or logical storage
volumes of the given storage node that 1s stored locally
on the given storage node.
18. The non-transitory,
medium of claim 17,
wherein the resource related metadata that 1s stored locally
on the given storage node comprises metadata indicating
which, if any, of the one or more storage devices or
logical storage volumes have available storage capacity
falling within each of a plurality of available storage
capacity ranges; and
wherein said determining comprises determining that the
storage device or logical volume has an amount of avail-
able storage capacity within highest storage capacity
range.
19. The non-transitory,
medium of claim 18,
wherein the request to reserve resource capacity for host-
ing the particular data partition 1s recerved from the

computer-readable storage

computer-readable storage

10

15

56

administrative component of the distributed data storage
system; and

wherein said returning comprises returning the acknowl-
edgement to the administrative component of the dis-
tributed data storage system.

20. The non-transitory, computer-readable

medium of claim 17,

wherein the resource related metadata that 1s stored locally
on the given storage node comprises metadata indicating
the amount of available throughput capacity for the
given storage node;

when executed on the one or more computers, the program

instructions further cause the one or more computers to
perform, prior to said receiving, sending the metadata
indicating the amount of available throughput capacity
for the given storage node to an administrative compo-
nent of the distributed data storage system.

storage

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

