US009050229B1 ## (12) United States Patent ## Morris et al. ## (10) Patent No.: US 9,050,229 B1 (45) Date of Patent: US 9,050,229 B1 ## (54) **FOLD OUT RAMP** - (71) Applicants: **Donald Morris**, Littleton, CO (US); **David Johnson**, Modesto, CA (US) - (72) Inventors: **Donald Morris**, Littleton, CO (US); - David Johnson, Modesto, CA (US) - (73) Assignee: Lift-U, Division of Hogan Mfg., Inc., Escalon, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 8 days. - (21) Appl. No.: 14/069,146 - (22) Filed: Oct. 31, 2013 - (51) **Int. Cl.** **B60P 1/43** (2006.01) **A61G 3/06** (2006.01) (52) **U.S. Cl.** CPC .. *A61G 3/061* (2013.01); *B60P 1/43* (2013.01) ### (58) Field of Classification Search CPC A61G 3/061; A61G 3/06; A61G 3/0209; A61G 2003/067; B60P 1/433; B60P 1/43; B60P 1/431; B60P 1/4421; B60P 1/435; B60P 1/6454; B60P 1/4442; B66F 7/243; B66F 7/24; B65G 69/2823; B65G 69/2811; B65G 69/28; B61D 13/00; B61D 47/00 USPC 414/812, 537, 540, 546, 921; 14/69.5, 14/71.1, 71.3; 296/61; 105/436 See application file for complete search history. ## (56) References Cited ### U.S. PATENT DOCUMENTS | 2,727,781 | Α | * | 12/1955 | Eath 296/61 | |-----------|--------------|---|---------|------------------------| | 3,846,860 | A | * | 11/1974 | Kummerman 14/71.1 | | 4,792,274 | A | * | 12/1988 | Cockram 414/537 | | 4,845,792 | \mathbf{A} | * | 7/1989 | Bakula et al 14/69.5 | | 6,179,545 | B1 | * | 1/2001 | Petersen et al 414/537 | | | | | | | | 6,343,908 B1 | * 2/2002 | Oudsten et al 414/537 | | | | | | |-----------------|-----------------|-------------------------|--|--|--|--|--| | 6,802,095 B1 | * 10/2004 | Whitmarsh et al 14/71.3 | | | | | | | 7,637,518 B2 | * 12/2009 | Adair 280/164.1 | | | | | | | 7,715,962 B2 | * 5/2010 | Rowe et al 701/36 | | | | | | | 7,913,341 B1 | * 3/2011 | Morris et al 14/71.3 | | | | | | | 7,913,342 B1 | * 3/2011 | Morris et al 14/71.3 | | | | | | | 8,079,798 B2 | * 12/2011 | Smith et al 414/537 | | | | | | | 8,122,553 B1 | * 2/2012 | Johnson et al 14/71.3 | | | | | | | 8,132,281 B1 | * 3/2012 | Johnson et al 14/71.3 | | | | | | | 8,166,594 B1 | * 5/2012 | Morris 14/71.3 | | | | | | | 8,181,300 B1 | * 5/2012 | Johnson et al 14/71.3 | | | | | | | 8,250,693 B1 | * 8/2012 | Johnson et al 14/71.3 | | | | | | | 8,327,486 B2 | * 12/2012 | Fontaine et al 14/71.1 | | | | | | | 2008/0184500 A1 | * 8/2008 | Bettcher 14/71.1 | | | | | | | 2008/0187425 A1 | * 8/2008 | Morris et al 414/537 | | | | | | | 2008/0271267 A1 | * 11/2008 | Morris et al 14/71.1 | | | | | | | 2008/0271268 A1 | * 11/2008 | Johnson 14/71.1 | | | | | | | 2008/0271269 A1 | * 11/2008 | Morris et al 14/71.1 | | | | | | | 2008/0273956 A1 | * 11/2008 | Morris et al 414/540 | | | | | | | (Continued) | | | | | | | | (Continued) Primary Examiner — Saul Rodriguez Assistant Examiner — Glenn Myers (74) Attorney, Agent, or Firm — Christensen O'Connor Johnson Kindness PLLC ## (57) ABSTRACT A ramp assembly provides a transition surface between a vehicle floor and an alighting surface. The ramp assembly is moveable between a stowed position, a first deployed position, and a second deployed position. The ramp assembly includes a ramp portion coupled for rotational movement and a panel rotatable about a first end. The ramp portion supportingly engages a second end of the panel to elevate the second end of the panel as the ramp portion moves toward the second deployed position. A method of deploying the ramp portion includes the step of rotating the ramp portion until the ramp portion contacts the alighting surface. The method further includes the steps of rotating the ramp portion until the ramp assembly reaches the first deployed position, in which the ramp portion forms a predetermined angle with the panel, and selectively rotating the ramp portion to the second deployment position. ### 19 Claims, 15 Drawing Sheets ## US 9,050,229 B1 Page 2 | (56)
U.S. | References Cited PATENT DOCUMENTS | 2011/0072598 A1*
2011/0088174 A1* | 3/2011
4/2011 | Morris et al | |--|-----------------------------------|---|-----------------------------|--| | 2009/0035112 A1*
2009/0035113 A1*
2009/0271934 A1* | 2/2009 Morris et al. | 2011/0088179 A1*
2011/0268544 A1
2012/0087716 A1* | 4/2011
11/2011
4/2012 | Morris et al. 14/69.5 Morris et al. 14/71.3 Koretsky 403/83 Saucier et al. 14/71.7 | Fig.2. # Fig. 10. Fig. 11. ## FOLD OUT RAMP #### FIELD OF THE INVENTION The present invention relates generally to wheelchair 5 ramps and, more particularly, to a fold out ramp for a vehicle. #### BACKGROUND OF THE INVENTION The Americans with Disabilities Act (ADA) requires the 10 removal of physical obstacles to those who are physically challenged. The stated objective of this legislation has increased public awareness and concern over the requirements of the physically challenged. Consequentially, there has been more emphasis on providing systems that enable 15 physically challenged people to access a motor vehicle, such as a bus or minivan. A common manner of providing the physically challenged with access to motor vehicles is a ramp. Various ramp operating systems for motor vehicles are known in the art. Some 20 slide out from underneath the floor of the vehicle and tilt down. Others are stowed in a vertical position and pivot about a hinge, while still others are supported by booms and cable assemblies. The present invention is generally directed to a "fold out" type of ramp. Such a ramp is normally stowed in a 25 horizontal position within a recess in the vehicle floor, and is pivoted upward and outward to a downward-sloping extended position. In the extended position, the ramp is adjustable to account for various curb heights. Fold out ramps on vehicles confront a variety of technical problems. One such technical issue arises from the variety of situations in which the ramps must operate. Depending on the use of the vehicle in which a particular ramp is installed, the ramp might be deployed to curbs of varying heights, as well as to a road surface. In addition, road crown, the inclusion of a 35 "kneeling" feature on the vehicle, and other factors can affect the height of the vehicle floor relative to the alighting surface. Thus, the vertical distance through which a ramp must provide a transition surface can vary significantly. One attempt to provide a longer ramp surface to reduce the 40 ramp angle in a variety of situations is disclosed in U.S. Patent Publication No. 2011/0268544 ("the '544 publication"), by Koretsky et al., which published on Nov. 3, 2011, the entire disclosure of which is incorporated herein by reference. The '544 publication discloses a ramp assembly that includes a 45 self-aligning platform mechanism. The platform mechanism includes a deploying mechanism connected between a hinged platform and a ramp. The mechanism automatically aligns the ramp with the platform to assure the same angle of both components in relation to the ground surface for a low floor 50 vehicle access ramp regardless of the height of the vehicle floor and the pivot axis of the ramp, with respect to the ground surface or curb. To ensure that the platform and the ramp deploy to the same angle in relation to the ground surface, the ramp assembly has a switch disposed on the ramp. When the 55 ramp reaches an aligned position with respect to the platform, i.e., when the ramp surface is parallel to the platform surface, the switch is actuated to stop the motor of the drive system. While certain advantages are provided by ensuring that the ramp surface aligns with the platform surface when the ramp 60 assembly is deployed, such a configuration also presents disadvantages. Some such disadvantages arise from the typical placement of a ramp assembly in a bus. Ramp assemblies such as the one disclosed in the '544 publication are commonly installed at the front of a bus so that 65 the ramp extends laterally toward the curb to provide a sloped transition surface between the interior of the bus and an 2 alighting surface, such as a curb. To enter the bus, a disabled passenger travels up the inclined surface and then turns at the top of the ramp into the aisle of the vehicle. To exit the bus, the disabled passenger moves up the aisle until aligned with the ramp and then turns toward the curb and exits down the inclined surface. Passengers entering or exiting a bus will often "cut the corner" between the inclined surface and the vehicle aisle. That is, a passenger entering the bus may start to turn into the vehicle aisle while still positioned on the inclined surface. Similarly, a passenger exiting the bus may turn toward the curb before he or she is far enough forward in the aisle. In both cases, the drop off formed between the vehicle floor and side of the inclined surface of the deployed ramp assembly presents an obstacle to the passenger. For a passenger entering the bus, prematurely turning into the vehicle aisle requires the passenger to navigate up and over the lip, which can cause difficulty for passengers in wheelchairs, using walkers, or with otherwise limited mobility. For a passenger exiting the bus, prematurely turning onto the inclined surface can cause the passenger to drop off of the vehicle floor onto the inclined surface. In view of the noted disadvantages that can accompany ramp assemblies like the one disclosed in the '544 publication, it would be advantageous to minimize the slope of the roadside portion of the deployed ramp assembly, while keeping the curbside portion of the deployed ramp assembly below a predetermined maximum slope. Minimizing the slope of the roadside portion of the deployed ramp assembly reduces
the height of the drop off formed between the vehicle floor and the inclined surface, while keeping the curbside portion of the deployed ramp assembly below a predetermined maximum slope makes the ramp easier to navigate. ### **SUMMARY** A method for deploying a ramp assembly is disclosed. The ramp assembly provides a transition surface between a vehicle floor and an alighting surface and is moveable between a stowed position, a first deployed position, and a second deployed position. The ramp assembly includes a ramp portion coupled for rotational movement and a panel rotatable about a first end. The ramp portion supportingly engages a second end of the panel to elevate the second end of the panel as the ramp portion moves toward the second deployed position. The method of deploying the ramp portion includes the step of rotating the ramp portion until the ramp portion contacts the alighting surface. The method further includes the step of rotating the ramp portion until the ramp assembly reaches the first deployed position, in which the ramp portion forms a predetermined angle with the panel. The method also includes the step of selectively rotating the ramp portion to the second deployment position. This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. ## DESCRIPTION OF THE DRAWINGS The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein: FIG. 1 is an isometric view of an exemplary embodiment of a ramp assembly with a ramp portion in the stowed position; FIG. 2 is an isometric view of the ramp assembly shown in FIG. 1, with the ramp portion in a neutral position; FIG. 3 is an isometric view of the ramp assembly shown in FIG. 1, with the ramp portion in a first deployed position; FIG. 4 is an isometric view of the ramp assembly shown in FIG. 1, with the ramp portion in a second deployed position; FIG. 5 is a partial isometric view of a drive assembly of the ramp assembly of FIG. 1; FIG. 6 is a partial isometric view of a support assembly of the ramp assembly of FIG. 1, with the ramp portion in the stowed position; FIG. 7 is a partial isometric view of the support assembly of FIG. 6, with the ramp portion in the neutral position; FIG. 8 is a partial isometric view of the support assembly of FIG. 6, with the ramp portion in the first deployed position; FIG. 9 is a partial isometric view of the support assembly of FIG. 6, with the ramp portion in the second deployed position; FIG. 10 is a side view of the support assembly of FIG. 6, 20 with the ramp assembly in the stowed position; FIG. 11 is a side view of the support assembly of FIG. 10, with the ramp assembly in the neutral position; FIG. 12 is a side view of the support assembly of FIG. 10, with the ramp portion contacting the alighting surface; FIG. 13 is a side view of the support assembly of FIG. 10, with the ramp assembly in the first deployed position; FIG. 14 is a side view of the support assembly of FIG. 10, with the ramp assembly in the second deployed position; FIG. 15 is a side cross-sectional view of the ramp assembly 30 of FIG. 1, with the ramp portion in the stowed position; FIG. 16 is a partial, side cross-sectional view of the ramp assembly of FIG. 15, with the ramp portion in the neutral position; assembly of FIG. 15, with the ramp portion in the first deployed position; and FIG. 18 is a partial, side cross-sectional view of the ramp assembly of FIG. 15, with the ramp portion in the second deployed position. ### DETAILED DESCRIPTION Exemplary embodiments of the disclosed fold out ramp will now be described with reference to the accompanying 45 drawings, where like numerals correspond to like elements. The described embodiments are directed to ramp assemblies, and more specifically, wheelchair ramp assemblies. In particular, several embodiments are directed to wheelchair ramp assemblies suitable for use in buses, vans, etc. Several 50 embodiments of the present invention are directed to compact ramp assemblies for a vehicle that, when stowed, occupy a small amount of space within the vehicle floor, yet deploy to a length that effectively reduces the ramp slope encountered by the mobility impaired, thus facilitating greater indepen- 55 dence and safety for wheelchair-bound passengers. The following discussion proceeds with reference to examples of wheelchair ramp assemblies for use in vehicles having a floor, such as a bus, van, etc. While the examples provided herein have been described with reference to their 60 association with vehicles, it will be apparent to one skilled in the art that this is done for illustrative purposes and should not be construed as limiting the scope of the disclosed subject matter, as claimed. Thus, it will be apparent to one skilled in the art that aspects of the disclosed fold out ramp may be 65 employed with other ramp assemblies used in stationary installations, such as residential buildings and the like. The following detailed description may use illustrative terms such as vertical, horizontal, front, rear, curbside (outboard), roadside (inboard), inner, proximal, distal, etc.; however, these terms are descriptive in nature and should not be construed as limiting. Further, it will be appreciated that various embodiments of the disclosed fold out ramp may employ any combination of features described herein. FIGS. 1-4 illustrate one exemplary embodiment of a fold out ramp assembly 100 (hereinafter "ramp assembly 100") as it moves from a stowed position (FIG. 1) through a neutral position (FIG. 2) and a first deployed position (FIG. 3) to a second deployed position (FIG. 4). The ramp assembly 100 includes a frame 102, a ramp portion 110, an intermediate panel 130, and an inner panel 150. The frame 102 of the ramp 15 assembly 100 is adapted to be mounted to a vehicle (not shown) having a floor, such as a bus or a van. The ramp assembly 100 is reciprocal between the stowed position, shown in FIG. 1, and the first and second deployed positions of FIGS. 3 and 4. Although the illustrated embodiments of the ramp assembly 100 include a frame 102, other embodiments are contemplated in which the ramp assembly 100 does not include a frame. To install such embodiments in vehicles, the ramp assembly 100 components can be attached directly to the 25 structure of the vehicle or to a suitable structure within the vehicle, thus making a frame 102 unnecessary. Similarly, when such embodiments are installed in stationary installations, such as residential buildings and the like, the ramp assembly 100 components can be attached to the structure of the building or any other suitable structure within the building. Accordingly, embodiments of the described ramp assembly 100 that do not include a frame should be considered within the scope of the present disclosure. The ramp portion 110 includes a panel 114 constructed FIG. 17 is a partial, side cross-sectional view of the ramp 35 from well-known materials. The ramp portion 110 further includes side curbs 116 that extend upwardly from the forward and rear sides of the panel 114. The side curbs 116 increases the strength of the ramp portion 110 and provide edge guards for the sides of the ramp portion 110, thereby 40 increasing the overall safety of the ramp assembly 100. In the illustrated embodiment, the curbside end 118 of the ramp portion 110 (when the ramp is in a deployed position) is tapered to provide a smooth transition between the panel 114 and the alighting surface 90 when the ramp assembly 100 is in a deployed position, although such a feature may not be necessary, depending on the thickness of the panel. Referring to FIG. 1, when the ramp assembly 100 is in the stowed position, the ramp portion 110 extends inwardly such that the ramp is disposed over the intermediate panel 130 and the inner panel 150. When in the stowed position, the lower surface 112 of the ramp panel 114 faces upward and is oriented to be generally flush with the vehicle floor, thereby providing a surface upon which able-bodied passengers can walk while entering and exiting the vehicle. When the ramp portion 110 is in a deployed position, the ramp extends in an outward and downward direction so that the upper surface 122 of the panel 114 faces upward and provides an inclined transition surface from the intermediate panel 130 to the alighting surface 90. In the first deployed position of FIG. 3, the ramp portion 110 extends in a curbside and downward direction to contact an alighting surface 90, such as a curb or road surface, thus cooperating with the intermediate panel 130 and inner panel 150 to provide a transition between the vehicle and the alighting surface 90. When the ramp assembly 100 is in the first deployed position, the ramp portion 110 is generally coplanar to or parallel with the intermediate panel 130. That is, the angle formed by the ramp portion and the intermediate panel 130 is approximately 180°. Various alternate embodiments are contemplated in which the angle formed between the ramp portion 110 and the intermediate panel 130 in the first deployed position is greater than or less than 180°. In this regard, the angle formed by the ramp portion 110 and the intermediate panel 130 in the first deployed position can be any angle that provides a suitable transition between the ramp portion and the intermediate panel 130. In one non-limiting example, the angle formed by the ramp portion 110 and the intermediate panel 130 in the first deployed position is in the range of 170°-190°. In the second deployed position of
FIG. 4, the ramp portion 110 has rotated beyond the first deployment position such that the angle between the ramp portion and the intermediate panel 130 has increased relative to the first deployed position, but the angle between the intermediate panel and the vehicle floor has decreased, i.e., the slope of the ramp portion has increased, while the slope of the intermediate panel has 20 decreased. As shown in FIGS. 6-14, the roadside end 120 of the ramp portion 110 is connected to a support assembly 300. The illustrated support assembly 300 includes structure to support the ramp portion at the forward end and rear end. In the 25 illustrated embodiment, the forward structure is a mirror image of the rear structure. For the sake of clarity, the rear portion of the support assembly 300 is described herein with the understanding that unless otherwise indicated, each element of the rear portion of the support assembly 300 has a 30 corresponding element on the forward portion of the support assembly 300. It should be appreciated, however, that various embodiments are contemplated in which the forward and rear portions of the support assembly 300 are similar, but not mirror images of each other. In this regard, variations between 35 the forward and rear portions of the support assembly are possible and should be considered within the scope of the present disclosure. A cam element 330 is fixedly located relative to the frame 102 at the curbside end of the ramp assembly 100, adjacent to 40 the roadside end 120 of the ramp portion 110. In the illustrated embodiment, the cam element 330 is formed from metal sheet or plate and extends upward in a vertical direction from a lower portion of the ramp assembly. A cam surface 334 is formed on the upper end of the cam element 330, and a 45 generally flat, horizontal support surface 332 is formed at the roadside end of the cam surface 334. It will be appreciated that the illustrated cam element 330 is exemplary only and should not be considered limiting. In this regard, embodiments utilizing other suitable materials, shapes, and configurations are contemplated, and such variations should be considered within the scope of the present disclosure. A support element 310 is rotatably coupled to the frame 102 about an axis 350. A tang extends from the perimeter of the support element 310 to define a recess 312 in the profile of 55 the support element. In the illustrated embodiment, the support element 310 is formed from metal sheet or plate and is positioned to be generally parallel to the cam element 330. The support element 310 is operably coupled to a drive assembly 230 (described later) that selectively rotates the 60 support element 310 relative to the cam element 330. The roadside end 120 of the ramp portion 110 is rotatably coupled to the support element 310 about an axis 352 that is parallel to and offset from axis 350. As a result, rotation of the support element 310 about axis 350 moves axis 352 along an 65 arcuate path. This, in turn, moves the roadside end 120 of the ramp portion 110 about an arcuate path. 6 A bearing element 320 is disposed on the rear surface of the side curb 116 of the ramp portion 110. In the illustrated embodiment, the bearing element 320 is a roller bearing that is rotatably mounted to the ramp portion 110 about an axis 354, wherein the axis is generally parallel to axes 350 and 352. As will be described in detail later, the bearing element is positioned to rollingly engage the support surface 332 and cam surface 334 of the cam element 330 during various portions of the stow/deploy motion of the ramp assembly 100. In addition, the bearing element 320 engages the recess 312 of the support element 310 during a portion of the stow/deploy motion of the ramp assembly 100. In this regard, the bearing element 320 engages various features of the support assembly 300 during the stow/deploy motion in order to control the orientation of the ramp portion 110 relative to the support element 310 when the ramp portion is not in contact with the alighting surface 90. It will be appreciated that alternative embodiments of the described bearing element 320 are possible. In one embodiment, the bearing element 320 is a pin fixedly attached to the ramp portion to slidingly engage various features of the support assembly 300 during the stow/deploy motion. In another exemplary embodiment, the bearing element 320 is a boss formed in the side curb 116 of the ramp portion. These and other configurations suitable to engage various features of the support assembly 300 to control the orientation of the ramp portion during the stow/deploy motion are contemplated and should be considered within the scope of the present disclosure. As shown in FIG. 5, the illustrated intermediate panel 130 includes a flat panel element disposed above and coupled to a panel support 138. The panel support 138 provides additional strength and rigidity to the panel. The illustrated embodiment of the intermediate panel 130 is exemplary, and it will be appreciated that alternate configurations of the intermediate panel 130 with different panels and supports are possible and should be considered within the scope of the present disclosure. As shown in FIGS. 15-18, the roadside end 134 of the intermediate panel 130 is rotatably mounted to the frame 102 about an axis 356. The curbside end 132 of the intermediate panel 130 is supported by a portion of the frame 102 when the ramp assembly 100 is in the stowed position (FIG. 15). More specifically, in the illustrated embodiment, the frame 102 includes a C-channel **104** extending from the forward end of the frame to the rear end of the frame. When the ramp assembly 100 is in the stowed position, the C-channel 104 engages a lower portion of the support panel 138 to support the curbside end 132 of the intermediate panel 130. As the ramp assembly moves from the stowed position to the second deployed position (FIG. 18), the curbside end 132 of the intermediate panel 130 is raised to correspond to the roadside end 120 of the ramp portion 110 so that the intermediate panel 130 and the ramp portion 110 cooperate to provide a transition surface between the inner panel 150 and the alighting surface 90. Referring to FIGS. 15 and 16, as the ramp portion 110 begins to move from the stowed position toward the first deployed position, the intermediate panel 130 is supported at the curbside end 132 by the frame 102. As the ramp portion 110 continues to rotate toward the second deployed position of FIG. 18, the roadside end 120 of the ramp portion 110 engages the bottom of the curbside end 132 of the intermediate panel 130 so that rotation of the ramp portion raises the curbside end of the intermediate panel. As shown in FIGS. 17 and 18, raising the curbside end 132 of the intermediate panel 130 rotates the intermediate panel about axis 356. As described in further detail below, the inner panel 150 of the illustrated embodiment is rotatably coupled at the curbside end 154 about axis 356. As a result, throughout the range of deployed positions, the curbside end 132 of the intermediate panel 130 maintains a close proximity to the roadside end 120 of the ramp portion 110, and the roadside end 134 of the intermediate panel maintains a close proximity to the curbside end 154 of the inner panel 150. Because the ends of the intermediate panel are associated with the ramp portion 110 and inner panel 150 in this manner, the intermediate panel provides a suitable transition surface between the ramp portion and the inner panel throughout the range of deployment positions. As shown in FIGS. 5 and 15-18, the inner panel 150 is configured to reciprocate between a lowered position (FIG. 15 15), when the ramp assembly 100 is in the stowed position, and a raised position (FIGS. 17 and 18) when the ramp assembly is in a deployed position. Referring specifically to FIG. 5, the disclosed embodiment of the inner panel is supported by an inner panel support 158 disposed beneath the inner panel. 20 The illustrated embodiment of the inner panel 150 is exemplary, and it will be appreciated that alternate configurations of the inner panel 150 with different panels and supports are possible and should be considered within the scope of the present disclosure. The inner panel 150 is rotatably coupled at the curbside end 154 to the frame 102 about axis 356. Although the inner panel 150 is shown to be rotatable about the same axis 356 as the intermediate panel 130, the panels may be rotatable about different axes provided that there is a suitable transition 30 between the panels when the ramp assembly 100 is deployed. The roadside end 152 of the inner panel 150 is supported by a selectively rotatable eccentric bearing element 244. As the eccentric bearing element is selectively rotated about its axis, the roadside end 152 of the inner panel 150 moves between a lowered position and a raised position, thereby rotating the inner panel 150 about axis 356. More specifically, the eccentric bearing selectively rotates the inner panel between a lowered position, when the ramp assembly is in the stowed position (FIG. 15), and a raised position (FIGS. 17 and 18), 40 when the ramp assembly 100 is in a deployed position. As illustrated, the inner panel **150** is a rising floor that selectively moves between a lowered position and a raised position as the ramp assembly moves from the stowed position to a deployed position. Other embodiments are contemplated in which other known mechanisms are included to raise and lower the floor. Still other embodiments of the disclosed ramp assembly **100** are possible in which the inner panel **150** does not move during the stow/deploy motion, but instead remains in a fixed position relative to the vehicle floor. These and other embodiments are contemplated and should be considered within the scope of the present disclosure. Referring back to FIG. 5, the drive assembly 230
actuates the ramp portion 110 to move between the stowed position and the first and second deployed positions. More specifically, the drive assembly 230 selectively rotates support element 310 of the support assembly 300 and the eccentric bearing element that supports the inner panel 150 to reciprocate the ramp assembly 100 between the stowed position and the deployed positions. The disclosed drive assembly 230 is similar to the drive assembly disclosed in U.S. Pat. No. 7,681, 272, issued to Morris et al., incorporated by reference herein. It will be appreciated that the drive assembly of Morris et al. is only one exemplary drive assembly suitable for use with the presently disclosed ramp assembly, and that any number of other suitable drive assemblies can be utilized in conjunction with or in place of the drive assembly of Morris et al. 8 A forward portion of the drive assembly 230 is located on the forward side of the frame 102, and a rear portion of the drive assembly is similarly located on the rear side of the frame 102, wherein each element of the forward portion of the drive assembly 230 corresponds to a similar element of the rear portion of the drive assembly. For the sake of clarity, the forward portion of the drive assembly 230 is described herein with the understanding that unless otherwise indicated, each element of the forward portion has a corresponding element on the rear portion of the drive assembly 230. The drive assembly 230 includes a roadside sprocket 232 and a curbside sprocket 234 that are rotatably coupled to the forward side of the frame 102 so that the axes of rotation of the sprockets extend in the forward/rearward direction. A drive chain assembly 236 forms an endless loop that engages the teeth of the curbside sprocket 234 and the teeth of the roadside sprocket 232. As a result, movement of the drive chain assembly 236 along the path of the endless loop rotates the roadside sprocket 232 and the curbside sprocket 234. 20 A drive shaft 242 is coupled to the roadside sprocket 232 and also to a motor 240 by a known transmission assembly. The motor 240 is selectively operated by a controller 250 to rotate the roadside sprocket 232, which acts as a drive sprocket, to rotate the curbside sprocket 234 via the drive chain assembly 236. In one embodiment, a single motor 240 drives the roadside sprocket 232 of the forward portion of the drive chain assembly 236 and also the roadside sprocket of the rear portion of the drive chain assembly. In another embodiment, each roadside sprocket is driven by a separate motor. In other alternate embodiments, the drive shaft 242 connects the motor 240 to the curbside sprocket or to a separate drive sprocket that engages the drive chain assembly. The curbside sprocket 234 is operably coupled to the support assembly 300 so that rotation of the roadside sprocket 232 rotates the support element 310 of the support assembly 300. In the illustrated embodiment, the curbside sprocket 234 is coupled to the support element 310 so that the roadside sprocket 232 rotation is at a 1:1 ratio with the support element 310. It will be appreciated that the roadside sprocket 232 or any other drive sprocket can be coupled directly or indirectly to the support element 310, and that various known transmissions can be utilized to create drive sprocket to support element rotation ratios that are greater than or less than 1:1. In the illustrated embodiment, the eccentric bearing elements 244 that support the roadside end of the inner panel 150 are coupled to the drive shaft 242 so that the inner panel 150 is raised and lowered by the selective rotation of the drive shaft 242. The drive assembly 230 further includes a counterbalance assembly 260. The counterbalance assembly 260 can be any known counterbalance assembly that biases the ramp portion toward the neutral position, i.e., a position wherein the center of gravity of the ramp portion 110 is located above the axis of rotation of the ramp portion so that the center of gravity imparts no moment about the axis of rotation. By biasing the ramp portion 110 toward the neutral position, the counterbalance assembly counteracts some or all of the weight of the ramp, thereby reducing the actuating force required to reciprocate the ramp assembly 100 between the stowed position and the deployed positions. As a result, a smaller motor is required, and wear on the motor is reduced. One exemplary counterbalance suitable for use with the ramp assembly is disclosed in U.S. Pat. No. 7,681,272, issued to Morris et al., previously incorporated by reference herein. It will be appreciated that the counterbalance of Morris et al. is only one exemplary counterbalance suitable for use with the presently disclosed ramp assembly, and that any number of other suit- able counterbalance assemblies can by utilized in conjunction with or in place of the counterbalance of Morris et al. Referring to FIG. 5, the disclosed embodiment of the ramp assembly includes a sensor 380 for sensing the position of the ramp portion 110 relative to the intermediate panel 130. More 5 specifically, the sensor senses the angle formed by the ramp portion 110 and the intermediate panel 130. The sensor 380 sends a signal corresponding to the sensed angle to the controller 250, which uses the sensor information during the deployment of the ramp. The sensor 380 can be any known 10 sensor capable of sensing the angle formed by the ramp portion 110 and the intermediate panel 130. In this regard, the sensor can be a proximity sensor, an inclinometer, or any other suitable sensor or combination of sensors capable of sensing the position of the ramp portion 110 relative to the 15 intermediate panel 130. A second sensor 390 detects the travel of the ramp portion 110 based on the rotation of the drive shaft 242 of the drive assembly 230. In the illustrated embodiment, the sensor 390 detects one or more targets disposed on the drive shaft in order 20 to sense rotation of the shaft. It will be appreciated that the sensor 390 is not limited to the illustrated embodiment, but can include any type of sensor suitable for detecting motion or position of the ramp portion 110. Moreover, the sensor is not limited to detecting motion or position of the ramp portion 25 110 from the drive shaft 242, but can be associated with any suitable portion of the ramp assembly 100, the movement or position of which corresponds to the position of the ramp portion. As previously noted, when the ramp assembly 100 is in the 30 stowed position, the ramp portion 110 extends inwardly from the support assembly 300 such that the ramp is disposed over the intermediate panel 130 and the inner panel 150. When so positioned, axis 352, about which the ramp portion 110 is connected to the support element 310, is in a raised position, 35 as shown in FIGS. 6 and 10. In addition, the bearing element 320 is supportingly engaged by the support surface 332 of the cam element 330. Thus, the support element 310 and the cam element 330 cooperate to support the roadside end 120 of the ramp portion 110. A first phase of the deployment motion begins as the drive assembly 230 rotates the support element 310 relative to the cam element 330. The rotation of the support element 310 moves axis 352 and, therefore, the roadside end 120 of the ramp portion 110 along an arcuate path. Still referring to 45 FIGS. 6 and 10, the bearing element 320 moves due to the rotation of the ramp portion 110 and engages the cam surface 334 of the cam element 330. The bearing element 320 follows the cam surface 334, which combined with the downward movement of axis 352, begins to rotate the ramp portion 110 50 about the support assembly 300. During the first phase, the weight of the ramp portion 110 tends to rotate the ramp portion toward the stowed position. Thus, the bearing element 320 maintains contact with the cam surface 334. the ramp portion 110 reaches the neutral position shown in FIGS. 7 and 11. In the neutral position, the center of gravity (CG) of the ramp portion 110 is located above the center of rotation of the ramp portion 110 so that the weight of the ramp portion does not impart a moment about axis 352, i.e., the 60 positions to the stowed position, the drive assembly 230 weight of the ramp portion does not tend to rotate the ramp portion toward or away from the stowed position. During a second phase of the deployment motion, the ramp portion 110 moves from the neutral position of FIGS. 7 and 11 toward a first deployed position, shown in FIGS. 8 and 13. 65 Referring to FIGS. 13 and 14, the support element 310 continues to rotate, thereby continuing movement of the roadside end 120 of the ramp portion 110 along an arcuate path. During the second phase of the deployment motion, the CG of the ramp portion 110 tends to rotate the ramp portion away from the stowed position. As a result, the bearing element 320 is supportingly engaged by the recess 312 formed in the support element 310. In the disclosed embodiment, the bearing element 320 disengages from the cam surface 334, although alternate embodiments are contemplated wherein the bearing element maintains engagement with the cam surface 334 through some or all of the second phase. The support element 310 supports the bearing element 320 and, therefore, the ramp portion 110 during the second phase to prevent rotation of the ramp portion 110 about axis 352. Thus, the position of the ramp portion 110 is controlled by the rotational connection about axis 352 to the cam element 330 and the engagement of the bearing element 320 with the recess 312 formed in the support element 310. The second phase continues until the curbside end 118 of the ramp portion 110 contacts the alighting surface 90, as shown in FIG. 12. A third phase of the deployment motion begins as the ramp portion 110 moves from the position in which the ramp portion 110 has made contact with the alighting surface 90, shown in FIG. 12,
to the first deployed position shown in FIGS. 8 and 13, wherein the ramp portion and the intermediate panel form an angle of approximately 180°. During the third phase of the deployment motion, support element 310 continues to rotate, moving the hinged connection of the ramp portion 110 to the support element 310 and, therefore, the roadside end 120 of the ramp portion 110, along the arcuate path. As the roadside end 120 of the ramp portion 110 moves upward along the arcuate path, the curbside end 118 of the ramp portion 110 maintains contact with the alighting surface 90. With the curbside end 118 of the ramp portion 110 supported by the alighting surface 90, and the roadside end 120 of the ramp portion 110 supported by the connection of the ramp portion to the support element 310 about axis 352, rotation of the support element rotates the recess 312 of the support element away from the bearing element 320. Thus, the sup-40 port element 310 disengages from the bearing element 320. The third deployment phase ends when the ramp portion 110 reaches the first deployed position, in which the ramp portion 110 forms a predetermined angle with the intermediate panel **130**. An optional fourth deployment motion moves the ramp portion from the first deployed position shown in FIGS. 8 and 13 to the second deployed position shown in FIGS. 9 and 14. During the fourth phase of the deployment motion, the support element 310 continues to rotate, moving the hinged connection of the ramp portion 110 to the support element 310 and, therefore, the roadside end 120 of the ramp portion 110, upward along the arcuate path. As the roadside end of the ramp portion 110 moves upward, the curbside end of the ramp portions maintains contact with the alighting surface 90. As a The first phase of the deployment motion continues until 55 result, the slope of the ramp portion 110 increases. Raising the roadside end of the ramp portion also raises the curbside end of the intermediate panel 130, thereby decreasing the slope of the intermediate panel. To move the ramp portion from the first or second deployed rotates the support element 310 in a clockwise direction about axis 350 (as shown in FIGS. 13 and 14). This rotation moves axis 352 and, therefore, the roadside end 120 of the ramp portion downward along an arcuate path. During the initial rotation, the ramp portion 110 is supported at the roadside end 120 by the rotational connection to the support element 310 and at the curbside end 118 by the alighting surface 90. As the support element 310 continues to rotate, the recess 312 formed in the support element engages the bearing element 320. Further rotation of the support element 310 continues to move the recess 312 so that the engagement of the recess with the bearing element 320 drives the bearing element in a clockwise direction (as shown in FIGS. 11 and 12). The movement of the bearing element 320 combined with the movement of axis 352 rotates the ramp portion 110 toward the neutral position. Throughout the movement of the ramp portion 110 from FIG. 12 to FIG. 11, the CG of the ramp portion 110 is positioned curbside of axis 352 so that the weight of the ramp provides a moment that tends to maintain engagement of the bearing element 320 with the recess 312. As the ramp portion 110 passes through the neutral position of FIG. 11, the CG of the ramp portion moves roadside of 15 axis 352 so that the weight of the ramp portion tends to rotate the ramp portion about axis 352 toward the stowed position. As a result, the bearing element 320 engages the cam surface 334 of the cam element 330. Engagement of the bearing element 320 with the cam surface 334 combines with the 20 connection of the ramp portion 110 to the support element 310 about axis 352 controls the position of the ramp portion as the ramp portion continues to move from the neutral position toward the stowed position. When the ramp portion 110 reaches the stowed position of FIG. 10, the bearing element 320 contacts the support surface 332 of the cam element 330 so that the support surface supports the ramp portion. As shown in the embodiment of FIG. 10, the recess 312 in the support element 310 also engages the bearing element 320 so that the bearing element is disposed 30 between the recess and the support surface 332. With the support element 310 and the cam element 330 engaging the bearing element 320 in this manner, the ramp portion is secured in the stowed position, and vibration of the ramp portion 110 in the stowed position is reduced. As previously noted, conditions under which the ramp assembly 100 is deployed affect the deployment of the ramp assembly. For example, the height of the alighting surface affects the amount of ramp portion rotation required for the ramp portion 110 to first contact the alighting surface 90. The 40 alighting surface height also affects the amount of ramp portion rotation required beyond this initial contact to reach a predetermined angle between the ramp portion 110 and the intermediate panel 130, as well as the slope of the ramp portion when the predetermined angle is reached. Because of 45 these relationships, if the amount of ramp rotation required to reach a predetermined angle between the ramp portion and the intermediate panel is known, the height of the alighting surface can be approximated. This, in turn allows for various deployment positions to be determined, including the posi- 50 tion. tion in which the slope of the ramp portion is minimized, the position in which the angle between the intermediate panel and the vehicle floor is minimized, and various other positions. The ramp assembly of the '544 publication is deployed 55 with regard for only the angle of the intermediate panel to the ramp portion. Depending upon the height of the alighting surface, this method can result in undesirable deployment positions, particularly with respect to the angle of the intermediate panel relative to the vehicle floor. Unlike the ramp 60 assembly disclosed in the '544 publication, the presently disclosed ramp assembly 100 is deployable in a manner that accommodates the slope of the ramp portion, angle of the intermediate panel relative to the vehicle floor, and the angle of the intermediate panel relative to the ramp portion. One exemplary method for deploying the ramp assembly 100 addresses the advantage of minimizing the angle of the 12 intermediate panel 130 relative to the vehicle floor, while at the same time limiting the slope of the ramp portion 110. The method includes the step of moving the ramp portion 110 through the first phase, in which the ramp portion 110 moves from the stowed position (FIG. 10) to the neutral position (FIG. 11). As the ramp portion moves through this first phase, the support element 310 rotates axis 352 along an arcuate path, and the bearing element 320 follows the cam surface 334. The next step of the exemplary method is to move the ramp portion 110 from the neutral position (FIG. 11) to a position in which the ramp portion first contacts the alighting surface (FIG. 12). During this second phase, the support element 310 continues to rotate, thereby continuing movement of axis 352 along an arcuate path, while the bearing element 320 is supportingly engaged by the recess 312 formed in the support element 310. The next step of the exemplary method is to continue rotating the support element 310 until the ramp portion 110 reaches the first deployed position (FIG. 13), in which the ramp portion forms an angle of approximately 180° with the intermediate panel 130. During this third phase, the curbside end 118 of the ramp portion 110 maintains contact with the alighting surface, while the continued rotation of the support element 310 raises axis 352, thereby increasing the slope of the ramp portion. Raising axis 352 also raises the curbside end 132 of the intermediate panel 130, thereby decreasing the slope of the intermediate panel, which results in a decreased angle between the intermediate panel and the vehicle floor. Although the first deployed position is described as being a position in which the ramp portion forms an angle of approximately 180° with the intermediate panel 130, it will be appreciated that this position is exemplary and should not be considered limiting. In this regard, the first deployed position can be defined by any predetermined position of the ramp portion 110 relative to the intermediate panel 130. In various non-limiting alternate embodiments, the ramp portion 110 and the intermediate panel 130 form an angle of approximately 170°, 190°, or any other angle in which the ramp portion and the intermediate panel cooperate to form a suitable transition surface from the inner panel 150 to the alighting surface 90. The next step of the exemplary method is to determine if the first deployed position is preferable to the second deployed position. If the first deployed position is preferable to the second deployed position, then the ramp assembly 100 remains in the first deployed position. If the second deployed position is preferable to the first deployed position, then the ramp portion 110 moves through the fourth deployment phase from the first deployed position to the second deployed position The slope of the ramp portion 110 and the intermediate panel 130 in the first deployed position is generally determined by the height of the alighting surface 90. That is, for an alighting surface 90 of a particular height, a certain amount of rotation of the ramp portion 110 is required to move the ramp portion from the stowed position to the position wherein the ramp portion first contacts the alighting surface, i.e. through the first and second deployment phases. With the ramp portion 110 in contact with the alighting surface 90, the height of the alighting surface further determines how much rotation of the ramp portion 110 is required to reach the first deployed position, in which the ramp portion and
the intermediate panel are aligned. Other factors, such as road crown, can impact the amount of ramp portion rotation required to move 65 the ramp assembly from the stowed position to the first deployed position, but such factors are typically negligible. Thus, an alighting surface of a particular height generally requires a unique amount of ramp portion rotation to move the ramp assembly from the stowed position to the first deployed position. By measuring the rotation of the ramp portion 110 as it travels from the stowed position to the first deployed position, 5 the height of the alighting surface can be approximated. This in turn allows for the slope of the ramp portion 110 and the intermediate panel 130 in the first deployed position to be approximated. Because the ramp portion 110 forms a known angle, e.g. 180° with the intermediate panel 130 in the first deployed position, the angle of the intermediate panel relative to the vehicle floor can also be approximated from the rotation necessary for the ramp portion 110 to travel from the stowed position to the first deployed position. With the slope of the ramp portion 110 (ramp portion slope) and the angle of the intermediate panel 130 relative to the vehicle floor (intermediate panel angle) known in the first deployed position, the ramp portion slope and intermediate panel angle in the second deployed position can be determined. In one embodiment, the controller is programmed to calculate ramp portion slope and intermediate panel angle in the second deployed position based on the ramp portion slope and intermediate panel angle in the first deployed position. Alternatively, the controller can be programmed with the values of the ramp portion slope and intermediate panel angle in the second deployed position that correspond to a particular ramp portion slope and intermediate panel angle in the first deployed position With the respective ramp portion slopes and intermediate panel angles known for the first and second deployment positions, it can be determined whether or not to move the ramp assembly from the first deployed position to the second deployed position. If ramp portion slope and intermediate panel angle of the first deployed position are preferable to those of the second deployed position, then the ramp assembly remains in the first deployed position. If the ramp portion slope and intermediate panel angle of the second deployed position are preferable to those of the first deployed position, the ramp assembly travels through the optional fourth deployment phase from the first deployed position to the second deployed position. In another exemplary method, the position of the ramp portion 110 is sensed when the ramp portion initially contacts the alighting surface 90 (FIG. 12) rather than in the first deployed position (FIG. 13). As previously noted, when the 45 ramp portion 110 initially contacts the alighting surface 90, the bearing element 320 is engaged with the recess 312 of the support element 310. Further movement away from the stowed position disengages the bearing element 320 from the recess 312. It is therefore possible to detect when the ramp 50 portion 110 has first contacted the alighting surface 90 by sensing when the bearing element 320 disengages from the recess 312. In one contemplated embodiment, a sensor, such as a magnetic or optical sensor, senses the position of the bearing element 320 relative to the recess 312. In another 55 contemplated embodiment, a sensor is positioned on the ramp portion 110 to directly sense contact with the alighting surface 90. In yet another contemplated embodiment, the load on the motor 240 is detected during the deployment motion. Because the ramp portion 110 goes from being supported by 60 the bearing element 320 to being supported by the alighting surface when the ramp portion initially contacts the alighting surface, the load on the motor 240 changes. By detecting when this change occurs, the initial contact of the ramp portion 110 to the alighting surface 90 can be determined. When the ramp portion 110 makes initial contact with the alighting surface 90, the height of the alighting surface can be 14 approximated. As previously discussed, the corresponding ramp portion slope and intermediate panel angle can then be determined. This in turn allows for the respective ramp portion slopes and intermediate panel angles known for the first and second deployment positions to be determined, thereby enabling a determination of which deployment position is preferable. The ramp assembly then completes the deployment movement by moving the ramp portion to the preferred deployed position. In one embodiment of the disclosed method, the deployment of the ramp assembly 100 is controlled by the operator. That is, the operator activates the drive assembly 230 via the controller 250 to deploy ramp assembly 100 until the ramp portion 110 has reached the first deployment position. During the deployment motion, the sensor 380 sends signals to the controller 250 indicating the position of the ramp portion 110 relative to the intermediate panel 130. When the controller 250 receives a signal from the sensor 380 indicating that the ramp assembly 100 has reached the first deployed position, i.e., the ramp portion 110 and the intermediate panel 130 form an angle of approximately 180°, the controller 250 stops deployment of the ramp assembly 110. The operator can then (1) leave the ramp assembly 100 in the first deployed position if the operator determines the first deployed position to be preferable to the second deployed position, or (2) activate the drive assembly 230 via the controller 250 to move the ramp assembly from the first deployment position to the second deployment position. In this manner, the operator decides whether or not it is desirable to increase the slope of the ramp portion 110 in order to decrease the angle of the intermediate floor 130 relative to the vehicle floor. In a second contemplated embodiment, the controller 250 controls the drive assembly 230 to deploy the ramp assembly 100 according to the disclosed method. The controller 250 is operatively connected to the first sensor 380, which senses the angle formed by the ramp portion 110 and the intermediate panel 130, and to the second sensor 390, which senses the travel of the ramp portion. When the controller 250 receives a signal from the first sensor 380 that the ramp assembly is in the first deployed position, the controller determines the ramp portion slope and intermediate panel angle according to the signals received from the first and second sensors 380 and **390**. Based on the ramp portion slope and the intermediate panel angle, the controller 250, either (1) leaves the ramp assembly 100 in the first deployed position if the first deployed position is preferable to the second deployed position, or (2) controls the drive assembly 230 to move the ramp assembly from the first deployed position to the second deployed position. While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. The invention claimed is: - 1. A method of deploying a ramp assembly to provide a transition surface between a vehicle floor and an alighting surface, the ramp assembly being moveable between a stowed position, a first deployed position, and a second deployed position, the ramp assembly having a ramp portion coupled for rotational movement about a first end of the ramp portion and a panel having a first end and a second end, the panel being rotatable about the first end of the panel, the method comprising the steps of: - (a) rotating the ramp portion from the stowed position until the ramp portion contacts the alighting surface, the ramp portion being disengaged from the panel during at least a part of the ramp portion rotation prior to the ramp portion contacting the alighting surface; - (b) rotating the ramp portion until the ramp assembly reaches the first deployed position, wherein the ramp portion forms a predetermined angle with the panel in the first deployed position, the first deployed position being between the stowed position and the second deployed position; and - (c) selectively raising the first end of the ramp portion to the second deployed position, wherein raising the first end of the ramp portion engages the ramp portion with the panel to elevate the second end of the panel. - 2. The method of claim 1, wherein the predetermined angle is in the range of 170° to 190°. - 3. The method of claim 2, wherein the predetermined angle is approximately 180°. - 4. The method of claim 1, further comprising the step of receiving a first signal from a first sensor, the first sensor sensing an angle formed by the ramp portion and the panel. - 5. The method of claim 4, further comprising the step of receiving a second signal from a second sensor, the second sensor sensing rotation of the ramp portion. - 6. The method of claim 5, further comprising the step of determining a first deployment position parameter from the first and second signals. - 7. The method of claim 6, further comprising the step of determining a second deployment position parameter from the first deployment position parameter. - 8. The method of claim 7, further comprising the step of comparing the first deployment position parameter to the 30 second deployment position parameter. - 9. The method of claim 7, wherein the first deployment position parameter is a first slope of the ramp portion in the first deployment position. - 10. The method of claim 9, wherein the second deployment position parameter is a second slope of the ramp portion in the second deployment position. - 11. The method of claim 7, wherein the first deployment position parameter is a first angle formed by the panel and the vehicle floor in the first deployment position. - 12. The method of
claim 9, wherein the second deployment position parameter is a second angle formed by the panel and the vehicle floor in the second deployment position. **16** - 13. A method of deploying a ramp assembly to provide a transition surface between a vehicle floor and an alighting surface, the ramp assembly being moveable between a stowed position, a first deployed position, and a second deployed position, the ramp assembly having a ramp portion coupled for rotational movement and a panel rotatable about a first end, the ramp portion supportingly engaging a second end of the panel to elevate the second end of the panel as the ramp portion moves toward the second deployed position, the method comprising the steps of: - (a) rotating the ramp portion until the ramp portion contacts the alighting surface; - (b) receiving a first signal from a first sensor when the ramp portion contacts the alighting surface, the first sensor sensing rotation of the ramp portion; - (c) determining the first deployed position and the second deployed position from the first signal; - (d) rotating the ramp portion to the first deployed position; and - (e) selectively rotating the ramp portion to the second deployed position. - 14. The method of claim 13, further comprising the step of determining an angle formed by the ramp portion and the panel when the ramp portion first contacts the alighting surface. - 15. The method of claim 14, further comprising the step of determining the angle formed by the ramp portion and the panel when the ramp portion is in the first deployed position. - 16. The method of claim 15, further comprising the step of determining the angle formed by the ramp portion and the panel when the ramp portion is in the second deployed position. - 17. The method of claim 13, further comprising the step of determining a slope of the ramp portion when the ramp portion first contacts the alighting surface. - 18. The method of claim 17, further comprising the step of determining the slope of the ramp portion when the ramp portion is in the first deployed position. - 19. The method of claim 18, further comprising the step of determining the slope of the ramp portion when the ramp portion is in the second deployed position. * * * *