12 United States Patent

Hars et al.

US009037624B1

US 9.037.624 B1
May 19, 2015

(10) Patent No.:
45) Date of Patent:

(54) USING MEMORY ACCESS TIMES FOR
RANDOM NUMBER GENERATION

(75) Inventors: Laszlo Hars, Lafayette, CO (US);
Monty Aaron Forehand, Loveland, CO
(US); Donald Preston Matthews,
Longmont, CO (US); Tong Shirh Stone,
Eden Prairie, MN (US); Navneeth
Kankani, Fremont, CA (US); Rodney
Virgil Bowman, Bloomington, MN (US)

(73) Assignee: Seagate Technology LL.C, Cupertino,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 268 days.

(21) Appl. No.: 13/566,648

(22) Filed: Aug. 3, 2012

(51) Int.Cl.
GO6F 7/58

(52) U.S.CL
CPC oo, GO6F 7/582 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

300 \

306

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,067,156 A 11/1991 Martin

6,298,360 B1 10/2001 Muller

6,766,312 B2 7/2004 Landt

6,968,460 B1* 11/2005 Gulickoooeeiiiinnn, 713/194
7,330,328 B2 2/2008 Xie

7,334,009 B2 2/2008 Henry et al.

7,631,195 B1 12/2009 Yu

7,660,944 B2 2/2010 Luo
7,949,698 B2 5/2011 Janke
8,015,224 B1* 9/2011 Chaichanavong et al. 708/254

8,726,041 B2* 5/2014 Hatakeyama 713/193
2008/0279370 Al* 11/2008 Hatakeyama 380/30
2009/0077147 Al 3/2009 Hars
2010/0109660 Al 3/2010 Wang et al.

2013/0124591 Al* 5/2013 Buchetal. 708/251

* cited by examiner

Primary Examiner — David H Malzahn
(74) Attorney, Agent, or Firm — Cesar1 & Reed LLP; Kirk A.
Cesari; Christian W. Best

(57) ABSTRACT

The disclosure 1s related systems and methods for using
operation durations of a data storage medium to generate
random numbers. In one embodiment, a device may comprise
a random number generator circuit configured to store a value
representing a duration of an operation on the data storage
medium, and generate a random number based on the value.
Another embodiment may be a method comprising recording
durations of access operations to a data storage medium, and
generating a random number based on the durations.

20 Claims, 4 Drawing Sheets

Random Number Module

310

314

308

304

Read/write
access time
values

302

Random
Number
(Generator

Controller

U.S. Patent May 19, 2015 Sheet 1 of 4

100\

104

102

Host System

Data Storage Device

Data Storage
Medium

US 9,037,624 B1

US 9,037,624 B1

Sheet 2 of 4

May 19, 2015

U.S. Patent

JENE #NNE S SN S S N S S T S S S N S S S I N I SIS I IS T S S SIS S G S S G SIS G D O

|

912 |
|

|

|

|

Asona” |

AJOWIN "
|

|

NNY |

|

|

|

|

|

|

|

|

AJOWdN

dHOVO
1474

€0C

40Vddd1NI
1SOH

U.S. Patent May 19, 2015 Sheet 3 of 4 US 9,037,624 B1

300 \

306
Random Number Module

310

Random
Interface Number
(Generator

304

Read/write
access time

values

2
Controller

FIG. 3

U.S. Patent May 19, 2015 Sheet 4 of 4 US 9,037,624 B1

400 500
\y 402 502 '/

Monitor for
access
operations to
memory

Monitor for
aCCESS
operations to

memory

Record
access times
INn entropy
pool buffer

S entrop

pool buffer
full?

Yes

Record
access times

in entropy
pool buffer
408 ves
504
Stop |
recording XOR access times
access times with values In
entropy pool buffer
410 506

Call

to re/seed
RNG?

No

all bits In
buffer been
Affected?

Yes
412 Yes 508

Replace

Hash buffer buffer values

and re/seed
RNG

with hash of
buffer values

FIG. S

US 9,037,624 Bl

1

USING MEMORY ACCESS TIMES FOR
RANDOM NUMBER GENERATION

BACKGROUND

Random numbers are usetul for a variety of purposes, such
as simulating phenomenon for studies, gambling or other
gaming, or selecting random samples from a set of values.
One field where random numbers with high unpredictability
1s required 1s data security, such as for generating encryption
keys or tweak values.

Computers have a limited ability to generate random num-
bers. Computers are designed to rigidly follow a set of
instructions, and are therefore very predictable. Predictability
in a computing system, especially 1n relation to data security
and encryption, can create vulnerabilities. Therefore, systems
and methods are needed for improving methods of random
number generation.

SUMMARY

A device may comprise a data storage medium and a ran-
dom number generator circuit configured to store a value
representing a duration of an operation on the data storage
medium, and generate a random number based on the value.

In another embodiment, a random number generator may
comprise a circuit configured to store a first value represent-
ing a duration of an operation on a data storage medium, and
generate a random number based on the first value.

Another embodiment may be a method comprising record-
ing durations of access operations to a data storage medium,
and generating a random number based on the durations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an 1illustrative embodiment of a
system using memory access times for random number gen-
eration;

FI1G. 2 1s a diagram of another 1llustrative embodiment of a
system using memory access times for random number gen-
eration;

FI1G. 3 1s a diagram of another 1llustrative embodiment of a
system using memory access times for random number gen-
eration;

FIG. 4 1s a flowchart of an 1llustrative embodiment of a
method for using memory access times for random number
generation; and

FI1G. 5 1s a flowchart of another illustrative embodiment of
a method for using memory access times for random number
generation.

DETAILED DESCRIPTION

In the following detailed description of the embodiments,
reference 1s made to the accompanying drawings which form
a part hereol, and 1n which are shown by way of illustration of
specific embodiments. It 1s to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the present disclo-
sure.

Computing devices may have need to generate random
numbers for a variety of reasons; €.g. to generate crypto-
graphic keys to encrypt data. Computers may generate ran-
dom numbers using different techniques, broadly categorized
as pseudo-random number generators (PRINGs) and true ran-
dom number generators (IRNGs).

10

15

20

25

30

35

40

45

50

55

60

65

2

When using a PRNG, a computer may be given input(s)
called a “seed,” and can use this seed along with an algorithm
to produce a sequence of numbers that appear random. How-
ever, this method 1s ‘deterministic’ in that given the same
seed, the PRNG will always produce the same set of numbers,
which makes the set of numbers predictable. PRNGs can be
useiul when a large set of numbers 1s required quickly, as a
PRING can produce large sets of numbers with a small amount
of 1inputs.

True random number generators (TRNGs), on the other
hand, can extract randomness from observed physical phe-
nomenon and convert 1t to a numerical output. For example, a
computer that was programmed to roll a die and record the
result could be considered a TRNG. If the observed physical
phenomenon 1s truly random, then the corresponding TRNG
number outputs should be nondeterministic; that 1s, one can-
not predict a set of results ahead of time due to their direct
reliance on a random physical occurrence. TRNGs are not as
cificient as PRNGs at producing large quantities of data due to
a reliance on observable physical phenomenon, but they are
more unpredictable and therefore more secure.

The systems and methods disclosed herein could be used
for either PRNGs or TRNGs. A system may be designed to
observe the access time of various operations to a data storage
medium. The time required to access or perform various
operations to a data storage medium can vary by minute
unpredictable durations. These minute variations can be used
to generate random numbers, either by seeding a PRNG or by
being converted directly into random number outputs by a
TRNG.

FIG. 1 depicts an embodiment of a system 100 configured
for using memory access times for random number genera-
tion. The system 100 may include a host 102 and a data
storage device (DSD) 104. The host 102 may also be referred
to as the host system or host computer. The host 102 can be a
desktop computer, a laptop computer, a server, a tablet com-
puter, a telephone, a music player, a gaming system, another
clectronic device, or any combination thereof. Similarly, the
DSD 104 may be any of the above-listed devices, or any other
device which may be used to store or retrieve data. The host
102 and DSD 104 may be connected by way of a wired or
wireless connection, or by a local area network (LAN) or
wide area network (WAN). In some embodiments, the DSD
104 can be a stand-alone device not connected to a host 102,
or the host 102 and DSD 104 may both be part of a single unat.

In some embodiments, the DSD 104 can include a random
number module (RNM) 106 and a data storage medium 108.
The data storage medium 108 may be any type of medium
used to store digital data. Possible data storage mediums 108
may include volatile memory, which requires power to main-
tain stored information, such as some types of random access
memory (RAM), including dynamic RAM (DRAM) and
static RAM (SRAM). Data storage mediums may also
include nonvolatile memory, which can store information
without a constant power source, such as read-only memory
(ROM), clectrically erasable programmable read-only
memory (EEPROM), Flash memory, and non-volatile ran-
dom access memory (NVRAM). Possible data storage medi-
ums 108 can also include memory with moving mechanical
parts, such as hard discs and optical discs, as well as memory
without moving components like most solid-state memory.

The random number module (RNM) 106 may be a circuit,
controller, or system of components configured to monitor a
duration of accesses to the data storage medium 108, and use
the duration to generate a random number. The RNM 106 may
employ a high-speed counter to measure the duration of read,
write, or erase operations on the data storage medium 108,

US 9,037,624 Bl

3

and use the duration to generate random numbers. Including
a RNM 106 may be useful in a data storage device 104
configured to encrypt data independently from a host 102.
The RNM 106 or components or operations thereof can be
located 1n the host 102 or distributed between a host 102 and
a data storage device 104.

Operations on data storage mediums, such as reads and
writes, require small amounts of time to perform (e.g. seconds
or milliseconds). Access times to different types of data stor-
age mediums may be slower or faster, with mechanical-based
memory such as hard discs tending to be slower, and solid
state memory without moving mechanical components tend-
ing to be faster. There are minute variations between different
accesses 1o the even same data storage medium, which varia-
tions can be detected by high-speed counters. Even memory
such as solid-state Flash memory displays minute access time
variations due to asynchronous clocks and their drift, differ-
ent error correction and decompression computations, map-
ping paths, etc. As data storage mediums are used and com-
ponents recerve wear, access time variations may become
more pronounced 1n a manner unique to each drive and the
data usage therecon. The differences in the values of these
access time durations provide unpredictable physical ran-
domness that can be used to generate true random numbers, or
as seeds to generate pseudo-random numbers. The high-
speed counter of the RNM 106 may need to be fast enough to
register the small variations 1n access times to the data storage
medium 108.

FI1G. 2 1s a diagram of another 1llustrative embodiment of a
system using memory access times for random number gen-
eration, generally designated 200. Specifically, FIG. 2 pro-
vides a functional block diagram of a data storage device
(DSD) 200. The DSD 200 may be a data storage device such
as the device 104 shown 1n FIG. 1. The data storage device
200 can communicate with a host device 202 (such as the host
system 102 shown 1n FIG. 1) via a hardware/firmware based
host 1nterface circuit 204 that may include a connector (not
shown) that allows the DSD 200 to be physically removed
from the host 202. The DRAM buiffer 212 can temporarily
store user data during read and write operations and can

include a command queue (CQ)) 213 where multiple pending
access operations can be temporarily stored pending execu-
tion. The DSD 200 may include a data storage medium 216,
which may function as a primary memory. The data storage
medium 216 may be any kind of data storage medium, such as
Flash memory or a magnetic disc. A cache memory 203, such
as DRAM or Flash memory, can be included for additional
cache or buller memory, or to provide additional addressable
data storage for the DSD 200.

The DSD 200 can include a programmable controller 206
with associated memory 208 and processor 210. In some
embodiments, the controller 206 may also include a random
number module (RNM) 214, or elements to perform one or
more functions described for a RNM herein, such as measur-
ing the duration of operations performed on a data storage
medium and using the duration values to produce random
numbers. In some embodiments the RNM 214 can be one or
more components located external to the controller 206, such
as being operably coupled to the controller 206 and the
memory 216. The RNM 214 may be located in the host 202 in
some embodiments. Some embodiments may have function-
ality distributed among the components, such as the control-
ler measuring the duration of I/O operations to the memory
216, with the RNM 214 storing the values, making any modi-
fications or tweaks to the duration values, and using the values

10

15

20

25

30

35

40

45

50

55

60

65

4

to generate a random number. Further, the RNM 214 may be
implemented as one or more circuits, internal or external to a
controller chip.

FIG. 3 depicts a diagram of a system for using data access
times for random number generation, generally designated
300. The system 300 may include a controller 302 (e.g. the
controller 206 i FIG. 2), and a random number module
(RNM) 306 (e.g. the RNM 214 1n FIG. 2). The RNM 306 may
include an interface 308 for sending and recerving data, an
entropy pool builer 310, and a random number generator 314.
In the embodiment depicted in FIG. 3, the controller 302
measures the duration of accesses to a memory, such as the
duration of read, write, or erase operations. The controller can
pass these access time values 304 to the RNM 306 via the
interface 308. In other embodiments, the RNM 306 may
receive the access time values 304 directly from a counter, or
the RNM 306 may include a counter to monitor access times
independent of external components.

The RNM 306 may store the access time values 304 1n the
entropy pool buifer 310, sometimes referred to herein as the
“entropy pool” or the “bufier”. As used herein, “entropy”
refers to randomness or uncertainty, and the entropy pool 310
can store the unpredictable duration values of accesses to
memory. In some embodiments, the access time values 304
may alternately be stored 1n any memory location, and the
RNM 306 may not involve a dedicated entropy pool butfer
310. Therefore 1n some embodiments, “entropy pool butier,”
“entropy pool,” and “buller” may refer to a memory device.

The access time values 304 can be values measured by a
high speed counter, and represent the duration of accesses to
a data storage medium; e.g. how long a write operation took.
The counter values of access time durations can show ran-
domness. The values 304 measured by the counter may rep-
resent actual time elapsed (e.g. milliseconds or microsec-
onds), or the values may represent computer cycles or “clock
ticks” (e.g. 66 million ‘ticks’ or cycles per second on a 66
MHz system) elapsed, or other artificial “timing” mecha-
nisms. Any counter may be used provided 1t can capture the
minute variations of memory access durations. In some
embodiments, the counter values may be i the form of a
sequence of bits, and at least the few least-significant bit
positions of the counter values can show randomness and are
unpredictable. The most-significant bits may be less likely to
show variation. The access time values 304 may represent the
entire counter value, or a given number of least-significant
bits of a counter value.

The access time values 304 may be placed into the entropy
pool butier 310. The buifer may be of a set size; e.g. 32 bits or
128 bits. The bufler may be stored on a specific physical
memory of the RNM 306, or it may be stored to an external
memory, such as the cache memory 203 or main memory 216
of FIG. 2. The butier 310 can be configured to store one or
more access time values 304. Multiple access time values 304
may be based on the durations of multiple different memory
accesses. A buffer 310 designed to store multiple access time
values 304 may have the values placed into the buffer in any
manner. For example, a butler of size N may be filled starting
from buffer position 0 and continuing until reaching position
N-1. In some embodiments, the access time values 304 may
be placed into the butier 310 based on a hashing algorithm.

Once the entropy pool 310 reaches a threshold capacity,
e.g. 100% full or 80% full, the RNM 306 may be configured
to proceed 1n a variety of ways. In one embodiment, the RNM
306 may cease storing access time values 304 when the
threshold 1s reached. When a new random value or a new seed
1s required, the values stored 1n the butfer 310 can be passed
to the random number generator 314 and the buffer 310 can be

US 9,037,624 Bl

S

emptied. Once emptied, the entropy pool can resume receiv-
ing new access time values to repopulate the butfer.

In another embodiment, once the buffer 310 reaches a
threshold capacity the RNM 306 may combine subsequent
access time values 304 with the values already stored in the
buifer 310. This may be done 1n a variety of ways, such as by
performing exclusive or (XOR) operations between the new
data and the data currently stored 1n the buifer 310. This can
be performed as the new values arrive, or new values could be
stored 1n a second butfer, and the second buffer can be XORed
into the entropy pool builer 310 when the second buifer
reaches a threshold capacity. In another embodiment, the new
access time values 304 may be hashed into the butfer 310 and
the value of the stored bits can be switched when a collision
occurs. Once every bit has been changed, the entire bulfer
may be re-hashed to modity the order of the stored bits via
hashing algorithm 312. In some embodiments, the entropy
pool 310 may not get emptied, but instead the stored values
can be continually modified as new access time values 304 are
processed.

The RNM 306 may collect access time values 304 in the
entropy pool butfer 310 and store them until a call for a new
random number or seed 1s needed. In other embodiments, the
RNM 306 may be configured to only populate the entropy
pool buffer 310 when a request 1s made for a random number
or seed, and pass the contents of the buffer 310 when a
threshold capacity 1s reached. In some embodiments, the
RNM 306 may pass the contents of the entropy pool 310 to the
random number generator 314 when a threshold capacity 1s
reached, without the need to recerve a request for a random
number or seed.

When passing the contents of the entropy pool 310 to the
random number generator 314, the RNM 306 may modity the
contents of the butfer 310 via an algorithm or modifier at 312.
For example, the RNM 306 may hash the contents of the
butiler 310 to reorganize the stored values. In some embodi-
ment, the contents of the buifer 310 may be combined (e.g. by
XOR or other hashing combination) with a value, such as a
drive-specific serial number or defect mappings, to provide a
unique tweak. This may be useful when dealing with a new
drive or data storage device that has not received much wear
and may provide limited access time varnations. In some
embodiments, the random number generator 314 may haveits
own bulfer, and the contents of the entropy pool butler can be
combined (e.g. by XOR) with or replace the contents of the
random number generator builer.

The random number generator 314 may have 1ts own RNG
butler to receive the data from the entropy pool buifer 310,
modified by any additional operations 312, or the RNG 314
may produce a random value without the need to store the
data from the entropy pool 310. The random number genera-
tor (RNG) 314 may be a true random number generator
(TRNG), a pseudo-random number generator (PRNG), or
may be configured to function as either a TRNG or a PRNG
depending on what the random numbers will be used for, or
the required quantity of random numbers.

A TRNG may use the data from the entropy pool 310 to
produce one or more random number outputs. This may
involve modifying or altering the entropy pool contents 1nto a
desired format for the random numbers (e.g. integers, or
numbers within a range). True random numbers produced in
this fashion would provide a high degree of unpredictability
and security for encryption purposes. However, a TRNG may
not be able to produce number outputs as quickly as a PRNG,
due to the TRNG requiring more physical randomness inputs
to generate random number outputs.

10

15

20

25

30

35

40

45

50

55

60

65

6

A PRNG may use the data from the entropy pool 310 as one
or more seeds to enter 1nto an algorithm or table which out-
puts a sequence of pseudo-random numbers. Pseudo-random
numbers produced in this fashion may not be as secure or
random as true random numbers, because imputing the same
seed may always result 1n the same sequence of generated
pseudo-random numbers. PRNGs can produce a high quan-
tity of pseudo-random number outputs from a single seed,
however, which means a PRNG can produce greater output on
fewer mputs than a TRNG.

The random number generator 314 may pass generated
outputs to the interface 308, which may 1n turn pass them to
the controller 302 or other component for use 1n processing,
encrypting, etc. In some embodiments, the access time values
304 and the RNM 306 may be implemented completely inter-
nally to a data storage device, such that a host or external
interface does not have any access to the values 304, the RNM

306, or any output of the RNM 306.

Turning now to FIG. 4, a flowchart of an illustrative
embodiment of a method for using memory access times for
random number generation 1s shown and generally desig-
nated 400. The depicted method can be used 1n a system
employing a random number module, such as the systems
depicted in FIGS. 1-3. The method 400 can involve monitor-
ing for data accesses to a data storage medium, such as read,
write, or erase operations, at 402.

When access operations are detected, the duration of the
access may be recorded 1n an entropy pool builer, at 404. This
may involve recording a duration value 1n the form of a
sequence of bits, and it may mvolve recording the entire
duration bit string, or a set number of least-significant bits.
The duration values may be recorded to the buifer in any
manner. For example, the bulfer may use address tables to
locate and place data, or the butler may be a data array which
can be filled from one end to the other, “pushing” the bits 1n at
one end only, or placing the bits into the butier by means of a
hashing algorithm.

The method 400 may involve checking 1f the buffer has
reached a threshold capacity, such as 100% filled or 80%
filled, at 406. I the threshold capacity has not been reached.,
the method 400 may involve continuing to monitor for new
access operations, at 402. If the buller has reached the thresh-
old capacity and 1s therefore “full,” the method 400 may
direct that new access duration values not be recorded to the
entropy pool butlfer, at 408.

The method may monitor for a call to seed or reseed a
random number generator (RNG), at 410. The phrase “seed”
may include seeding a pseudo-random number generator, or
passing recorded values to a true random number generator. IT
there 1s no need to seed or reseed a RNG, the method 400 may
continue directing that no new access operation durations be
recorded, at 408.

When a call to seed or reseed a RNG 1s detected, the values
stored 1n the entropy pool buifer may be passed to the RNG at
412. Passing the builer values to the RNG may also involve
modifying the values in some manner, such as XORing the
builer values with another value, or hashing the bufler to
reorder the stored values. The entropy pool builer may also be
cleared at 412, and new duration values may resume record-
ing at 402.

Other methods may also be employed. For example, rather
than awaiting a call to seed or reseed a RNG, the values 1n the
entropy pool butler may get passed to the RNG as soon as the
entropy pool buifer becomes filled.

FIG. 5 depicts another example embodiment of a method
for using memory access times for random number genera-

US 9,037,624 Bl

7

tion, generally designated 500. The method may ivolve
monitoring for accesses to a memory, at 502,

The method 500 may 1involve checking 1f an entropy pool
buffer 1s full of access duration values, at 504. If not, the
duration value of a current access operation may be recorded
to the builer, at 506, and then the method 500 may mvolve
continuing to monitor for memory accesses, at 502. If the
butler 1s full at 504, the method 500 may involve combiming,
the new memory access duration with values already in the
butler, e.g. by exclusive OR (XOR), at 504. New values may
be combined with the existing buffer values in any manner,
such as by combining from one end of the buffer array to the
other or by using a hashing algorithm.

The method may 1nvolve monitoring whether all bits in the
buffer have been affected by a combination, at 506. For
example, the method may imnvolve monitoring whether every
bit 1n the butler has undergone an XOR combination, whether
or not the value of the bit has changed. In some embodiments,
a set amount ol least-significant bits of duration values is
recorded (e.g. 4 bits from a counter for each memory access
operation), and the buifer may therefore get XORed 1n sets of
4 bits at a time 1nstead of one bit at a time. IT all bits have not
yet been affected, the method 500 may continue monitoring,
for new memory accesses, at 502. If all bits have been
alfected, the method 500 may involve replacing the buifer
values with a hash of the butler values. For example, this may
mean running the entire bufler through a hashing algorithm
that results 1n the bits being “shuiifled.” This can add addi-
tional randomness. Monitoring for access operations may
then resume at 502.

The method of FIG. 5§ imvolves a constantly shifting
entropy pool butier whether or not the values 1n the butier are
ever flushed. The values may be used to seed or reseed a
random number generator at any point where the butler 1s full
enough for the seed or reseed operation. The values 1n the
bullfer may get emptied during a seed or reseed operation, or
the bulfer may retain the stored values. In some embodiments,
the buifer may be emptied periodically regardless of seeding,
operations; €.g. after a timer expires, or aiter a number of
memory access operations has occurred, both of which could
vary to provide more unpredictability.

In accordance with various embodiments, the methods
described herein may be implemented as one or more soit-
ware programs running on a computer processor or controller.
In accordance with another embodiment, the methods
described herein may be implemented as one or more soit-
ware programs running on a computing device, such as a
personal computer that 1s using a data storage device. Dedi-
cated hardware implementations including, but not limited to,
application specific integrated circuits, programmable logic
arrays, and other hardware devices can likewise be con-
structed to implement the methods described herein. Further,
the methods described herein may be implemented as a com-
puter readable storage medium including instructions that
when executed cause a processor to perform the methods.

The 1llustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the wvarious embodiments. The illustrations are not
intended to serve as a complete description of all of the
clements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill 1n the art upon
reviewing the disclosure. Other embodiments may be utilized
and derived from the disclosure, such that structural and
logical substitutions and changes may be made without
departing from the scope of the disclosure. Moreover,
although specific embodiments have been illustrated and

10

15

20

25

30

35

40

45

50

55

60

65

8

described herein, 1t should be appreciated that any subsequent
arrangement designed to achieve the same or similar purpose
may be substituted for the specific embodiments shown.

This disclosure 1s intended to cover any and all subsequent
adaptations or variations of various embodiments. Combina-
tions of the above embodiments, and other embodiments not
specifically described herein, will be apparent to those of skill
in the art upon reviewing the description. Additionally, the
illustrations are merely representational and may not be
drawn to scale. Certain proportions within the illustrations
may be exaggerated, while other proportions may be reduced.
Accordingly, the disclosure and the figures are to be regarded
as 1llustrative and not restrictive.

What 1s claimed 1s:

1. A device comprising:

a data storage medium;

a random number generator circuit configured to:

monitor for a data access operation to the data storage
medium, including monitoring for read operations
and write operations;
measure a duration of the data access operation;
store a value representing the duration of the data access
operation; and
generate a random number based on the value.
2. The device of claim 1, further comprising:
an 1nterface circuit to communicate with a host external to
the device, the interface allowing the device to be physi-
cally removed from the host.

3. The device of claim 2, wherein the random number
generator circuitry 1s further configured to monitor for erase
operations.

4. The device of claim 1, wherein the random number
generator circuit comprises a controller configured to execute
a set of instructions for random number generation.

5. The device of claim 1, wherein the duration of the data
access operation 1s represented as a plurality of bits, and
wherein the value represents a selected number of least sig-
nificant bits from the plurality of bats.

6. The device of claim 1, wherein the random number
generator circuit 1s further configured to:

store a plurality of values representing durations of a plu-

rality of data access operations; and

generate the random number based on the plurality of

values.

7. The device of claim 6, wherein the random number
generator circuit 1s further configured to:

store the plurality of values 1n a but

reaches a capacity threshold; and
empty the buffer when the plurality of values 1s used to
generate the random number.

8. The device of claim 6, wherein the random number
generator circuit 1s further configured to:

store the plurality of values 1n a bul

reaches a capacity threshold; and
combine subsequent values with the plurality of values 1n
the buffer to modity the plurality of values 1n the builer.

9. The device of claim 6, the random number generator
circuit further configured to:

store the plurality of values 1n a butler, the contents of the

bulfer representing a single seed value; and

generate a plurality of random numbers based on the single

seed value.

10. The device of claim 1, wherein the random number
generator circuit 1s further configured to store the value only
alter recerving a request for the random number.

‘er until the bufter

er until the bufter

.

US 9,037,624 Bl

9

11. The device of claim 1, wherein the random number
generator circuit 1s further configured to generate a random
number based on the value combined with a device serial
number.

12. The device of claim 1 further comprising:

the data storage medium 1ncludes a nonvolatile solid-state

memory.

13. An apparatus comprising:

a random number generator including;:

a circuit configured to:

monitor for a data access operation to a data storage
medium, including monitoring for read operations
and write operations;

measure a duration of the data access operation;

store a value representing the duration of the data
access operation; and
generate a random number based on the value.

14. The apparatus of claim 13, the circuit further config-
ured to:

store a plurality of values representing durations of a plu-

rahty ol operations on the data storage medium 1n a
butfer until the butfer reaches a capacity threshold; and

generate the random number based on the plurality of
values.

15. The apparatus of claim 13, the circuit further config-

ured to generate a sequence of numbers based on the value by

imputing the first value into a number generation algorithm.

10

15

20

25

10

16. The apparatus of claim 13, further comprising:

the duration of the data access operation 1s represented as a
plurality of bits; and

the value represents a selected number of least significant
bits from the plurality of bats.

17. A method comprising;:

monitoring for data access operations to a data storage
medium, including monitoring for different types of data
access operations;

measuring durations of the data access operations;

storing values representative of the durations of the data
access operations; and

generating a random number based on the values.

18. The method of claim 17 further comprlsmg

storing the values 1n a buffer until the builer reaches a
threshold capacity; and

emptying the buffer when the values are used to generate a
random number.

19. The method of claim 17 further comprlslng

storing the values in a buffer until the bufler reaches a
threshold capacity; and

combining the values with the buffer using an exclusive OR
operation aiter the buifer reaches a threshold capacity.

20. The method of claim 17 wherein the values comprise a

selected number of least-significant bits of a plurality of bits
representative of durations of operations to the data storage
medium measured by a counter.

¥ ¥ # ¥ o

	Front Page
	Drawings
	Specification
	Claims

