US009037553B2
12 United States Patent (10) Patent No.: US 9,037,553 B2
Sanders 45) Date of Patent: May 19, 2015
(54) SYSTEM AND METHOD FOR EFFICIENT OTHER PUBLICATIONS

MAINTENANCE OF INDEXES FOR XML
FILES

(75) Inventor: Daniel Sanders, Orem, UT (US)

(73) Assignee: NOVELL, INC., Provo, UT (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 2316 days.

(21) Appl. No.: 11/376,896

(22) Filed: Mar. 16, 2006
(65) Prior Publication Data
US 2007/0220420 Al Sep. 20, 2007
(51) Int.CL
GO6F 7/00 (2006.01)
GO6l 17/00 (2006.01)
GO6F 17/30 (2006.01)
(52) U.S. CL
CPC e GO6F 17/30923 (2013.01)
(58) Field of Classification Search
None

David Brownell, Referencing Multiple DTD 1n an XMI document,
Nov. 2, 1999, http://mailman.ic.ac.uk/pipermail/xml-dev/1999-11/

015894 html (Accessed: Jul. 6, 2009).*
Donald Knuth, The Art of Computer Programming, 1998, Addison-
Wesley, vol. 3 2nd Ed., 482-485.*

Howe, The Free Online Dictionary of Computing, date unknown but
at least 1996, http://foldoc.org/engine, http://foldoc.org/database.™

Unknown, The Authoritative Dictionary of IEEE Standards Terms,
2000, IEEE, 7th Ed, pp. 545-546.*

Unknown, Database Models: Hierarchical, Network, Relational,
Object-Oriented, Semustructured, Associative, and Context, verified
on Archive.org as of Jun. 18, 2004, unixspace.com, http://replay.web.

archive.org/20040618225043/http://unixspace.com/context/data-
bases.html.*

Refsnes Data, XML Tree verified on Archive.org as of Mar. 27,
2008 : w3schools.com, http://replay.web.archive.org/
20080327100859/http://www.w3schools.com/xml/xml__ tree.asp?*

* cited by examiner

Primary Examiner — Jason Liao
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

System and method for etficient maintenance of indexes for
XML and other documents comprising semi-structured, hier-
archical data are described. In one embodiment, the method
comprises providing a first index defimtion document
(“IDD”) for defining a first index for the document, wherein
the first IDD 1s applied to the document to create a first set of

index keys for the document stored in the database and
wherein the first IDD defines at least one set of relationships
among nodes in the document; responsive to a change to the
document affecting an update node thereof, performing a
limited, localized traversal of the document around the update
node to determine whether the change affects the first set of

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,804,677 B2 10/2004 Shadmon et al. index keys; and updating the first set of index keys as neces-
2004/0103105 Al 5/2004 Lindblad et al. sitated by the change.
2005/0114314 A1* 5/2005 Fanetal. ...l 707/3
2005/0131895 Al1* 6/2005 Harbarthetal. 707/5 17 Claims, 10 Drawing Sheets

10 __,. ¢ndnmdu
R . [f.‘nnffﬁ' On!
. Masir Taba e

mmﬂﬁ““'ﬂ*‘ - Adclie C MMT’hﬂu =
HomeYene i \ {t_he,Tu:ru:i*B i—-—ij,., mcwmma
Home Pa-dlt‘e.ﬂ .
Clh(‘x.;—“ = e - /
":’:elui'ﬁ,*-- N T \ zl
e s [Vm ﬂwmtwﬂ Mﬂemv UL

v

‘t\ N) LU
v N "‘*x ~
\ \ S
\\ \ \ \
\ \ jN
\ N \ flfbﬁ-—

1 -
i‘ ?”‘J‘“gm*‘g‘** 84 T&gsm%ﬁmu f

p -
] “Hu ke l Cty l
. oo V4D

US 9,037,553 B2

Sheet 1 of 10

May 19, 2015

U.S. Patent

U.S. Patent May 19, 2015 Sheet 2 of 10 US 9,037,553 B2

D
<xflaim:index name="CityStatePhonelndex” > ‘/
<xflaim:ElementComponent name="Individual”>
<xflaim:ElementComponent name="HomeAddress” >
<xflaim:ElementComponent name="5State” KeyComponent="1">
<xflaim:ElementComponent name="City” KeyComponent="2">
</ xflaim:ElementComponent>
</ xflaim:ElementComponent name="HomePhone” KeyComponent="3">
</ xflaim:ElementComponent>
</xflaim:index>

Fig. 2

U.S. Patent May 19, 2015 Sheet 3 of 10 US 9,037,553 B2

D
g | Tedwduar [

- ; : \ %

de,iq'IdlLi_\ \ B - T, Mdi’fg q_‘, -+’h),¥l.£ ?‘ﬂﬁm
HDW?;EL?ﬂ [Pk r O LY KerjCemponeit v 5
Hmm LTSS T B

Cl\'\{\ N

5)"6‘. +- — -

= St Eﬂ'\l
v&l\t ﬂcmpmm 'ﬂr't Ktli[’ﬁnl{li“l\l—'&:

L0 2

U.S. Patent May 19, 2015 Sheet 4 of 10 US 9,037,553 B2

<Individual> .
<HomeAddress> ({ w

<City>Provo</City>
<State>Utah</State>
</HomeAddress>
<HomeAddress>
<City>SanFrancisco</City>
<State>California</State>
<HomePhone>91 1 </HomePhone>
</HomeAddress>
<HomePhone>801-333-2222</HomePhone>
<HomePhone>408-777-9999</HomePhone>
<Individual>

Fig. §

<Individual>
<HomeAddress> q Lﬂ
<City>Provo</City>
<State>Utah</State> g
</HomeAddress>
<HomeAddress>
<City>SanFrancisco</City>
<State>California</State>
<HomePhone>91 1 </HomePhone>
</HomeAddress>
<HomePhone>801-333-2222</HomePhone>
<HomePhone>4(8-777-9999</HomePhone>
<EmergencyContact>Pete</EmergencyContact.>
<Individual>
Fig. 7A

US 9,037,553 B2

Sheet S of 10

2015

y/

May 19

U.S. Patent

9h0] Va0l

bh bb L LL-%h 2222 <t 3@
Mad WY WY | Wy

U.S. Patent May 19, 2015 Sheet 6 of 10 US 9,037,553 B2

<Individual>
<HomeAddress> 4 (/7
<City>Orem</City>
<State>Utah</State> ‘/
</HomeAddress>
<HomeAddress>
<City>SanFrancisco</City>
<State>California</State>
<HomePhone>91 1 </HomePhone>
</HomeAddress>
<HomePhone>801-333-2222</HomePhone>
<HomePhone>408-777-9999</HomePhone>
<Individual>

Fig. 7B
<Individual>
<HomeAddress> L‘l 7
<City>Provo</City>
<State>Utah</State> /
</HomeAddress>
<HomeAddress>

<City>SanFrancisco</City>
<State>Califormia</State>
</HomeAddress>
<HomePhone>801-333-2222</HomePhone>
<HomePhone>4(08-777-9999</HomePhone>
<Individual>

Fig. 7C

U.S. Patent May 19, 2015 Sheet 7 of 10 US 9,037,553 B2

U.S. Patent May 19, 2015 Sheet 8 of 10 US 9,037,553 B2

mﬂhﬁ/ /Dwzshf\{ U0
O-HNAS

TM éﬁvuc_h(e

|4

O.. buﬂd’ Tdonhhed Nzdos
ns ppropriate

U.S. Patent May 19, 2015 Sheet 9 of 10 US 9,037,553 B2

@ Fiom Fg AN
(Generate Conaidete Sets |V

Tdovh by Fval Candfjai;'f SeT /*\C)”L/

— =
| Tdunéy Ak Node i Undyy }-\CJU\
| ‘__DC(’H’\rhC;H Tres ﬁ'r’ X DD
—
r’——;f&ww&m Ydahamsiwp of Jgathfied |
Nocle Wk Otter nodes 1n Tndey Definhion -5l
| Wi ot 0 ¢ Covveaporiddirg Nude(s)
in_(aadidab Set

.\;e] - I
Ne _ Teleith Gt (uncidats
0me Seb Nt N
{,H.OZ/ {0 M “08,;] {172
T) oy -
(’:[“L'{,Q\ﬂ'le Mf\d‘ \{i'_t: f\ﬁt?ﬂyt ‘ Caﬂdl Clﬂ..ta ' P"i’h"m
Noclt 1n Tndey .?CS | SETS CVah'd
Pe hiinen Trec | g %:{mda{:r
— FNo ¥ ¥es
Tdlenb fed Candidate | | {Tdontty Next
W& SetNald (undidote Seb

U.S. Patent May 19, 2015 Sheet 10 of 10 US 9,037,553 B2

~)
= N
~ ~
_ ‘ N‘
cO\
Z - o
— >
S O \
\ 2
-
= \ 3
N
O\

US 9,037,553 B2

1

SYSTEM AND METHOD FOR EFFICIENT
MAINTENANCE OF INDEXES FOR XML

FILES
CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s related to commonly-owned U.S. patent
application Ser. No. 11/377,016, filed Mar. 16, 2006 entitled
SYSTEM AND METHOD FOR PROVIDING SIMPLE
AND COMPOUND INDEXES FOR XML FILES, filed on
even date herewith and hereby incorporated by reference inits
entirety.

BACKGROUND

Retrieving information from an XML data store can be
costly 1 terms of both space and time. Thus 1s partially due to
the fact that the semi-structured nature of XML does not lend
itself to easy indexing. Additionally, maintaining indexes in
an XML document can be difficult and time consuming. Most
current XML databases have dealt with this problem by
restricting the scope of the indexes, allowing only single
attributes or single elements within an mdex. Others do not
index XML as XML, instead forcing an internal conversion to
a relational storage system to deal with the problem of index-
ng.

SUMMARY

In response to these and other problems, mn one embodi-
ment, a method 1s provided for efficiently managing indexes
for XML and other documents comprising semi-structured,
hierarchical data. The method documents. the method com-
prises providing a first index definition document (“IDD”) for
defining a first index for the document, wherein the first IDD
1s applied to the document to create a first set of index keys for
the document stored 1n the database and wherein the first IDD
defines at least one set of relationships among nodes 1n the
document; responsive to a change to the document aitl

ecting
an update node thereof, performing a limited, localized tra-
versal of the document around the update node to determine
whether the change affects the first set of index keys; and
updating the first set of index keys as necessitated by the
change

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an XML database system in

accordance with an embodiment.

FIG. 2 illustrates an index definition document in accor-
dance with an embodiment.

FIG. 3 1s a schematic diagram of an in-memory tree struc-
ture representing the index definition document of FIG. 2.

FIG. 4 1s a schematic representation of the interaction
between a Master Table and two 1n-memory tree structures
representing index definition documents.

FIG. 5 illustrates an XML document to which the index
definition document 1llustrated in FIG. 2 may be applied 1n
accordance with an embodiment.

FIG. 6 1s a schematic diagram of the XML document of
FIG. 7.

FIG. 7A 1llustrates the XML document of FIG. 5 subse-
quent to performance of an INSERT NODE operation
thereon.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7B illustrates the XML document of FIG. 5 subse-
quent to performance of a DELETE NODE operation

thereon.

FIG. 7C 1illustrates the XML document of FIG. 5 subse-
quent to performance of an UPDATE NODE VALUE opera-
tion thereon.

FIG. 8 1s a flowchart of an index key set update process in
accordance with one embodiment.

FIG. 9A 1s a flowchart a node collection process portion of
the index key set update process of FIG. 8.

FIG. 9B 1s a flowchart node combination process portion of
the index key set update process of FIG. 8.

FIG. 10 1illustrates an index definition tree and affected
XML document for use 1n illustrating the node combination

process of FIG. 9B.

DETAILED DESCRIPTION

This disclosure relates generally to XML documents and,
more specifically, to a system and method for efficient main-
tenance of XML indexes. It 1s understood, however, that the
tollowing disclosure provides many different embodiments
or examples. Specific examples of components and arrange-
ments are described below to simplity the present disclosure.
These are, of course, merely examples and are not intended to
be limiting. In addition, the present disclosure may repeat
reference numerals and/or letters in the various examples.
This repetition 1s for the purpose of simplicity and clarity and
does not 1n 1tself dictate a relationship between the various
embodiments and/or configurations discussed.

FIG. 1 1s a block diagram of an XML database system 10
according to an embodiment. As shown in FIG. 1, the system
10 includes an XML database 12 comprising a storage device
in which at least one XML document 13 comprising data for
one or more applications, such as an application 14, 1s stored.
It will be recognized that the XML document 13 may actually
comprise a collection of documents comprising application
data for the application 14. An XML document, such as the
XML document 13, 1s generally used to represent an object or
a concept 1n the real world, such as a product, a customer, an
employee, a business division, etc. As such, an XML docu-
ment consists of a collection of nodes, such as, for example,
ElementComponents or AttributeComponents, that represent
information about the object. In XML, there 1s no require-
ment that the XML document 13 conform to a predefined
template. In one embodiment, the XML database 12 supports
the creation of arbitrarily structured documents. The creator

of an arbitrarily structured document 1s not only allowed to
determine the contents of the attributes within the document,
but is also allowed to determine the structure of the document.

The system 10 further includes a database engine 16 for
performing various operations on and in connection with data
stored 1in the XML database 12, including the XML document
13. As will be described 1in greater detail hereinbelow, an
XML index definition document (“XIDD”) 18 1s provided by
the application 14 to the database engine 16. The database
engine 16 stores the XIDD 18 1n a dictionary collection 20 of
the database 12 and generates a set of index keys 22 by
applying the XIDD to the XML document 13. The index keys
22 point back to the nodes 1n the XML document 13 from
which they were generated.

In one embodiment, the XML database 12 1s a model based
nattve XML database, such as Novell Corporation’s
XFLAIM database, for example. It will be recognized that,
although portions of the embodiments described herein may
be described with reference to the XFLAIM database, such

descriptions are for the purposes of example only and that the

US 9,037,553 B2

3

embodiments described herein may be advantageously
implemented using other types of XML databases as well.
Other details regarding simple and compound 1indexes are

described 1n the atorementioned U.S. patent application Ser.

No. 11/3777,016, filed Mar. 16, 2006 entitled SYSTEM AND
METHOD FOR PROVIDING SIMPLE AND COMPOUND
INDEXES FOR XML FILES, which has been incorporated
by reference 1n 1ts entirety. For purposes ol explanation
herein, the existence of such simple and compound indexes
over the XML database 12 will be assumed.

In accordance with an embodiment described herein, the
database engine 16 generates for each XIDD, of which there
may be many, an in-memory tree structure, referred to as an
“index definition tree,” that defines the elements and
attributes that are to be indexed, including the context of each
clement and attribute with respect to one another. This 1s a
simple tree structure that 1s generated by the database engine
16 and that 1s stored in the memory of a computer on which
the database engine 1s running.

For example, FIG. 2 1llustrates an XML document com-
prising an XIDD 40 designated “StateCityPhonelndex™. As
illustrated 1n FIG. 3, an in-memory index definition tree 50
representing the XIDD 40. As best illustrated 1n FIG. 3, the
XIDD 40 as represented by the index defimition tree 30
defines a compound index consisting of two context-only
components, including an Individual component 54 and a
HomeAddress component 56, and three key components,
including a HomePhone component 58 (KeyComponent=3),
a State component 60 (KeyComponent=1), and a City com-
ponent 62 (KeyComponent=2). As 1llustrated in both FIGS. 2
and 3, the HomeAddress component 56 and the HomePhone
component 58 are siblings and are subordinate to the Indi-
vidual component 34. The State component 60 and City com-
ponent 62 are siblings and are subordinate to the HomeAd-
dress component 36.

It will be recogmized that, as previously noted, there waill
likely be many XIDDs and associated index definition trees
stored 1n the database 12 at any given time.

As shown 1n FIG. 4, 1n addition to the index definition tree
50 for the XIDD 40, also stored 1n the database 12 1s a Master
Table 70 that has an entry for every element or attribute 1n the
XML database 12 that 1s involved 1n an index, such as the
XIDD 40, 1n some way. Each entry in the Master Table 70
points to a node 1n one or more mdex definition trees, such as
the index definition tree 50. As illustrated 1n FI1G. 3, an “Indi-
vidual” entry 1n the Master Table 70 points to an Individual
node 54; a “HomePhone™ entry 1n the Master Table 70 points
to a HomePhone node 56; a “HomeAddress™ entry in the
Master Table 70 points to a HomeAddress node 58; a “State”
entry in the Master Table 70 points to a State node 60 and a
“City”” entry in the Master Table 70 points to a City node 62.

If an element or attribute 1s included 1n multiple indexes,
the nodes will be linked together. In this manner, 1t 1s possible
to quickly find all of the usages of any given element or
attribute 1n index definitions. To 1llustrate that point, a second
index definition tree 80 1s provided i FIG. 4. The second
index definition tree 80 i1ncludes an Individual node 82, a
BusinessAddress node 84, a BusinessPhone node 86, a State
node 88, and a City node 90. It 1s not necessary for the
purposes herein to designate which of the nodes 82-90 of the
index definition tree 80 are “key components™.

In addition to pointing to the Individual node 54, the Indi-
vidual entry in the Master Table 70 also points to the Indi-
vidual node 82. Similarly, 1n addition to pointing to the State
node 60, the State entry 1n the Master Table 70 also points to
the State node 88 and 1n addition to pointing to the City node
62, the City entry in the Master Table 70 also points to the City

10

15

20

25

30

35

40

45

50

55

60

65

4

node 90. The Master Table 70 further includes a “Busines-
sAddress” entry that points to the Business Address node 84
and a “BusinessPhone™ entry that points to the Business-
Phone node 86.

For ease of example and clarity, the Master Table 70
includes only the nodes (i.e., elements and attributes) that are
included 1n the indexes that correspond to index definition
trees 50 and 80; 1n reality, the Master Table would include
entries for other elements and attributes that point to nodes 1n
other index definitions.

FIG. 5 illustrates an XML document 96 such as might be
stored 1n the XML database 12. FIG. 6 illustrates a tree
structure 100 representing the XML document 95 shown 1n
FIG. 5. As best illustrated in FI1G. 6, the XML document 100
includes two HomeAddress elements 102a and 10254, and
three HomePhone elements 104a-104¢. The HomeAddress
clements 102a and 1025 and the HomePhone elements 104a
and 1045 are subordinate to an Individual element 106. The
document 100 also includes two City elements 108a and
1085, and two State elements 110aq and 11056. The City ele-
ment 108a and the State element 110a are siblings and are
subordinate to, or are children of, the HomeAddress element
102a. The City element 1085, the State element 1005, and the
HomePhone element 104¢ are siblings and are subordinate to,
or children of, the HomeAddress element 10254.

There are essentially three operations that can be used to
update XML documents in an XML database. These include
“INSERT NODE”, “UPDATE NODE VALUE”, and
“DELETE NODE”. As used herein, the term “update node”
will refer to the node being inserted, updated, or deleted and
the term “‘affected document™ or “affected XML document™
will refer to the XML document containing the update node.
FIGS. 7A, 7B, and 7C respectively 1llustrate the XML docu-
ment 96 (FIG. 5) after the performance of INSERT NODE,
UPDATE NODE, and DELETE NODE operations thereon
Referring to FIG. 6, 1n the INSERT NODE case (FIG. 7A),
the update node 1s an EmergencyContact element (not
shown), which 1s subordinate to the Individual element 106
and a sibling to the HomeAddress elements 102q, 1025, and
the HomePhone elements 104a, 1045. In the UPDATE
NODE case (FIG. 7B), the update node 1s the City element
108a, the value of which has been changed from “Provo” to
“Orem”. In the DELETE NODE case (FIG. 7C), the update
node 1s the HomePhone element 104c.

In one embodiment, one result of the performance of any of
the aforementioned operations on an XML document stored
in the database 12 1s the triggering of an index key set update
process performed by the database engine 16. An embodi-
ment of the index key set update process 1s illustrated 1 FIG.
8. In step 120, the element or attribute name of the update
node 1s looked up in the Master Table stored 1n the database
12, such as the Master Table 70, to determine whether there
are any XIDDs that include that particular element or attribute
name. It will be recognized that the Master Table may be
implemented by any appropriate technique, such as using a
hash table or a sorted array, for example, so long as the
technique 1s fast. In step 122, a determination 1s made whether
a corresponding entry 1s located 1n the Master Table. If there
1s no entry in the Master Table corresponding to the name of
the update node, then the operation performed on the affected
XML document does not atiect any of the indexes and execu-
tion of the process terminates 1n step 124.

In contrast, 11 there 1s an entry 1n the Master Table corre-
sponding to the name of the update node, 1n step 125, a
determination 1s made as to the identity of each XIDD to
which the corresponding Mater ‘Table entry points (as

described above with reference to FIGS. 2-4). Each of the

US 9,037,553 B2

S

XIDDs to which the corresponding Master Table entry points
are referred to herein as a “candidate XIDD”. The following
steps 126-130 are then performed with respect to each of the
candidate XIDDs. In step 126, a set of index keys that exist in
the affected XML document prior to the update (heremnafter
“Betfore Keys™) are calculated. Similarly, in step 127, a set of
index keys that will exist in the affected XML document after
the update (hereimnafter “After Keys™) are calculated. The
operations performed to accomplish steps 126 and 127 are
described 1n greater detail below with reference to FIGS. 9A
and 9B. In general, Before Keys will be deleted from the set
of index keys for the document, while After Keys will be
added to the set; however, before performing the deletion
and/or insertion 1s performed, 1n step 128, checks are per-
formed to determine whether any of the Before Keys are
identical to any of the After Keys. If so, the identical keys
cifectively cancel each other out, so there 1s not need to
perform the actual insertions/deletions in the index key set
with respect to those keys. This step 1s performed to avoid
unnecessary updates to the index key set. Before Keys and
After Keys that are 1dentical are eliminated from their respec-
tive groups. In step 130, the remaining Before Keys (1.e.,
those Before Keys that were not eliminated 1n step 128 are
deleted from the set of index keys. Similarly, the remaining
After Keys (1.e., those After Keys that were not eliminated in
step 128) are added to the set of index keys.

Calculating the groups of Before Keys and After Keys in
steps 126 and 127 involves two primary steps, including (1)
collecting the set of all relevant nodes 1n the XML document
(the “node collection process™), that 1s, the set of all nodes 1n
the XML document that are related as defined by the one or
more of the candidate XIDDs, and (2) combining nodes that
are correctly related mto index keys (the “node combining
process”). It will be recogmized that both of these steps are
performed in connection with calculating the Belore Keys
and again 1n connection with calculating the After Keys. In
particular, the node collection process mvolves collecting An
embodiment of a mechanism for carrying out the node col-
lection process 1s illustrated in FIG. 9A. The mechanism
illustrated in FIG. 9A determines a candidate set of nodes that
can be combined into Before and After Keys without requir-
ing a complete traversal of the affected document. Instead, a
“local traversal” that 1s “anchored” around the update node
and 1s driven by the index definition tree 1s performed 1n such
a manner that only the nodes that are 1n specific relationships
to the updated node (1.¢., parent, grandparent, uncle, nephew,
chuld, sibling, etc.), as specified by the index definition tree
are collected.

As shown 1n FIG. 9A, 1n step 140, the respective ancestry
paths of the update node and the node to which 1t corresponds
in the index definition tree of the candidate XIDD under
consideration are i1dentified. In step 141, a determination 1s
made whether the ancestry paths match. Specifically, the
ancestors of the update node must be of the same type (i.e.,
clement or attribute) and have the same name as the ancestors
of the corresponding index definition tree node (1.¢., the node
pointed to by the entry of the Master Table). It will be noted
that 1t 1s acceptable for the ancestry path of the update node to
be longer than the ancestry path specified 1n the index defi-
nition. For example, if the ancestry path of the index defini-
tion node 1s “b/¢”” and the ancestry path of the update node 1s
“a/b/c”, the ancestries match. However, 11 the ancestry path of
the index definition node 1s “a/b/c” and the ancestry path of
the update node 1s “b/c”, the ancestries do not match.

If 1t 1s determined that the ancestries do not match, execu-
tion terminates in step 142, as the change to the atfected XML
document does not affect the candidate XIDD currently under

5

10

15

20

25

30

35

40

45

50

55

60

65

6

consideration; otherwise, execution proceeds to step 144. In
step 144, beginning with the highest ancestor node in the
index definition tree identified 1n step 140, both trees are
simultaneously traversed downward to 1dentity nodes 1n the
document tree that match nodes 1n the index definition tree.
An 1important aspect of this traversal 1s the notion of “anchor
nodes” 1n the document. The chain of ancestor nodes 1n the
document tree that match the ancestor path of the index defi-
nition tree nodes, including the update node, are considered to
be “anchor nodes™ in the document. When traversing the
document, 11 there are two or more sibling nodes to an anchor
node with the same name as the anchor node, those nodes are
ignored during subsequent operations.

For example, referring to FIG. 6, assuming that the
HomeAddress node 102a 1s the update node, the anchor
nodes would be the Individual node 106, the City node 108a,
and the State node 110a. As a result, when the document 1s
traversed, the HomeAddress node 1025, the City node 1085,
and the State node 11056 will each be 1gnored as having the
same name as an anchor node.

In step 146, the 1dentified nodes are collected as appropri-
ate for generating Before Keys and After Keys in the index. It
should be noted that for the INSERT NODE and DELETE
NODE operations, the generation of Before Keys and After
Keys has a umique aspect. For an INSERT NODE operation,
the generation of the Before Keys must proceed as 11 that the
inserted node and 1ts sub-tree are not yet present 1n the docu-
ment. For a DELETE NODE operation, the generation of
After Keys must proceed as 11 the node to be deleted and its
sub-tree are not present 1n the document. Therefore, in per-
forming step 146, 11 the node collection process illustrated 1n
FIG. 9A 1s being used to generate Before Keys responsive to
an INSERT NODE operation, the update node and the nodes
of 1ts subtree are not collected during that step. Similarly, 1f
the node collection process 1s being used to generate After
Keys responsive to a REMOVE NODE operation, the update
node and the nodes of 1ts subtree are not collected during the
performance of step 146. Upon completion of step 146,
execution proceeds step 150 (FIG. 9B).

An embodiment of a mechanism for carrying out the node
combination process 1s illustrated 1in FIG. 9B. The mecha-
nism 1llustrated in FIG. 9B determines which of the nodes
collected during the node collection process (FIG. 9A) are
correctly related so as to be combined 1nto index keys. This
step might appear redundant, given the fact that the only
nodes that are collected are those that are correctly related to
the update node, as defined by the candidate XIDDs; how-
ever, although all of the nodes collected step 144 (FIG. 9A)
are correctly related to the update node, not all of them are
necessarily correctly related to each other to produce imndex
keys. Thus, in generating index keys, the relationships need to
be verified. If 1t 1s assumed that a set of candidate nodes from
the document correspond to each of the nodes 1n the index
definition tree, verifying that the nodes are properly related 1s
a straightforward process.

Reterring to FIG. 9B, 1n step 150, candidate sets are gen-
erated from the nodes collected in the node collection process
(FIG. 9A). The generation of candidate nodes will be dis-
cussed 1n greater detail with reference to FIG. 10. In step 152,
first one of the candidate sets generated 1n step 150 1s 1denti-
fied. In step 154, a first node of the index definition tree is
identified. In step 156, the parent/child relationship of the
identified node and any other relevant node 1n the index
definition tree are compared with the parent/child relation-
ship of the corresponding node(s) in the identified candidate
set. Two situations will result 1n a positive determination 1n

step 158:

US 9,037,553 B2

7

1. 1f the 1dentified node has a parent 1n the index definition
tree, the corresponding node 1n the candidate set must
also have a parent in the candidate set and that parent
must correspond to the parent of the identified node 1n
the index definition tree; and

2. 1f the 1dentified node does not have a parent in the index
definition tree, the corresponding node 1n the candidate
set also must not have a parent in the identified candidate
set.

If a positive determination 1s made in step 158, execution
proceeds to step 160, in which a determination 1s made
whether there are more nodes 1n the index definition tree to be
considered. If so, execution proceeds to step 162, 1n which a
next node 1n the index definition tree 1s 1dentified, and then
returns to step 156; otherwise, execution proceeds to step 164.
In step 164, 1t 1s determined that the 1dentified candidate set 1s
valid. Conversely, i a negative determination 1s made 1n step
158, execution proceeds to step 166, 1n which 1t 1s determined
that the i1dentified candidate set 1s not valid. In either case,
subsequent to a determination that the candidate set 1s valid
(step 164) or invalid (step 166), execution proceeds to step
168, in which a determination 1s made whether there are more
candidate sets to be evaluated. If so, execution proceeds to
step 170, 1n which the next candidate set 1s identified, and then
returns to step 154; otherwise, execution proceeds to step 172.
In step 172, the valid candidate sets are deemed to comprise
either the group of Belore Keys (FI1G. 8, step 126) or the group
of After Keys (FIG. 8, step 127).

FIG. 10 1llustrates the generation of candidate sets referred
to 1n step 150 (FIG. 9B). As illustrated 1n FIG. 10, an index
definition tree 190 includes three nodes, designated A, B, and
C. As shown 1n FIG. 10, nodes B and C are siblings and are
subordinate to node A. A document tree 192 corresponding to
an alfected XML document (not shown) includes six nodes,
designated A1, A2, B1, B2, C1 and C2. As illustrated 1n FIG.
10, the nodes B1, B2, and C2 are siblings and are subordinate
to the node Al. The nodes A2 and C1 are siblings and are
subordinate to the node B1.

During the node collection process, for each node 1n the
index definition tree, a list of nodes from the alfected docu-
ment that correspond to that node 1n the tree 1s maintained.
This list could be implemented using something as simple as
a linked list off each node in the definition tree. As a document
node 1s collected, 1t 1s placed 1n the appropriate node list.
Assuming that the update node 1s the node A1, for the node list
corresponding to node A, there will be two nodes from the
document tree: node Al and node A2. Similarly, the node list
for node B will include nodes B1 and B2, and the node list for
node C will include nodes C1 and C2. A candidate set 1s one
node from each of those node lists. The exhaustive “set of
candidate sets” 1s simply all combinations of nodes from each
node list. Using the example 1llustrated 1n FIG. 10, the set of
candidate sets includes eight candidate sets, which are set
torth below:

1, B1,C1}
1, B1,C2}
1,B2,Cl1}

{Al, B2, C2}

{A2,B1,Cl1}

{A2, B1,C2}

{A2,B2,Cl1}

{A2, B2, C2}

The result of application of the node combination process
of FIG. 9B would be to eliminate from the above-noted set of
candidate sets at least the following candidate sets, as the
nodes 1n those candidate sets do not have the proper relation-
ship as:

10

15

20

25

30

35

40

45

50

55

60

65

{Al, B1, Cl1}

{A1,B2,Cl1}

{A2,B1,Cl1}

{A2, B1, C2}

{A2, B2, Cl1}

{A2, B2, C2}

A unique aspect ol the embodiments described herein is the
fact that the “context-only” nodes, as well as the “key com-
ponent” nodes, must be verified. Another unique aspect 1s the
recognition that “context-only”” nodes must be part of the key
to distinguish between keys in the index. In other words, 1t 1s
not suilicient to distinguish keys based solely on the unique-
ness of the key components (components that are 1dentified as
the primary, secondary, tertiary, etc.). Two keys may be 1den-
tical 1n all of their key components, but come from different
contexts in the same document; therefore, the key format 1s
such that context-only components form part of the key. This
1s vital for correct 1dentification of which Before Keys and
After Keys cancel each other out.

While the preceding description shows and describes one
or more embodiments, 1t will be understood by those skilled
in the art that various changes 1n form and detail may be made
therein without departing from the spirit and scope of the
present disclosure. For example, various steps of the
described methods may be executed in a different order or
executed sequentially, combined, further divided, replaced
with alternate steps, or removed entirely. In addition, various
functions 1llustrated in the methods or described elsewhere 1n
the disclosure may be combined to provide additional and/or
alternate functions. Theretfore, the claims should be inter-
preted 1n a broad manner, consistent with the present disclo-
sure.

What 1s claimed 1s:

1. A method of efliciently managing indexes for an XML
document stored 1n an XML database, the method compris-
ng:

providing a first XML 1ndex definition document

(“XIDD”) for defining a first index for the XML docu-
ment, the first XIDD comprising an in-memory tree
structure for identitying elements and attributes to be
indexed, including a context of the elements and
attributes with respect to one another, wherein the first
X1DD 1s applied to the XML document to create a first
set of index keys for the XML document stored in the
XML database;
responsive to a change to the XML document affecting an

update node thereof, performing a limited, localized
traversal of the XML document around the update node
to determine whether the change afiects the first set of
index keys; and

updating the first set of index keys as necessitated by the

change;

the method further comprising;:

providing at least one additional X1DD for defining at least

one additional index for the XML document, each addi-
tional XIDD comprising an in-memory tree structure for
identifying elements and attributes to be indexed,
including a context of the elements and attributes with
respect to one another, wherein the at least one addi-
tional XIDD 1s applied to the XML document to create at
least one additional set of index keys for the XML docu-
ment stored 1n the XML database; and

providing a master table comprising, for each node 1n each

of the XIDDs, an entry that points to the X1DD node,
wherein one of the entries of the master table points to at
least one node of the first XIDD and to at least one node

of the additional XIDD.

US 9,037,553 B2

9

2. The method of claim 1 further comprising providing a
master table that includes, for each node 1in the XIDD, an
entry that points to the XIDD node.

3. The method of claim 1 wherein the performing a limited
localized traversal of the XML document comprises:

determining whether the XIDD includes a node corre-

sponding to the update node; and

responsive to a determination that the XIDD includes a

node corresponding to the update node, determiming
whether the update node 1s hierarchically related to other
nodes of the XML document as defined by the XIDD.

4. The method of claim 3 wherein the updating the first set
of index keys as necessitated by the change further comprises:

determining a before set of index keys for the XML docu-

ment,

determining an after set of index keys for the XML docu-

ment;

deleting from the first set of index keys the before set of

index keys and adding to the first set of index keys the
alter set of index keys.

5. The method of claim 4 further comprising, prior to the
deleting and adding, eliminating keys that are included 1n
both the before and the after sets of index keys from the before
set of index keys and the after set of index.

6. The method of claim 1 wherein the change to the XML
document comprises an operation selected from a group con-
s1sting of updating a value of the update node, deleting the
update node, or 1nserting the update node.

7. A system for efficient management of indexes for XML
documents comprising:

an XML database comprising a storage device for storing

an XML document;

a database engine for performing operations on and in

connection with data stored 1n the XML database;

a first XML index definition document (“XIDD”) for defin-
ing a first index for the XML document, the first XIDD
comprising an in-memory tree structure for identifying
clements and attributes to be indexed, including a con-
text of the elements and attributes with respect to one
another; and
a first set of index keys for the XML document stored in the
XML database, the first set of index keys corresponding,
to the first XIDD:;
wherein responsive to a change to the XML document
alfecting an update node thereof, a limited, localized
traversal of the XML document 1s performed to deter-
mine whether the change affects the first set of mdex
keys and to update the first set of index keys as necessi-
tated by the change;
the system further comprising:
at least one additional XIDD for defining at least one
additional index for the XML document, the addi-
tional XIDD comprising an in-memory tree structure
for 1dentitying elements and attributes to be indexed,
including a context of the elements and attributes with
respect to one another;

at least one additional set of index keys for the XML
document stored in the XML database corresponding
to the at least one additional XIDD; and

a master table comprising, for each node 1n each of the

XIDDs, an entry that points to the XIDD node,
wherein one of the entries of the master table points to
at least one node of the first XIDD and to at least one
node of the additional XIDD.

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The system of claim 7 further comprising a master table
comprising, for each node 1n the XIDD), an entry that points to

the XIDD node.

9. The system of claim 7 wherein the XIDD defines at least

one node of the XML document as a key component node.

10. The system of claim 9 wherein the XIDD defines at

least one node of the XML document as a context-only node,
wherein the context-only node defines a context for the key
component node within the XML document.

11. The system of claim 7 wherein the XIDD defines at

least one relationship among nodes 1n the XML document.

12. The system of claim 7 wherein the change to the XML

document comprises an operation selected from a group con-
sisting of updating a value of the update node, deleting the
update node, or mserting the update node.

13. A system of efficiently managing indexes for XML

documents comprising;:
a storage device for storing an XML document;
a first XML index definition document (“XIDD”) for defin-
ing a first index for the XML document, the first XIDD
comprising an imn-memory tree structure for identifying
clements and attributes to be indexed, including a con-
text of the elements and attributes with respect to one
another, wherein the first XIDD 1s applied to the XML
document to create a first set of index keys for the XML
document stored in the storage device;
a module responsive to a change to the XML document
affecting an update node thereof for performing a lim-
ited, localized traversal of the XML document around
the update node to determine whether the change atfects
the first set of mndex keys; and
a module for updating the first set of index keys as neces-
sitated by the change;
the system further comprising:
at least one additional XIDD for defiming at least one
additional 1ndex for the XML document, the addi-
tional XIDD comprising an in-memory tree structure
for 1dentifying elements and attributes to be indexed,
including a context of the elements and attributes with
respect to one another;

at least one additional set of index keys for the XML
document stored 1n the XML database corresponding
to the at least one additional XIDD; and

a master table comprising, for each node 1n each of the
XIDDs, an entry that points to the XIDD node,
wherein one of the entries of the master table points to

at least one node of the first XIDD and to at least one
node of the additional XIDD.

14. The system of claim 13 further comprising a master
table that includes, for each node 1n the XIDD, an entry that
points to the XIDD node.

15. The system of claim 13 wherein performing a limited
localized traversal of the XML document comprises:

determiming whether the XIDD includes a node corre-

sponding to the update node; and

responsive to a determination that the XIDD includes a

node corresponding to the update node, determiming
whether the update node 1s hierarchically related to other
nodes of the XML document as defined by the XIDD.

16. The system of claim 13 wherein updating the set of
index keys as necessitated by the change further comprises:

determining a before set of index keys for the XML docu-

ment;

determining an after set of index keys for the XML docu-

ment:; and

US 9,037,553 B2
11

deleting from the set of index keys the before set of index
keys and adding to the set of 1ndex keys the after set of
index keys.
17. The system of claim 16 wherein keys that are included
in both the before and the after sets of index keys from the 5
betfore set of mndex keys and the after set of index keys are
climinated prior to the deleting and adding.

¥ ¥ e ¥ ¥

12

	Front Page
	Drawings
	Specification
	Claims

