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MASSIVELY PARALLEL INTERCONNECT
FABRIC FOR COMPLEX SEMICONDUCTOR
DEVICES

RELATED APPLICATION

This application 1s a CIP of another application, with the
same inventors, assignee, and title, filed May 6, 2009, Ser. No.
12/436,235 now U.S. Pat. No. 8,390,035, This application
claims benefit from the priority date of the parent application
Ser. No. 12/436,235, and incorporates all of the parent’s
teaching and specification, by reference.

BACKGROUND OF THE INVENTION

Two prevalent approaches for building complex custom
semiconductor devices are based on field-programmable gate
array (FPGA) or application-specific integrated circuit
(ASIC).

A FPGA 1s a semiconductor device that can be configured
by the customer or designer after manufacturing, using alogic
circuit diagram or a source code in a hardware description
language (HDL) describing how the chip functions. FPGAs
contain programmable logic components (logic blocks), and
a hierarchy of reconfigurable interconnects that allow the
blocks to be wired together. Logic blocks can be configured to
perform complex combinational functions as well as simple
logic gates through combinational logic and/or lookup
table(s). In FPGAs, the logic blocks may include memory
clements 1n form of simple tlip-tlops or even more complete
blocks of memory.

An ASIC 1s an integrated circuit (IC) customized for a
particular use, rather than intended for general-purpose use.
The complexity/functionality of ASIC has grown signifi-
cantly. Typically, an ASIC may contain few hundred to over
100 million gates. A System-on-a-chip (SoC) type ASICs
may include processors, memory blocks (e.g., ROM, RAM,
and Flash) and other large building blocks. An HDL, such as
Verilog or VHDL, 1s used to describe the functionality of
ASICs during the design phase. There have been several
approaches to design and implement ASIC devices, such as
gate array (requiring customization at the metallization lay-
ers), standard cell, full custom design, and structured/plat-
form design. In structured ASIC approach, the ASIC vendor
typically predefines the logic mask-layers of a device; how-
ever, the customization 1s done by creating custom metal
layers to create custom connections between predefined
lower-layer logic elements. Structured ASIC approach fits
between FPGAs and Standard-Cell ASIC designs. Because
only a small number of chip layers must be custom-produced,
“structured ASIC” designs have much smaller non-recurring
expenditures (NRE) than “standard-cell” or “full-custom™
chips, which require that a full mask set be produced for every
design.

An advantage of FPGA over ASIC 1s that FPGA can be
used to implement any logical function that an ASIC could
perform, but offers the ability to reconfigure the logic during
the development phase as well as update the functionality
alter shipping without altering the physical construction of
the device. However, the tradeoil 1s the larger die size, more
power consumption, less performance, and higher per die cost
(not including NRE).

FPGAs are the modem-day technology for building a
breadboard or prototype from standard parts; programmable
logic blocks and programmable interconnects allow the same
FPGA to be used 1n many different applications. For smaller
designs and/or lower production volumes, FPGAs may be
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more cost effective than an ASIC design even in production.
Thenon-recurring engineering cost and implementation of an

ASIC can run into the millions of dollars.

The many programmable interconnects and associated
storage elements in FPGA reside on the same die as 1ts logical
blocks require large die size and high power consumption,
making FPGA not a viable option for production for certain
applications requiring low power consumption or low cost
per die.

SUMMARY OF THE INVENTION

In an embodiment of this invention, a three dimensional
staking of a die 1s done by flipping a programming/context die
on a core IC/die substrate having logic blocks, to electrically
connect the logic blocks through a massive parallel intercon-
nect fabric (MPIF) formed by direct pad-pad signal (and/or
power) connection at the flipped interface. The examples of
types of pad-pad connections include metal-metal, oxide
bonding, capacitive bonding, conducting polymer to con-
ducting polymer, and conducting semiconductor to conduct-
ing semiconductor. The MPIF allows for connectivity at tran-
sistor/gate level on the core die substrate to the context die,
leading to high density, high performance, and low cost (INRE
and Unit Price) programmable plattorm ASIC. This approach
reduces the cost of development, physical design (PD), and
manufacturing. In addition, the time/cost of conversion to
high volume production 1s reduced with having limited or no
system level re-qualification.

An embodiment of this invention incorporates rich IP (e.g.,
SerDes, processors, memory(s)) in application oriented struc-
tured ASIC and high performance multi-function platform
¢.g., for consumer, storage, and telecom/wireless markets.

In an embodiment of this mnvention, system on chip (SOC)
macro blocks are separated and used as building blocks for
SOC construction via MPIF, with e.g., processors (general
and custom), memory, analog functions, specialty I/O, digital
signal processing (DSP). The decoupling of core and context
of SOC architecture and implementation, in an embodiment
of this mnvention, reduces the cost of IC development drasti-
cally, due to reduction of integration of the building blocks
(context), reduction 1n associated resources and skill set for
coding (R&D), verification, and test. In one embodiment, the
production cost 1s reduced, for example, due to 1increase in
overall yield. In one embodiment, the area, power consump-
tion 1s reduced due to core stacking at the gate level through
MPIF. In one embodiment, the performance 1s increased com-
pared to FPGA, due to reduction 1n delays or parasitic.

In an embodiment of this invention, the in-circuit program-
ming functions are separated from the system logic to reduce
the overhead associated with area and power consumption.
For example, in the case of FPGA, since the interconnects and
storage elements are separated from the core LE (logic ele-
ments), 1t results 1 production parts with less area and power
consumption on the core die substrate.

In one embodiment, mixed technology MPIF 1s used to
leverage existing building blocks and avoid costly porting of
technology.

In one embodiment, a full-chip debug and trace capability
1s enabled without the huge and costly overhead.

An MPIF embodiment 1s presented which serves as an
alternative to current industry FPGA architectures. The solu-
tion separates the fundamental blocks of FPGA for the pur-
pose/sake of the design.

A key value behind the mnvention (HPLA) 1s the elimina-
tion of programmability and hardening the logic to the final
image. However, not to carry the overhead with massive
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cross-connect inside the FPGA, or the programmability
(SRAM, LUTs, Registers, etc), translates to signmificant area
and power reduction and shall enhance the performance.
As shown 1n our various figures, multiple logic blocks of
programmable semiconductor die substrate 1s connected to
itsel, at transistor or gate level, with micro-bump, wirebond-
less and bumpless electrical connections, via the context die
substrate, through pads of the multiple parallel interconnect
fabric.
Here are some of our main features in this disclosure, as
examples:
Separation of programming component of FPGA from
User Logic, placed in CoreStack, not limited to:

a. CoreStack Storage cells for holding state of the User
Logic

b. CoreStack Interconnect switch fabric that provides User
Logic Interconnect across the Base Stack

c. CoreStack Look up table representing logical behavior

of User Logic

d. Configuration logic and signaling resident in CoreStack

for User

Input/Output I/0O, Mixed Signal cells, high speeds inter-

faces (Serdes) and other BaseStack interface logic
Insertion of cells 1n BaseStack for the purpose of butiering
and distribution of large fanout signals, such as Reset,
Clock, Control signals, and the like

Manufacturing of BaseStack, by exclusion of CoreStack
and Inclusion of metal layers, to represent logical behav-
1or of CoreStack

Directly metalizing and manufacturing the BaseStack with

additional metal layers

Manufacturing of combined BaseStack and CoreStack

Hardening BaseStack modifying/adding to any layers of

BaseStack (Metal, Via, or the like)
Programming and Reprogramming of CoreStack
Inclusion of multiple CoreStack over the same BaseStack

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1(a) depicts electrically connecting a die on a package
substrate using bumps, as in prior art.

FIG. 1(b) depicts electrically connecting multiple dice to a
package substrate using bumps, as 1n prior art.

FI1G. 1(c) depicts electrically connecting dies to a package
substrate using bumps and wire bonds, as 1n prior art.

FIG. 1(d) depicts interconnection ol logic elements
between two (e.g., ASIC) devices through I/O rings, PCB
layers and package substrate, as in prior art.

FIG. 2 depicts electrically connecting one or more IC
devices to a core die substrate using MPIF with core die
substrate connected to a package substrate using bumps, 1n an
embodiment of this invention.

FIG. 3 depicts die to die connection through MPIFE, 1n an
embodiment of this invention.

FI1G. 4 depicts MPIF vias used 1n die to die connection in an
embodiment of this invention.

FIG. 5 depicts MPIF contact patterns on both dice 1n an
embodiment of this invention.

FIG. 6 qualitatively 1llustrates the flexibility in modifying
circuit Tunctionality and cost/area/power 1in an embodiment
of this mvention (labeled as Si-Face) and ASIC, Structured
ASIC, and FPGA technologies.

FI1G. 7(a)1llustrates the preproduction/prototyping of con-
text/programming a core IC using a context IC through MPIF
in an embodiment.
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FIG. 7(b) illustrates the programming of a production ver-
s1on by fusing conducting (e.g., metal pads on the core IC 1n
an embodiment.

FIG. 8 depicts the construction of MPIF 1n an embodiment
of this invention.

FIGS. 9(a)-9(c) depict cross sections of a programming IC
connecting through MPIF to a core IC die which 1s connecting
to a package substrate through bumps, 1n an embodiment of
this 1nvention.

FIG. 10 illustrates an example of using MPIF for connect-
ing the logic blocks and programming elements residing on
two dice, 1n an embodiment of this invention.

FIG. 11 depicts connecting an FPGA to a core die substrate
through MPIF.

FIG. 12 1llustrates Lab-On-Chip using MPIF.

FIG. 13 illustrates programming a base platform (e.g.,
multi-function SerDes platform) substrate using an overlay-
ing die through MPIF.

FIG. 14 1llustrates an example of MPIF foot print (keep-out
area) on a main die substrate for an embodiment of this
invention.

FIG. 15 illustrates an inner bump pattern for additional
standard connectivity, 1n an embodiment of this invention.

FIG. 16 depicts an example of package substrate with a
blind cavity for fitting dice connected through MPIF, 1n an
embodiment of this invention.

FIG. 17 depicts an example of package substrate with a
through cavity for fitting dice connected through MPIF, 1n an
embodiment of this invention.

FIG. 18 depicts an example of package substrate with a
cavity for fitting dice connected through MPIF while allow-
ing for heat sinking the dice, in an embodiment of this inven-
tion.

FIG. 19 depicts an example of stacked package substrate
having cavities for fitting dice connected through MPIF, 1in an
embodiment of this invention.

FIG. 20 illustrates an 1nterposer layer providing electrical
connection between the stacked dice using MPIF on each
side, 1n an embodiment of this invention.

FIG. 21 qualitatively 1llustrates the cost and die si1ze/gate/
memory relationship and reduction of the cost due to core
stacking, for an embodiment of this invention.

FIG. 22 illustrates CoreStack to CoreStack electrical con-
nections, 1 one embodiment, through a Base-Core die sub-
strate by tlipping CoreStacks on the Base-Core die substrate.

FIG. 23(a) illustrates CoreStack to CoreStack electrical
connections via a CoreStack Switch, in one embodiment,
through a Base-Core die substrate by flipping CoreStacks on
the Base-Core die substrate.

FI1G. 23(b) logically 1llustrates the electrical paths between
CoreStacks, CoreStack Switch, and Base-Core die substrate,
in one embodiment.

FI1G. 24 illustrates a soft I/O by flipping a soft logic/context
die on a core /O template die, 1n one embodiment of this

ivention.
FIG. 25 shows a FPGA Block Diagram. (FPGA Building

Blocks)

FIG. 26 shows a FPGA Logic Unit (LU). (Configurable
User Logic Units Blocks)

FIG. 27 shows a Hard Macro of Typical FPGA.

FIG. 28 shows a configurable FPGA memory.

FIG. 29 shows a FPGA Input/Output Block.

FIG. 30(a) shows a S1iFace Logic Unit (LU) block diagram
residing 1n BaseStack.

FIG. 30(b) shows how an FPGA Logic Unit divided
between CoreStack and BaseStack. (Logic Unit, Fabric,
3LUT/ROM through MPIF)
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FIG. 30(¢) shows an example case construction of Bas-
eStack Logic Units, Memory Units and associated CoreStack
Interconnect Switch Fabric Logic. (The boxes or rectangles
with dashed lines indicate base stack, and the ones with solid
line borders are core stack.)

FIG. 31 shows a SiFace configurable memory residing in

BaseStack.

FIG. 32 shows a SiFace configurable memory residing in
BaseStack, crossing MPIF boundary, interfacing to
CoreStack “Interconnect Switch Fabric”.

FIGS. 33 (a), 33 (), and 33(c) show our (S1Face) FPGA
solution from BaseStack, combined with CoreStack, referred

to as HPLA (Hybrid Programmable Logic Array), to Bas-
eStack hardened by one or more metal layers and/or Redis-

tribution Layers (RDL). (FIG. 33 (a) relates to Prototype to
production.) (FIG. 33 (b) relates to 3D Construction, Bas-
eStack+CoreStack.) (FIG. 33 (¢) relates to CoreStack /O
interface.)

FIGS. 33 (d), 33 (e), and 33(f) show hardening corestack
I/O mapping, HPL A CoreStack match BaseStack, and HPLA
with Bump Step, respectively.

FIGS. 34 (a) and 34(d) show High level construction of
Hybrid Programmable Logic Array (HPLA).

FIG. 35 shows a HPLA high level block diagram.

FIG. 36 shows a HPLA 1n hardening mode, by removing,
the CoreStack and replacing with Metal and/or RDL layer(s).

FIG. 37 shows a HPL A butler or repeater for driving sig-
nals requiring higher driving.

FI1G. 38 shows a HPLA Interconnect Switch Fabric (ISF)
depicting the interconnect among all HPLA logical blocks.
The ISF consist of several sub-blocks.

FIG. 39 shows an ISF Interconnect for Logic Units (LU).

FIG. 40 shows an ISF clock, reset and control routing/
switching.

FIG. 41 shows a Programmable Look Up Table (LUT)
construction, residing 1n CoreStack.

FIG. 42 shows a footprint of MPIF layer with different
sub-blocks and possible different patterns—I/O block, Logic
Unit and Memory Umt. (MPIF Hardening (MPIF Layer))

FIG. 43 shows an example case of hardening process with
interconnects between MPIF connections, by physically rout-

ing signals. (MPIF Hardening (RDL Layer))

FI1G. 44 shows The ROM (Read Only Memory) residing in
BaseStack representation of LUT. (MPIF Hardening
(3LUT_ROM Layer))

FI1G. 45 shows HPLA 10 blocks, where multiple 10 stan-
dards 1n parallel are collapsed 1nto a single 10 slot. (Standard
Programmable Input/output Bank)

FI1G. 46 shows a HPLA SoftlO as an alternative to HPLA
10, where the layer(s ) through the MPIF mask the desired 10.
(Soft Maskable Input/output Bank)

FI1G. 47 1llustrates how a high speed serdes can leverage the
benefits of HPLA. (soft serdes)

FIG. 48 shows a CoreStack programming interface block
diagram, controlling the BaseStack.

FIG. 49 shows a Basic SI-Face implementation and proof
of concept of MPIF and HPLA, utilizing off the shelf FPGA.
(FPGA CoreStack and BaseStack Demo)

FIG. 50 shows a Utilized off the shelf FPGA development
plattorms to demonstrate BaseStack separation 1rom
CoreStack. (S1-Face Field Programmable Device)

FIG. 51 shows a Hardening emulation of BaseStack by
removing the CoreStack.

FI1G. 52 shows a 4-bit Counter and Decoder implementa-
tion. HPLA implementation implemented in BaseStack and
CoreStack. (4-bit Counter-Decoder)
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FIG. 53 shows a Logical expression of Counter and
Decoder, to be implemented inside HPLA. (4-bit Counter-
Decoder Equations)

FIG. 54 shows a High Level schematic representation of
Counter plus Decoder. (4-bit Counter-Decoder Block Dia-
gram)

FIG. 55 shows a CoreStack implementation of Fabric inter-
connecting and routing HPL A device mput to other internal
interconnect signals. (4-bit Counter-Decoder Fabric Archi-
tecture)

FIG. 56(a) shows a CoreStack LogicUnit Mux block dia-
gram. (4-bit Counter-Decoder Fabric Architecture High
Level)

FIG. 56(b) shows a CoreStack Logic Unit Mux routing,
clements. (4-bit Counter-Decoder Fabric Architecture,
Logic-Unit 1-4 MUX Logic Detail)

PR.

L1
]

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Flip-chip or wire bonding techniques are commonly used
in semiconductor packaging of semiconductor devices (on

die) to package substrate. However, these techniques are typi-
cally used at SOC/chip/I/O level (1.e., higher hierarchical
interconnect level) given the size and other physical and
design requirements/constraints, istead of gate/logic block
level (1.e., lower hierarchical interconnect level). In such an
interconnect hierarchy, the inter-gate level connections tend
to be localized at micro level; inter-micro level connections
tend to be localized at macro level; and the inter-macro level
connections tend to be localized at chip/SOC level. There-
fore, even though there may be millions of gate level connec-
tions, e.g., in a SOC, there are much fewer chip-chip inter-
connects.

For example, FIG. 1(a) illustrates a prior art the flip-chip
placement of a die (100) on a package substrate (102) using
die bumps (104) placed on the die for electrical connection
between the die and the package substrate. The electrical
connection to the package substrate from the outside 1s pro-
vided via the package balls (106). Typically, the empty space
between the die (100) and the package substrate (102) 1s filled
by an underfill dielectric material, joining and locking the die
to the package substrate, protecting the bumps from moisture
or other environmental hazards, providing additional
mechanical strength to the assembly, as well as compensating
for any thermal expansion diflerence between the die chip
and the package substrate. Flip-chip provides the direct con-
nection from die pad to package substrate, with capability of,
for example, about few hundred to about few thousands (e.g.,
less than 4000 to 6000) I/O through die bumps. However, the
process requires an additional water-level processing (bump-
ing) and 1t may require walter-level redistribution routing.
Such processing may result 1n a very expensive substrate
(e.g., with 14 layers). In many situations, the package cost
becomes more than the device cost.

In prior art, the tlip-chip technique has also been applied to
multiple chips/dice. As illustrated in FIG. 1(d), the chips
(100, 101, and 103) are flipped and electrically connected to
the package substrate via the bumps (104). FIG. 1(c) illus-
trates both wire bonding and flip-chip for connecting the
chips (122 and 120) to the package substrate, as 1n prior art.
For example, wire bonds 108 and 119 electrically connect the
top die (122) to the package substrate (102) and the support-
ing die (120), respectively. Wire-bond technology can sup-
port relatively low number (e.g., 1000) I/O with about 50 um
pitch. In comparison, tlip-chip allows for more connections
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through die bumps, less inductance (compared with wire
bond), and higher performing and denser circuits.

FIG. 1(d) illustrates the interconnect approach between
two integrated circuits (such as ASICs) through packaging, as
used 1n prior art. For example, the electrical path 1s shown
from a logic block (134) on the first ASIC (132) to a logic
block (150) on the second ASIC (152), through the first chip’s
metallization layers (136) to the I/O ring (138) of the first
ASIC, to the packaging of the first ASIC (140), through the

hierarchy of package substrates and the printed circuit board
(PCB) connectors (142), through the packaging of the second

ASIC (144), to the I/O ring (146) of the second ASIC and the

second chip’s metallization layers (148). One consequence of
such approach 1n prior art 1s that the electrical connections
between logic blocks or components from such dice (e.g.,
132, 152) are limited by the die bumps (and PBC connectors);
and therefore, 1n complex structures, these connections tend
to be at the higher component/module levels, instead of tran-

sistor/gate levels.

The bumps 1n prior art (e.g., 104 between 100 and 102) are
typically formed by solder ball attachment, wire-bond cuts,
conventional sputter/print solder paste, or electroless plating
techniques. In an embodiment of this invention, mnstead of
using bumps for electrical connections between two ICs, a
tabric of parallel interconnects 1s used to connect the ICs
through a flip-chip configuration. As illustrated 1n FI1G. 2, dice
A (210) and C (212) are fhipped on die B (200) (using a
flip-chip technology) and they are electrically connected to
die B through a massively parallel interconnect fabric (MPIF)
(212, 214). A large number of connections within the fabric
provide the capability to connect the ICs (e.g., IC A and die B)
at the transistor/gate level, allowing for a higher integration
level permitted by die bumps. For example, in one embodi-
ment, the number of connections 1n the fabric 1s in range ten
thousand to millions. MPIF provides for a high density of
connections which 1s not currently achievable by bumping or
wire-bonding. In an embodiment of this invention, MPIF 1s
used to achieve high density of connections at concentrated/
small area(s) on the dies connected via a tlip-chip technology.

In an embodiment, illustrated 1n FIG. 2, die B substrate
(200) 1s placed on the package substrate (202) via bumps
(204), and the external electrical connection to the package 1s
provided via the package balls (206).

In an embodiment, ¢.g., as illustrated in FIG. 2, die B
substrate (200) comprises core modules, ¢.g., logic blocks as
in FGPA. The customization of these logic blocks, 1.e., con-
figuring interconnects to allow the blocks to be wired
together, 1s achieved through the context die (e.g., 210, 208)
via MPIF (e.g., 212, 214). This 3D stacking along with the
separation of the logic blocks from the programming/context
allows the increase in the density of the logic gates/blocks on
the core die substrate (200) by having the programming inter-
connects allocated to the context die(s)/IC(s) (e.g., 210, 214).
Having the customization/context provided by the context die
allows the core die substrate to be configurable for multiple
applications.

FIG. 3 illustrates a die/die connection (312) through MPIF
(306), 1n an embodiment of this invention. In this example,
dice A (314) and B (316) each comprises base layer(s) (300,
310) and metallization/conducting layer(s) (302, 308),
respectively. In one embodiment, the dice have standard 1/O
(304), e¢.g., at their periphery, which are electrically con-
nected together, as the interconnects are in MPIF. The metal-
lization/conducting layers (e.g., 302 or 308) which are sepa-
rated by dielectric layers are patterned to route the electrical
signals/power across the die. Multiple layers are used to let
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the designers route electrical signals cross over each other.
The conducting layers are also electrically connected, e.g.,
through vias.

In one embodiment, as 1llustrated in F1G. 4, the MPIF (400)
on a die (402) 1s formed by a series of die-die MPIF pads
(406). The MPIF vias (e.g., 408 and 410) provide the electri-
cal connection between the pads and the transistors/gates on
the die. In one embodiment, the inter-pad spacing in MPIF 1s
typically about 10-350 um. In one embodiment, the pads are
regularly spaced in both horizontal and vertical direction,
¢.g., having a fixed distance d (414). In another embodiment,
the pads are distributed in non-uniformly. In one embodi-
ment, MPIF on a die supports millions of pads per cm?, for
die-die connection. The Re-Distribution Layer (RDL) (412)
provides the electrical connectivity between the pads and the
lower metallization layers, while reducing the interdepen-
dency between the package and die integration.

In an embodiment of invention, as illustrated 1n FIG. 5, a
programmable platform die (500), e.g., an ASIC, 1s electroni-
cally connected (512) to a programming/context die (510)
through MPIF by flipping the context die (510) on 1ts surface
(520) containing the MPIF pad patterns (516) to the MPIF
patterns (506) onthe programmable die (500). In one embodi-
ment, the context die (510) includes a programming interface
(514). In one embodiment, the programming interface 1s
located on the opposite surface (318) from the tlipped surface
(520) of the context die (510), so that aiter MPIF connection
between the dice, the context die 1s programmed through the
programming interface (514). In one embodiment, the con-
text die includes programmable switches that electrically
connect the MPIF (516) pads on the context die (510), caus-
ing electrical connection between the gates/transistors, e.g.,
in logic blocks, on the programmable die (500) having asso-
ciated MPIF (506) pads. In one embodiment, the program-
mable die (500) includes a plattorm fabric I/O (504). In one
embodiment, the platform fabric I/O provides 1/O for specific
purpose function, e.g., Serializer/Deserializer (SerDes) func-
tional blocks used to convert data between serial data and
parallel interfaces 1n each direction 1 high speed communi-
cations. In one embodiment, the platform fabric I/O provides
input/output for generic purpose. In one embodiment, the
customization/programming 1s provided 1n a system configu-
ration output file which 1s implemented 1n the context die
(510) through the programming interface (514).

FIG. 6 qualitatively 1llustrates the flexibility in changing
circuit functionality (e.g., by programming) versus operation
cost/area/power consumption for SoC solution space includ-
ing ASIC, Structured ASIC, FPGA, and an embodiment of
this invention, labeled Si-Face (e.g., with a context program-
ming die stack on a core programmable die through tlip-chip
and electrically connected via MPIF). Note that this operation
cost does not include the Non Recurring Engineering (NRE)
costs. Traditional ASIC has the lowest cost/area/power con-
sumption, but it offers the least flexibility 1n modifications to
the circuit functionality. For example, the changes i the
circuit often results 1n redoing the mask set and time consum-
ing re-qualification of the design. Structured ASIC provides
more such flexibility than traditional ASIC, by letting the last
metallization layers (with vias) to be customized (1.e., hard-
programmed) on a core of the logic blocks/modules. The
changes to the design 1s reflected 1n the changes to those
metallization layers and not necessarily all the mask set. As
the result the size of the die 1s increased to allow for this
flexibility. FPGA provides even more flexibility than Struc-
tured ASIC by letting the programming be performed at the
field without using irreversible processing steps by the manu-
tacturer. This represents no or little upfront NRE. Because of
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programmable switches 1n FPGA, the area requirement and
the power consumption 1s the highest, while FPGA perior-
mance 1s typically inferior. In contrast, due to the 3D core
stacking of an embodiment of this invention, the area require-
ment (e.g., for interconnects) for the programmable ASIC 1s
reduced, while the flexibility 1n circuit programming 1s pro-
vided on the context die connected to the programmable
ASIC through MPIF. For example, this allows the reconfig-
urability iterations to be performed on context die without
alfecting the core programmable die.

Even though the NRE cost of FPGA approach 1s low com-
pared to ASIC, there 1s still a significant conversion time and
re-qualification mvolved to move the design from FPGA to
ASIC, 1n order to reduce the operational cost and power
consumption and/or increase the performance. Such a con-
version may ivolve creating a logical configuration of the
system from the already qualified FPGA and physically re-
implementing 1t in an ASIC. Another approach may replace
the FPGA programmable switches with permanent ones (e.g.,
by fusing) without drastic change in the form factor; however,
this approach would not result in a saving 1n area or a signifi-
cant enhancement in performance. In contrast, in an embodi-
ment of this invention, as illustrated in FI1G. 7(a), the prepro-
duction or prototyping 1s done by using a context die (708)
tlipped and electrically connected to a core programmable die
(700) through MPIF (712). In one embodiment, the pre-pro-
duction (720) testing 1s performed by tlipping the core die
substrate (700) on a package substrate (702) after bumping
(704) the core die substrate (700). In one embodiment, the
programming of the circuit 1s done through the package balls
(706), package substrate (702), die bumps (704), a set of
circuits and/or interconnects on the core die substrate (700)
(e.g., dedicated for passing/processing the programming sig-
nals to the context die (708) though MPIF (712)). In such
configuration, the base platform of the core programmable
die (700) retains an ASIC like density of gates/transistors
given that the switches for mterconnects are pushed to the
context die (708) and the many interconnects/high density
interconnects 1 the MPIF (712) provide the flexibility to
customize the circuit at the gate/transistor level on the core IC
(700). In one embodiment, the testing and debugging itera-
tions are performed by reprogramming the context die (708).
In one embodiment, the context die connected through MPIF
with the core die substrate 1s used 1n production. In another
embodiment, as illustrated 1 FIG. 7(b), the conversion to
cost-reduction or production version (730) includes creating
a set of metallization mask from the qualified and tested
configuration used in context die (708), using the metalliza-
tion masks to permanently fuse (709) the MPIF pads (713) of
the core die substrate (700) before bumping the core die
substrate and placing 1t 1n the package. In this approach, the
re-qualification of the production version (730) 1s mimmized
as the core die substrate and the package substrate remain the
same. The operation cost 1s reduced as the few metallization
steps much less impact the cost per die. In one embodiment,
the yield increases as the metallization steps replace the con-
nections via a flip-chip technology. In one embodiment, the
performance increases as the permanent connections on the
MPIF pads (instead of programmable switches) require less
power, and present less delay. In addition, the time required to
get to production 1s significantly reduced, because the devel-
opment/prototyping cycle is relatively short due to 1n field
programmability through MPIF and the context die, and the
conversion cycle 1s short given that the form factors (die and
package) and configurations are essentially unchanged.

FIG. 8 schematically 1llustrates the electrical connection,
in one embodiment, between circuits (802 and 804) (e.g.,
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transistor/gates/tlip-tflops/switches) on the dice connected
through an MPIF (816) construction. The connection from
the circuits (e.g., 804) 1s through the metallization/conduct-
ing layers (e.g., copper trace) (814), via (812), RDL (808) for
the bottom die, and the MPIF die-die pads (810), and RDL
(806) and via and metallization layers of the top die. In one
embodiment, protection circuits are also provided (not
shown) on one or both dies within the circuits (e.g., 802 or
804) or in parallel to the circuits to protect MPIF pads against
clectrostatic discharge (ESD). For example, such protection
circuits include shut diodes to substrate.

FIG. 9(a) illustrates (900) an embodiment of this invention
(not to scale) including a core die substrate (914) (e.g., a
Silicon or die substrate with structured gates, memory, and
I/0), with core metallization/conducting layers (916) (e.g.,
comprising of three metallization layers: metal 1 and 2 used
for basic gate construction on the core die substrate (914), and
metal 3 used for fabric interconnect) and MPIF (918) pads. In
an embodiment, the programming device/die (908) (e.g., adie
substrate) includes interconnect routing fabric (910) (e.g.,
with 6-9 layers of metallization/conducting layers), and
MPIF (912) pads. In an embodiment, the programming
device (908) 1s tlipped (920) on the core IC/die substrate
(914). In one embodiment, the core die substrate 1s bumped
(904) and placed 1n a package substrate (902) having package
balls (906) for external connection. In one embodiment, the
bumping of the core die substrate 1s done prior to flipping the
programming device (908) on to the core die substrate (914),
while 1 another embodiment, the bumping occurs aiter-
wards.

FIG. 9(b) illustrates (950) an embodiment of this invention
(not to scale) having the programming device (908) tlipped-
on the core die substrate (914), and the MPIF (958) formed by
the connection of the MPIF pads from the core die substrate
(914) and the programming device (908). After tlipping the
programming device and bumping the core die substrate
(954), the core die substrate 1s placed 1n the package substrate
(902). FIG. 9(c) illustrates (980) an embodiment of this

invention with the core die substrate placed 1n the package
substrate 1n tlip-chip configuration using the die bumps (954)

for electrical connection.

FI1G. 10 1s a schematic of an embodiment of this invention,
where the logic blocks/elements (1010) 1n the core die sub-
strate (represented by 1030) are connected through MPIF
(represented by 1008) to a programming die (represented by
1020) which provides the electrical connectivity between the
ports/gates of the logic elements (1010) using metallization/
conducting layers and vias (represented by 1006) and con-
trolled switches/selectors (1004) (e.g., MUX) driven by the
programming devices’ (1020) programming interface (1002)
as well as the logic blocks/gates from the core die substrate
and the programming device. In one embodiment, transistor
switches (not shown) are used as controlled switches. In one
embodiment, the programming interface feeds 1nto a
memory, €.2., SRAM (1012), which drives the controlled
switches/selectors (e.g., MUX and transistors).

In one embodiment, a “hard” programming i1s done in the
context die by making permanent electrical connection
between MPIF pads on the context die, e.g., by explicit rout-
ing mask set using the metallization/conducting layers and
vias, or using fuse or antifuse technology to implement the
configuration file. In this approach, the core die substrate
remains the same (i.e., no redesign), but the adjustment/de-
bugging 1s implemented on the context die without having to
repeat all the processing steps of the core die substrate. In this
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approach the density of gates/transistors 1s further increased
by reducing/eliminating circuit elements needed for repro-
gramming the context die.

FIG. 11 illustrates an embodiment of this invention (1120),
where an FPGA core (1108) provides 1ts functionality to the
main device IC/die (1100) through the MPIF (1110). Such
embodiment provides a platform for emerging applications

requiring partial programmability. In an embodiment, the
FPGA core die (1108) 1s flipped on the main device die (1100)

with MPIF providing the signal and power to the FPGA core.
In one embodiment, the main device die substrate (1100) 1s
bumped (1104) and tlipped on a package substrate (1120)
having package balls (1106) for external connectivity. FIG.
11 also depicts the top view (1130) of such an embodiment.
The examples of FPGA core functionality include custom
applications such as signal processing, hardware implemen-
tation of Java Virtual machine (JVM), and graphics.

In an embodiment of this mvention, e.g., as depicted in
FIG. 12, MPIF 1s placed strategically a die substrate (1208)
(here referred to as on Lab-on-Chip (LoC)) to provide data-
path/signal-path connectivity/probing (1212) to the prototyp-
ing or the production device (1200). In one embodiment,
these connections are configured to be triggered on series of
events and the data-path to be captured, e.g., into large
memory butfers, e.g., available on the LOC substrate (1208).
In an embodiment, the data in the LOC memory 1s examined
by a logic analyzer or a computing device (1240) via a probe
card (1230). For example, the probe card reads the memory
content through LOC substrate (1208), MPIF (1214), the
production substrate RDL, the bumps (1204) placed on the
production device (1200), the package substrate (1202), and
the package balls (1206). In one embodiment, the large num-
ber of pads on MPIF allows sampling many ports on logic
blocks, gates, or transistors on the production device, which
would otherwise be 1naccessible or only indirectly accessible.
In one embodiment, the circuitry on the LOC substrate selects
a set of MPIF pads to sample, and programmatically switches
the signal from those MPIF pads to the LOC’s memory. In one
embodiment, the selection of the MPIF pads (to sample) 1s
driven by the programming signal from the logic analyzer/
computing device (1240). In one embodiment, the selection 1s
driven by the signal from the production substrate and/or the
logic blocks on LOC substrate.

In one embodiment, LoC 1s used for debugging a complex
IC or SoC, which for example do not have effective means of
debugging on-chip circuitry. In such an embodiment, LOC
allows seamless interface to on-chip signals and buses to trap
and capture events for real-time debugging. In one embodi-
ment, using a simple low cost RDL after debugging the SOC
or IC, removes the debugging feature for production runs.
Using MPIF to capture the signals from the chip under test
significantly increases the capture rate as well as the number
of signals captured compared to other approaches. For
example, 1n one embodiment, the capture rate on the LoC1s1n
order of (but not limited to) 500 MHz. Other capture rates are
also part of the scope of this invention.

In an embodiment of this invention, as 1llustrated 1n FIG.
13, the core die substrate (1300) provides a multi-function
platform, e.g., multi-function SerDes platform (MFSP) and/
or other MXS macro blocks such as USB, ADC, and DAC. As
an example, the SerDes platform provides functionality for
XAUI PCle Gen 1 and 2, SATA 1 and 2, and Interlaken,
having one or more SerDes blocks (e.g., 1302) located at the
periphery of the core die substrate (1300) and a memory
management circuit (1310) and a memory module (1312)
placed 1n the middle of the substrate. In one embodiment, the
MPIF 1s placed on the core die substrate with a set of MPIF
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pads (e.g., 1308) clectrically connected to, for example, the
memory management/module and a set of MPIF pads (e.g.,
1306) electrically connected to, for example, a SerDes block.
In one embodiment, the custom design includes custom logic
(1316) that 1s attached (1322) to the MFSP platform allowing,
different applications via MPIF to benefit from the same set of
base functionality. This would allow reduction in resources
and time associated with the development of the final product.
In one embodiment, the custom design die/chip (1316) hav-
ing the MPIF pads (e.g., 1318 and 1320) 1s thipped (1322) on
the core die substrate (1300), and through MPIF, the custom

design chip provides the custom application functionality by,
for example, enabling electrical connectivity between an ele-
ment 1n a SerDes block and the memory management/module

through MPIF (e.g., through MPIF pads from 1306, 1320,
1318, to 1308). In one embodiment, the MFSP has a Quad
SerDes block (1302).

In an embodiment of this invention, as illustrated 1in FIG.
14, an MPIF footprint (1406) 1s used as keep-out-area for I/O
ring placement on a core die substrate (1402). In an embodi-
ment, the MPIF footprint 1s used to flip-chip (1414) a context
die (1410) with MPIF (1412) pads on to the core die substrate
(1402), to provide the electrical connectivity between the
context die and the core die substrate through MPIF (e.g.,
1408 and 1412) pads. In an embodiment, the core die sub-
strate 1s bumped (1404) and flipped (1420) on to the package
substrate (1416) at a predefined location (1418). In one
embodiment, a set of bumps (1404) are set 1n one or more
columns (1411), rows, or diagonally. In one embodiment, the
bumping occurs prior to flipping the context die; while 1n
another embodiment, the bumping occurs after the flipping
the context die. As 1llustrated in FIG. 15, 1n one embodiment,
the core die substrate (1502) has multiple MPIF footprints

e.g., 1506 and 1507) having a set of MPIF pads (e.g., 1508
and 1509) located 1n each MPIF footprint. The bumps on the
core die substrate are set 1n various patterns (€.g., one or more
rows or columns (1516)). In one embodiment, some inner
bumps (e.g., 1504) are placed 1n areas between the MPIF
footprints to provide additional standard connectivity to the
package substrate.

As 1llustrated 1n FIG. 16, 1n one embodiment, the package
substrate (1602) includes a blind cavity (1624) to fit part of
one or more context dice (e.g., IC device A (1608) and IC
device C (1610)) that are thpped on a core die substrate (e.g.,
IC device B (1600)) which 1s 1n turn flipped on the package
substrate over 1ts bumps (1604). The context dice are electri-
cally connected to the core die substrate through MPIF
(1612). In one embodiment, the package includes other fea-
tures such as heat slug (1618) and/or antenna (1622) that are
connected to the package substrate through vias (1616 and
1620, respectively). In one embodiment, the package ele-
ments are protected by a molding/protective compound

(1614) and the electrical connection to the package 1s pro-
vided through the package balls (1606).

As 1llustrated 1n FIG. 17, the package substrate (1702)
includes a through cavity (1724) to fit part of one or more
context dice (e.g., IC device A (1708) and IC device C (1710))
that are flipped on a core die substrate (e.g., IC device B
(1700)) which 1s in turn flipped on the package substrate over
its bumps (1704). The context dice are electrically connected
to the core die substrate through MPIF (1712). In one embodi-
ment, the package includes other features such as heat slug
(1718) and/or antenna (1722) that are connected to the pack-
age substrate through vias (1716 and 1720, respectively). In
one embodiment, the package elements are protected by a
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molding/protective compound (1714) and the electrical con-
nection to the package 1s provided through the package balls
(1706).

As 1llustrated 1n FIG. 18, the package substrate (1802)
includes a through cavity (1824) to fit part of one or more
context dice (e.g., IC device A (1808) and IC device C (1810))
that are flipped on a core die substrate (e.g., IC device B
(1800)) which 1s in turn flipped on the package substrate over
its bumps (1804). The context dice are electrically connected
to the core die substrate through MPIF (1812). In this embodi-
ment, a heat slug (1826) 1s attached to the context die(s)
exposed through the cavity (1824). In one embodiment, the
package includes other features such as heat slug (1818)
and/or antenna (1822) that are connected to the package sub-
strate through vias (1816 and 1820, respectively). In one
embodiment, the package elements are protected by a mold-
ing/protective compound (1814) and the electrical connec-
tion to the package 1s provided through the package balls
(1806).

FIG. 19 illustrates an embodiment of this invention in
which multiple package substrates (e.g., 1942 and 1902) are
stacked vertically and are electrically connected through
mold (1914) vias (e.g., 1916 and 1920) from the lower pack-
age substrate (1902) to the upper package substrate (1942). In

one embodiment, a lower package (1902) includes an antenna
(1928) placed on a heat slug (1926) which 1s attached to the

context die(s) (e.g., 1908 and 1910) exposed through a
through cavity (1924) 1n the lower package substrate (1902).
In one embodiment, the upper package substrate (1942) has a
through mold via to fit part of context die(s) (e.g., 1938,
1940). The context die(s) (e.g., 1908 and 1910, 1938 and
1940) are thpped and electrically connected through MPIF
(1912, 1932) to core die substrates (1900, 1930) which in turn
are tlipped on the package substrates (1902, 1942) over their
bumps (1904, 1944), respectively. In one embodiment, the
package includes other features such as heat slug (1918)
and/or antenna (1922) that are connected to the upper pack-
age substrate (1942) through vias (1936 and 1940, respec-
tively). In one embodiment, the package elements are pro-
tected by a molding/protective compound (1914) and the
external electrical connection to the package 1s provided
through the package balls (1906) attached to the lower pack-
age substrate (1902).

FI1G. 20 1llustrates an embodiment on this invention where
an interposer (2006) 1s used to make a face to face electrical
connection between two dice (2002 and 2010) via the MPIF
(2004 and 2008) on the corresponding surfaces. In one
embodiment, the interposer (2006) 1s used to match the MPIF
pads (e.g., 2012) on one substrate (2002) to the MPIF pads
(e.g., 2024) of the other substrate (2010) and provide the
clectrical connection through conducting layer(s) (e.g., 2016
and 2020) and vias (e.g., 2018) in the interposer (2006)
between the matching MPIF pads (e.g., 2014 and 2022) on the
contacting surfaces the interposer (2006). Various matenals
can be used for the interposer, such as silicon, FR-4, bis-
maleimide triazine (BT), and cyanate ester (CE), or polyim-
ide. In one embodiment, the interposer contains multiple
metal/conducting layers/planes and vias for routing electrical
signals and/or power, on either side. In one embodiment, the
connecting vias through the interposer are lined up with one
set of MPIF pads on one of the surfaces, while a conducting
distribution layer on the opposite surface of the mterposer 1s
used to electrically connect the vias to the set of MPIF pads on
the interposer’s opposite surface. In one embodiment, the
interposer 1s used to match MPIF pads of two dice with
different pad contact pitch, shape, or configuration. Inter-
poser may have various shapes or sizes in various embodi-
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ments of this mvention. Interposer may include or support
other electrical components such as an antenna in various
embodiments of this invention.

FIG. 21 qualitatively 1llustrates the cost per die versus die
s1ze (number of gates/amount of memory). One factor affect-
ing the cost per die 1s the reduction 1n die yield due to increase
in the number of gates or devices with increase in the die size.
For example, compared with FPGA, an embodiment of this
invention uses smaller die size as the programming intercon-
nect switches are pushed to a context die. This 1s represented
by the reduction of the cost (2102) from original (2100) (e.g.,
FPGA) to that of a core die substrate (2104). Point 2108
represents a total die cost with core staking of context die
having a smaller size. In one embodiment, the increase 1n cost
due to core stacking (2106) 1s still less than the reduction 1n
cost due to die size reduction (2102). In addition, the mitial
development cost/effort/time 1s significantly reduced com-
pared to that of structured ASIC as mentioned earlier.

For the purposes of FIGS. 22, 23(a), and 23(b), CoreStack
1s a die that 1s flipped (and stacked) on a core die substrate to
provide electrical connections at their interface.

In one embodiment of this invention, as illustrated for
example 1 FIG. 22, two or more CoreStacks (e.g., A (2202),
B (2204), and C (2206)) are electrically connected together
(as indicated by 2222 for connection between A and B, and
2224 for connection between A and C) without reaching the
Base-Core’s (D (2200)) transistors/gates. Such electrical
connections are made via the CoreStacks’ “bottom™ RDL
(e.g., 2208, 2210, and 2212) and CoreStacks” MPIF pads
(e.g., 2214, 2216, and 2212), through MPIF pads (2226) of
Base-Core (2200), and “top” RDL (2228) of Base-Core
(2200). In one embodiment, additional metallization/con-
ducting layer(s) on base-Core (2200) facilitate such electrical
connections. In one embodiment, similar level of dense inter-
connects for face-face MPIF 1s provided for CoreStack-to-
CoreStack connections via Core-Base’s MPIF and metalliza-
tion/conducting layer(s). In one embodiment, electrical
connections (as indicated by dash lines, e.g., 2220) are also
provided between CoreStack(s) (e.g., A, B, or C) with Base-
Core (2200) through their respective MPIF pads. In one
embodiment, Base-Core 1s bumped (2230) 1n order to be
flipped on a package substrate (not shown).

In one embodiment of this invention, as illustrated for
example in FIG. 23(a), one or more CoreStacks (2302) (e.g.,
represented by Al to A3) are electrically connected/switched
to one or more CoreStacks (2306) (e.g., represented by C1 to
C3) via a CoreStack switch (2304) (represented by B). The
switched connections, which are illustrated by solid lines
(e.g., 2322) i FIG. 23(a), are made through CoreStacks’
“bottom™ RDLs (e.g., 2308, 2310, 2312) and CoreStacks’
MPIF pads (e.g.,2314,2316, and 2318), through Base-Core’s
(2300) MPIF pads (2326) and Base-Core’s “top” RDL
(2328). As 1llustrated 1n a logical diagram i FIG. 23(b),
CoreStacks Al through A3 are electrically connected (e.g.,
2350) to CoreStack switch B, and CoreStacks C1 through C3
are electrically connected to CoreStack switch B (as depicted
by solid arrow lines 1n FIG. 23(5)). In one embodiment, the
clectrical connections (as indicated by dash lines, e.g., 2320,
2354, or 2352) are also provided between CoreStack(s) (e.g.,
A1-A3, B, or C1-C3) with Base-Core (D)’s gates/transistors
through thelr respective MPIF pads. In one embodiment, the
MPIF pads and metallization/conducting layer(s) on Base-
Core provide electrical paths (e.g., 2324, 2356) between
CoreStacks (e.g., A1-A3 to C1-C3) without going through the
CoreStack switch (e.g., B).

In one embodiment of this mnvention, a soft (1.e., program-
mable) Input/Output (I/0) 1s provided by leveraging the 3D
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gate stacking (2412) of a context/programming die (2410) on
a core-base (2400) with I/O connections (e.g., I/O ring 2404),
as 1llustrated for example 1n FI1G. 24. In one embodiment, an
I/O template (2426) 1s provided on the core-base (2400) that
maps to various I/O basic structures such as Low-Voltage
Differential Signaling (LVDS), High-Speed Transceiver
Logic (HSTL), and/or Stub Series Terminated Logic (SSTL),
that can be used to construct higher level 1/0 structures such
as Double Data rate Synchronous dynamic random access
memory (DDR2), Double-Data-Rate Three (DDR3), System
Packet Interface (SPI4), Umversal Serial Bus (USB), and/or

MXS type interfaces. In one embodiment, electrical connec-
tivity between the basic elements of the I/O structure on the
I/0 template “bottom” (2426) 1s provided via core-stacking
soit logic (1.e., I/O configuration slot (2420)) through one or
more metal/connectivity layer(s) and pads (2424) on the base
template used for connecting to the soft-logic and one or more
metal/connectivity layer(s) and pads (2422) on the soit logic,
in order to form soft I/O (2430). In one embodiment, such
core-stacking 1s provided through MPIF formed by the met-
allization/conducting layers and pads (e.g., 2406 or 2424, and
2416 or 2422) of the context die (2410) and the core base
(2400). An embodiment provides the ability to reconfigure
I/0 pending the interface requirements. In one embodiment,
e.g., for production, the base die (2400) 1s metalized (e.g., by
tusing the MPIF pads (2406)) to adopt the soit I/O configu-

ration. In one embodiment, the Soit Logic (2420) 1s used to
configure the I/O Slot (2426). In one embodiment, e.g., for
production, the metal connectivity to Soft Logic 1s fused to fix
I/0O configuration by eliminating the Soft Logic block. For an
embodiment, the fusing of the MPIF pads (2406) 1s 1llustrated
in FIG. 7(b).

For the illustration purposes, the die bumps shown as round
in this disclosure; however, the bumps may have any shape or
be 1n various sizes for the purpose of this mvention.

For the illustration purposes, MPIF pads are shown as
rectangular 1n this disclosure; however, these pads may have
various shapes (e.g., round, polygon), size or pitch, or have
any configuration for the purpose of this invention. For the
purpose of this imnvention, the contact pads can be extruded,

deposited or assembled or self-assembled with any processes.
In one embodiment, the MPIF pads are made of carbon nano-
tube/fiber. In one embodiment, the MPIF pads are made of
gold or copper posts electroplated or deposited and patterned.

For the illustration purposes, the context die 1s shown
flipped on the core die substrate in this disclosure; however,
the core die substrate may also be flipped over the context
substrate for the purposes of this invention to form MPIF at
the contacting surface.

For the 1llustration purposes, the MPIF pads are shown at
the same side of die substrate as the main circuits on the die,
in this disclosure; however, other embodiments where the
main circuit on the die 1s on 1ts opposite side (e.g., with
connection paths to the MPIF pads through substrate vias) are
also included 1n this invention. In such an embodiment, to
torm MPIF, the flip-chip 1s done on the MPIF pad side.

For the 1llustration purposes, few context dice are shown
attached to a core die substrate 1n this disclosure through
MPIF; however, any number of dice assembled 1n any con-
figuration 1s included in this invention.

For the 1llustration purposes, an embodiment 1s specified
with 10 k to millions of MPIF pads per cm”; for example, an
embodiment with number of MPIF pads 1n range of 10,000 to
100,000,000 1s included 1n this invention. However, other
embodiments having number of pads of about hundreds or
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thousands are also included 1n this invention. For example, an
embodiment with number of MPIF pads of at least 4000 1s
included 1n this mvention.

Any die assembly process 1s 1n scope of this invention, e.g.,
waler-waler bonding (which can be metal to metal, or any
alloy combination of material), through-die-via (with die
being any material such as S1, S1Ge, GaAs, InP, and S1C),
wirebond, flip-chip, or any combination of above.

For the purpose of this invention, between (or 1n contact
with) any component(s) (e.g., dice or interposers), any mate-
rial(s) (e.g., polymer, molding or adhesive) may be used for
the purpose of reduction of stress, cracks, warpage, or delami-
nation or to enhance reliability or thermal dissipation (e.g.,
with spatially 1sotropic or anisotropic conductive materials).

For the purpose of this invention: Any molding/protective
compounds of any shape, size, or materials can be used; the
mold(s) can contain cavity/cavities of any sizes/shapes; the
mold(s) or protective compounds can be multi-layer materials
of any forms/shapes or can contain conductive paths (e.g.,
vias, filled/hollow coppers blocks); the mold(s) can contain
planes; or the mold(s) can be used as substrate, for example,
for routing purposes or making connections.

In an embodiment of this invention, through mold via(s) 1s
used, for example, for the purpose of stacking other compo-
nents on the top of the base package or provide a means of
connection. Various embodiments of this invention use
through mold via(s) of various forms or shapes.

For the purpose of this invention: An antenna of any forms/
shapes can be mounted or integrated any place on/in the
package(s) (e.g., on the top/bottom/edge of the molding com-
pounds, top/bottom/edge of the package substrate) and con-
nected to the package using a conductive path. For example,
in one embodiment, an antenna mounted on the mold 1s
connected through mold via(s).

For the purpose of this invention: any number of compo-
nents/packages can be stacked vertically/horizontally; pack-
age substrates can have cavity of any forms or shapes; heat
slug or other materials of any forms or shapes can be inte-
grated any place on the package/packages (e.g., on the top
molding compound) for thermal dissipation and thermal
management purposes, €.g., through mold(s) via(s).

For the purpose of this invention, passive components (€.g.,
capacitors, inductors, and resistors) of any forms/shapes/ma-
terials may be mounted or integrated in the package/pack-
ages.

For the purpose of this mvention: package(s) may have
cavity(s) of any forms or shapes; the cavity(s) may be of any
depth or cut all the way through the substrate; a heat slug/
heat-spreader (e.g., made of copper or other materials), an
antenna, or other components (e.g., passive components) may
be mounted or integrated on the cavity, e.g., at the base of the
cavity (on the Ball Grid Array (BGA) side) or anywhere on/in
the package substrate; or the spreader may be grounded by
any means (e.g., using via(s)).

In one embodiment, a heat slug/heat spreader material
block 1s used as an antenna. In one embodiment, such antenna
1s patterned or as one solid piece. For the purpose of this
invention: the heat spreader may be constructed by means
(e.g., blocks of any size/shapes, or from a collection of 1ndi-
vidual spreaders); the heat slug(s) or antenna(s) may be
stacked on the top of each other; via(s) or other conducting
materials/paths may be used to connect the slugs/antennas to
the substrates/devices; or heat spreader may be embedded
within the molding compound.

In one embodiment, a low temperature, high density water
to waler connection 1s used to form the MPIF. In one embodi-
ment, a non-retlowable material(s) (e.g., copper) 1s used at the
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base of MPIF pad with a reflowable matenal (e.g., solder) as
a capping material for the pad. In one embodiment, after

aligning the dice (or a die and an 1nterposer) to be contacted
at their MPIF pads, heat and/or compression 1s applied to
enhance the contact reliability. In one embodiment, the dice
are locked 1n place before forming the contacts between the
pads, e.g., by using vacuum holds or a molding material. In
one embodiment, molding material 1s applied to the dice after
tforming MPIF pad connections between the dice to enhance
the reliability of the contacts. Other embodiments of this
invention use various means to form electrical contacts
between the MPIF pads of the dice.

In an embodiment of this invention, mnstead of bumping
and tlipping a core die substrate on a package substrate, as
shown for example on FIGS. 2, 7(a), (b), 9(a)-(c), 11,12, and
16-19, the core die substrate 1s flipped and electrically con-
nected to the package substrate through MPIF patterns (not
shown). In an embodiment, a cavity 1n package substrate, for
example as shown 1n FIG. 16-19 accommodates/fits the con-
text IC(s) already flipped on the core die substrate, so that the
context IC(s) does not prevent MPIF connections between the
core die substrate and the package substrate.

In one embodiment, the context die, the core die substrate,
or the package substrate comprises organic semiconductor
devices, layers, or components. In one embodiment, inter-
poser comprises of organic semiconductor devices, layers, or
components.

OTHER

EMBODIMENTS & EXAMPLES

As mentioned above, FPGAs are widely used 1n many
applications, due to their versatility and benefit 1n various
areas, ¢.g. a) Field Programmability and b) limited or no
upiront Non Recurring Engineering cost. However, the
FPGA has limitations 1n 1) area, 2) power, 3) form factor or
body size, 4) performance and 5) cost eflective path to high
volume manufacturing, that prevents the solution to be effec-
tively applicable in many applications, where low power con-
sumptions 1s high on the list of requirements, such as mobile
devices, tablets, etc. Also, device form factors limits deploy-
ment of some FPGASs 1n areas where space 1s the main con-
straint, such as hand held micro devices, etc.

Alternative to FPGAs are offered in the form of ASIC
(Application Specific Integrated Circuit), Standard Products,
Structured ASIC and 1n some cases COT (Customer Own
Tooling). With these solutions, the die area 1s efficiently used
for functions related to the features of the targeted applica-
tion. In other words, the solution 1s tailored for the applica-
tion. As aresult, much less, or no gate level configurability, 1s
offered, where the die solution 1s fixed to the specific appli-
cation. Alteration to post die/silicon 1s not available, or would
cost significantly, as well as time, to get die ready for evalu-
ation (e.g. millions of dollars 1n cost, and 12 to 24 months of
(long) design cycle).

In addition, the upiront cost for ASIC implementation and
manufacturing can exceed several million dollars, as well as
the complexity of the design and integrated intellectual prop-
erty. Generally, for low to moderate volume applications,
ASICs or COT solutions are not the ideal option, due to the
challenges stated.

Many designers defer from using ASIC, to avoid the NRE
and the delay 1n getting the custom solution, in favor of using
FPGA.

Our examples below show various solutions to optimize
this situation:

FI1G. 25 illustrates the prior art, of a typical FPGA building
blocks—(100) the Input and Output block connected to other
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devices placed on the same PCB via Device Input/Output
(105). (109) represents Internal Fabric as a massive fabric
providing the interconnects among all the blocks within the
FPGA. (104) represents User Hardmac which 1s a part of
many complex FPGAs today. These hardmacs are placed on
the FPGA as common blocks that are generally utilized by
most applications. (106) represents Configurable User Logic
Units which are generally the area customer or designer user
logic 1s implemented. (107) represents Configurable User
Memory which 1s used by application to configure memory
blocks of different sizes. The Configurable User Logic Units
(106), User Hardmac IP (104), Input/Output (100) and Con-
figurable User Memory (107) are flexible, configurable or
“Programmable” via the interconnect Internal Fabric (109)
for creating connection among different blocks. The state of
these blocks (104), (105), (107) and (100) and their intercon-
nects are generally kept statically via the Configuration
Image (103). Configuration Image (103) 1s loaded with a
bit-stream 1mage representing the logical representation of
the implemented application. This image 1s loaded at power
up or during the reset/imtialization process. The 1mage 1s
generally static. The 1mage can be reloaded for different
applications or 1n the event the design requires updates for
feature addition or logic fixes (bugs); hence, field program-
mable. For Volatile storage, in the event of power cycle or
reset, generally, the bit-stream 1mage needs to be reloaded
into the FPGA 1n order to establish the desired functional
behavior. With Volatile Storage (103), such as SRAM, an
image can be downloaded as often as required.

Some FPGAs, the Configuration Image 1s based on Non-
Volatile storage (such as anti-fuse, embedded Flash, etc.)
where the image 1s programmed once, and generally there 1s
no need to configure the device with the bit-stream/Image.

The Programming Interface/Test/etc (101) 1s generally
connected to an external device such as Flash or EPROM via
Programming Interface (102). The external storage device
contains the bit-stream i1mage representing the functional
behavior of the FPGA. During the development phase or
other debug/update phase, the external Programming Inter-
face (102) can be connected to a Programming device, such as
dedicated FPGA downloader or Computer (such as Personal
Computer, PC).

Separating Core from Context (Separating the usable logic
that logic designer implements in a design from the program-
ming part of 1t); The programming or configuration function
can be separated or removed from the design by hardening
Process.

FIG. 26 1llustrates the FPGA Typical Configurable User
Logic Units. The Logic Unit represents the core of the user
logic to be implemented, generally, a representation logical
Sum-oi-Productions or Product-of-Sum implemented 1n
LUT (604), feeding the arithmetic operation Full Adder Logic
(602), latched using an Output Stage Flip/Flop (such as D Flip
Flop) (603). Both the Full Adder (602) and/or the output stage
Latch (603) can be bypassed, and the LUT output can directly
drive the final output stage (605), which 1s feeding the Internal
Fabric. One can conclude that Logic Units can be daisy-
chained, since the mputs are fed from the Fabric and the
Output are fed back to the Fabric. Example of this would be a
basic binary counter or shiit register, where the next count or
shift bit 1s dependent on the previous bit.

For FIG. 27: Many FPGAs contain Hardmacro blocks
(702). Hardmacros are generally fixed functions, represent-
ing complex functions, which are generally common with
many applications. Examples are Ethernet Interfaces, PCle
(PCI express), DDR controllers, and more. These common
pre-fabricated functions are generally based on industry stan-
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dards (e.g. IEEE), utilized 1n many applications, providing
much denser area and lower power. In the same manner as
Logic Umts, Hardmacs are driven by the FPGA Fabric (701),
and the output of the Hardmac feeds back into the Fabric
(703).

For FI1G. 28: Configurable Memory (800) are key blocks
within the FPGA. The memory blocks are either used 1ndi-
vidually or cascaded to form a larger memory block for the
purpose of storage of information. The FPGA Memory (800)
1s flexible by width and depth, and 1n some cases, it can be
divided into several sub blocks. In some cases, FPGA
Memory (800) can be converted into Content Addressable
Memory (CAM) for parallel lookup. Similar to other config-
urable blocks, The FPGA Memory’s (800) address, data and
control signals (801) are driven by the Internal Fabric. The
Data Out (802) 1s fed back into the fabric. Such connection
allows the other blocks, such as the Logic Units or Hardmac,
to connect to the FPGA Memory, or the output from The
FPGA Memory can be routed to other FPGA blocks, via the
Internal Fabric.

FI1G. 29: Input and Output signals in and out of FPGAs are
typically designed to support multiple standards and formats
(900). In the case of Input signals, different formats are sup-
ported from single ended to differential signals. The Control
Signals from the Configuration Image (906) holds the value
representing the configuration of the Input signal (902) to
(905). Likewise, an output signal at the FPGA Device Output
(902) to (905) can be configured as single ended or difieren-
tial controlled, by the Image controlling the specific Output
(906). The same process holds valid for bi-directional signals.

Signals from the FPGA 1/O pair (900) or (904) are con-
nected to the FPGA Internal Fabric (901) and (903). These
signals are then routed to the Logic Units, Memory Units,
Hardmacro blocks, or other FPGA resources. An 1/0 signal
can be routed back to an output, Loopback. Generally, I/O
signals are grouped 1nto I/O Banks, as one embodiment.

FIG. 30A 1illustrates a typical Logic Unit of HPLA. This
Logic resides at the BaseStack. The signals (1000), (1011),
(1002), (1004) and others, to and from the Logic Unit are
connected via the MPIF.

When 1in Configurable mode of operation, Logic Unit sig-
nals (1000,1002,1004,1007,1008,1010, 1011, 1013, 1014,
1015, 1018) are connected to the CoreStack via the MPIF
layer. The CoreStack’s function 1s to route these signals
dynamically to other Logic Units, Memory Umits, Hardmac-
ros or Input/Output Units, creating a larger combinatorial and
logical behavior, including latches or Registers for both state-
tull and state-less functions. During the Dynamic mode of
operation, where the CoreStack holds the binary image rep-
resenting the functional and logical behavior, signal HS
(Hardened Signal) (1008) 1s asserted, to force the operation of
the BaseStack, based on the state of CoreStack. In this mode,
Dynamic Mode, or NOT Hardened Mode, the 3LUT_ROM
(1001) and (1012) are not used, and bypassed through the
Mux M (1003) and (1013). The signal driven to the Logic
Unait 1s driven by signal (1002) and (1010). These signals are
driven from the CoreStack and from LUT_Mesh (2014) (See
FIG. 35). The state of this signal can be altered by program-
ming the LUT_Mesh during the configurability of HPLA.

The 3ALUT_ROM (1001) and (1012) are the Hardened rep-
resentation of standard FPGA LUT which is located as part of
the LUT_Mesh block (see FIG. 35 (2014)) within the
CoreStack. Either dynamic or Hardened, the LUT function
represents a combinatorial logic based on the three input
(1000) and (1011). The output of the LUT 1n Dynamic Mode
1s driven from the CoreStack (1002) or from 3LUT_ROM
(1001) during the Hardened Mode. The output of LUT feeds
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a Full Adder, FA, (10035). Likewise, the output of the FA
(1005) feeds the Register (1016) clocked by clk (1015).

The 1nput to the Logic Unit (1000) and 1011), or (1002)
and (1010), feeding the 3LUT_ROM (1001) and (1012), may
be propagated to the output (1018), bypassing either of FA
(1005) or Reg (1016), by asserting Muxes in the signal path
(1003), (1013), (1009), (1006) and/or (1017). These deci-
sions are generally enforced by the user programming the
CoreStack and creating a binary image feeding the BaseStack
via the MPIF Layer.

Once the HPL A configuration is finalized, one may want to
switch from the Dynamic Mode of operation, where the
image for BaseStack can frequently be altered, to the Hard-
ened Mode where the configuration of CoreStack 1s frozen
and established by replacing the CoreStack with die Metal or
Redistribution Layers (RDL) and programming the
3LUT_ROM (1001) and (1012) with their dynamic represen-
tation mside LUT_Mesh. (See FIG. 35 (2014)). In this pro-
cess, the RDLs route the signals between different blocks
(Logic Units, Input/Output Units, Memory Units, HardMac
Units and other Units inside the HPLA). The RDL 1s pro-
cessed as part BaseStack to complete the IC (integrated Cir-
cuit) manufacturing, packaged and delivered to user. The
behavior of the Hardened device 1s now fixed and 1s a repre-
sentation of what the CoreStack configuration was dictating
to BaseStack during the configuration process.

The HS signal (1008) selects the mode of operation for
HPLA 1n either configurable mode or Hardened mode.

FIG. 30B illustrates the construction of HPLA typical
Logic Unit divided between BaseStack (1021) and CoreStack
(1020) connected via the MPIF (1041).

The main 1dea 1s to have the signal from the BaseStack
teeding the CoreStack where these signals can be switched or
routed, and then, drive the 1nputs to elements of BaseStack.
This approach would push the fabric logic and all associated
storage elements to CoreStack and leave the fundamental
logical units and memory units used to describe a circuit
inside the BaseStack. Such separation allows the BaseStack
die area to reduce to a smaller size, compared to a standard
FPGA. In this case, the FPGA overhead for programming 1s
separated from the actual logical elements required to pro-
gram a circuit. All the programming and configuration 1s
implemented at the CoreStack level.

Once the final configuration 1s reached, the CoreStack may
be removed and replaced with additional metal layers provid-
ing the mterconnect reflecting the image holding the configu-
ration. This approach hardens the BaseStack. The new Bas-
eStack+Metal Layers would represent the same logical
behavior as the BaseStack plus CoreStack. However, the
result would allow for a smaller die size, lower power and
reduce form factor, and even higher performance.

Input signals (1023) from the HPL A device connected to
the I/O Block (1022) are fed to the CoreStack via MPIF
(1041) where they can be switched or routed (1042) back to
the Logic Units and other elements of BaseStack, via (1024).
Other signals from BaseStack Logic Unit or other elements
(1032), (1031), and (1033) are also fed to the CoreStack
where these signals can be routed either back to the same
Logical elements (1035) within the BaseStack or other logi-
cal elements (1038) within the HPL A BaseStack.

A Logic Unit consists of Lookup Tables or LUTs of various
configuration. For example, a 3-Input 1-output LUT (3x1)
would have eight 1-bit values stored. The LUT can represent
a logical function reduced with 3 variables referenced as “a”,
“b” and “c”. For example, a LUT can be programmed to
represent the function (a&b+!c). This 1s a logical AND func-
tion of “a” and “b” terms with logic OR function with the term
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negated (1) “c”. Other LUT configurations have been imple-
mented with variation of different inputs and outputs, such as
3x2, 6x1, 6x3 and more, allowing for more complex descrip-
tion of logical equations. In general, these LUTs, regardless
of their configurations, tax the die in a FPGA, 1n exchange for
offering configurability. The dynamic nature of a LUT has
overhead that 1s much larger 1n area (or gates), compared to a
static version or hardened version of the LUT, which can be
represented 1n a ROM (read only memory) or similar device.

With our (S1Face) technology, the LUT (1043) element 1s
moved to the CoreStack (1020) and programmed the same as
a traditional FPGA. The LUT configuration can be altered as
many times as required, to reflect the logical behavior of a
targeted design. A corresponding ROM (1026) version of the
LUT (1043) resides or mirrored 1nside the BaseStack (1021)
and 1s not used unit the time of hardening process, which
would fixate the logical behavior of the LUT 1nto 1ts corre-
sponding ROM.

In order to maintain same Ifunctionality between the
dynamic (LUT version) and static (ROM) version, the signals
(1024) driving both must be the same. A multiplexer (1028) 1s
used to select between the LUT (1043) or ROM (1026) ver-
s1om. It 1s programmed to select the LUT when configurability
1s applied and 1s programmed to select ROM once the HPLA

1s hardened.
The output of LUT (1025) or ROM (1027) 1s fed to a Full

Adder (FA) (1029), as 1n any traditional FPGA 1implementa-
tion. The output of the FA (1032) 1s either latched via a
register (1030) or directly fed outside the Logic Unit to the
CoreStack Mux (1034). In either case, the output of FA
(1032) and Reg (or Latch) (1031) are fed back to the
CoreStack via MPIF (1041) for further switching or routing
(1034) within the CoreStack. Having the signals from various
clements of Logic Unit (1032) and (1031) connected to MPIF
provides the flexibility of selecting which signals of Logic
Unit to use for the next stage of processing. This 1s unlike a
traditional FPGA, where such selection would happen within
the BaseStack resulting 1n unnecessary overhead logic for
muxing/selection.

FIG. 30B illustrates one Logic Unit of HPLA. A HPLA
generally contains many of these Logic Units arranged 1n
groups and hierarchy forms. Input signals (1023) from Input
Block (1022) can drive a group of Logic Units. Also, the
output from a Logic Unit (Register Output (1031), FA Output
(1032), Carry out, etc) can drive as an mput to the same
(1035)-(1024), or another Logic Unit, via a hierarchical
switching (1034)-(1037), within HPLA CoreStack.

Many of the signals within the CoreStack can be routed to
the HPLA output via the 10 Block (1022). This signal (1020)
1s switched (1040) at the CoreStack level. The source of the
signal (1020) can be from any of the available signals that
have been connected to the CoreStack Switch Fabrics, such as
(1040) (1034) or (1042).

The following example attempts to illustrate the path a
signal may take from HPLA 1nput to output. An mnput signal
(1044) 1s fed to a Logic Unit, registered and fed back to the
output signal (1044).

Dynamic or non-hardened path:

(1044)-(1023)-(1025)-(1045)-(1032)-(1035)-(1020)-
(1044):

Note that signal (1035) has connectivity from (1029) to
(1030), 1n addition to (1034).

The same concept as 1illustrated 1n FIG. 30B applies to
other elements of HPLA, such as Memory Unit, Hard Mac
Unait, and Clock Unit.

FI1G. 30C illustrates a simple construction of HPLA Bas-
eStack and CoreStack consisting of Logic Units, Memory
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Unit, Interconnect Switch Fabric, etc. This example considers
a group of 256 Logic Units sub-grouped 1nto 16 Logic Units.
Each Logic Umt has a corresponding Memory Unit. The
larger group of 256 LUs share a large Memory Unit, as well.

CoreStack and BaseStack are separated via the MPIF. Bas-
eStack 1s marked differently 1n the figure, to differentiate 1t
trom the CoreStack. In this example, this block has total o1 18
connections to the outside world. These connections can be
dedicated input, output or bi-directional signals.

The CoreStack Interconnect Fabric Switch (IFS) 1s con-
structed 1n a multi-layer fashion. The number of connections
between each layer and blocks, as well as the number of
blocks, 1s a function of HPLA complexity. Fabric Layer-0
(1056) 1s intended for local switching of Logic Units (1051)
and Memory Unit (1052). This function is repeated 16 times
for each group of 1641 LUs and MU. Fabric Layer-0 IFS
takes 12 mput signals from the Input/output Bank (1050) and
provides up to 12 output signals back to the Input/Output
Bank (1050). The 12 Input signals together with other local
and global signals are switched into any of the Logic Units

Layer-1 IFS connects the 16 Layer-0 IFSs resulting 1n
interconnect for total of the 256 Logic Umts (1051) and 16
Memory Units (1052). Layer-1 also provide interconnect to a
common Memory Unit (1055) shared by any of the 256 LUs
(1051) through (1053). Four out of 16 device input signals are
also routed to Layer-1 IFS for more global routing. Each
Fabric Layer-0 communicates with Fabric Layer-1 via 32
dedicated bi-directional signal. In this case, each group of 16
LUs would have 3 output signals (FA, Co and RegOut) that
makes a total of 48 signals, plus the input signals can also be
routed to the upper layers, making the output out of Fabric
Layer-0 to more than 60 signals. However, this example only
allows 32 of these possible outputs to be routed to upper layer.

The Layer-1 IFS switching capacity would be 1n the order
of:

32 signals per Layer-Ox16=512

4 signals from the 10 Bank

256 si1gnals from the Layer-2 IFS

That make the switch complexity up to 512+4+256=772
signals to handle and route. In this example, there are 4 Block
of 256 LUs where Fabric Layer-2 1s the agent that enables
connectivity among the 4 banks via (1039). Each Bank can
have a dedicated CLK and CLR which can further be routed
to different layers for connectivity.

FIG. 31 1llustrates a possible HPLA configurable memory.
A configurable memory block 1s implemented as a part of the
BaseStack. The configuration of each Memory Unit 1s con-

trolled via the signals driven to and from CoreStack con-
nected via the MPIF (1107). The Memory Unit signals

(1100), (1101) and (1105) may imtially be drniven by
CoreStack and eventually may be hardened by the RDL Layer
removing the CoreStack and fixing the configuration of the
memory.

FIG. 32 further illustrates the operation of HPL A config-
urable memory, Memory Unit. During the Dynamic opera-
tion of HPLA, a Memory Unit located 1n BaseStack 1s con-
figured and driven from the CoreStack interfaced through the
MPIF (1204).

Write Address (Add_In), Write Data (Data_In), Control
signals, such as READ, Write, SELECT, ENABLE, as well as
memory configuration, etc, (1202), are driven from the
CoreStack Interconnect Switch Fabric (1200). Once the data
1s accessed within the Memory Umnit, the result data output,
Data_Out (1203) 1s fed back to the CoreStack via MPIF
(1204).

Larger memory organization both 1n width and depth can
be constructed by cascading multiple Memory Unaits (1201)




US 9,035,443 B2

23

in series or 1n parallel. The Memory Unit can be constructed
as single port, dual port or even multiport. The size can be any
depth by width, limited by the number of Memory Units
available and the performance target for the application.

For example, a Memory Unit can be architected to have 4
tightly coupled blocks, each 2 blocks are shared address and

separate data bits. A typical configuration of 512B (512x8)
can be constructed, and the following alternative configura-
tion can also be implemented:

1] 2x2%x(512x8)
2] 2x512x16
3] 1x512x32

4] 2x1024x8

1x2028x%8

5] 2x512x16

1x1024x%8

Many other configurations can be implemented by difier-
ent embedded memory architectures (for example, SRAM,
etc), as well as the Address/control/Data connectivity.

FIG. 33 A illustrates a possible prototyping/limited or low
volume production and full or high volume production sce-

nario. In the event of field programmable HPLA, where both
BaseStack (1900) and CoreStack (1902) are connected via
MPIF (1903), CoreStack can be loaded with bit streams or
image that configures the logical behavior of BaseStack. The
bit stream loaded into CoreStack can dynamically be altered.
The contacts between CoreStack and system Printed Circuit
Board (PCB) 1s through MPIF (1903) to package bump
(1904) to package substrate (1905) to Package Balls (1906) to
the PCB.

Even a HPLA can be used for production. One can decide
to harden the HPLA to reduce solution cost and power. To
Harden a HPLA, the manufacturing process does not con-
struct the device with the CoreStack. It replaces the
CoreStack from BaseStack (1907) with metal layers and/or
Redistribution Layer (RDL) (1908). In other words, the Bas-
eStack 1s constructed without the bonding of CoreStack. The
Fabrication house would utilize and add additional metal
layers, including the redistribution layer to complete the
manufacturing process of the water resulting in the final die
for final packaging/assembly process. The RDL (1908) are
additional metal layer(s), as part of the die waler manufac-
turing of HPLA. The RDL metal connectivity or routing 1s a
representation of the bit stream or Image that was finalized
with the CoreStack (1902). The RDL basically routes signals
among the many block umts of BaseStack (1907), hence,
Hardened.

FI1G. 33B illustrates the construction of HPLA. This figure
does not show the connectivity to the package substrate.

BaseStack (1921) and CoreStack (1920) are both dies that
are attached, 1n a face to face method. Each face includes the
MPIF (1925) and (1927) that are generally a matching pat-
tern, one being mirror of the other 1n order to make electrical
connection from one die to the other.

The CoreStack die 1n some cases would need to be grinded,
to reduce 1ts thickness, to create clearance for the BaseStack
die bump (1922), to connect to the package substrate.

The Input and output signals (1923) are generally inter-
faced to the BaseStack (1221). These signals are routed to the
CoreStack via the MPIF (1922) and (1927). In addition,
power and ground signals are fed through the BaseStack and
routed to CoreStack, supplying power to operate the logic.
The programming signals (1924) configuring CoreStack are
also routed via the BaseStack. The programming signals may
be mterfaced by other means to the CoreStack, such as TSV
(Through Silicon Via).
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In the process of manufacturing, the CoreStack 1920 1s
aligned (1926) to 1ts companion BaseStack (1921) via MPIF

(1925) and (1927).

FIGS. 33 (a), 33 (b), and 33(¢) show our (SiFace) FPGA
solution from BaseStack, combined with CoreStack, referred
to as HPLA (Hybnid Programmable Logic Array), to Bas-

eStack hardened by one or more metal layers and/or Redis-
tribution Layers (RDL). (FIG. 33 (a) relates to Prototype to
production.) (FIG. 33 (b) relates to 3D Construction, Bas-

eStack+CoreStack.) (FIG. 33 (¢) relates to CoreStack 1/0
interface.)

FIGS. 33 (d), 33 (e), and 33(f) show hardening corestack
I/O mapping, HPLA CoreStack match BaseStack, and HPLA
with Bump Step, respectively.

FIG. 34 A illustrates high level HPLA (Hybrnd Program-
mable Logic Array) block diagram (2000). The HPLA 1s
constructed from two main blocks—1 ) BaseStack (2004 ) and
2) CoreStack (2002), connected via Massively Parallel Inter-
connect Fabric, MPIF (2005). Signals/ground and power sup-
plies are interfaced to HPLA wvia standard Device Input &
Output (2003). HPLA, when configurable, 1s controlled via
the Device Programming interface (2001). This interface
(2001) 1s generally a serial bit stream that hold an 1mage
representing a specific configuration of BaseStack (2004).
The 1image 1n form of signals 1s connected to BaseStack, via
MPIF (2005), which configures HPLA to a specific combi-
natorial and logical behavior.

FIG. 34B illustrates the basic programming model for
HPLA. The Logic behavior can be expressed in many file
formats (2015), such as Schematic (2007), logical equations
(2008) or High Level Descriptive Language (2006)—ex-
amples are VHDL or verilog, as most common design entry.
The Design File (2015) 1s parsed for syntax and error, then
reduced to most optimized logical representation (2016) of
descriptive language within the Design File (2015). Depend-
ing on target HPL A platform or device, the fitter attempts to
map the optimized logic to that particular device and create
the binary image (bit stream) file (2017). The bit stream file
(2017) can be downloaded 1n to the target HPLA device
(2013) via the programming interface (2014). The bit stream
file (2017) can reside on a workstation and downloaded 1nto
the HPLA by different common means, such as JTAG, USB,
Ethernet, etc, via the programming interface (2014). The bat
stream (2017) file can also reside on a non-volatile storage,
such as Senal or parallel EEPROM/Flash, and permanently
reside on the target board and loaded during power up, or
commanded via external source—reset, interrupt, etc.

Once an 1image 1s loaded into a HPLA device during the
image load time, 1t then can be brought into operation mode,
where the behavior of the logic per Design File (2015) be
examined and validated. In the event a designer determines
that the behavior of the intended logic 1s not accurate, or
identifies a bug, he or she can alter the Design File and (2015)
and go through the same process of compilation, fitting, and
testing.

FIG. 35 illustrates a high level view of HPLA containing
both BaseStack (2012) and CoreStack (2011) connected via
the MPIF (2101). The main objective of HPLA 1s to separate
as much as possible, the programming portion of a Field
Programmable Gate Array (FPGA) from the main die mto a
separate die (CoreStack). As a result, it reduces the FPGA
area associated with the actual logic that a designer/user
would need to implement. The MPIF (2101) provides a
tightly coupled high density connectivity between the two
1solated die, to allow a similar 2D (two dimension) integration
in 3D (three dimension). A designer can configure a HPLA
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with programming and reprogramming the CoreStack
(2012), to implement the logic design.

The Interconnect Fabric Switch, IFS, (2102), 1s the switch,
router or cross-bar designed to provide the interconnect rout-
ing among all the blocks resident with the BaseStack. The
signals from Interconnect Switch Fabric are connected to the
BaseStack via the Massively Parallel Interconnect Fabric
(MPIF)(2101). The IFS signals, both input and output, via the
MPIF, are generally static signals that hold the state of com-
binatorial logic within the Logic Unit (2107), memory con-
figuration of Memory Unit (2018), Logic Unit (2107), Hard-
mac (2108), Input Block (2105), output Block (2106), and
other configurability features of BaseStack. In the event of
Hardening, the CoreStack IFS (2102) is replaced with the
RDL or metal layers, permanently configuring routing con-
figuration of BaseStack (2112).

Each Logic Unit (2107) contains at least one Look Up
Table (LUT) implementing a combinatorial behavior of 3-1n-
put or higher logic signals. These LUTs are generally netfi-
cient, collectively consuming large die area translating to
large dissipation of mainly static power including leakage
resulting 1n increased die cost. They further introduce routing,
congestion for programming each LUT. The HPLA moves
the LUT function of Logic Units (2107) from BaseStack
(2112)to LUT_Mesh (2104) of Core Stack (2111). With such
separation, the associated storage, routing and programming
of the LUTSs are executed at the CoreStack resulting in reduc-
ing the die area of BaseStack, impacting HPLA cost and
power, once hardened.

Input and output Blocks, 1/O Blocks, (2105) and (2106),
handle the signals that are connected to HPLA, in many
permutations, such as dedicated Input, Output, Bi-direc-
tional, single ended, differential signals, etc. The CoreStack
(2111) drives the configuration of the I/O Blocks via the
MPIF Layer, separating the configuration of the I/O from
Programming or configuring the I/O. As a result, the Bas-
eStack die area and power consumption 1s further reduced.

Device Programming Interface (2100) connected to either
development platform, such as a workstation, or non-volatile
memory, such as EPROM or FLASH, download a serial bit-
stream that represents an 1mage confliguring or programming
BaseStack (2112). Programming Interface Logic (2103)
holds the bit-stream 1mage.

FIG. 36 illustrates how hardening 1s implemented. In the
event a HPLA 1s required to be hardened, the CoreStack
functions are replaced with Hardened RDL Layers or metal
layers (2213). Hardened RDL Layer (2213) provides all the
interconnect routing among the BaseStack (2201) Units and
Blocks. As a result, and generally, the configuration of the
BaseStack (2201) 1s fixed to the image that was 1intended for.
The logical behavior of BaseStack (2201) should represent
the bit-Stream Image that was designed for. Generally, the
EDA mmplementation tools would do a round of timing clo-
sure, signal integrity, Power calculation, etc, to assure timing
behavior match between an HPLA with a set bit-stream 1image
and 1ts corresponding Hardened HPLA.

A simple example of HPLA hardening process: An input
signal (2203) 1s configured inside the Input Block (2217) as a
differential LVDS si1gnal through control signals (2206). The
configuration for making the Input signals as LVDS 1s now
hardened as part of the Hardened RDL Layer(s) (2213). The
single-ended signal (2208), driven from the LVDS inputs,
then 1s connected to the Logic Unit (2207) via the Hardened
RDL Layer (2213) and connection (2215). This signal can
also be connected to other Logic Units or other functions
inside the BaseStack (2201). The signal (2208) 1s logically
manipulated inside the Logic Unit (2207). The result from the
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Logic Unit (2207) 1s driven out 1n to the Hardened RDL Layer
(2213) via connection (2214). This result can be further pro-
cessed and fed back into other Logic Units (2207) or other
Units, such as the Memory Unit (2211). The reiterated result
(2205) may be connected to an Output Block (2216), routed
through the Hardened RDL Layer(s) (2213). The signal can

be configured or programmed as a single ended HSTL type,
via signals (2206) driven from the Hardened RDL Layers

(2213). The HSTL signal 1s not exiting the HPLA via signal

(2204). The same would apply to combined Input and output

blocks mcluding bi-direction logic.
FIG. 37 illustrates MPIF Repeater or Butfer. Once HPLA 1s

hardened, the RDL Layers (2309) act as the massive inter-

connect between the blocks, and 1n some cases, a signal {from

a BaseStack Block (2304) may be driving multiple inputs to
other BaseStack Logic block(s) (2307). To provide the drive
strength necessary, repeaters are strategically placed within
the BaseStack (2310) and can be used to connect signals
(2305) from one location within the BaseStack and routed to
input of the Buffer (2302) via another MPIF connection
(2301). The output of the butier (2303) 1s then driven back to
the MPIF (2300) where it can be routed back to other blocks
within the BaseStack (2306). The MPIF butier (2302) may be
used to drive standard logic, including HPLA clock routing,
reset routing, and other signals that generally drive many
logics.

FIG. 38 1illustrates one implementation of Interconnect
Switch Fabric (IFS) (2400). In this case, the IFS (2400) con-
sists of four configured Fabric Blocks. One can extend the
number of specific fabrics, such as Logic Unit Fabric (2402),
to many specific Fabric blocks.

Each Logical Block within the BaseStack (2403), such as
the Logic Unit (2410) or Memory Unit (2411), requires spe-
cific routing conﬁguration and programming. As a result, the
corresponding programming and routing blocks exist at the
CoreStack (2400) level, such as Logic Unit Fabric (2402) or
Memory Unit Fabric (2404). The function of Logic Unait
Fabric (2402) 1s to provide the routing connectivity between
all Logic Umnits (2410), as well as routing the signals to other
Logic Units of the BaseStack (2403). In order to reach other
Logical Units of the BaseStack (2403), signals from Unait
Fabrics of CoreStack (2408), such as Logic Umt fabric
(2402), connect to a Global Fabric & Interconnect (2409).
The Global Fabric & Interconnect (2409) provides a hierar-
chical routing capability with the CoreStack (2408). This
allows, for example, functions (2417) from the Logic Unait
(2410) to drive the signals (2415) of a Memory Unit (2411),
and output signals (2414) from the Memory Units drive other
Units of BaseStack (2403). The interconnect between
CoreStack (2400) and BaseStack (2403) 1s made via the
MPIF Layer (2401).

Similarly, the I/O Unit Fabric (2405) drives the signals to
and from the I/O Unit (2412). Hardmac Unit Fabric (2408)
drives the signals from the Hardmac Unit (2413).

Ultimately, BaseStack’s functional and logical Unit blocks
are interconnected via the MPIF (2401), and the connection
signals are routed, utilizing the CoreStack (2400) Unit Fab-
rics and Global Fabric Interconnect (2409).

FIG. 39 illustrates Logic Unit fabric typical configuration.
Inputs (3009) from various sources feed the Routing Mux
block (3006), and the output from the Mux (3010) drives the
Logic Unit of BaseStack via the MPIF (3004). The routing
decision of which signal 1s selected and feeds the Logic Units
1s done by the MUX selector (3008). The Mux Selector
(3000) or (3008) are fed from the Programming Block of
CoreStack. The value for the Mux (3008) 1s generally static
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and correlates to the image intended for the HPLA down-
loaded 1nto the Programming Block of CoreStack.

A Logic Unit within the BaseStack requires several inputs
as a function of the size and number of LUTSs used. In this
example, and Interconnect Switch Fabric (ISF) (3003) pro-
vides 4 Input configuration of “a” (3011) to “d” (3012). Other
numbers of Input for Logic Unit can be constructed.

The number of ISF Blocks (3003) at the CoreStack are
generally match the Logic Units resident inside the Bas-
eStack. In this case, ISF Block 1 (3003) to ISF Block “Y”
(3005) correspond to 2 of “Y” numbers of Logic Units of
BaseStack.

FI1G. 40 shows ISF clock, reset, and control routing/switch-
ing. In a similar way, the global signals, such as clock or reset,
are fed to the CoreStack, for routing to required blocks within
the BaseStack. A HPLA can consist of one to many of these
signals. Each Logic Unit or BaseStack functional block may
have at least one clock (3104) from the many clock sources
(3100), provided via a dedicated mux (3101). The same
description applies to other global common signals, such as
CLR (3107).

FI1G. 41 1llustrates that one method Look Up Table (LUT)
Mesh can be constructed at the CoreStack. The LUT has
generally been a part of the Logic Flement of FPGAs, and
tightly coupled. With HPLA, the LUT 1s decoupled from the
Logic Element of the BaseStack and pushed into the
CoreStack. However, the MPIF continues to keep the LUT
and Logic Flement tightly coupled, hence, removal of the
configuration storage required for the Logic Element to
CoreStack, 1n a 3D construction and removing the LUT func-
tion, once final configurability or programmability 1s com-
pleted, replacing 1t with MPIF RDL/metal layer(s). To con-
struct a LUT of 3x1, an eight bit shift register (3500) and a
multiplexer or MUX (3502) can be used. To select the output
of the LUT, a 3-bit control, abc_select (3501) 1s connected to
the MUX selecting of one eight combinations, programmed
into the Shait Register (3500).

Different size and type of LUT's have been implemented,
such as 4-Input, one output. In this illustration, a 3-Input LUT
1s demonstrated (3514). During the programming phase, the
LUT (3500) 1s loaded with a bit stream from Programming
Interface. During the HPL A operation, the abc Selects (3501)
picks which one of eight value bits stored inside register
(3500) 1s selected and presented at the output of the MUX
(3503). The MUX output (3503) feeds the MPIF block, which
eventually feeds the Logic Flement of the BaseStack.

In this 1llustration, there are two LUTs (3512) per each
Logic Units resident in the BaseStack. The LUT Mesh
(3512), once removed as part of the hardening process, would
be replaced with the 3LUT_ROM, within each BaseStack
Logic Unit. The 3LUT_ROM 1s also configured by methods
described. The value of each 3LUT_ROM would be a binary
representation of the Shift/Latch Register (3500). Having the
3LUT_ROM as a static image of the LUT Mesh, 1t occupies
less area and uses less power, due to reduction 1n complexity
of the configuration and signal routing overhead, and convert-
ing the volatile memory to non-volatile memory.

For LUT Mesh Blocks (3512) at the CoreStack, each cor-
responds to 3ALUT_ROM pair resident with each Logic Unait.
The number of LUT Mesh per Logic Unit and HPLA can be
different, depending on the requirement of that particular
HPLA implementation.

FI1G. 42 illustrates one possible high level construction of
MPIF, viewed at the junction between the BaseStack and
CoreStack. It also attempts to 1llustrate one arrangement of
different logical blocks between the two Stacks. In this par-
ticular case, a bank consists of 10 Unaits (7001), Logic Units
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(7000), and Memory Units (7002). With an implementation
of HPL A, one can include more than one bank of each func-
tional blocks, constructing a larger configurable device, such
as a matrix of 16 Logic Units (7000), corresponding Memory
Units (7002), and 10 Units (7001). Such partitioning creates
a hierarchal structure.

The MPIF patterns (7503), (7504), and (7505) of each
functional block would be different, addressing 1ts intercon-
nect requirements via the MPIF Layer. These MPIF patterns
represent Via connections from the BaseStack and the corre-
sponding CoreStack. The via connection are routed inside
cach die substrate, connecting to the transistors of the die, as
described above.

Each Logic Unit has a corresponding MPIF pattern (7504).
These patterns collectively are via connection to the logic
gates constructing the Logic Unit. The pattern for a Logic
Unit would represent the input and output signals to and from
the BaseStack and CoreStack. A HPL A device, while 1n pro-
gramming or configuring mode, would contain a BaseStack
and a CoreStack, each having a matching MPIF pattern where
the vias make the electrical connection between the top die
and the bottom die 1n a 3D construction. In this case, where
the HPLA 1s enabled to be programmed via an external
source, the MPIF acts as bridge between the CoreStack and
BaseStack.

Once a HPLA 1s intended to be hardened, the manufactur-
ing process would replace the CoreStack with additional rout-
ing layers, referred to as the Redistribution Layers or RDL, to
create the interconnect between different blocks of 10 Unaits
(7001), Logic Blocks (7000), Memory Units (7002), and
other blocks, such as the Hardmac (not shown 1n this figure),
etc. The interconnect would also be between the Units of each
larger blocks. For example, many individual Logic Units
(7504) can construct a larger logical block, such as a binary
counter, by daisy chaining these blocks.

The MIPF patterns for any of logical units, for example,
Memory Unit (7505), can be and would be different, depend-
ing on the architecture of HPLA. The arrangement of these
patterns and their placements are a function of the HPLA
product and its intended market and application. A HPLA
may be constructed for the Networking applications where
the 10 pattern (7503) for the 10 Units (7501) would require
specific placement for high speed interfaces, where as for an
Automotive or mobile applications, the 10 pattern would be
constructed with a different arrangement.

FIG. 43 1llustrates an example of how interconnects at the
MPIF are implemented. Generally, the Hardening process of
a HPL A would use the BaseStack and RDL or metal layer to
create a final product representing a particular image for a
logical behavior of the BaseStack. In this figure, an 10 Unait
(7601) 1s routed to a Logic Umt (7603), Logic Unit (7404)
and a Memory Unit (7607). A standard or customized EDA
tool can be used to create the routing, based on the design files
generated. The routing can be completed with an addition of
single metal layer or multiple metal layers. The number of
layers 1s generally a function of the architect of the logical
units, their placement from each other, and spacing of MPIF,
dictating the routing channel available within each layer.

In FIG. 43, an example of routing at the MPIF 1s shown.
MPIF via (7600) from the 10 Block (7601) input 1s connected
to the Loglc Umnit (7604) MPIF via driving one of its inputs.
MPIF via connection between the 10 Umt (7601) and Logic
Unit (7605) are made through the routing signal (7609). Sig-
nal (7608) connects the MPIF via from Logic Unit (7605) to
Memory Unit (7607). In this case, an example would be the
output of Logic Unit (7605) Register 1s driving the address bit
of the Memory Unit (7607).
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FIG. 44 illustrates the hardening process of 3LUT_ROM
(7701) within the Logic Unit or other Units residing at the
BaseStack. Generally, the 3LUT ROM 1is bypassed, when 1n

programming or configuring mode, where both the Bas-
eStack and CoreStack are constructed in 3D. The 3L UT ROM

tunction 1s displaced during the programming mode, with the
LUT Mesh block of CoreStack of HPLA. A MUX within the
Logic Unit places the 3L UT ROM logic in bypass mode.

During the hardening process, or once an HPLA 1s hard-
ened, the 3LUT ROM 1s configured to represent the logical
behavior of 1ts corresponding LUT_Mesh logic. The configu-
ration can be implemented through the MPIF or at the lower
Metal Layers of the BaseStack. The number of input to the
ROM can be 2, 3 or higher count, dictating the size of the
ROM. A 3 input ROM with one output would require 8 binary
values, that need to be stored. A 4-mput, one output ROM
would require 16 binary values, etc. For a construction of
BaseStack Logic Unit ROM, there 1s a corresponding LUT, as
partof the LUT Mesh, representing the same number of ROM
and LUT mputs. The LUT Mesh 1s used during the program-
ming phase, and the ROM 1s used when the HPLA 1s hard-
ened. In both cases, the HPLA can be used as a production
vehicle. However, the Hardened HPLA would most likely be
lower power and at lower cost of manufacturing.

The ROM or Read Only Memory, (7701) or (7707), can be
constructed, utilizing industry standard EDA tools, and com-
piling for the specific ROM configuration. A ROM (7701), in
this case, 1s constructed from a x-input MUX (7703) strapped
to a binary ROM Value (7700). Signals from the MPIF layer
(7702) are connected to the address select of the ROM, allow-
ing the accessing each location of the ROM. A binary Ob000
on the (7702) would select location “1” of the MUX (7703).
The logical value of location “1” 1s then presented at the
output of the MUX (7704). Each binary value of the ROM
(7701) 1s configured during the hardening, through the ROM
Value (7700).

Each3LUT ROM (7701) has a pattern (7711) which allows
both a Logic value 1 (7712) or Logic Value 0 (7714) to be
available during the hardening process, where each mnput to
the MUX (7703) can be fixed or hardened to a value “One” or
“Zero”. The hardening values can be implemented as part of
lower layers of die, closer to the substrate and the transistors

of HPLA, fusing the ROM to the specific value, OR the values
can be driven from the MPIF layer. Hardening the ROM, by
leveraging the MPIF, would place additional vias at the RDL
layer, possibly resulting 1n more congestion, where having to
leverage Metal-1 or Metal-2 of die buildup buries the signal,
resulting in denser implementation of hardened HPLA. How-
ever, adding additional manufacturing steps impacts manu-
facturing time and cost.

FI1G. 45 1llustrates Input and Output construction of HPLA.
I/0 are standard requirement of any die requiring interface to
other die or input/output devices such a USB, UART, etc. I/O
signals can be single ended (HSLT, SSTL, etc), differential
(LVDS, PECL, CML, etc), high speed signals based on Seri-
alizer/Desenializer (SerDes) (PClexpress, Ethernet, etc), or
mixed signal (analog to digital converters, ADC, etc).

FPGA requires many of the I/O interfaces to be tlexible and
programmable. For this purpose, one architecture can place
all required and relevant interfaces and connect them 1n par-
allel, creating an I/O interface that can be configured to many

different standards utilizing the FPGA programming inter-
face. An example would be an I/O that can be both SSTL,

HSTL 1n single ended mode, as well as LVDS 1n differential
mode, when a signal pair 1s used. The challenge or 1ssue with
this approach 1s the implementation of the I/O, supporting,
many different imnterface standards, causing the I/0O block die
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area to grow substantially. A design can leverage and take
advantage of the overlap between the standards and reduce
the area associated with each I/0. In addition to the complex-
ity of the I/O construction, the selection of the I/0 requires
intelligence within each 1/0 that i1s loaded as part of the bat
stream (1mage) for the specific implementation or configura-
tion of the I/0. This configuration capability would add addi-
tional area and complexity, impacting cost and power associ-
ated with the FPGA.

With HPLA, the programming function of an I/O 1s moved
to the CoreStack (8011), from the BaseStack (8010), con-
nected via the MPIF layer (8007). Different I/O standards of
101 (8003) to IOn (8005) can be placed 1n parallel and con-
nected via a common interface (8004), feeding the MPIF
Layer (8007). And I/O (8000) can be an input signal, output
signal or bidirectional signal. The I/O (8000) interface from
the outside of the HPLA feeds the I/O blocks 101 (8003) to
IOn (8005), for processing of different standard, requiring
different voltage level, hysteresis, termination, drive capabil-
ity, protection, etc. A design of Contig 10 (8008) can leverage
the overlaps between different standards, resulting in reduc-

tion of area and possible performance improvement. Config-
uring an 10 block (8008) 1s done via the CoreStack (8011)

Logic (8001) for 101 and (8002) for IOn, connected through
the MPIF Layer (8007) to the BaseStack (8010).

A HPLA may contain no Configurable 10, one config-
urable 10 (8008), or many configurable 10 (8009). The 10
count and the type of IO are a function of application and
market the HPLA 1s targeted for.

The 10 programming 1s done at the CoreStack (8011).
During the configurability or programming of HPLA, the
Interconnect Switch Fabric of CoreStack (8011) selects
which output functions should be enabled.

During the hardening process, the RDL or metal at the
MPIF Layer (8007) 1s implemented to create the intercon-
nect/routing between the 10 Units and other Unaits, such as the
Logic, Memory, Hardmac, etc.

FIG. 46 illustrates another method of implementing con-
figurable 10.

Multiple I/O structures, generally residing on the die 10

Slot, can be constructed, leveraging a single logical and
mixed-signal base (8103), configured to different IO standard

through MPIF, either via a CoreStack Logic (8106) or hard-
ened at the MPIF layer (8107), via the RDL layer.

The 10 Connectivity Image (8106) residing at the
CoreStack (8110) can be loaded with different images, each
representing different 10 Standards. These images are routing
signals that configures that personality of each 10 (8103), to
behave like a HSTL interface or LVDS interface at the HPLA
input (8100). Such implementation further reduces the die
area associated with the BaseStack (8109). The 10 Connec-
tivity Image (8106) maps over the 10 block (8103) via the
MPIF signal (8102). During the hardening process, a similar
representation of 10 Connectivity Image (8106) 1s created
with the RDL layers, through the MPIF (8107).

FIG. 47 illustrates how a high speed serdes can leverage the
benefits of HPLA. Generally, with most high speed intertace,
there are three components contributing to the Physical
Layer: 1) Physical Media Dependent, PMD (8201), 2) Physi-
cal Media Attachment, PMA (8202) and 3) Physical coding
Sublayer (PCS) (8203). The PMD (8201), mainly mixed-
signal circuitry, deals with the media and signaling between
the Transmitter and receiver, plus signal conditioning to
assure error free connection (low bit error rate) and operation
of the link. The PMA (8202) block is also tightly coupled with
the PMD (8201) and responsible for bit and word alignment
and recovery 1n accordance to the running protocol. The PCS
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(8203) block 1s generally based on digital logic and signifi-
cantly differs from one standard to the next. In many designs,
a common PMA plus PCS 1s developed, and the PCS 1s

designed for each required standard. For-example, a serdes
can be designed to support physical connectivity for Fiber

Channel, PCI express, Gbit Ethernet, 10G, and more, with

cach 1nterface supporting multiple sub-standard (PClexpress
Genl vs PCI express Gen2, Gbit and 10 Gbit Ethernet MAC/
Link Layer). As a result, a design requiring multi-standard
interface would need to account for all the digital logic asso-
ciated with each protocol/standard, even though not all pro-
tocols are supported with each design implementation.

Si1-Face HPLA, on the contrary, can design a serdes inter-
face so that the programming overhead with the implemen-
tation of the PCS does not have the impact the FPGA or
standard product introduction. A common serdes front end

(PMD plus PMA) can leverage the configurability of a HPLA

(8208) for many or all the above standard, without the penalty
of overhead associated with either duplicating the functions
in a standard product case, or inefliciencies of FPGA with
area and power. The PCS logic may be implemented 1nside
the CoreStack (8207), to address multiple protocols for each
tflavor or version of the device. For example, the BaseStack

(8208) would support protocol templates for 4 channels of

SGMII Gbit Ethernet, or one channel of XAUI 10 Gbit Eth-
ernet or 4-channel PClexpress Gen-2. The PCS layer for this

example can be configured 1nside the CoreStack (8207). (For
example, for Gbit operation, IEEE 802.3 GE MAC protocol,

tor 10 Gbit operation, IEEE XGE MAC protocol plus X AUI,
and for PClexpress, the transaction layer and pipe.) An inter-

face protocol can further be hardened by replacing the
CoreStack (8207) with RDL Layers.

FI1G. 48 illustrates the CoreStack Programming interface.
A HPLA can be configured to logically behave differently,
based on the bit stream 1mage that i1s loaded into the
CoreStack. The bit stream 1image (9000) 1s generally a serial
stream representing how the CoreStack 1s configured to con-
trol the logical behavior of BaseStack. The CoreStack Logic
Image (9005) bit stream 1s stored on a volatile or non-volatile
storage. The storage element can be a shift register that 1s
daisy-chained inside the CoreStack. The Shiit register pro-
vides a parallel output (9006) that drives the CoreStack Logic,
such as Interconnect Switch Fabric, LUT Mesh, etc. The
programming 1nterface (9004) to the CoreStack Logic Image
(9005) may consist of serial data input CSP_Serial_In, serial
data output CSP_Sernal_Out, shift clock CSP_CCLK, and the
latch signal CSP_Latch, to present the bit stream 1mage at the
output of CoreStack Logic Image (9005). There are other

techniques that can implement configurability at the

CoreStack, such as use of Flash or EEPROM technology, as
well as anti-fuse.

A common or standard interface for the CoreStack Pro-
gramming Interface 1s the IEEE JTAG interface (9001). The
JTAG signals (9002) are interfaced to CoreStack Program-
ming Logic, which creates the necessary signals to convert
and store the bit stream 1mage inside the CoreStack Logic
Image (9005).

Appendices A and B also describe some examples of the
invention. Let’s look at some other examples:

FI1G. 49 1llustrates a basic approach 1n demonstrating how
an FPGA logic can be segregated into two parts—BaseStack
(5002) and CoreStack (5001), leveraging HPLA (5011)
MPIF (5000) technique.

For this example, two standard FPGAs are utilized.
FPGA-1 (5001) implements the BaseStack, and FPGA-2
(2002) implements the CoreStack of HPLA, where the inter-
face between the two devices (5005) represents the MPIF. The
main itention for this example 1s to 1llustrate the separation
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between the storage and routing overhead components of a
FPGA from the actual Logic Elements of an FPGA.

The HPLA consists of FPGA1 (5001) and FPGA2(5002).
The mputs to HPLA are via Device Input (5003), and the
outputs for HPLA are through the Device Output (5004). The

interconnects among the Logic Units, Memory Units and
other functional blocks of BaseStack (5002) are implemented

at the CoreStack (5001). The MPIF (5005) signals are the
means ol connecting The BaseStack (5002) to CoreStack

(5001). These signals (5003) through (5010) include, and not
limited to, control signals for BaseStack Logic Umt and
Memory Unit, Device Input and Device Output.

FIG. 50 1llustrates how BaseStack (5109) and CoreStack
(5110) are implemented utilizing two FPGA development
boards (5101) and (5105). The MPIF 1s emulated via a cable
(5103) connecting the two boards. Each board contains a
connector (5102) and (5106) that further connects to FPGAs.

The programming interface for BaseStack 1s via (5108)
and the Device Input and Output are via connector (5107).
The FPGAs (5100) and (5104) are programmed via standard
FPGA tools offered by industry suppliers, such as Xilinx and
Altera or other third party EDA suppliers.

The objective 1s to demonstrate how with an FPGA, the
functional overhead associated to the programming of the
FPGA, be separated from the actual Logic and memory used
for the target application. As an example, to have a FPGA
operate as a 4-bit counter and 2 bit decoder, the logical units
of FPGA need to be configured with an image downloaded
into the FPGA that allocates some logic units for a 4-bit
counter function and other logic units for the 2-bit decoder. In
addition, the interconnect and routing logic inside the FPGA
need to be configured to make the right connection from each
logic unit to the next, to exactly represent the behavior
described for the counter plus decoder. Such overhead 1n the
form of storage and routing impacts the area and power asso-
ciated with an FPGA. By relocating the storage and routing
logic to another device (CoreStack), the FPGA die size can be
reduced. However, the large number of connections between
the two die need to be connected via a massively parallel
Interconnect Fabric (MPIF). The application can continue
configuring the CoreStack, depending on the requirement
changes or bug fixes. The final solution consisting of Bas-
eStack and CoreStack can be shipped for production. Also, a
final solution can consist of the BaseStack being hardened,
where the CoreStack 1s removed and replaced with fixed
routing signal layer(s). Once a device 1s hardened, the con-
figurability aspect of HPLA 1s removed in favor of reduced
cost and power.

FIG. 51 1illustrates the hardening process of the simple
counter and decoder. The BaseStack (5208) 1s hardened by
the process of removing the CoreStack and replacing 1t with
hardening layer (5205). For the example, the routing layers
are emulated by a jumper board (5205), providing the inter-
connects between different BaseStack Logical Blocks, such
as the Logic Unit or Memory Unit.

With this setup, different logic implementation can be cre-
ated and programmed 1n to the CoreStack, and when 1t 1s
required to harden the BaseStack, the jumper board (5205)
would be wired to logically represent the interconnect con-
figuration.

FIG. 52 illustrates the logical block representation of the 4
bit Counter and decoder. A binary counter, for example, can
be constructed by cascading four tlip-flops in to a group
(5300). The Counter (53300) increments by value 1 for each
positive transition of clock edge (5302), while CountE (5303)
or Count Enable 1s asserted. In the event RST signal (3304 ) 1s
asserted, the Counter (5303) 1s reset to binary value 0'b0000
or zero, and stays at this value until deassertion of RST (5304)
and clock (5302) positive transition. With a 4 bit Counter
(5300), there are generally 4 output signals (3306) and
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(5307). Two of the 4 bit Counter (5300) signals (53307) are
connected to another set of BaseStack Logic Units, grouped
as a 2-bit decoder (5301). A 2 bit decoder generally outputs 4
decoded signals (5305). For each decoded signal, a Logic
Unait 1s required to implement the decoding logic. As a result,
total of 4 Logic Units are used to create the 2 bit Decoder

(5301). The imnputs to the 2 bit Decoder (5301) are driven from
the 4-bit Counter (5300). However, only 2 of the 4 output bits
(5307) of the 4 bit Counter are used to implement the decode
logic.

The mput (5302), (3303), and (5304) and output (5308)
and (5306) signals are pins that are driven from the outside,
and are part of the BaseStack. These signals are driven to the
CoreStack, via the MPIF interface.

FIG. 33 illustrates the equations representing the 4 bit
Counter (5400) and 2 bit Decoder (5401). The 4 bit counter
logic 1s made of T-Flip-Flops or Toggle Flops. In this case,
The RST signal, de-asserted, would hold the counter from
incrementing. This signal acts as the CountE signal. The
equation for 4 bit Counter (5400) represents the logic inside
illustration (5300).

The 2 bit Decoder logic (5401) represents the logical block
of (3301). The 1nput to the decoder logic 1s fed from the 4 bit
Counter (5400). The decoder logic 1s simply a 2 bit to 4 bat
decoder.

FI1G. 54 1illustrates Logic Unit level construction of 4 bit
Counter (5500) and 2 bit Decoder (5501), as part of the
BaseStack and all the interconnect, to configure the Logic
Unaits (5502) and (5503) (to behave as a counter and decoder).
With HPL A consisting o both BaseStack and CoreStack, The
Logic Unmts such as (3502) reside in BaseStack, and the
interconnects such as (5504) and (5508) reside as part of the
CoreStack. In this example, The CoreStack needs to provide
the connectivity between all the Logic Units of both the 4 b1t
Counter (5500) and 2 bit Decoder (5501). To create the 4-bit
binary counter, four Logic Units are required, such as LUI]
(5502). These logic units toggle at the clock transition CK1
(5506). The output of the first Logic Unit LU1 (5508) drives
the next Logic Unit(s) (5509), (5510) and (5511), as well as
the 2 bit Counter block. Theretfore, the CoreStack 1s config-
ured to make the routing or switching to this specific inter-

connect feasible.
The output of LU1 (5502) and (5509) drive the 2 bit

Counter Logic Units (3507), (5512), (5513) and (5514). The
two bits, Q0 and Q1, are each decoded to four possible logical

values, such as DO (5505).
In this example, the following behavior would be config-

ured inside the Logic Units (3507), (5512), (5513) and
(5514), by programming the CoreStack:

DO:=100*01
D1:=00*101
D2:=100*01

D3:=00*01
The truth table would look as follows:

QO Q1 DO D1 D2 D3
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1

FI1G. 535 1llustrates 4 bit Counter and 2 bit Decoder logical
connectivity of BaseStack and CoreStack, combined as they
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are on a same die. In the context of HPL A, this figure makes
up both the BaseStack and CoreStack. GLU Block 1 (5602)

and GLU Block 2 (5603) are part of the BaseStack Logic
Unut.

The Mux blocks (5600), (5601), (5604) and (5605) provide
the interconnect functionality resident in CoreStack. This
interconnect routes the input and output of the HPLA device,
as well as the internal Logic Unit connectivity. In order to
provide state based operation, the output of Logic Unit1s fed
back 1nto the Logic Unait, via the Mux block, such as (5600).

FIG. 56A 1illustrates the first stage MUX logic of FIG. 55
(5600). This logic resides at the CoreStack Layer. Since, for
this example, there are 4 Logic Units constructing a 4 bit
counter, there are 4 Logic Unit Mux Logic (7500) through
(5707). The function of Mux Logic 1s to select the signal
teeding the Logic Unit of BaseStack.

Each Logic Unit of BaseStack takes four distinct input
(5701). Signal a, b, ¢ and d referenced as “abcd”. Each signal
can be driven from any of the inputs (5704), driving the Logic
Unit-1 Mux Logic (5700). For example, signal “a” of (5701)
can be connected (or routed or switched) from INO of signal
(5704). Signal “d” of (5701) can be connected to GLUO3 of
(5704). The programming interface to load the image 1n
selecting such connectivity, as described, 1s via the program-
ming interface (5705). The image holding the configuration
for the switch state 1s held inside the Logic Image Storage
(5703). The Logic Image Storage can be constructed with a
long chain of shift-latch registers. In the example of 4 bit
Counter, 16 select bits (5706) are required for each Logic
Unit. Total o1 64 bits required to hold the image for this Logic
Unit configuration.

Signals INO:5 and GINO:1 of (5704) are driven from the
HPLA device input. GMO 0:3 and GLUO:3 are signals that
are driven from the output of Logic Units and other BaseStack
blocks.

FIG. 56B illustrates the construction of Logic Unit-1 MUX
Logic (5700). Each MUX Logic would contain 4 muxes
(5710). Each MUX Logic output (5712) drives one of the 4
input signals of the BaseStack Logic Unit. The select signals
(5715) holding the state of MUX Logic 1s driven from the
Logic Image Storage (5703), such as (5706).

Any variations of the above teaching are also intended to be
covered by this patent application.

The invention claimed 1s:
1. A semiconductor device structure with multiple die
assembly comprising:

a programmable semiconductor die substrate; and

a context die substrate;

said programmable semiconductor die substrate comprises
multiple logic blocks;

said context die substrate 1s tlipped on said programmable
semiconductor die substrate;

said multiple logic blocks of said programmable semicon-
ductor die substrate are electrically connected at transis-
tor level or logic gate level, with wirebondless and
bumpless electrical connections, via said context die
substrate, through pads of a multiple parallel 1ntercon-
nect fabric;

said context die substrate implements a custom application
of said semiconductor device by using said multiple
logic blocks via electrical connections through pads of
said multiple parallel interconnect fabric to said multiple
logic blocks;

a programming 1nterface;

wherein said programming interface 1s located on opposite
surface from flipped surface of said context die sub-
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strate, so that after connection, said context die substrate
1s programmed through said programming interface;

wherein said context die substrate comprises program-
mable switches that electrically connect pads on said
context die substrate, causing electrical connection
between gates and transistors, in logic blocks, on said
programmable semiconductor die substrate;

wherein said programmable semiconductor die substrate

comprises a plattorm fabric input-output;

wherein said platform fabric iput-output provides input
and output for specific purpose function of serializer and
deserializer functional blocks, to convert data between
serial data and parallel interfaces in each direction for
communications;

wherein said multiple parallel interconnect fabric 1s

located at center of said context die substrate, away from
periphery of said context die substrate.

2. The semiconductor device structure as recited in claim 1,
wherein said device structure comprises a core stack.

3. The semiconductor device structure as recited in claim 1,
wherein said device structure comprises a base stack.

4. The semiconductor device structure as recited in claim 1,
wherein said device structure comprises a redistribution or
metal layer.

5. The semiconductor device structure as recited in claim 1,
wherein a programming 1s done through an interconnect
switch fabric residing on said context die substrate.

6. The semiconductor device structure as recited inclaim 1,
wherein a programming 1s done through a programming
interface 1n said context die substrate.

7. The semiconductor device structure as recited in claim 1,
wherein an interconnect switch fabric comprises pads, metal
layers, vias, MUXes, switches, and redistribution layers.

5

10

15

20

25

30

36

8. The semiconductor device structure as recited in claim 1,
wherein said device structure comprises more than one redis-
tribution or metal layers.

9. The semiconductor device structure as recited in claim 1,
wherein said device structure comprises separated fabric.

10. The semiconductor device structure as recited 1n claim
1, wherein said device structure comprises separated pro-
gramming memory.

11. The semiconductor device structure as recited 1n claim
1, wherein said device structure comprises separated logic.

12. The semiconductor device structure as recited 1n claim
1, turther comprising a customizable interconnect switch.

13. The semiconductor device structure as recited 1n claim
12, wherein said customizable interconnect switch 1s a MUX.

14. The semiconductor device structure as recited 1n claim
1, further comprising a field programmable interconnect
switch.

15. The semiconductor device structure as recited 1n claim
14, wherein said field programmable interconnect switch 1s
based on direct-bonding.

16. The semiconductor device structure as recited 1n claim
1, wherein each of first multiple logic blocks comprises one or
more logic elements.

17. The semiconductor device structure as recited 1n claim
16, wherein said one or more logic elements comprise com-
binational logic or lookup table.

18. The semiconductor device structure as recited 1n claim
16, wherein said one or more logic elements comprise a
clocked flip-tlop.

19. The semiconductor device structure as recited 1in claim
1, wherein said device structure comprises a hardened redis-
tribution layer.
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