US009021187B2
12 United States Patent (10) Patent No.: US 9,021,187 B2
Sela et al. 45) Date of Patent: Apr. 28, 2015
(54) LOGICAL BLOCK ADDRESS REMAPPING 12/0646; GO6F 12/1009; GO6F 12/0292;
GO6F 2212/1024; GO6F 2212/1044; GO6F
(71) Applicants: Rotem Sela, Haifa (IL); Aviad Zer, Kiar 2212/214: GOGF 2212/7201

Vradim (IL) See application file for complete search history.

(72) Inventors: Rotem Sela, Haifa (IL); Aviad Zer, Kiar (56) References Cited

Vradim (IL)

_ U.S. PATENT DOCUMENTS
(73) Assignee: SanDisk Technologies Inc., Plano, TX

(US) 2008/0307192 Al 12/2008 Sinclair et al.
2009/0055620 Al 2/2009 Feldman et al.
(*) Notice: Subject to any disclaimer, the term of this 2010/0312983 Al 12/2010 Moon et al.
patent 1s extended or adjusted under 35 38 :1; 8 é égﬁg i . 18? 38 :1; ESEH et al. U103
1 1 1 ALl .
U.5.C. 154(b) by 275 days. 2014/0173178 Al* 6/2014 Schwartz 711/103
(21) Appl No.: 13/753,144 * c1ted by examiner
(22) Filed: Jan. 29, 2013 Primary Examiner — Hal Schnee
_ o (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
(65) Prior Publication Data
US 2014/0215125 A1 Jul. 31,2014 (57) ABSTRACT
A method and system 1s disclosed that remaps logical block
(51) Int. CI. addresses (LBAs) for defragmentation that 1s managed at the
Goor 12/02 (2006.01) storage device level. The remapping may include sequentially
(52) US. CL remapping LBAs where individual files are remapped so that
CPC ... GOoOL 12/0246 (2013.01); GO6L" 12/0253 cach file 1s referenced by sequential LBAs. The remapping of

(2013.01); GOot 2212/7201 (2013.01); GO6F [LLBAs may be performed without changes to the physical
12/0292 (2013.01) Jocation of data.

(58) Field of Classification Search

CPC GO6F 12/0246; GO6F 12/0253; GO6F 22 Claims, 5 Drawing Sheets
L EBAYON
Physical [::: B EBACEE LD
Block 1 FTUBAA2. .
dicinn EBAEE

X HIBRATTTE
SRR 1 =T - IR Physlical

Block 2
504 el ,.
W R
|
Physical [/ ,ﬁﬁ&fﬁ@zgﬁf
il 5.5
" ;" ;?’ i;.-* /:::a" :

'''''''''''''''''''''''''''''''''''

1.;._.|.;.1. ‘1'1'1‘1':‘

Physical ------
Block 1

Physical L
Block 2

Ph sical . SEESERRERER M v ¥ - W AR,
Blgcks Fh}*SIcEI;',"j;""""""'

Block 1

Physical [vo
Block 2 |

Physical |-~
Block 4 |

|~
F'hyslcal
Block 3

Physical
Block 4 |

U.S. Patent

108

110

113

Apr. 28, 2015 Sheet 1 of 5

Applications
Host File
SYSIGHI _/_1 14

..—"I""-

Driver

Y

106

116

T~ 104

—t

Y

Host Interface &
Memory Controller

Front End

Controller Firmware

Flash Mgmt.

FIM

I
e
I
I

Flash Memory

<+——1]00
Host System

US 9,021,187 B2

Memory System
102
122
124
126
128

Figure 1

US 9,021,187 B2

Sheet 2 of S

Apr. 28, 2015

U.S. Patent

I Imda
- PO PIJRIZIIU]
31C Id[[00uo)
QORJIU]
1SOYH

91

ClC
\R e WOY
)4 7 NV oPO)
¢ 1l N|\ 1004

c0¢

|

4 10SS900.1]

QORI
AJOWIIIN

90¢ 14014

7 9InD1-

S~

U.S. Patent

310

402

312

PO

ARSI,

Apr. 28, 2015

Sheet 3 of 5

304 306— 320
f 314 _\

US 9,021,187 B2

318 /—308

Figure 3

314\
PO PO

SN N o I i
AR R AR
53 P3
P4 P4
PS
56 P6
57 P7

Figure 4

U.S. Patent Apr. 28, 2015 Sheet 4 of 5 US 9,021,187 B2

Figure 5 —

Physical |::::::::

% e e A

Block 1 [~ ScaSiiies

FPhysical
Block 2

Physical
Block 3

::;f;'_'.'_;‘_:.f." -L'__t:‘_itifi'_;f;T:-T Phy5|ca|
Block 4

Physical
Block 1

T o X7 VY I . T < & X, .
ki BAZ20n] L ae £ Physical
S L Block 5

Physical [y 40

CooEBAA4

m ;.-E"" .-E""l
A <y

L

It -:F"- L e | L . .y
- S K- ¥ i o _5? aF = ik O
I1 : : + I R
P SI a | 4 .-\.-"":Tx -\.-"'??H. -’f & & H .-\.-"'{ ﬂ 4 ‘ el . < v"ETxﬁ -.'“5? . 1_‘::' -'."::': . -'."F'r o @
C s i{x‘ f,.-:“ L] : W L B A A "x\
LA s ' c #""‘;

Physical

Block 3 [Ny

Physical
Block 2

Fhysical
Block 4

Physical
Block 3

Physical
Block 4

U.S. Patent Apr. 28, 2015 Sheet 5 of 5 US 9,021,187 B2

Figure 6

50 ldentify one or more files
604
Recelive a list of logical block addresses (LBAs) for the files

006 Analyze the data and fragmentation of the LBAs for the files

603 Generate an LBA pair (old LBA, new LBA) for each block to be
remapped

610 Remapping LBAs for each file so each file’s LBAs are

sequential w/o changing physical locations

01
Perform garbage collection

US 9,021,187 B2

1
LOGICAL BLOCK ADDRESS REMAPPING

TECHNICAL FIELD

This application relates generally to memory devices.
More specifically, this application relates to sequentially

remapping logical block addresses 1n reprogrammable non-
volatile semiconductor tlash memory.

BACKGROUND

Non-volatile memory systems, such as flash memory, have
been widely adopted for use 1in consumer products. Flash
memory may be found in different forms, for example in the
form of a portable memory card that can be carried between
host devices or as a solid state disk (SSD) embedded 1n a host
device. When writing data to a conventional flash memory
system, a host typically writes data to, and reads data from,
addresses within a logical address space of the memory sys-
tem. The memory system then commonly maps data between
the logical address space (e.g. a logical block address (LBA))
and the physical blocks or metablocks of the memory, where
data 1s stored 1n fixed logical groups corresponding to ranges
in the logical address space. The host keeps track of the LBAs
of i1ts data files within the logical address space and the
memory system may operate without knowledge of this map-
ping.

A drawback of memory systems that operate 1n a logical
address space 1s fragmentation. Data written by a host file
system may often be fragmented in logical address space,
where many fixed logical groups are only partially updated
with new data. The fragmentation may occur as a result of
cumulative fragmentation of free space by the host file sys-
tem, and possibly even as a result of inherent fragmentation of
individual files by the host file system. When a memory
device 1s fully fragmented, 1n order to improve performance
the host may need to perform disk defragmentation 1n which
the host reads the disk and re-writes each file 1n a sequential
manner. The performance of a memory system may be
degraded by increased fragmentation and frequent disk
defragmentation. Disk defragmentation may be a long pro-
cess that results 1n tlash wear out and requires significant
time/resources. Accordingly, hosts may refraimn from per-
forming defragmentation to avoid poor performance. Soit-
ware solutions to more efficient defragmentation may occur
at the file system level when a user schedules a time which the
defragmentation software would run.

SUMMARY

Defragmentation that 1s managed at the storage device
level may be more efficient and require fewer resources than
soltware solutions at the file system level. The device per-
forms a remap, which may be a faster operation than the host
reading and re-writing the data as part of a full defragmenta-
tion. The remapping may include sequentially remapping
logical block addresses (LBAs). Individual files may be
remapped so that each file 1s referenced by sequential LBAs.
The remapping of LBAs may be performed without changes
to the physical location of data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a host connected with a
memory system having non-volatile memory.

FIG. 2 1s a block diagram of an exemplary flash memory
system controller for use 1n the system of FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 illustrates an example physical memory organiza-
tion of the system of FIG. 1.

FIG. 4 shows an expanded view of a portion of the physical
memory of FIG. 3.

FIG. 5 1s an 1illustration of remapping logical block
addresses.

FIG. 6 1s a tlow chart 1llustrating a remapping process.

DESCRIPTION OF THE PRESENTLY
PREFERRED EMBODIMENTS

A flash memory system suitable for use 1n implementing
aspects of the invention 1s shown 1n FIGS. 1-2. A host system
100 of FIG. 1 stores data into and retrieves data from a flash
memory 102. The flash memory may be embedded within the
host, such as i the form of a solid state disk (SSD) drive
installed i a personal computer. Alternatively, the memory
102 may be 1n the form of a flash memory card that 1s remov-
ably connected to the host through mating parts 104 and 106
ol a mechanical and electrical connector as 1llustrated 1n FIG.
1. A flash memory configured for use as an internal or embed-
ded SSD drive may look similar to the schematic of FIG. 1,
with one difference being the location of the memory system
102 internal to the host. SSD drives may be 1n the form of
discrete modules that are drop-in replacements for rotating
magnetic disk drives.

Examples of commercially available removable flash
memory cards include the CompactFlash (CF), the MultiMe-
diaCard (MMC), Secure Digital (SD), miniSD, Memory
Stick, SmartMedia, TransFlash, and microSD cards.
Although each of these cards may have a unique mechanical
and/or electrical interface according to 1ts standardized speci-
fications, the flash memory system included 1n each may be
similar. These cards are all available from SanDisk Corpora-
tion, assignee of the present application. SanDisk also pro-
vides a line of flash drives under 1ts Cruzer trademark, which
are hand held memory systems 1n small packages that have a
Universal Serial Bus (USB) plug for connecting with a host
by plugging into the host’s USB receptacle. Each of these
memory cards and tlash drives includes controllers that inter-
face with the host and control operation of the flash memory
within them.

Host systems that may use SSDs, memory cards and tlash
drives are many and varied. They include personal computers
(PCs), such as desktop or laptop and other portable comput-
ers, tablet computers, cellular telephones, smartphones, per-
sonal digital assistants (PDAs), digital still cameras, digital
movie cameras, and portable media players. For portable
memory card applications, a host may include a built-in
receptacle for one or more types of memory cards or flash
drives, or a host may require adapters into which a memory
card 1s plugged. The memory system may include its own
memory controller and drivers but there may also be some
memory-only systems that are instead controlled by software
executed by the host to which the memory 1s connected. In
some memory systems containing the controller, especially
those embedded within a host, the memory, controller and
drivers are often formed on a single integrated circuit chip.

The host system 100 of FIG. 1 may be viewed as having
two major parts, insofar as the memory 102 1s concerned,
made up of a combination of circuitry and software. They are
an applications portion 108 and a driver portion 110 that
interfaces with the memory 102. There may be a central
processing unit (CPU) 112 implemented 1n circuitry and a
host file system 114 implemented 1n hardware. In a PC, for
example, the applications portion 108 may include a proces-
sor 112 running word processing, graphics, control or other

US 9,021,187 B2

3

popular application software. In a camera, cellular telephone
or other host system 114 that 1s primarily dedicated to per-
forming a single set of functions, the applications portion 108
includes the software that operates the camera to take and
store pictures, the cellular telephone to make and receive
calls, and the like.

The host system 100 may be referred to as a front end,
while the tlash memory 116 may be referred to as a back end.
The controller 118 interfaces with both the front end (host
100) and the back end (memory 116).

The memory system 102 of FIG. 1 may include non-vola-
tile memory, such as flash memory 116, and a system con-
troller 118 that both interfaces with the host 100 to which the
memory system 102 1s connected for passing data back and
torth and controls the memory 116. The system controller 118
may convert between logical addresses of data used by the
host 100 and physical addresses of the flash memory 116
during data programming and reading. Functionally, the sys-
tem controller 118 may include a front end 122 that interfaces
with the host system, controller logic 124 for coordinating
operation of the memory 116, and flash management logic
126 for internal memory management operations. There may
also be one or more flash interface modules (FIMs) 128 or
memory 1nterfaces to provide a communication interface
between the controller with the flash memory 116.

The system controller 118 may be implemented on a single
integrated circuit chip, such as an application specific inte-
grated circuit (ASIC) such as shown 1n FIG. 2. The processor
206 of the system controller 118 may be configured as a
multi-thread processor capable of communicating via a
memory interface 204 having I/0 ports for each memory bank
in the flash memory 116. The system controller 118 may
include an mternal clock 218. The processor 206 communi-

cates with an error correction code (ECC) module 214, a
RAM builter 212, a host intertace 216, and boot code ROM

210 viaaninternal databus 202. The RAM 212 may be a static
random-access memory (“SRAM”) in which a compaction
bitmap 1s stored. The bitmap may be generated and stored in
SRAM and may be discarded after 1t 1s used for transferring
data from a source block to a destination block. The ROM 210
may be used to mnitialize a memory system 102, such as a tlash
memory device. The memory system 102 that 1s mnitialized
may be referred to as a card. The host interface 216 may
provide the data connection with the host.

FIG. 3 conceptually illustrates an organization of the flash
memory cell array 112 (FIG. 1). The flash memory cell array
112 may include multiple memory cell arrays which are each
separately controlled by a single or multiple memory control-
lers 114. Four planes or sub-arrays 302, 304, 306, and 308 of
memory cells may be on a single integrated memory cell chip,
on two chips (two of the planes on each chip) or on four
separate chips. The specific arrangement 1s not important to
the discussion below. Other numbers of planes, such as 1, 2,
8, 16 or more may exist in a system. The planes are individu-
ally divided into groups of memory cells that may form the
minimum unit of erase, hereinalter referred to as blocks.
Blocks of memory cells are shown 1n FIG. 3 by rectangles,
such as blocks 310, 312, 314, and 316, located 1n respective
planes 302, 304, 306, and 308. There can be any number of
blocks 1n each plane. As discussed below, the physical loca-
tions of the memory blocks may be 1dentified by a mapping,
such as the logical to physical mapping and each block may
be 1dentified by a logical block address (LBA).

As mentioned above, the block of memory cells 1s the unit
of erase, the smallest number of memory cells that are physi-
cally erasable together. For increased parallelism, however,
the blocks are operated 1n larger metablock units. One block

10

15

20

25

30

35

40

45

50

55

60

65

4

from each plane 1s logically linked together to form a meta-
block. The four blocks 310, 312, 314, and 316 are shown to

form one metablock 318. All of the cells within a metablock

may be erased together. The blocks used to form a metablock
need not be restricted to the same relative locations within

their respective planes, as 1s shown 1n a second metablock 320

made up of blocks 322, 324, 326, and 328. Although it 1s
usually preferable to extend the metablocks across all of the
planes, for high system performance, the memory system can
be operated with the ability to dynamaically form metablocks
of any or all of one, two or three blocks 1n different planes.
This allows the size of the metablock to be more closely
matched with the amount of data available for storage in one
programming operation.

The individual blocks are 1n turn divided for operational
purposes into pages ol memory cells, as 1llustrated in FI1G. 4.
FIG. 4 shows an expanded view of a portion of the physical

memory of FIG. 3. The memory cells of each of the blocks
310, 312, 314, and 316, for example, are each divided into
cight pages P0-P7. Alternatively, there may be 16, 32 or more
pages of memory cells within each block. The page 1s the unit
of data programming and reading within a block, containing
the mimmum amount of data that are programmed or read at
one time. However, in order to increase the memory system
operational parallelism, such pages within two or more
blocks may be logically linked into metapages. A metapage
402 1s 1llustrated 1n FI1G. 4, being formed of one physical page
from each of the four blocks 310, 312, 314, and 316. The
metapage 402, for example, includes the page P2 in each of
the four blocks but the pages of a metapage need not neces-
sarily have the same relative position within each of the
blocks. The mapping including the LBAs may refer to
metapages.

Instead of reading data out of the storage device and writ-
ing 1t sequentially 1n a new location (LBA), the host may use
the remapping described herein. This remapping may be pro-
vided by the storage device. The host sends a listof LBA pairs
(Current LBA, New LBA) through the storage device. The
LBA pair may 1dentily a particular LBA (Current LBA) and
the LBA thatitis remapped to (New LBA). The LBA pair may
further identity a range of blocks that are remapped (Range of
current LBA, Range of new LBA). In other words, the “pair”
may be more than just a pair of blocks when 1t identifies the
current and new mapping for more than one block. The
memory device re-maps the current LBA to the new LBA
without actually copying the data or changing the physical
location of that data.

In a back end system which maps a physical block to
several discontinuous LBA addresses and performs optimi-
zations over this table, remapping may be an efficient process
that does not require significant processing. Full defragmen-
tation may result 1n sequential or continuous LBA addresses,
but 1t also requires changes to the physical locations of the
data. In full defragmentation (in which the host reads all data
and rewrites that data) the data 1s stored sequentially in the
physical memory. The remapping changes the LBA table, so
that individual files have sequential or continuous LBA
addresses for each file. However, the remapping does not
result 1n the data being stored sequentially in the physical
memory. FIG. Sillustrates the differences between the remap-
ping and a full defragmentation.

FIG. 5 1s an 1illustration of remapping logical block
addresses. FIG. 3 illustrates the remapping of four physical
blocks 1n a fragmented state 506. The blocks 1n the frag-
mented state 506 store data from two files: File A 502 and File
B 504. Each of the four physical blocks includes a mix of data

US 9,021,187 B2

S

from File A and File B. For example, physical block 1
includes LBA 11 and LBA 17 from File A and includes LBA

18 and LBA 10 from File B.

A full defragmentation 1s 1llustrated 1n the full defragmen-
tation state 508. As shown with the full defragmentation state
508, the two files are not only remapped so that the LBAs for
cach file are sequential, but the physical locations of the data
are copied so that the physical storage of the blocks 1s sequen-

tial. Accordingly, the full defragmentation state 508 illus-
trates File A being stored as LBA 10-14 in Physical Blocks

1-2 and File B being stored as LBA 15-25 1n Physical Blocks
3-5. This full defragmentation may require significant time
and resources to read and re-write all the blocks to sequential
physical blocks.

The remapping 1s illustrated 1n the remapping state 510 and
may be referred to as remap defragmentation. The remapping,
state 510 remaps the LBAs so that the LBAs for individual
files are sequential without changing the physical locations.
Accordingly, the remapping state 510 1s identical to the frag-
mented state except the LBAs have been remapped. In par-
ticular, File A 1s remapped to LBA 10-14, while File B 1s
remapped to LBA 15-25. In alternative embodiments, the
range of the LBAs for the Files may be different (for example
starting at LBA 01), but should be sequential. The LBAs
between different files does not need to be continuous as long,
as the LBAs for each file are sequential. In other words, File
B could be remapped to LBA 16-26 (rather than LBA 15-25)
or any other range that does not overlap with already used
L.BAs as long as File B 1s remapped to sequential LBAs.

The remapping shown in FI1G. 5 may be generated based on
LBA pairs that map from a current LBA to a new LBA. The
remapping may be developed by the host and implemented by
the storage device. In other words, the host may select the
LBA pairs. For the example in FIG. 5§ the LBA remapping for
File A 1s shown 1n Table 1:

TABL.

1

(L]

Remapping Pairs For File A

Current LBA New LBA

o T =N SR (N T
2 O O — D D

Table 2 1llustrates the remapping of File B:

TABL.

(L]

2

Remapping Pairs For File B

Current LBA New LBA
18 19
10 15
16 18
34 16
15 17
19 20
24 23
33 25
26 24

The generation of the remapping pairs 1s used to remap a
fragmented file into a continuous and sequential LBAs for all
blocks 1n the file. As described, the logical addresses are
remapped while the physical location of the blocks 1s not

10

15

20

25

30

35

40

45

50

55

60

65

6

changed. The blocks may remain fragmented 1n the physical
memory aiter remapping, but the logical addresses (LBAs)
are not fragmented and are sequential for each file.

FIG. 6 1s a flow chart 1llustrating a remapping process. In
particular, FIG. 6 further 1llustrates the remapping operation
described with respect to FIG. 5. In block 602, files are
identified including the memory blocks or data that make up
that file. In block 604, a list of those memory blocks 1s
retrieved and 1ncludes all the LBAs that map to the physical
location of the blocks/data that make up the file. In block 606,
the files and their blocks/data 1s analyzed to 1dentily defrag-
mentation of the logical address space for each file. Based on
this analysis, an LBA pair 1s generated for each block to be
remapped as i block 608. In particular, in order to remap a
particular file into continuous/sequential logical addresses,
some of the old LBAs may be remapped into new LBAs. The
LBA pair may merely be (Old LBA, New LBA) for each
block or other unit of data that 1s to be remapped. In block 610,
the old LBAs are remapped so that each {file has sequential
L.BAs without changing the physical location for the blocks.

In block 612, another operation may be performed on the
remapped data, such as garbage collection. Garbage collec-
tion 1s merely one example, of an operation that 1s improved
because the blocks for each file are logically addressed
sequentially. In particular, sequential logical addresses may
improve the speed of garbage collection operations. In par-
ticular, the sequential logical addresses may allow the file to
be accessed 1n a single read command (1.e. sequential read)
rather than multiple reads if the logical addresses for a file
were not continuous or sequential. The garbage collection
operation will require fewer operations and commands (e.g.
fewer reads) when the files are sequential addressed 1n the
logical space. In particular, 1f a file 1s sequential on the LBA
side, the garbage collection could make it sequential on the
physical side. Accordingly, the remapping followed by gar-
bage collection may result 1n the file being sequential on the
logical side of the LBA address and on the physical side of the
flash blocks. The garbage collection may be performed as a
background operation after the remapping.

The remapping may improve a number of times that the
device performs garbage collection. The device may eventu-
ally (through background operations) update the physical
blocks of data to the LBA so that the files may be sequential
at the physical level. It may also increase the write command
performance since the data would be placed 1n a complete
physical block. In addition, the host may not have to 1ssue
many read or write commands to access a single file, and 1t
may be able to use a single command. In addition, the amount
of blocks which are partially programmed may be minimized
which may help tlash management by reducing the size of the
management tables and seek times. In addition, the “write
amplification factor” which 1s the amount of data a flash
controller has to write 1n relation to the amount of data that the
host controller wants to write (due to any internal copying of
data from one block to another block) would decrease.

In one embodiment, the device may inform the host of a
minimum granularnty for the remapping process described
herein. The mimimum granularity may be the smallest size of
data for which the remap process 1s triggered. For example,
cach LBA may be a byte or sector (e.g. 512 bytes or 4 kilo-
bytes), and the remap may be set for a minimum number of
L.BAs, such as ten sectors, 1n one example. The host may not
do a remap for each sector, and may remap only for the
minimum amount of sectors. This may reduce the number of
L.LBAs 1n the logical to physical table. This minimum size or
minimum granularity may be part of an existing command or
may be a new command by the device to the host.

US 9,021,187 B2

7

In alternative embodiments, only the host may know about
files and the identification. There may be an indication of files
that is then used by the device for separating files into physical
blocks. The device may reorder LBAs based on a sequence
without knowledge of the files, but the file indication may be
used for storing 1n physical blocks. A defragmentation pro-
cess may occur whenever a file 1s deleted. The deletion of a
file may trigger the host to defragment the files. This defrag-
mentation may result 1 all files being contiguously stored.
Likewise, there may be other triggers for defragmentation.

A “computer-readable medium,” “machine readable
medium,” “propagated-signal” medium, and/or “signal-bear-
ing medium” may comprise any device that includes, stores,
communicates, propagates, or transports software for use by
or 1n connection with an instruction executable system, appa-
ratus, or device. The machine-readable medium may selec-
tively be, but not limited to, an electronic, magnetic, optical,
clectromagnetic, inirared, or semiconductor system, appara-
tus, device, or propagation medium. A non-exhaustive list of
examples of a machine-readable medium would include: an
clectrical connection “electronic” having one or more wires,

a portable magnetic or optical disk, a volatile memory such as
a Random Access Memory “RAM”, a Read-Only Memory

“ROM”, an Erasable Programmable Read-Only Memory
(EPROM or Flash memory), or an optical fiber. A machine-
readable medium may also include a tangible medium upon
which software 1s printed, as the software may be electroni-
cally stored as an image or 1n another format (e.g., through an
optical scan), then compiled, and/or interpreted or otherwise
processed. The processed medium may then be stored 1n a
computer and/or machine memory.

In an alternative embodiment, dedicated hardware imple-
mentations, such as application specific integrated circuits,
programmable logic arrays and other hardware devices, can
be constructed to implement one or more of the methods
described herein. Applications that may include the apparatus
and systems of various embodiments can broadly include a
variety of electronic and computer systems. One or more
embodiments described herein may implement functions
using two or more specific interconnected hardware modules
or devices with related control and data signals that can be
communicated between and through the modules, or as por-
tions of an application-specific integrated circuit. Accord-
ingly, the present system encompasses soltware, firmware,
and hardware implementations.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the various embodiments. The illustrations are not
intended to serve as a complete description of all of the
clements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill 1n the art upon
reviewing the disclosure. Other embodiments may be utilized
and derived from the disclosure, such that structural and
logical substitutions and changes may be made without
departing from the scope of the disclosure. Additionally, the
illustrations are merely representational and may not be
drawn to scale. Certain proportions within the illustrations
may be exaggerated, while other proportions may be mini-
mized. Accordingly, the disclosure and the figures are to be
regarded as 1llustrative rather than restrictive.

We claim:

1. A method for remapping in a memory system having
blocks stored 1n non-volatile storage and a controller in com-
munication with the non-volatile storage, the method com-
prising:

5

10

15

20

25

30

35

40

45

50

55

60

65

8

determiming an indication of a minimum size of data stored
in fragmented blocks that each have a logical block
address (LBA); and

recerving, based on the minimum size, a mapping of the
LBA for each of the fragmented blocks so LBAs for each
of one or more files are sequential; and

remapping the LBAs without changing physical addresses
of data associated with the LBAs.

2. The method of claim 1 wherein the receiving is by the

controller from a host.
3. The method of claim 2 wherein the recetved mapping
comprises an LBA pair for each LBA to be remapped,
wherein each LBA pair comprises a current LBA to be
remapped and a new LBA that the current LBA 1s mapped to.
4. The method of claim 1 wherein the determining the
indication 1s by another module in the memory system which
1s responsible for managing a file system.
5. The method of claim 4 wherein the memory system can
power-up alter remapping so that a host can read a new
updated logical to physical address table based on the
received mapping.
6. The method of claim 1 wherein the memory comprising
non-volatile storage includes a flash memory or a solid state
memory.
7. The method of claim 1 further comprising;:
performing a garbage collection operation after the remap-
ping, wherein a number of garbage collection read com-
mands are minimized because each of the one or more
files includes sequential LBAs.
8. The method of claim 7 wherein the garbage collection
operation physically aggregates data on physical blocks
according to the sequential LBAs from the remapping.
9. The method of claim 1 further comprising;:
recerving a command from a host to perform physical
aggregation of data on physical blocks according to the
sequential LBAs from the remapping.
10. A memory system comprising:
a non-volatile storage having an array of memory blocks
storing data that 1s associated with logical block
addresses (LBAs); and
a controller in communication with the blocks, the control-
ler configured to:
determine an indication of fragmented data that com-
prises one or more files, wherein the one or more files
are stored 1n the memory blocks and are fragmented
based on their LBAs, wherein the indication includes
a minmimum size of the fragmented data;

receive a list of LBA pairs that provides a new LBA for
cach LBA of the one or more files such that the new
L.BAs for each of the one or more {files are sequential;
and

remap, in response to the list and based on the minimum
size, the LBAs for each of the one or more files

to the new LBAs without changing physical addresses of
data associated with the LBAs.

11. The memory system of claim 10 wherein the list 1s
provided by a host and the host identifies the one or more files.

12. The memory system of claim 10 wherein the LBA pairs
comprises one or more blocks, further wherein the LBA pairs
can include a range of blocks.

13. The memory system of claim 10 wherein the frag-
mented data comprises non-sequential LBAs for each of the
one or more files.

14. The memory system of claim 10 wherein each LBA
identifies a physical block.

15. The memory system of claim 10 wherein the remap
generates a new copy of a logical to physical table, further

US 9,021,187 B2
9

wherein an old copy of the logical to physical table 1s stored
in case of a power failure during an update.

16. A method for operating a memory system comprising a
non-volatile storage device having a controller and blocks of
memory, the method comprising: 5

receiving a list of logical block address pairs for remap-
ping logical block addresses for files, wherein each of
the files comprises data referenced by the logical
block addresses; and
remapping the logical block addresses based on the list 10
of logical block address pairs without changing a
physical location of the data referenced by the logical
block addresses, wherein the remapping changes the
logical block addresses to be sequential for each of the
files. 15

17. The method of claim 16 wherein the remapping
changes the logical block addresses to combine each file into
sequential blocks.

18. The method of claim 16 wherein the list oflogical block
address pairs 1s received from a host. 20
19. The method of claim 18 wherein the list of logical block

address pairs includes a range of values that are remapped.

20. The method of claim 16 wherein each logical block
address pair 1n the list of logical block address pairs com-
prises an original logical block address and a corresponding 25
new logical block address.

21. The method of claim 20 wherein the remapping com-
prises remapping each original logical block address to the
corresponding new logical block address.

22. The method of claim 16 wherein the remapping occurs 30
alter each of the files are deleted.

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

