United States Patent

US009015724B2

(12) (10) Patent No.: US 9,015,724 B2
Druyan 45) Date of Patent: Apr. 21, 2015
(54) JOB DISPATCHING WITH SCHEDULER gaigéagg E%: 2%85 ?ldIlgh BT 77005%6?1
RECORD UPDATES CONTAINING O _ urekliet al. ..o |
CHARACTERISTICS COMBINATIONS OF S onoaocl Al Ties Romagnoli
2004/0024847 Al 2/2004 Smith
JOB CHARACTERISTICS 2006/0070073 A 3/2006 Maeda et al.
‘ 2007/0074217 Al 3/2007 Rakvic et al.
(75) Inventor' Alexander Druyan3 BrOOklynj NY (US) 2008/0184250 A 2k 7/2008 H&m.‘:ldl et al‘ ““““““““ 718/104
| _ _ _ 2009/0064151 Al 3/2009 Agarwal et al.
(73) Assignee: International Business Machines 2011/0041136 A1* 2/2011 Messier etal. 718/105
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Dafe1 Yin-et al.; “Utility Based Query Dissemination in Spatial Data
patent is extended or adjusted under 35 Grid”; INSPEC/IEEE; pp. 559-566; 2008 Summary Only.
U.S.C. 154(b) by 1291 days. Van Reeuwijk-; “Maestro: A Self-Organizing Peer-to-Peer Dataflow
Framework Using Reinforcement Learning”; ACM Digital Library;
(21) Appl. No.: 12/564,964 pp. 187-200; Jun. 11-13, 2009.

(22)

(65)

(1)

(52)

(58)

(56)

Filed: Sep. 23, 2009

Prior Publication Data

US 2011/0072437 Al Mar. 24, 2011

Int. Cl.

GOoF 9/46 (2006.01)

GOoF 9/50 (2006.01)

U.S. CL

CPC e, Goo6F 9/505 (2013.01)
Field of Classification Search

CPC combination set(s) only.
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,112,221 A 8/2000 Bender et al.

6,311,219 B1 10/2001 Factor

6,374,297 Bl 4/2002 Wolf et al.

6,578,005 Bl 6/2003 Lesaint et al.

6,675,189 B2 1/2004 Rehg et al.

7,058,946 B2 6/2006 Acharya et al.

7,082,607 B2 7/2006 Lake et al.

7,165,252 Bl 1/2007 Xu

7,305,475 B2 12/2007 Tock

7.441,241 B2* 10/2008 Dawsonetal. 718/102
7444638 B1 10/2008 Xu

7458,031 B2 11/2008 Aamondt et al.

RE41,705 E * 9/2010 Durandetal. 718/104

100 _f‘ Job Queue \ 102
e

| Network Adapter |

Job Scheduler

106 _ [[CPY

Forman-et al.; “Scaling Up Text Classification for Large File Sys-
tems”; ACM Digital Library: pp. 239-252; Aug. 24-27, 2008.

* cited by examiner

Primary Examiner — Eric C Wai

(74) Attorney, Agent, or Firm — Thomas E. Tyson; Parashos
Kalaitzis

(57) ABSTRACT

The present invention provides a method, program product,
and information processing system that efficiently dispatches
j0bs from a job queue. The jobs are dispatched to the compu-
tational nodes 1n the system. First, for each job, the number of
nodes required to perform the job and the required computa-
tional resources for each of these nodes are determined. Then,
for each node required, a node is selected to determine
whether a job scheduler has a record indicating 11 this node
meets the required computational resource requirement. If no
record exists, the job scheduler analyzes whether the node
meets the computational resource requirements given that
other jobs may be currently executing on that node. The result
of this determination 1s recorded. If the node does meet the
computational resource requirement, the node 1s assigned to
the job. If the node does not meet the resource requirement, a
next available node 1s selected. The method continues until all
required nodes are assigned and the job 1s dispatched to the
assigned nodes. Alternatively, 1f the number of required nodes
1s not available, 1t 1s indicated the job can not be run at this
time.

11 Claims, 4 Drawing Sheets

4

GPU Network
Adapter

Keyboard | [Dispay] [Memory]

Operator Console

e
104 *

| Network Adapter | Peripheral
Davices

116

CPL
Other
CPU Peripheral
Devica
Interface

Node 1

cru][cru] [crpu] [cru]

CPU || CPU I CPU | | CPUL I
Moy

Network Special -m
Adapter Purpose
Hardware| Node 2

110 108

—Node 2|

112
Node 3|~

<114

—{Node N}

U.S. Patent Apr. 21, 2015 Sheet 1 of 4 US 9,015,724 B2

106 [|LPU

CPU Network
Adapter
CPU

1007 1 Job Queue 102

Network Adapter

Other
CPU Peripheral
Device

Interface
Node 1

Job Scheduler

Network Special
Adapter Purpose

Hardware Node 2

Keyboard | [Display_

Network Adapter Peripheral
Devices

CPU
110 106

Operator Console

-~ -
- -
- .
- -
-t o
_.-' .__.
Fa .
o o
- o
s s
-~ -~
o -..-_,.-"

U.S. Patent

200

Apr. 21, 2015

Sheet 2 of 4 US 9,015,724 B2

202" START

LOAD JOB
FROM

NO

JOB

QUEUE 204

2006
DETERMINE JOB

CHARACTERISTICS

DETERMINE NODES
FOR

JOB EXECUTION 208

DISPATCH JOB TO
NODES FOR
EXECUTION

210

212

JOB
QUEUE
EMPTY?

YES

STOP
214

Figure 2

U.S. Patent Apr. 21, 2015 Sheet 3 of 4 US 9,015,724 B2

Determine job J's 300
Job characteristics C(J)

304
302

Initialize and record C(J) in cache

306 Select next node to
check

308 310

More nodes to
check?

Can job J use the
node’

312

Select this node for Job J

314

More nodes

reguired?
Not enough 316

resources for

NO job J

The node

selection Is
complete

Figure 3

U.S. Patent Apr. 21, 2015 Sheet 4 of 4 US 9,015,724 B2

Determine if job J can use 400
hode N

Determine set of job characteristic, R,

of jobs running on this node 402

404

Is R union C(J) in the
hode’s cache of sets of job
characteristics?

Record that set Record that set

R union C(J) is R union C(J) is

not valid on valid on node N
node N

Can this node
be used?

Job J can use Job J can not 418
node N use node N

416

G
Figure 4

US 9,015,724 B2

1

JOB DISPATCHING WITH SCHEDULER
RECORD UPDATES CONTAINING
CHARACTERISTICS COMBINATIONS OF
JOB CHARACTERISTICS

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to computer job management
on a supercomputer. In particular, the present invention
relates to elliciently dispatching computer jobs to computa-
tion elements or nodes of a supercomputer.

2. Description of the Related Art

Early computers would process a single program or com-
puter job one program or job at a time since such computers
consisted of a single central processing unit (cpu). As tech-
nology progressed, computers began to include multiple
CPU’s to increase computational capability.

Modern supercomputers include many computational ele-
ments or computational nodes where each computational
node includes one or more CPUs and other computational
resources such as memory of varying sizes, network connec-
tions involving network adapters, and other special-purpose
computational hardware and software. These computational
nodes provide the capability to execute many computational
tasks at the same time making possible the execution of
several jobs simultaneously across the numerous computa-
tional nodes. Job scheduling 1s the task of determining which
computational nodes are available for the execution of the job.
On these supercomputers, scheduling computer jobs 1is
becoming more difficult because of the increasing number of
computational nodes, the increasing complexity of these
nodes and the increasing complexity of the computer jobs.

SUMMARY

In accordance with the present invention, a method for
dispatching computer jobs from a computer job queue 1n an
information processing system is provided. This information
processing system includes several computational nodes that
are assigned to execute jobs. The method includes the steps
of, for each job, determining a number of nodes required and
computational resource requirements ol these nodes. For
cach computational resource requirement, selecting a node
and determining from a record whether the node has the
necessary computational resources to meet the computational
resource requirement. If no such record exists, a determina-
tion 1s made as to whether or not the node has the necessary
computational resources to meet the requirement and record-
ing this determination. Then the node 1s assigned to the job 1f
the job’s computational resource requirements for the node
(defined as the job characteristic) are met or, i1t the job’s
computational resource requirements are not met, selecting
the next available node for analysis. Then, it 1s determined 11
the required number of nodes are met. 11 so, the job 1s dis-
patched to the assigned nodes for execution. If not, the job 1s
designated as not being able to be run at this time.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying,
drawings.

FIG. 1 1s a block diagram of an information processing,
system 1llustrating a job scheduler, a job queue and operator
console connected to several computational nodes;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a flow chart 1llustrating the function of dispatch-
ing jobs from the job queue to the computational nodes;

FIG. 3 a flow chart illustrating the function of determining
10b characteristics and selecting computational nodes; and

FIG. 4 1s flow chart 1llustrating the function of using job
characteristics for selecting a computational node to perform
the job.

DETAILED DESCRIPTION

The following 1s intended to provide a detailed description
of an example of the 1nvention and should not be taken to be
limiting of the invention 1tself. Rather, any number of varia-
tions may fall within the scope of the mvention, which 1s

defined 1n the claims following the description.

The present invention 1s a method, system, and computer
program product that provides for the selecting of computa-
tional nodes and the dispatching of jobs to those selected
computational nodes to perform the job.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wire line, optical fiber cable, RF,
etc. or any suitable combination of the foregoing.

US 9,015,724 B2

3

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C”” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 1 1s a block diagram of an information processing,
system. The system 1llustrated 1s typical of the system that
would use the invention. In FIG. 1, a number of jobs are stored
in a job queue 100. A job scheduler 102 1s connected to the job
queue 100 to access each job and assign a job to several
different nodes 1llustrated as nodes 106, 108, 110, 112 and
114. After the nodes are assigned to a job, the job 1s then
dispatched to the nodes for execution. It should also be under-
stood that some of the nodes may, at the time the job 1s being
dispatched, be executing other jobs. Therefore, when exam-
ining the nodes, the job scheduler 102 must determine
whether or not the node has enough computational resources
available for the job taking into account the computational
resources that are consumed by other jobs executing on this
node.

In one embodiment, the job scheduler 102 can be a stand-
alone processor with a single CPU, network adapter, cache
and other memory connected to a job queue 100 which stores

10

15

20

25

30

35

40

45

50

55

60

65

4

the jobs to be executed. Additionally, an operator console 104
1s connected to the job scheduler 102. The operator console
104 may include, for example, a keyboard, display, amemory,
a network adapter and even peripheral devices that would
enable a human operator to interface to the job scheduler 102.
The job scheduler 102 1s connected to a network 116 which 1s
connected to the several nodes 106, 108, 110, 112 and 114. It
should be understood that while these nodes can have similar
computer resources, some nodes may be unique in that they
contain special-purpose hardware or software providing spe-
cial capabilities. Thus the job scheduler must include these
special-purpose capabilities 1n the node selection process.

Jobs may be received in many ways including through data
transterred to the job scheduler 102 or through the operator
console 104. It should be apparent that for an information
processing system with a large number of nodes and a large
number of jobs, the assignment of nodes to jobs can become
very complicated and time consuming adversely atlecting the
information processing system efficiency.

The present mvention provides an eflicient solution for
determining available nodes to be assigned to a job, given that
some of these nodes are already executing other jobs.

Referring now to FIG. 2, a flowchart 1llustrates a top func-
tional view of the job scheduling and dispatching process. At
the start of the process in step 202, the job scheduler 102 will
load a job from the job queue 100 in step 204. Then, in step
206, the job scheduler 102 determines the number of nodes
required by the job and the computational resource require-
ments for each node necessary for execution of the job. The
computational resource requirements for each node are
defined as the job characteristic. Such requirements may
include the number of CPUs required 1n anode, the amount of
memory required, special-purpose hardware required such as
network adapters, and any other special resources required.
While only a few of these computational requirements have
been listed, 1t should be understood that for computational
nodes, that many types of different computational resources
may be available.

Next, 1n step 208, the job scheduler 102 determines which
nodes will be assigned to the job for job execution. Then, 1n
step 210, the job 1s dispatched to these assigned nodes for
execution. The job scheduler 102, in decision step 212, deter-
mines 1f the job queue 100 1s empty. If not, the next job 1s
loaded 1n step 204 and the process continues. However, 1 the
10b queue 100 1s empty then the job scheduler 102 stops 1n
step 214.

FIG. 3 15 a tlowchart that 1llustrates the application of job
characteristics 1n the node selection process. The operations
that are 1llustrated in FIG. 3 are a more detailed description of
steps 206 and 208 in FIG. 2. Returning to FI1G. 3, 1n step 300,
the job scheduler 102 determines the number of nodes
required by the job for execution and the job characteristic.
When a job 1s loaded from the job queue, this number of
required nodes and the job characteristic are included for each
10b. As explained previously, the job characteristic 1s the
required node computational resources In step 302, the sched-
uler 102 then determines 1if the job characteristic 1s new. In
other words, the job scheduler 102 looks 1n a cache or
memory to determine 11 these specific job node computational
requirements have been previously encountered and ana-
lyzed. If the job characteristic 1s new, the job scheduler 102
initializes and records this job characteristic 1n the job sched-
uler 102 cache. From step 304, the job scheduler 102 proceeds
to step 306 which 1s the same step that would be executed 11
the job characteristics are determined not to be new in step
302. In step 306, a node 1s selected for analysis to determine
if the node has suilicient computational resources available to

US 9,015,724 B2

S

tulfill the computational node resource requirements of the
job. That analysis 1s determined 1n step 308. If the node cannot
be assigned to the job, 1n step 310, the job scheduler 102
determines 11 more nodes are available to the analyzed for
assignment to the job in step 310. If so, the job scheduler 102
proceeds back to step 306 to start the analysis on the next
selected node. If no more nodes are available in step 310, the
10b scheduler 102 determines that there are not enough
resources for the job and designates that this job can not be
executed or run i step 316 and ends this portion of the
process 1n step 320. However, the job scheduler 102 deter-
mines that the node can be assigned to the job 1n step 308, the
node 1s assigned 1n step 312 and 1n step 314, the job scheduler
102 determines 11 more nodes are required. If more nodes are
required 1n step 314, the job scheduler 102 proceeds to step
310 to determine 1f more nodes are available to be analyzed.
If no more nodes are required 1n step 314, the job scheduler
102 proceeds to step 318 to designate the job selection com-
plete and end this portion of the process 1n step 320.

One of the key advantages of the present invention 1s its
ability to use a record or history of previous job characteris-
tics and node assignments to speed the process of determining,
when a node 1s available to be assigned a job.

FI1G. 4 1llustrates 1n more detail how the determination 1s
made as to whether or not nodes can be assigned to jobs. In
step 400, the job scheduler 102 starts the process to determine
i a specific node can be assigned to the job. The job charac-
teristic 1s examined 1n step 402. As discussed previously, this
j0ob charactenistic includes all the computational resource
requirements for a node.

The job scheduler 102, 1n step 404, determines 1f the com-
bination of new job’s job characteristic, together with the job
characteristics of the jobs currently executing on the node has
been previously recorded. It it has, the job scheduler 102
proceeds to decision step 414. Otherwise, the job scheduler
102 proceeds to decision step 408.

In decision step 408, the job scheduler 102 determines 1t
this node can be assigned to the job. The job scheduler deter-
mines the computational resources available on this node.
The available computational resources are total computa-
tional resources of the node minus the computational
resources that are consumed by jobs that are currently run-
ning on the node. The job scheduler determines whether the
node has enough available computational resources to satisiy
the new job’s computational resource requirements. If so, the
node can be assigned to the new job.

If 1t 1s determined that the node can be assigned to the job
then, 1n step 412, the job scheduler 102 records in the job
scheduler cache for the node that the job characteristic of the
new job along with job characteristics of the currently execut-
ing jobs for that node can be executed successtully by the
node. The job scheduler 102 proceeds to step 416 to assign the
node to the job. However, 11 1n step 408, 1t 1s determined that
the node can not be assigned, job scheduler 103 proceeds to
step 410 to record that this combination of the new job char-
acteristic from the present job along with the job character-
1stics of jobs that are already running on the node result 1n this
node not being able to perform this job. The job scheduler 102
then proceeds to step 418 to designate that this node cannot be
used on this job. It should be understood that this computa-
tional resource analysis of the node can be very time consum-
ing. Therefore, 1n step 406, 11 the job scheduler 102 finds a
record or history containing the job characteristic of the new
job 1n along with the job characteristics of jobs currently
running on this node, the job scheduler 102 does not have to
analyze further and can make a quick determination as to

10

15

20

25

30

35

40

45

50

55

60

65

6

whether or not the node can be assigned. This greatly
increases the efficiency of the job scheduling process.

Therefore accessing a record 1n cache to make this quick
determination 1s much faster than the node analysis that must
take place 11 there 1s no record. When one considers a typical
large computer system with many nodes, the complexity of
these nodes and the many jobs to be scheduled, it 1s apparent
that the present mnvention greatly increases the overall effi-
ciency of job scheduling and supercomputer performance.

As an example, understanding that the following 1s a
greatly simplified description of computational resources, a
computer system consists of 16 nodes where each node
includes 8 CPUs and 1 gigabyte of memory. The first job 1s
loaded from the job queue 100 that has a node requirement of
16 nodes with a job characteristic of 4 CPUs per node and 500
megabytes of memory per node. The first job 1s assigned 16
nodes by the job scheduler 102. A second job 1s loaded that
requires 8 nodes with a job characteristic of 4 CPUs per node
and 500 megabytes of memory per node. The job scheduler
102 must determine 11 8 of the nodes have suflicient compu-
tational resources available to run the second job 1n parallel.
Obviously, 1n this example, each of these nodes will have 4
CPUs and 500 megabytes of memory available and the sec-
ond job can be assigned these nodes. However, 11 instead of
this second job being received, a third job was recerved that
included a job characteristic of 6 CPUs then the third job
could not be assigned to any nodes until the first job was
complete. The present mvention speeds any subsequent
analysis by, in this simplistic example, the job scheduler
recording that the first job was successiully assigned and that
the second job was successtully assigned. Then the next time
a {irst job and second job combination 1s encountered, the job
scheduler, from its records, quickly determines that this com-
bination of jobs can be run and that the combination of the
first job and the third job cannot be run. While this example 1s
simple, for a node having many job characteristics in a super-
computer having many nodes and many jobs to dispatch, 1t
can be appreciated that this invention will greatly increase the
10b scheduling efficiency and the efficiency of the supercom-
puter.

Another aspect of this present invention 1s, before jobs are
scheduled, performing a categorization or pre-definition of
the job characteristics of jobs that are to be scheduled. This
approach takes advantage of an observation that in many
typical supercomputing environments, there 1s a consistent
workload that 1s processed, which 1s comprised of a finite set
of uniquejob types. These unique job types or pre-defined job
characteristics together with a set of nodes 1n the supercom-
puter are analyzed to provide a “pre-schedule” that provides
a set of possible combinations of pre-defined job character-
1stics, for each node, that can run on that node. For each
distinct node, the first phase determines which pre-defined
10b characteristics can coexist on that node.

For another example, consider the following:
Node N1 has 4 CPUs, allows exclusive/shared use, and has

512 mb of real memory.

Pre-defined job characteristic JC1 requires 2 CPUs, 128 mb
of real memory, shared use.

Pre-defined job characteristic JC2 requires 1 CPUs, 256 mb
of real memory, shared use.

Pre-defined job characteristic JC3 requires 2 CPUs, 256 mb
of real memory, exclusive use.

Then, N1 can run the following jobs:

1C1}, {ic2t, {1C3t, {1C1, IC1}, {1C1, 1C2}

In actual situations as discussed above, the number of
distinct resources per node 1s much greater and checking

US 9,015,724 B2

7

whether a particular computation resource requirement can
be met often requires computation to determine that a job can
be assigned.

The second phase of the pre-definition method selects
nodes for jobs with the aid of the pre-schedule records of the
first phase. In this phase, for given a job, the nodes will be
selected. In order to check whether the job with job charac-
teristic JC canuse a given node, a set of jobs that are currently
using this node 1s determined. Then, 1t 1s determined whether
the new job characteristic in combination with the previously
assigned and runming job characteristics are in the pre-sched-
ule record for the node, then this node can be selected for the
10b or not based of the pre-schedule record.

Take the example from above that {JC1} is presently run-
ning on the node. I1 this node 1s being selected for job of
characteristic JC1, since {JC1, JC1} is part of the pre-sched-
ule record for this node, then this node can be selected for this
1ob. If, on the other hand, 1t 1s being selected for job of
characteristic JC3, since {JC1, JC3} is not part of the pre-
schedule record for this node, then this node can not be
selected for this job.

The pre-definition phase 1s expensive, since computing the
pre-schedule record requires a search over exponential num-
ber of possibilities, which arise due to the fact that it 1s
necessary to compute the possible subsets of the set of pre-
defined job characteristics that can run on a given distinct
node. The number of subsets of a set 1s exponential, and thus
this phase has at least an exponential running time. However,
due to availability of the pre-schedule, the node selection
phase 1s able to select nodes for jobs much faster. The node
selection phase needs only to lookup the job characteristic
subset in the pre-schedule record that would arise from select-
ing the node for the job. The pre-definition phase 1s executed
only once, whereas node selection second phase 1s executed
for each job. When the number of jobs 1s large, the benefits of
this method become apparent. A large upiront cost will be
offset by the savings that keep increasing with each new job.

Another aspect of the present invention 1s directed to cache
record management. During the performance of job assign-
ments to nodes by the job scheduler 102, the number of
records can become quite large. In this case, the job scheduler
can assign expiration times to these records and periodically
scan the cache for expired records which can be removed. By
adjusting the periods for expiration, the job scheduler can
cificiently manage the cache memory resource.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable istructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
1llustration, and combinations of blocks 1n the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those

10

15

20

25

30

35

40

45

50

55

60

65

8

skilled 1n the art that, based upon the teachings herein, that
changes and modifications may be made without departing
from this mvention and its broader aspects. Therefore, the
appended claims are to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this mvention. Furthermore, it 1s to be understood
that the invention 1s solely defined by the appended claims. It
will be understood by those with skill 1n the art that 1f a
specific number of an introduced claim element 1s intended,
such intent will be explicitly recited in the claim, and 1n the
absence of such recitation no such limitation is present. For
non-limiting example, as an aid to understanding, the follow-
ing appended claims contain usage of the introductory
phrases “at least one” and “one or more™ to mtroduce claim
clements. However, the use of such phrases should not be
construed to 1imply that the introduction of a claim element by
the indefinite articles “a” or “an” limits any particular claim
containing such itroduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an”; the same
holds true for the use 1n the claims of definite articles.

The mvention claimed 1s:

1. A method for dispatching jobs from a job queue in a data
processing system having a plurality of computational nodes,
the method comprising the steps of:

for each job, determinming a number of nodes required and

computational resource requirements for each node
from scheduler records containing job characteristics for
cach job detailing nodes required for successiul execu-
tion of the job and computations resource requirements
for each node such as a number of CPUs 1n the node, an
amount of node memory and/or memory restrictions for
that node;

for each node required, selecting an available node and

determining from the scheduler records turther contain-
ing a combination of job characteristics that can be con-
currently executed successtully by that node whether the
node can be assigned to the job being currently dis-
patched wherein the combination of job characteristics
that can be concurrently executed successiully by that
node include the computer resources available such as
number of CPUs, amount of node memory and/or
memory restrictions for that node when other jobs are
being concurrently executed on that node, and 11 no
scheduler record exists;

analyzing whether the node can be assigned to the job

being dispatched based upon the computational
resources required by the job being dispatched and any
computational resources required by jobs currently
executing 1n the node to determine 11 the job being dis-
patched can be concurrently executed by the node while
the other jobs assigned to the node are being executed,
and

assigning the node to the job if the computational resource

requirements are met or selecting the next available node
if this node does not meet the computational require-
ments while recording the results of such analysis of the
node 1n the scheduler records; and

determining when the number of nodes required 1s met and,

i1 so, dispatching the job to the assigned nodes for execu-
tion, or, if the number of nodes required 1s not met,
designating that the job cannot be executed at this time.

2. A method according to claim 1 wherein node computa-
tional resources imnclude a plurality of central processing units
(CPUs) contained 1n the node.

US 9,015,724 B2

9

3. Amethod according to claim 1 wherein the job scheduler
records includes an expiration designation.

4. A computer program product stored in a computer non-
transitory storage media, the computer non-transitory storage
media containing instructions for execution by a computer,
which, when executed by the computer, causes the computer
to implement a method for dispatching jobs from a job queue
in a data processing system having a plurality of computa-
tional nodes, the method comprising the steps of:

for each job to be dispatched, determining a number of
nodes required and computational resource require-
ments of each node from scheduler records containing,
10b characteristics for each job detailing nodes required
for successtul execution of the job and computations
resource requirements for each node such as a number of
CPUs 1n the node, an amount of node memory and/or
memory restrictions for that node;

for each node required, selecting an available node and
determining from the scheduler records further contain-
ing a combination of job characteristics that can be con-
currently executed successtully by that node whether the
node can be assigned to the job being currently dis-
patched wherein the combination of job characteristics
that can be concurrently executed successtully by that
node include the computer resources available such as
number of CPUs, amount of node memory and/or
memory restrictions for that node when other jobs are
being concurrently executed on that node, and if no
scheduler record exists;

analyzing whether the node can be assigned to the job
being dispatched based upon the computational
resources required by the job being dispatched and any
computational resources required by jobs currently
executing in the node to determine 11 the job being dis-
patched can be concurrently executed by the node while
the other jobs assigned to the node are being executed,
and

assigning the node to the job 1f the computational resource
requirements are met or selecting a next available node 1t
this node does not meet the computational requirements
while recording the results of such analysis of the node
in the scheduler records; and

determining when the number of nodes required 1s met and,
if so, dispatching the job to the assigned nodes for execu-
tion, or, if the number of nodes required 1s not met,
designating that the job cannot be executed at this time.

5. A computer program product of claim 4 wherein the
node computational resources include a plurality of central
processing units (CPUs) contained 1n the node.

6. The computer program product of claim 4 wherein the
scheduler records include an expiration designation.

7. The computer program product of claim 4 wherein the
step of selecting an available node includes the steps of locat-
ing a scheduler record for that node and determining from that
record 1if the node resource requirements for the job being
dispatched and any node resources dedicated to the job cur-
rently running on the node exceed the computational
resources of the node.

8. A method for dispatching jobs from a job queue in a data
processing system having a plurality of computational nodes,
the method comprising the steps of:

a) determining for each of a plurality of jobs, job charac-
teristics which include a number or computational nodes
required to execute the job and, for each node, compu-
tational resources required of that node;

b) determining for each of the plurality of nodes, the total
computation resources of each node;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

¢) creating job scheduler records from steps a) and b) that
indicate at least some combinations of job characteris-
tics that can be executed simultaneously on each of the
nodes;

d) for each job being dispatched, determining a number of
nodes required and computational resource require-
ments for each node from the job scheduler records,
wherein the computational resource requirements may
include a number of CPUs i1n the node, an amount of
node memory and/or memory restrictions for that node;

¢) for each node required, selecting an available node and
determining from the job scheduler records whether the
node can be assigned to the job being currently dis-
patched wherein the job scheduler records contain a
combination of job characteristics that can be concur-
rently executed successtully by that node and include the
computer resources available such as number of CPUSs,
amount of node memory and/or memory restrictions for
that node when other jobs are being concurrently
executed on that node, and if no job scheduler records
exist;

) analyzing whether the node can be assigned to the job
being dispatched based upon the computational
resources required by the job being dispatched and any
computational resources required by jobs currently
executing 1n the node to determine 11 the job being dis-
patched can be concurrently executed by the node while
the other jobs assigned to the node are being executed
and assigning the node to the job 11 the computational
resource requirements are met or selecting a next avail-
able node 11 this node does not meet the computational
requirements while recording the results of this analysis
in the job scheduler records until

determining when the number of nodes required 1s met and,
i1 so, dispatching the job to the assigned nodes for execu-
tion, or, if the number of nodes required 1s not met,
designating that the job cannot be executed at this time.

9. A data processing system comprising;:

a job scheduler node including at least one central process-
ing unit connected to a memory including a job sched-
uling program for distributing a plurality jobs stored 1n a
1j0b queue 1n the memory;

a plurality of computational nodes, each including node
computation resources including at least one central pro-
cessing unit connected to a memory capable of storing
programs and data;

a network interconnecting the job scheduler node and the
plurality of computational nodes; and

wherein the job scheduling program includes a job dis-
patch method for dispatching jobs from the job queue to
assigned ones of the plurality of computational nodes,
the job dispatch method including the steps of:

for each job, determining a number of nodes required and
computational resource requirements for each node
from scheduler records containing job characteristics for
cach job detailing nodes required for successiul execu-
tion of the job and computations resource requirements
for each node such as a number of CPUs 1n the node, an
amount of node memory and/or memory restrictions for
that node;

for each node required, selecting an available node and
determining from the scheduler records, further contain-
ing a combination of job characteristics that can be con-
currently executed successiully by that node, whether
that node can be assigned to the job being currently
dispatched wherein the combination of job characteris-
tics that can be concurrently executed successiully by

US 9,015,724 B2
11

that node 1include the computer resources available such
as number of CPUs, amount of node memory and/or
memory restrictions for that node when other jobs are
being concurrently executed on that node, and if no
scheduler record exist; 5
analyzing whether that node can be assigned to the job
being dispatched based upon the computational
resources required by the job being dispatched and any
computational resources required by jobs currently
executing in the node to determine 11 the job being dis- 10
patched can be concurrently executed by the node while
the other jobs assigned to the node are being executed
and assigning the node to the job 11 the computational
resource requirements are met or selecting a next avail-
able node if this node does not meet the computational 15
requirements while recording the results of this analysis
in the job scheduler records until
determining when the number of nodes required 1s met and,
i1 so, dispatching the job to the assigned nodes for execu-
tion, or, if the number of nodes required 1s not met, 20
designating that the job cannot be executed at this time.

10. An data processing system according to claim 9
wherein the scheduler records including an expiration desig-
nation.

11. An data processing system according to claim 9 25
wherein the job dispatch method step of selecting an available
node includes the steps of locating a scheduler record for that
node and determining from that record 1f the combination of
the node resource requirements for the job being dispatched
and any node resources dedicated to the job currently running 30
on the node 1indicate whether the node can be assigned to the

10b being dispatched.

12

	Front Page
	Drawings
	Specification
	Claims

