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PREDICTING LEXICAL ANSWER TYPES IN
OPEN DOMAIN QUESTION AND
ANSWERING (QA) SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under35 U.S.C. §119(e) of
U.S. Provisional Patent Application Ser. No. 61/5135,091,

filed Aug. 4, 2011, the disclosure of which 1s hereby incor-
porated by reference in 1ts entirety.

BACKGROUND

The 1nvention relates generally to information retrieval
systems, and more particularly, the invention relates to pre-
dicting lexical answer types to questions posed 1n a query/
answer (QA) system and method for open domains.

DESCRIPTION OF THE PRIOR ART

Question answering research attempts to deal with a wide
range ol question types including: fact, list, definition, how,
why, hypothetical, semantically-constrained, and cross-lin-
gual questions. Search collections vary from small local
document collections, to mnternal organization documents, to
compiled newswire reports, to the World Wide Web.

Closed-domain question answering deals with questions
under a specific domain (for example, medicine or automo-
tive maintenance), and can be seen as an easier task because
natural language processing (NLP) systems can exploit
domain-specific knowledge frequently formalized in ontolo-
gies. In contrast, open-domain question answering deals with
questions from any domain, and can only rely on general
ontologies and world knowledge. On the other hand, these
systems usually have much more data available from which to
extract the answer.

Open domain question answering 1s a long standing
research problem that has been pursued for decades. Among
the problems facing open domain question answering 1s
determining a lexical type that identifies the correct answer to
the question. In some cases an answer type 1s explicit in the
question; however, i other cases the answer type 1s not
explicit. In those cases where the answer type 1s not explicit,
a human might be able to infer a correct lexical answer type
from the question. However, the ability for a machine to infer
a lexical answer type from the question 1s a significant tech-
nical hurdle that 1s currently being researched. While existing,
solutions attempt to determine lexical answer types through
question classification schemes, this type of solution 1s lim-
ited to a certain set of lexical types and not suflicient for open
domain question answering. There 1s a need to develop a
better solution to determining lexical answer types to ques-
tions 1n an open domain.

SUMMARY

A system, method and computer program product
addresses the needs described above by providing an unsu-
pervised approach to question lexical answer type prediction
for use 1n an open domain QA system.

In one aspect, the unsupervised approach does not require
any predefined type system.

In a further aspect, the system, method and computer pro-
gram product 1s based on a large scale lexical knowledge base
automatically extracted from the web.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, there 1s provided a computer-imple-
mented method of mferring a lexical answer type from a

question. The method comprises: extracting at least one syn-
tactic frame from a question string; and querying a lexical
knowledge database to obtain at least one replacement term
for a focus of the at least one syntactic frame, wherein the
focus 1s a part of the question indicating a lexical answer type
to the question.

In a further embodiment, there 1s provided a system for
predicting a lexical answer types (LAT) 1n a question com-
prising: a memory storage device including a plurality of
syntactic frames; a processor device operatively connected to
the memory storage device and configured to: recerve a ques-
tion text string; extract at least one syntactic frame from the
question string, designate, in the syntactic frame, a place-
holder for an entity corresponding to a potential lexical
answer type; and query a lexical knowledge database to auto-
matically obtain at least one replacement term for the place-
holder of the at least one syntactic frame, wherein the entity
placeholder 1s a part of a question focus indicating a LAT of
the question.

In a further aspect, there 1s provided a system, method and
computer program product for predicting a lexical answer
types (LAT) 1n a question, wherein the method comprises:
applying a frame-extraction utility to a question text to 1den-
tify all frames 1nvolving a question focus, each frame having
one or more slots-value pairs with a slot representing a syn-
tactic role 1dentified by a dependency relation, and including
a question focus slot; for each i1dentified frame, creating a
query frame structure having a focus slot variable, for each
query frame structure, finding in a data corpus, a slot filler for
the focus slot variable, the slot filler being part of a question
focus from which the LAT 1s determined, wherein a pro-
grammed processor device performs one or more of the
applying, creating, and finding.

Further to this aspect, the method further comprises:
obtaining a score associated with each the slot filler found for
cach 1dentified frame, ranking the slot fillers according to the
scores; and selecting a top-ranked slot filler as a predicted
LAT to the question.

In a further aspect, the data corpus includes frame struc-
tures 1dentified from a corpus of text, a frame structure having
one or more slots-value pairs, a slot representing a syntactic
role 1dentified by a dependency relation, wherein the finding
a slot filler comprises: specilying a frame cut comprising a
sub-set of frames having non-empty slot-values for a given
subset of slot-values pairs; specitying a frame abstraction to
determine a desired relationship among selected selected slot
values from the given subset of slot-values pairs; generating,
from the frame cut, plural frame vectors defining a multi-
dimensional vector space from which relationships among
selected selected slot values 1s determined; and, processing
the frame vectors to determine the desired relationship among
selected selected slot values as defined by the abstraction.

A computer program product 1s provided for performing
operations. The computer program product includes a storage
medium readable by a processing circuit and storing mnstruc-

tions run by the processing circuit for running a method. The
method 1s the same as listed above.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the invention are
understood within the context of the Detailed Description, as
set forth below. The Detailed Description 1s understood
within the context of the accompanying drawings, which
form a material part of this disclosure, wherein:
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FIG. 1 depaicts results 10 of analyzing a random sample of
20,000 example questions extracting the lexical answer type

(LAT) 12 when present in an example embodiment;

FIG. 2 depicts an overview of PRISMATIC knowledge
base system processing in one embodiment;

FIG. 3 shows a parse tree of a corresponding example
sentence 35 for use 1n the generation of syntactic frames 1n
one embodiment; for representing the example sentence.

FI1G. 4 depicts Tables 40, 45 corresponding to the example
Frames 01 and 02 extracted from an example dependency
parse tree 30 corresponding to the example sentence 35 of
FIG. 3;

FIG. S represents an example FV space 50 of frame vectors
from the perspective of the verbs they can be subject_of (i.e.,
from the Verb cut) in one embodiment;

FIG. 6 shows example Prismatic Frames of a PRISMATIC
cut 60 described by the table shown 1n an example implemen-
tation;

FI1G. 7 illustrates an exemplary LAT inference system and
method 100 1n one embodiment;

FIG. 8 illustrates the major components that comprise a
canonical question answering system 200 1n which the sys-
tem 100 of FIG. 7 may be employed; and,

FIG. 9 illustrates a hardware configuration to run method
steps described with respect to FIG. 7.

DETAILED DESCRIPTION

As referred to herein, a lexical answer type, or “LAT™, 1s a
word 1n or a word inferred from the clue (e.g., question) that
indicates the type of the answer, independent of assigning
semantics to that word. For example, in the clue “. . . Invented
in the 1500s to speed up the game, this maneuver involves two
pieces ol the same color . . . 7, the LAT 1s the string “maneu-
ver’. Determining whether or not a candidate answer can be
considered an instance of the LAT 1s an important kind of
scoring and a common source of critical errors. In an embodi-
ment of the present mnvention, this capability 1s implemented
by a component called TyCor (short for Type Coersion) scor-
ing, whose goal 1s to estimate the extent to which an entity can
be coerced 1nto (or matched with) a specific LAT. Function-
ally, TyCor scoring takes as input any two English terms (the
first representing the L AT, the second being the answer can-
didate) and returns a numeric value.

In a QA system, such as described below with respect to
FIG. 8, as part of an answer scoring function, programmed
processing components automatically recerve as iputs at an
evidence gathering and answer scoring function 250: a LAT
representing a text string describing some concept; and a
“candidate answer” 248 representing a text string describing
a possible answer to the question. The programmed process-
ing components generate an output including a judgment
(e.g., a score) representing to what degree the entity 1s an
instance of the LAT concept. This process 1s more fully
described 1 co-pending U.S. patent application Ser. No.
12/126,642, incorporated herein by reference.

More particularly, the LAT 1s extracted by a question
analysis component as part of the “focus”. The focus 1s the
part of the question that, 1T replaced by the answer, makes the
question a standalone statement. As an example, in the state-
ment, “This drug has been shown to relieve the symptoms of
ADD with relatively few side effects™, the focus 1s “this drug”™
and 1n the statement, * . . . This title character was the crusty
and tough city editor of the Los Angeles Tribune” the focus 1s
“thas title character.” The focus often, but not always, contains
the LAT (drug and title character in the examples). On the

other hand, 1n many cases 1t 1s not possible to infer a mean-
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4

ingful LAT from the focus. For example, in the statement,
“Secretary Chase just submitted this to me for the third time;
guess what, pal. This time I’m accepting it,” the focus 1s the
first “this” so the LAT cannot be assigned.

After question analysis, a set of possible answers 1s gener-
ated by using information retrieval techniques. A key step 1n
managing the recall versus precision trade-off 1s the applica-
tion of lightweight (1.e. less resource intensive) scoring algo-
rithms to this larger set of initial candidates to prune them
down to a smaller set of candidates before the more intensive
scoring components see them (1.e. soft filtering). There TyCor
plays a crucial role, because 1t measures the likelihood of a
candidate answer being an instance of the LAT. In a stmilar
way, TyCor plays a crucial role 1n the QA scoring module,
generating features used in the regression model that assigns
answer confidence.

Inferring the correct LAT 1s then crucial for QA systems.
FIG. 1 depicts results 10 of analyzing a random sample of
20,000 example questions extracting the LAT 12 when
present. The distribution 10 of LAT's 12 has a very long tail 15,
as shown in FIG. 1, where the relative frequency of LATs 1s
reported. The analysis found 23500 distinct and explicit LAT's
in the 20,000 example question sample. As shown in the insert
portion of the results, the most frequent 200 explicit LATs 18
cover less than 50 percent of the data.

This aspect of the challenge implies that while task-spe-
cific type systems or manually maintained data would have
some 1mpact 1f focused on the head of the LAT curve, it still
leaves more than half the problems unaccounted for. It makes
the notion of LAT crucial, since 1t allows for addressing the
long tail 1ssue much better than any fixed type system. More-
over, the end-to-end QA accuracy of the system on questions
without an assigned LAT 1s approximately 20% below the
accuracy on questions with LATs. Thus, accurate LAT detec-
tion can have a major impact on a QA system such as imple-
mented in IBM’s Watson system.

The problem of inferring the LLAT on this class of questions
1s addressed by first extracting a set of “syntactic frames”
containing the focus. Those frames are grammatical struc-
tures, such as Subject Verb Object (SVO), containing the
focus as one of their arguments. Then, there are inferred types
for each slot by looking for similar frames 1n a large scale
lexical knowledge base, perhaps automatically extracted
from the web. In the instant project, the large scale lexical
knowledge base 1s IBM’s PRISMATIC or PRISMATIC KB
(knowledge base system). However, other large scale lexical
knowledge bases can be used. The retrieved frames from
PRISMATIC include a set of terms in the position of the
focus. From the analysis of those frames there 1s generalized
a set of possible types that are returned as an output.

For example, from the question: “This drug has been
shown to relieve the symptoms of ADD with relatively few
side effects,” the method includes extracting the following
two syntactic frames: (focus, relieve, symptom) (SVO frame
1) and (focus, has, effect) (SVO frame 2).

Querying the PRISMATIC knowledgebase 1n order to get
terms fitting the focus 1n those contexts, there 1s obtained the
following two lists of terms: treatment, drug, 1t, medication,
oxide (for SVO frame 1) and change, drug, decision, action,
law (for SVO frame 2).

The union of the two lists 1s a set of words from which there

1s inferred a common type. To this aim, the method exploits an
ISA (or 1s_a) cut of PRISMATIC containing associations
between terms and LATs extracted from text mining. The
solution 1s further enhanced using Latent Semantic Analysis
(LSA) to measure the topical similarity between the inferred
LAT and the context of the question.
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An overview of PRISMATIC knowledge base system pro-
cessing 1s now described in view of FIG. 2. PRISMATIC
includes a knowledge base 29 that contains syntactic frames
representing shallow knowledge extracted from a huge input
corpus 23. It 1s built using a suite of natural language process-
ing tools that includes a dependency parser, a rule-based
Named Entity Recognizer (NER) and a co-reference resolu-
tion component. No manual intervention 1s required to adapt
this worktlow to specific domains. The PRISMATIC knowl-
edge base 29 1s used as a knowledge source by a large variety
of components for answer generation, and passage scoring.

A frame 1mn PRISMATIC 1s the basic semantic unit repre-
senting a set of entities and their relations 1n a piece of text
(usually a sentence). A frame 1s made of a set of slot and value
pairs. A slot in PRISMATIC i1s a dependency relation
extracted from a parse tree. A slot value 1s the lemma of the
term extracted from the dependency tree.

Referring to FIG. 2, the PRISMATIC system 20 processing,
pipeline includes three phases:

1. A corpus processing component 22 where documents from
a data corpus or repository 23 are annotated by a suite of
components which perform dependency parsing, co-refer-
ence resolution, named entity recognition and relation
detection:

2. A frame extraction component 24 where frames are
extracted based on the dependency parses and associated
annotations; and.,

3. A frame-cut extraction 26 where frame-cuts of interest (e.g.
S-V-O cuts) are 1dentified over all frames and frequency
information for each cut 1s tabulated.

With respect to the corpus processing component 22, one
step 1n the corpus processing 1s the application of a depen-
dency parser which 1s used to identify the frame slots for the
frame extraction component 24. In one embodiment, use 1s
made of English Slot Grammar (ESG), a slot-grammar based
parser, in order to fill 1n the frame slots. See M. McCord,
“Using Slot Grammer,” Mar. 24, 2010, incorporated herein by
reference. Sentences frequently require co-reference 1n order
to precisely identify the participating entity, and, so 1n order to
not lose that information, there 1s applied a simple rule based
co-reference resolution component in this phase. The co-
reference information helps enhance the coverage of the
frame-cuts, which 1s especially valuable 1n cases of sparse
data and for use with complex frame-cuts.

A rule based Named Entity Recogmizer (NER) 1s used to
identify the types of arguments in all frame slot values. This
type information 1s then registered in the frame extraction
component 24 to construct intentional frames.

The frame extraction component 24 extracts a set of frames
from the parsed corpus. As mentioned, a frame 1s the basic
semantic unit representing a set of entities and their relations
in a text snippet. A frame 1s made of a set of slot value pairs
where the slots are dependency relations extracted from the
parse and the values are the terms from the sentences or
annotated types.

The Tables 40 and 45 of FIG. 4 show how two frames (1.¢.,
Frames 01 and 02) are extracted from a complex parse tree
such as the tree 30 shown 1n FIG. 3. The tables 40, 45 shown
in F1G. 4 depict the frames, extracted from an example parse
tree 30 of the example sentence 35: “In 1921, Einstein
received the Nobel Prize for his original work on the photo-
clectric effect.”

In order to capture the relationship of interest, frame ele-
ments may be limited to those that represent the participant
information of a predicate. Furthermore, 1n one embodiment,
cach frame may berestricted to be two levels deep; therefore,
a large parse tree may result in multiple frames. Tables 40, 45
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of FI1G. 4 show how two frames are extracted from the com-
plex parse tree in FIG. 3. For example, as shown, Frame 01
includes the value “Frame 027 corresponding to the slot
objprep 41 extracted from the parse tree 30. The depth restric-
tion 1s needed for two reasons. First, as big complex parse
trees tend to have more wrong parses, by limiting a frame to
be only a small subset of a complex parse tree, the chance of
error parse 1 each frame 1s reduced. Second, by i1solating a
subtree, each frame focuses on the immediate participants of
a predicate. Non-parser information may also be included 1n
a frame. For example, the type annotations of a word from a
named entity recognizer are included, and such type informa-
tion 1s useful for other various applications. Also, 1 one
embodiment, there i1s included a flag to indicate whether a
word 1s a proper noun. These two kinds of information allow

casily separation of the intensional and the extensional parts
of PRISMATIC.

One of the main reasons for extracting a large amount of
frame data from a corpus 1s to induce 1nteresting knowledge
patterns by exploiting redundancy in the data. For example, 1t
may be desirable to learn that things that are “annexed” are
typically regions, 1.e., a predominant object-type for the
nounphrase “annexation of ” 1s “Region” where “Region” 1s
annotated by a NER. To do this kind of knowledge induction,
there 1s first abstracted out specific portions of the frame—in
this particular case, to 1solate and analyze the noun-phrase
object-type relationship. Then, given a lot of data, and frames
containing only the above relationship, it 1s expected to see
the frame [noun="‘annexation”, preposition="of", object-
type="Region”] occur very frequently.

To enable this induction analysis, there 1s defined frame-
cuts, which specily a cut or slice operation on a frame. For
example, there 1s defined an N-POT frame cut, which when
applied to a frame only keeps the noun (N), preposition (P)
and object-type (O1) slots, and discards the rest. Similarly,
there 1s defined frame-cuts such as S-V-0O, S-V-O-I10, S-V-
P-O etc. (where S—subject, V—verb, O—object, IO—indi-
rect object) which all dissect frames along different dimen-
sions. Continuing with the annexation example, the V-OT
frame cut can be used to learn that a predominant object-type
for the verb “annex” 1s also “Region’, by seeing lots of frames
of the form [verb="annex”, object-type="Region”] 1n the
data. To make frame-cuts more flexible, they are enabled to
specily optional value constraints for slots. For example,
defining an S-V-O frame cut, where both the subject (S) and
object (O) slot values are constrained to be proper nouns,
thereby creating strictly extensional frames, 1.e. frames con-
taining data about instances, e.g., [subject="United States™
verb="annex” object="Texas”]. The opposite ellfect 1s
achieved by constraining S and O slot values to common
nouns, creating  intensional  frames  such  as
[subject="Political-Entity” verb="annex” object="Region™].
The separation of extensional from intensional frame infor-
mation 1s desirable, both from a knowledge understanding
and an applications perspective, e.g., the former can be used
to provide factual evidence 1n tasks such as question answer-
ing, while the latter can be used to learn entailment rules as
seen 1n the annexation case.

A special frame cut used in PRISMATIC for capturing
entity type knowledge 1s N-ISA (where N=noun). To capture
this frame cut, there 1s built a rule-based recognizer of 1s_a
relations based on a relatively small number of precise and
productive patterns, such as in the tradition described 1n the
paper, Hearst, “Automatic acquisition of hyponyms from
large text corpora” Proceedings of COLING, 1992, incorpo-
rate herein by reference. This may be aided by a state-of-the-
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art parser device, which can correctly 1dentily appropriate
syntactic configurations and pinpoint pattern elements as
eventual arguments.

The PRISMATIC resource 1s augmented to include 1s_a
relations obtained as part of the corpus processing step. Con-
sequently, the frames extracted from the corpus can include
1s_a relation as well. The 1s_a relation 1s usually annotated
between two nouns to indicate that the first noun 1s of the type
denoted by the second noun.

In one embodiment, semantic types can be captured by
looking at term occurrences in the context of syntactic
frames. For example, i a term 1s very often the object of a
live_1n relation, most likely 1t will be a geopolitical entity, on
the other hand, 11 1t 1s 1ts subject 1t can be expected to be a
person. To be independent of a particular type system, there 1s
developed a technique which 1s able to handle a potentially
unlimited number of types. To this aim, there 1s used a gen-
eralized framework for textual inference based on PRIS-
MATIC, namely the Generalized Frame Model (GFM),
which 1s able to deal with type abstraction, paraphrasing and
shallow logical inference in an unsupervised manner.

The GFM 1s mspired by the notion of Domain Model, a
general framework based on latent semantic analysis (LSA)
to represent topicality in lexical semantics and therefore
boosting applications like Word Sense Disambiguation, Text
Categorization, and so on. Described 1n more detail in Alfio
Gliozzo and Carlo Strapparava, “Semantic Domains 1n Com-
putational Linguistics™, Springer, 2009, incorporate herein by
reference. In the LSA literature, similanity 1s modeled by
looking at term co-occurrences 1 documents 1 order to
represent words and texts into lowed dimensional spaces
where geometrical operations can be performed.

The GFM 1s based on the same 1ntuition, the main differ-
ence being that 1t handles structured knowledge represented
in PRISMATIC instead of simpler term by document
matrixes, increasing the expressivity of the model and the
capabilities that can be implemented. Therefore, 1t 1s capable
of going beyond the recognition of mere topical associations
(e.g. physician 1s similar to hospital and not to person)
addressing 1ssues like type typing (e.g. physician 1s similar to
person but not to hospital), entaillment (e.g. killing somebody
entails that somebody die) and paraphrasing (invading and
attacking are paraphrases in the war frame), frame similarity
(e.g. attacking Iraq 1s similar to invading a country but not to
studying 1n Bagdad). This 1s done by representing frames by
a set(s) ol other frames (and therefore properties) and not only
by set of co-occurring words/documents.

The GFM, 1ts mathematical foundations, and the lambda
abstractions allowing for generation of Frame Vectors (FVs)
where similarity can be estimated, 1s now provided below.

The PRISMATIC KB 29 1s a collection of (Ifrequently
repeated) frame occurrences identified 1n a large corpus of
text,i.e. P={f,,...,f }. Asmentioned, its values are terms and
its slots are syntactic roles 1dentified by a dependency parser.
It 1s understood that nothing prevents the application of PRIS-
MATIC and the formalism described herein to other sources
of structured data, such as linked data expressed 1n a Resource
Description Framework (RDF) and databases.

A frame t=[s,=v, . ..s, =v ] 1s organized around a set of
slots S={s,, . . . ,s,} and values. In one embodiment, frames
can be eventually composed by a single slot value pair (e.g.
[noun=laptop]) which 1s one example formalism used to rep-
resent terms in the corpus.

The notation V(s, 1)=v 1s used to denote the value of the slot
s 1n the frame 1. If this slot 1s missing then V (s, 1)=e. V(s)=
Ue=pV (s, 1) 1s the vocabulary of a slot s, 1.e., the set of all
possible slot values as found 1n the corpus. For example, the
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frame 1=[subj=carpenter, verb=use, obj=hammer] i1s a syn-
tactic frame recognized by a dependency parser having slots
subj, verb and oby whereV (subj, I)=carpenter, V (verb, {)=use

and V (obj, I)=hammer.
The frequency # (1) of a frame 1 1s defined as follows:

#O=11: EPIV (Vs )=V(s /) 1] (1)

A PRISMATIC cut CP 1s a subset of frames having
non-empty slot values for a given subset of slots S . S and
empty slots for all the remaining.

C={fEPI(V s M S)=E) A (Vs es_scvis, fi=e) | (2)

For example the SVO cut C___, characterized by the slots
{subj,verb,obj } includes all frames having non null values for
any of the selected slots (e.g., [subj=president, verb=attack,
obj=state]).

Prismatic cuts define highly dimensional vectorial spaces
where any frame 1n the cut i1s a different dimension. Those
spaces are used to represent frames (belonging to disjoint
cuts) by means of Frame Vectors (FV), examples of which are
illustrated in FIG. 5. FIG. Srepresents a FV space 50 of frame
vectors of rabbit 51, snail 53 and person 53 from the perspec-
tive ol the verbs they can be subject_of (i.e., the dimensions of
this space are the vectors: verb=[run] 52, verb=[eat] 54 and
verb=[read] 56). In one embodiment, from this new space 50,
similarity can be estimated, e.g., by cosine operation, or other
similarity measures.

FVs are generated by performing lambdaabstractions,
defined as follows:

Acf =t wlf, | fi € C} (3)
where
w(f, f)= ) #(f")
ffeP
and

(Vsesose Vs, ) = Vs, )N Vese Vis, £1) = Vis, £))

In equation (3), the operator X is used to normalize vectors
to unitary length and it 1s defined as follows:

where [x| 1s the norm of the vector Xx.
In one embodiment, the similarity between FVs 1s then
estimated by a similarity measure, €.g., the dot product:

SIM,(f1./2)= Ao 1 Mol (4)

where the dot product between normalized vectors 1s equiva-
lent to a cosine and returns values 1n the range [0,1] if all the
components of the compared vectors have positive values,
which 1s the case i the GFM.

For example, the abstraction A__,,[subj=person] generates
the FV<([verb=eat],2/V6)([verb=read],1/V6)([verb=run],1/

60 V6)> when applied to the PRISMATIC cut 60 described by

65

the table shown 1n FIG. 6, while A _ ,[subj=snail] generates
the FV<([verb=eat],1)> and A....[subj=rabbit] generates the
FV<([verb=eat], 1/V2)([verb=run],1/V2. This allows the
method to estlmate the similarity between them by means of
the cosine operatlon returning  sim, ([subj=snail],

[subj=rabbit])=1/2, sim ([subj=person],[subj=snail])=1/ 6

and so on.
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Lambda abstractions can be used to define the meaning of
predicates, terms, verbs and frames, which can all be repre-
sented by a frame structure. For example, the abstraction
Mgl verb=use, obj=hammer]| represents the prototypical
subjects for the predicate (e.g. carpenter, mason, . .. ). FVs
can be therefore used to describe the meaning of predicates
(e.g. Al verb=use,object=hammer], categories (e.g. A,,,,,,
[1sa=tool] ), and so on. In addition, lambda abstractions can be
performed on many arguments (€.2. Ay, ,...»[Obj=hammer]
has components [subj=carpenter, verb=use], [subj=mason,

verb=buy] and so on).

In one embodiment of a Question Answering system, the
GFM 1s integrated with Latent Semantic Analysis (LSA) to
increase the expressivity of the query language. Taking into
account Topic modeling, 1.e., co-occurrence information that
can be captured by “bag of words”™ or Latent Semantic Analy-
s1s, greatly improves this ability. For example in the question:

This drug has been shown to relieve the symptoms of ADD
with relatively few side effects . . .,

the lambda abstraction A, [ verb=have, obj=ettect] 1s gener-
ating the frame vector containing change, drug, decision,
action, law. In the medical domain, only the subject drug 1s
relevant, while the others are misleading.

Therefore LSA 1s itegrated in the model 1n order to take
into account topicality, defining the following weighting
schema for Lambda Abstractions as follows:

Ac(f, Q) =/fi, wf, 1 fi € G} (5)

where

wfof)= ) HE *cc-s[Z LSA(V(s, £), LSA(Q)

C
flep 3

The function LSA( ) maps any text into 1ts LSA vector and
allows one to measure the topical proximity by use of a
similarity measure, €.g., the cosine operation. In one embodi-
ment, 1t 1s applied to measure the similarity between the
question (Q and any frame 1n the cut C where the output vector
1s represented. Details regarding this functinal aspect may be
found and described 1n Deerwester, et.al., “Indexing by
Latent Semantic Analysis™, Journal of the American Society
for Information Science, v 41, pg 391-407/, herein icorpo-
rated by reference. The resulting FV are then projected into a
vectorial space distorted by the context where the frame 1s

located. It allows one to give an higher weight to “on topic”

frames, while reducing the impact of “out of topic” frames.

In one embodiment, LSA 1s implemented by applying a
Singular Value Decomposition (SVD) on a term by document
matrix obtained from Wikipedia (approximately 3Mx3M
s1ze) and by using 400 dimensions. Using LSA for the above
example question, the algorithm correctly finds drug as the
topically relevant term given the context.

An embodiment of another technique for predicting LAT's
evaluated 1s now described.

In one embodiment, the Generalized Frame Model can be
used for type abstraction 11 applied to the ISA cut as described
herein above. For example, a term dog can be represented by
a vector of types using the abstraction:

A, [noun=dog|=<([1sa=dog],0.80)([1sa=animal],0.37)
([1sa=pet],0.19) . . . >.
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Any lambda abstraction mvolving a single slot can be
projected on to a set of types as follows:

6
flff — Z W(lsf, [5 — I])}Lisa[ﬂﬂun — I] ( )

teVis)

where

widcef, f1)=Acf -{(f', 1)

1s a function projecting the vector A -t into the component f',
therefore returning the weight for that component.

Similarly, type abstraction can be applied to the output of
Topical Lambda Abstraction as follows:

7)
N(f, Q= ) wdi(f, @), [s = hsg[noun = 7]

eV (s)

This operation 1s crucial for type abstraction, as 1t allows to
find a set of sectional restrictions for the abstracted slot 1n a

specific frame, the resulting vector being a Type Vector rep-

resenting a set of prototypical types. For example ?\mbjT
[verb=attack,obj=Iraq]=<([1sa=president],0.5)

([1sa=country],0.3) . . . . This operation i1s general and can be
applied to any cut and any slot value. In fact, the ISA cut
represents associations between terms and their lexical types,
so they can be applied to any slot in Prismatic regardless of the
particular functions. Generally, type abstraction 1s applied to
slots representing nouns such as subj and ob;.

In one embodiment, a type abstraction 1s used to predict the
LAT of questions. The basic i1dea 1s that a question Q 1s
decomposed 1nto a set of frames paired with corresponding
tocus slots Q=(1},s,), . . . (1_,s,) where the focus 1s supposed
to be a common entity filling any of the target slots. In one
embodiment, the Frame Vector generated from Prismatic for
any of the frames will generate a set of plausible “slot fillers™
of the same type of the answer. This allows the application of
equation (6) to get a set of possible types for any of them,
obtaining the following:

8)
IATQ)= ) ALf

i=1...q

Finally, the ISA cut information 1s integrated with LSA
topical similarity from equation (7) to predict the LAT of a
question:

9)
IAT(Q)= ) AL(f. Q)

i=1...q

Thus, 1n one aspect, equations 8 and 9 ivolve processes
implemented to just sum up the types generated by different
Frames 1dentified in the question.

By way of an example, a LAT inference system 100 and
methodology for LAT inference 1s now described with respect
to FIG. 7. The method 100 tries to find the most appropnate
type/concept fillers for the FOCUS slot using information in
PRISMATIC. The LAT inference algorithm also has a param-

cter that lets i1t consider the question text as context. In this
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case, 1t filters the predicted LATs by LSA-based topic simi-

larity with the context. Given an input question, the LAT

inference algorithm performs:

1. Applying a frame-extraction utility to the question text to
identify all frames 1nvolving the focus of the question.

2. For each such frame detected, replacing the focus slot with
a variable, creating a PRISMATIC query frame.

3. Perform LAT prediction on each query frame (1.e. {inds slot
fillers for the variable) using the question text optionally as
context.

4. Aggregating scores for predicted LAT's across all frames at
the end.

Thus, as shown 1n FIG. 7, for the example question com-
prising;:

It has been shown to relieve the symptoms of ADD with
relatively few side effects.

the LAT inference algorithm performs, at 101, parsing of the
question text to generate a set of frames (including S-V-O
or other PRISMATIC structures) and 1dentifying a focus
slot. That 1s, 1n this example, the parser analyzes the query
text and extracts a question focus, “It”. The parser then
generates from this example question one or more frames,
and for the example shown, generates two PRISMATIC
query frames having a slot with the focus, “It”.

Then at 111, FIG. 7, for each such frame detected, there 1s
performed replacing the focus slot (*It””) with a variable, e.g.,
focus. This results 1n the generation of a PRISMATIC query
frame 105¢ including PRISMATIC  (subj=focus,
verb=relieve, obj=symptom) frame structure, and PRIS-
MATIC query 1frame 1056 including PRISMATIC
(subj=focus, verb=has, obj=eflect) structure.

Then, at 121, FIG. 7, for this example, a PRISMATIC
information query 1s performed against an accessible PRIS-
MATIC corpus 99 (or like corpus of frames) to analyze the
PRISMATIC collection of frames for LAT prediction. That s,
on each query frame 105q, 1055, the method finds the focus
slot filler for the variable. In one aspect, the question text 1s
optionally used to provide a context.

Thus, as shown at 121, FIG. 7, for each example frame
105a, 1055, the frame corpus search conducted selects one of
the “Subject” focus variable word(s) where there 1s matched
remaining SVQO attributes, 1.e., where verb=relieve,
object=symptom for frame 105a and, where verb=has,
object=ellect for frame 1055. Results of this frame search, for
example, frame 105aq would provide example slot words 115a
including Treatment, drug, 1t, medication, pill, Tylenol®
(Registered Trademark of The Tylenol company) (things that
relieve symptoms), for example; and results of frame search
for example frame 10355 would provide example slot words
1156 including change, drug, decision, action, law (e.g.,
things that have an effect).

More particularly, the LAT 1is inferred or predicted using
the Generalized Frame Model described herein. Particularly,
as shown at 1535, FIG. 7, the system infers or predicts the LAT
in one of several alternate implementations:

1) By using raw-1requency counts 125 (a baseline score) from
the PRISMATIC KB which contains cuts for the input
frame type. This 1s implemented by simple PRISMATIC
queries ontype A 1, as described by equation (6). That 1s, in
one embodiment, the results of frame search within the
PRISMATIC corpus 99 additionally provides a frequency
of the focus words found 1n each frame (how frequent the
words appear 1n the givent frame context). In one embodi-
ment, a candidate inferred LAT 1s the result ({focus) word
having the largest frequency.

2) By using Latent Semantic Analysis (LSA) functions 135 to
filter results of step 111 by computing the similarity
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between the LAT slot filler and the question text and dis-
carding any slot-filler whose similarity 1s below a threshold
value (e.g., 0.05). This 1s implemented by using A (I, Q) as
described by equation (7). For the given example, 1t 1s
expected that from the LSA method, the result slot variable
filler words found such as treatment or drug found from
analysis of frame 105a will be more frequent than words
action or law found from analysis of frame 1055.

3) By using the PRISMATIC ISA KB to generalize results

obtained at step 111 and produce more meaningftul types/

concepts (as opposed to mstances). In particular, for each

LAT slot filler predicted at the end of step 111, 1ts type 1s

looked up 1n the ISA KB and the type returned as the new

predicted LAT. This is implemented by using A _*(f, Q),

described by equation (8).

4) By using a combined LSAISA technique where the PRIS-
MATIC ISA KB 1s accessed to generalize results obtained
at 111. This 1s implemented by A QT f as described by
Equation (9).

Then, at 121, FIG. 7, after obtaining an inferred LAT, e.g.,
using one ol the four unsupervised techniques, the system
performs one or more additional steps 155 including: re-
ranking at 152 the slot filler word results found (e.g., after
performing a LSA analysis), and, mapping the slot filler word
results found to a LAT type at 154. Thus, for example, as a
result of task 121, and the re-ranking and mapping steps 155,
FIG. 7, the predicted word Types 160a corresponding to the
initial example query frame 105¢q include the words: Drug,
medication, pill, Tylenol®. Likewise, as a result of task 121,
given the context of the query, the predicted word Types 1605
corresponding to the initial example query frame 1055b
include only the words: Drug, action.

Continuing with method 100 of FIG. 7, at 131, there 1s
performed a further aggregating or merging in which the Type
results 160a, 1605 are compared to infer the final LAT type
for the initial query. For the example query shown 1n FIG. 7,
based on the example candidate LAT types 160a, 1605, the
final predicted LAT type for the query would be the word
Drug.

In one example scenario in which simple PRISMATIC
queries on type A 1. as described by equation (6) 1s 1imple-
mented, the method “projects”™ the list of terms returned by
step 111 (1.e. prismatic queries using syntactic frames in the
question) 1nto a set of types (1.e., more general concepts, or
words which are lexical answer types). To this aim the ISA
database in PRISMATIC may be used for reporting associa-
tions as follows 1n the example:

Tylenol®->drug

Tylenol®->medication

Tylenol®->object

pill->drug

pill->substance
As there may be multiples of those associations mined

from large corpora in PRISMATIC KB, the system can

handle many different questions 1n different domains.

Thus, for each term generated by step 111, the vectors
returning their types are generated and summed up, and
weighted by a probability score (obtained prior via PRIS-
MATIC KB). For example, 11 the output of step 111 1s: Tyle-
nol®, pill, the following vectors may be generated:

Drug, medication, object

Drug, substance,

They are summed up, resulting in a vector promoting Drug,
as the predominant type.

Drug 2, medication 1, object 1, substance 1
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It 1s understood that PRISMATIC queries on type A (1., Q)
as described by equation (7) 1s similar with the only differ-
ence being that LSA weight “Q” 1s taken into account.

To adopt QA system tec. hnology to new domains requires a
generalization effort and the development of unsupervised
techniques as described herein that can be self trained by
reading large amount of texts 1in the same domain. Contribu-
tion 1n this effort includes: the defining of LAT inference task
for questions; and, the four (4) unsupervised techniques to
address this task. All of these techniques do not require hand
coded rules and do not use any ontology allowing easy port-
ability across domains. Results on the LAT inference task are
good, with high precision and recall 1n a coarse grained evalu-
ation. In addition, a fine grained evaluation shows the ability
to correctly subcategorize the target LAT in a substantial
number of cases. A further contribution 1includes the Gener-
alized Frame Model framework for handling similarity and
type abstraction in lexical knowledge bases 1n a principled
way; one contribution being the hybridization of LSA tech-
niques with relational queries, showing significant improve-
ments 1n type abstraction problem.

Further applications of the techniques herein include the
integration of the LAT inference system 1n a Question Analy-
s1s component of a QA system architecture such as described

in commonly-owned, co-pending U.S. patent application Ser.
No. 12/126,642 entitled “SYSTEM AND METHOD FOR

PROVIDING QUESTION AND ANSWERS WITH
DEFERRED TYPE EVALUATION, incorporated by refer-
ence herein, to provide additional features for TyCor, Ques-
tion Classification, and Soit Answer Filtering. This may be
applied both to questions having a meaningtul LAT (in order
to improve the specificity of the LAT or find alternative ways
to express the same concept), and to questions having a use-
less LAT where the highest headroom 1s expected. Secondly,
a unified query language may be defined for the Generalized
Frame Model to allow for hybridized structured and topical
queries. Thus the framework may be applied to a large variety
of tasks, including knowledge acquisition (and 1n particular
learning selectional preferences and frame entailment) and
textual entailment (and 1n particular lexical substitution, type
abstraction, and paraphrasing).

By integrating the system and method herein 1n a QA
system, machine processing i1s utilized for automatically
answering questions that employs special processing steps 1n
which an answer type 1s automatically inferred or predicted.
In one embodiment, the results are automatically used 1n
question answering whereby given an input LAT, an output is
a judgment whether a candidate answer (entity) 1s an instance
of a concept, e.g., by evaluating whether a thing, e.g., noun, or
a word, or entity, 1s of or has the Lexical Answer Type speci-
fied.

FIG. 8 illustrates the major components that comprise an
open domain canonical question answering (QA) system 200
and their workflow such as described 1n commonly-owned,

co-pending U.S. patent application Ser. No. 12/126,642
entitled “SYSTEM AND METHOD FOR PROVIDING

QUESTION AND ANSWERS WITH DEFERRED TYPE
EVALUATION™, incorporated by reference herein. In the
high-level logical architecture 200 depicted, a question analy-
s1s component 201 recerves a natural language question 219
(e.g., “Who is the 42”% president of the United States?”), and
analyzes the question to produce, minimally, the semantic
type of the expected answer 229 (1n this example, “presi-
dent”), and optionally other analysis results for downstream
processing.

Generally, as shown 1n FIG. 8, the high level logical archi-
tecture 200 includes a Query Analysis module 201 1mple-
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menting functions for recerving and analyzing a user query or
question. The term “user” may refer to a person or persons
interacting with the system, or refers to a computer system
222 generating a query by mechanical means, and where the
term “‘user query” refers to such a mechanically generated
query and context 219",

The present system and method 100 depicted 1n FIG. 7 may
be 1mcorporated as part of Query Analysis module 201 pro-
cessing, or 15 accessed to operate 1n conjunction with query
analysis component to predict the LAT type from the mput
question. As shown in FIG. 8, a search component 230q
formulates queries from the output 229 of question analysis
and consults various resources such as the World Wide Web
241 or one or more knowledge resources, e.g., databases,
knowledge bases 242, to retrieve “documents” including,
¢.g., whole documents or document portions 244, e.g., web-
pages, database tuples, etc., having “passages™ that are rel-
evant to answering the question. In one aspect, the candidate
answer generation module 230 implements a search for can-
didate answers by traversing structured, semi structured and
unstructured sources contained in primary sources (e.g., the
Web, a data corpus 241) and 1n an Answer Source or a Knowl-
edge Base (KB), e.g., containing collections of relations and
lists extracted from primary sources. All the sources of infor-
mation can be locally stored or distributed over a network,
including the Internet.

The Candidate Answer generation module 230q of archi-
tecture 200 generates a plurality of output data structures
containing candidate answers based upon the analysis of
retrieved data. The candidate answer generation component
230b may then extract from the search results 245 potential
(candidate) answers 248 to the question, which are then
scored and ranked by the answer selection component 2350 to
produce a final ranked list of answers with associated confi-
dence scores.

The answer selection component 250 includes an Evidence
Gathering module that further interfaces with the primary
sources and/or knowledge base for concurrently analyzing
the evidence based on passages having candidate answers,
and scores each of candidate answers, 1n one embodiment, as
parallel processing operations. When the Search System 230a
1s employed in the context of a QA system 200, the Evidence
Gathering and Scoring module 250 comprises a Candidate
Answer Scoring module 255 for analyzing a retrieved pas-
sage and scoring each of candidate answers of a retrieved
passage. One knowledge base includes an Answer Source
Knowledge Base (KB) which may comprise one or more
databases of structured or semi-structured sources (pre-com-
puted or otherwise) comprising collections of relations (e.g.,
Typed Lists). In an example implementation, the Answer
Source knowledge base may comprise a database stored 1n a
memory storage system, e.g., a hard drive.

An Answer Ranking module 260 may be invoked to pro-
vide functionality for ranking candidate answers and deter-
mining a response 99 returned to a user via a user’s computer
display interface (not shown) or a computer system 222,
where the response may be an answer, or an elaboration of a
prior answer or request for clarification in response to a ques-
tion—when a high quality answer to the question 1s not found.
A machine learning implementation i1s further provided
where the “answer ranking” module 260 includes a trained
model component (not shown) produced using a machine
learning techniques from prior data.

FIG. 9 1llustrates an exemplary hardware configuration of
a computing system 400 in which the present system and
method may be employed. The hardware configuration pret-
erably has at least one processor or central processing unit
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(CPU) 411. The CPUs 411 are interconnected via a system
bus 412 to a random access memory (RAM) 414, read-only
memory (ROM) 416, input/output (I/O) adapter 418 (for con-
necting peripheral devices such as disk units 421 and tape
drives 440 to the bus 412), user interface adapter 422 (for
connecting a keyboard 424, mouse 426, speaker 428, micro-
phone 432, and/or other user interface device to the bus 412),
a communication adapter 434 for connecting the system 400
to a data processing network, the Internet, an Intranet, a local
area network (LAN), etc., and a display adapter 436 for con-
necting the bus 412 to a display device 438 and/or printer 439
(¢.g., a digital printer of the like).

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more tangible computer readable medium(s) having com-
puter readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The tangible computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
clectronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a por
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with a system, apparatus, or device running an
instruction.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with a system, apparatus, or device
running an instruction.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including,
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
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run entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone sotftware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the tlowchart 1llustrations and/
or block diagrams, and combinations of blocks 1n the flow-
chart illustrations and/or block diagrams, can be i1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which run via the proces-
sor ol the computer or other programmable data processing
apparatus, create means for implementing the functions/acts
specified 1n the flowchart and/or block diagram block or
blocks. These computer program instructions may also be
stored 1n a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored 1in the computer readable medium produce
an article of manufacture including istructions which imple-
ment the function/act specified 1n the flowchart and/or block
diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which run on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more operable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted 1n the
figures. For example, two blocks shown in succession may, 1n
fact, be run substantially concurrently, or the blocks may
sometimes be run in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or tlowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

The embodiments described above are illustrative
examples and 1t should not be construed that the present
invention 1s limited to these particular embodiments. Thus,
various changes and modifications may be eifected by one
skilled 1n the art without departing from the spirit or scope of
the invention as defined 1n the appended claims.
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What 1s claimed 1s:
1. A computer-implemented method of inferring a lexical
answer type from a question, said method comprising:

extracting at least one syntactic frame from a question
string;

querying a lexical knowledge database to obtain at least
one replacement term for a focus of said at least one
syntactic frame, wherein said focus 1s a part of the ques-
tion indicating a lexical answer type to the question,

substituting at least one of said replacement terms with a
generalized type mformation term using said database;

ranking said replacement terms; and

selecting a top-ranked replacement term as an inferred
lexical answer type to said question.

2. The method according to claim 1, wherein said syntactic
frames comprise terms selected from the group consisting of:
a subject term; a verb term; an object term; and an indirect
object term.

3. The method according to claim 1, wherein extracting a
set of syntactic frames from a question string comprises:

using a dependency parser to identily terms 1n a grammati-

cal structure from said question string to be used as said
extracted syntactic frame.

4. The method according to claim 1, wherein said lexical
knowledge database comprises syntactic frames representing,
knowledge extracted from a corpus of data.

5. The method according to claim 1, wherein said entity
type knowledge comprises frames having terms with 1s_a
relationships.

6. The method according to claim 1, wherein querying said
lexical knowledge database to obtain said at least one replace-
ment term comprises:

applying a Generalized Frame Model to obtain said at least

one replacement term.

7. The method according to claim 1, further comprising:

filtering out said replacement terms 11 said replacement

term 1s not related to the context of said question.

8. The method according to claim 6, wherein said lexical
knowledge database includes frame structures identified from
a corpus of text, a frame structure having one or more slots-
value pairs, a slot representing a syntactic role identified by a
dependency relation, wherein said applying a Generalized
Frame Model comprises:

speciiying a frame cut comprising a sub-set of frames

having non-empty slot-values for a given subset of slot-
values pairs;

speciiying a frame abstraction to determine a desired rela-

tionship among selected selected slot values from said
given subset of slot-values pairs; and,

generating, from said frame cut, plural frame vectors defin-

ing a multi-dimensional vector space from which rela-
tionships among selected selected slot values 1s deter-
mined,; and.,

processing said frame vectors to determine said desired

relationship among selected selected slot values as
defined by said abstraction.

9. The method according to claim 7, wherein said desired
relationship includes an inferred type of a slot representing
one of: a syntactic subject role or syntactic object role 1n a
corresponding verb and noun phrase.

10. A method for predicting a lexical answer types (LAT) 1n
a question, the method comprising:

applying a frame-extraction utility to a question text to

identify all frames involving a question focus, each
frame having one or more slots-value pairs with a slot
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representing a syntactic role identified by a dependency
relation, and 1ncluding a question focus slot;

for each 1dentified frame, creating a query frame structure

having a focus slot variable, for each query frame struc-
ture, finding 1n a data corpus, a slot filler for the focus
slot variable, said slot filler being part of a question focus
from which said LAT i1s determined,

obtaining a score associated with each said slot filler found

for each 1dentified frame

ranking said slot fillers according to said scores; and

selecting a top-ranked slot filler as a predicted LAT to said

question,

wherein a programmed processor device performs one or

more ol said applyuing, creating, finding, obtaining,
ranking and selecting.

11. The method as 1n claim 10, wherein said data corpus
includes frame structures identified from a corpus of text, a
frame structure having one or more slots-value pairs, a slot
representing a syntactic role 1dentified by a dependency rela-
tion, said finding a slot filler comprising;:

specilying a frame cut comprising a sub-set of frames

having non-empty slot-values for a given subset of slot-
values pairs;

specilying a frame abstraction to determine a desired rela-

tionship among selected selected slot values from said
given subset of slot-values pairs; and,

generating, from said frame cut, plural frame vectors defin-

ing a multi-dimensional vector space from which rela-
tionships among selected selected slot values 1s deter-
mined; and,

processing said frame vectors to determine said desired

relationship among selected selected slot values as
defined by said abstraction.

12. The method as claimed in claim 11, wherein said
desired relationship includes an inferred type for a slot filler
of said focus slot representing one of: a syntactic subject role
or syntactic object role in corresponding verb and noun
phrases.

13. The method as claimed 1n claim 11, wherein said find-
ing slot fillers for the focus slot variable comprises: tabulating
raw-irequency counts of slot-fillers found from said frame
cut.

14. The method as claimed 1n claim 11, wherein a specified
frame cut includes an 1s_a frame cut including a sub-set of
frames having 1s_a relationships representing associations
between slot values and their lexical types, wherein, for each
slot filler, said method comprising generating, a predicted
LAT from said 1s_a frame cut.

15. The method as claimed 1n claim 11, wherein said find-
ing slot fillers for the focus slot variable further comprises:
filtering the slot filler results of predicted LATs by Latent
Semantic Analysis (LSA)-based topic similarity with a con-
text of said question.

16. The method as claimed 1n claim 15, wherein said fil-
tering comprises:

computing a similarity between said slot filler and the

question text; and

discarding any slot-filler whose similanty 1s below a

threshold value.

17. The method as claimed in claim 14, further comprising;:

filtering the slot filler results of predicted LAT's by Latent

Semantic Analysis (LSA)-based topic similarity with a
context of said question; and,

for each slot filler, obtaining a predicted LAT from said 1s_a
frame cut.




	Front Page
	Drawings
	Specification
	Claims

