United States Patent

US009009436B2

(12) (10) Patent No.: US 9,009.436 B2
Thomas 45) Date of Patent: Apr. 14, 2015
(54) FLUSHED DATA ALIGNMENT WITH 7,743,191 B1 6/2010 Liao
PHYSICAL STRUCTURES 7,847,283 B2 12/2010 Zhang
8,601,219 B2* 12/2013 Yanoetal. 711/135
: 2003/0163630 Al* &/2003 Aasheimetal. 711/103
(75) Inventor: Nicholas James Thomas, Dundee (GB) 2010/0100673 Al 4/2010 Cheriton
(73) Assignee: ‘(Sglsl;)isk Technologies, Inc., Plano, TX OTHER PURL ICATIONS
(*) Notice: Qubiect to anv disclaimer. the torm of this Caulfield, Adrian M. et al., Gordon. Using Flash Memory to Build
' At eJn‘[o ex‘[zn ded or 2 dj'us ted under 35 Fast, Power-efficient Clusters jfor Data-intensive Applications,
% S.C. 154(b) by 692 dayJS ASPLOS *09, Mar. 7-11, 2009, Washington, D.C., pp. 217-228.
o .
(21) Appl. No.: 13/206,266 cited by examiner
(22) Filed: Aug. 9, 2011 Primary Examiner — Yaima Rigol
(65) Prior Publication Data Assistant Examiner — Mark Giardino, Jr.
74) Att Agent, or Firm — Brinks, Gilson & Li
US 2013/0042067 A1 Feb. 14, 2013 (74) Attorney, Agent, or Firm — Brinks, Gilson & Lione
(51) Int. CL. (57) ABSTRACT
GO6F 12/00 (2006.01)
GOo6F 12/08 (2006-05~) A method and system are disclosed herein for performing
Gool 12/02 (2006-O:~) operations on a parallel programming unit 1n a memory sys-
GO6L" 13/00 (2006'();) tem. The parallel programming unit includes multiple physi-
GO6F 13/28 (2006.01) cal structures (such as memory cells in a row) 1n the memory
(52) US. CL | system that are configured to be operated on 1n parallel. The
CPC e 20(?10365 11 2/(? ggg (]22(}(1;40;)?2(();1%65 11_2£ gg; method and system perform a first operation on the parallel
(01); 5 2](5/ “f! 2)6 12.01 programming unit, the first operation operating on only part
_ _ _ (O1) of the parallel programming unit and not operating on a
(58) Field of Classification Searc‘h | remainder of the parallel programming unit, set a pointer to
CPC s GOOF 12/0868; GUOE 12/0873; /GO6F indicate at least one physical structure 1n the remainder of the
12/0607 parallel programming unit, and perform a second operation
USPC 1 """ ﬁl f """"""" | 711/ 103151 11135 , 157, 168 using the pointer to operate on no more than the remainder of
See application file for complete search hustory. the parallel programming unit. In this way, the method and
(56) References Cited system may realign programming to the parallel program-

U.S. PATENT DOCUMENTS

6,725,321 Bl 4/2004 Sinclair et al.
7,461,199 B2 12/2008 Conley et al.

700

ming unit when partial writes to the parallel programming
unit occur.

16 Claims, 6 Drawing Sheets

708

: ND

CACHE FLUSHING REQUIRED

YES

OPERATION TO WRITE IN ORDER
TO FLUSH CACHE

L J
SET POINTER TO FIRST
REMAINING PHYSICAL DATA
STRUCTURE IN THE PARALLEL

PROGRAMMING UNIT FOR NEXT
WRITE OPERATION

L

710

712

e

702

ENOUGH DATATOFILL
FROM POINTER TO END OF PARALLEL
PROGRAMMING UNIT

YES
04

OPERATICN TO WRITE /—/

706

Y
SET POINTER TO FIRST DATA /
STRUCTURE OF NEXT PARALLEL
PROGRAMMING UNIT

U.S. Patent Apr. 14, 2015 Sheet 1 of 6 US 9,009,436 B2

Applications
CPU - 112
108 ™ 100
Host File Host System
System
ANE 114
l E———
N/ Driver |
110 - |
A
.,-r"‘
. | S
\
" ~ 104 102
106 /I\/I—emory System
A
\

Front End A 197
118 ————__] { Controller Firmware N

' Flash Mgm? TN 126
[FIM |)k 128
116 |
L T _J
—T"
. Y _)
(’ 120 Flash Memory
‘ Bank 0 Bank 1 Bank 2 Bank 3
| R]

US 9,009,436 B2

Sheet 2 of 6

Apr. 14, 2015

U.S. Patent

syueg Aows|p o)

Sittie)
-+ 90D r 1NAIL)
™~ R]7 Pa1BISaU]
| oowwﬁ y S..I Y _ - I.I.E:MHHMBU
T 7
P1¢ oon

1 ..Hll U..
21 O/l
|
c0¢ — —.
’ SR LAREINN | ¢
J ATOWAN] ®
01¢ P o
—
10SS3201] — .NL O/1
N\ 907 _ 07

US 9,009,436 B2

Sheet 3 of 6

Apr. 14, 2015

U.S. Patent

(Jussaid 31) dqueq w1 sdiy) AIowap 12U10) 0]

¢ DId

P -
- — —————— K ¥ 3 |
~ [T =TT
, _ SHNDJIY SJNDIIN e | |
Sasgsgc_ Emo | Indinoandu| eleq | __ HCE I
4) _ 1
4149 + ——— ; — } | ssaippy _]
SHN3JID) JoU0D SHNJID) |04JU0D 7C¢ ce | 111
‘ UWwnjoN N__ 91¢ utn|og - Em_ 1443 / ’ U
B 0C¢ S1¢ 1 — 30¢ |\|_ _ |
405 3 >l - T « _ 90¢
/ 7 oue|d g | aue|d SN — SUILOEIY _Iﬂ_ﬁe_o bOE |
AeLIY 1199 Aelly (19D 104U m.ﬁw <A Q0RUIU| k——————— |
fJows AIOWON MOY L pPUBLILWOY) SNIES/|0ua]
— r In; _ | _ _

» wr 85 » o:,» owmm | gmL _zre | I
onuon | | jonuony [PIOM[jonuon | | jonuon | sou l _:_w__w L |
SooS Phvd Umosom Ll n_ﬁ Eo\.s / 81¢ _o%m..a.mc_ H T
M A 0€¢ A ip

4% |\ + Tt % » i “__ O} ¢ JUEF AICWS N%dm — - : r
- - - — \ - — - WaSAg i
|
00¢ ' _
19[01U0D) JO O/ OL ——~ — — | _
e

U.S. Patent Apr. 14, 2015 Sheet 4 of 6 US 9,009,436 B2

:)]

:410_\‘::412'\55 414\ f 416\ o
S | e éf??:iJ - :‘E |, 2R
S] IR I [|8
g { +n] | ey —] - 4so %
S | - ¢ W_ (i W £
(‘;g = = ":‘"' = %)
7 < Y ST T T *%
s | 1-- piniaiiel il Sl -
S| "l - i e 8
g [g |3
J PR , e I

. .)y A

418_\55420 s 422-\;;424_\55 E
S— = S +i'l .
u] :l |
/ H“"‘" -..__t_ﬁ _ H :)
. +E (i LY 4 - |
| |
” -] I i
L 1 / 1 T

454

To Column Control Circuits 314

FI1G. 4

U.S. Patent US 9,009,436 B2

Apr. 14, 2015 Sheet 5 of 6

504 506 520
[>14 X

A N

Y Y 516
_ 528
526‘“t2y, WA Qi
522 = _ __ 7 27]
FI1G. S
510 512 514 516
PO PO PO PO
602 P o P1 | [P1 o P1
v N R Ak v N A
P3 . P3 P3 P3
P4 P4 | P4 P4
P5 P5 P5 P5
PG P6 P6 P6
P7 P7 | P7 | P7
P e NS I ol N N o N et W N

U.S. Patent Apr. 14, 2015 Sheet 6 of 6 US 9,009,436 B2

700

708 702

ENOUGH DATA TO FILL

L NO CACHE FLUSHING REQUIRED NO FROM POINTER TO END OF PARALLEL
PROGRAMMING UNIT
YES VES
710 704
y Y
OPERATION TO WRITE IN ORDER // /
0 FLUSH CACHE OPERATION TO WRITE
\) 712 Y 706
SET POINTER TO FIRST SET POINTER TO FIRST DATA /
REMAINING PHYSICAL DATA STRUCTURE OF NEXT PARALLEL
STRUCTURE IN THE PARALLEL PROGRAMMING UNIT
PROGRAMMING UNIT FOR NEXT
WRITE OPERATION

FI1G. 7

US 9,009,436 B2

1

FLUSHED DATA ALIGNMENT WITH
PHYSICAL STRUCTURES

TECHNICAL FIELD

This application relates generally to managing data in a
memory system. More specifically, this application relates to
the operation of a memory system to more efficiently program
the memory system 1n parallel.

BACKGROUND

Non-volatile memory systems, such as flash memory, are
used 1n digital computing systems as a means to store data and
have been widely adopted for use in consumer products. Flash
memory may be found 1n different forms, for example 1n the
form of a portable memory card that can be carried between

host devices or as a solid state disk (SSD) embedded 1n a host
device.

Programming of data into the flash memory takes a certain
amount of time. To more efficiently program the flash
memory, a large number of memory cells are programmed at
the same time. In this way, parallel programming of the tlash
memory improves its performance and enables the flash
memory to achieve high write speed.

BRIEF SUMMARY

Methods and systems are disclosed herein for performing
operations on a parallel programming unit 1n a memory sys-
tem. The parallel programming unit includes multiple physi-
cal structures (such as memory cells in a row) 1n the memory
system that are configured to be operated on 1n parallel (such
as a parallel write operation or a parallel read operation).

According to a first aspect, a method for performing opera-
tions on the parallel programming unit 1n the memory system
1s disclosed. The method includes: performing a first opera-
tion on the parallel programming unit, the parallel program-
ming unit comprising multiple physical structures configured
to be operated on 1n parallel, the first operation operating on
only some of the multiple physical structures in the parallel
programming unit and not operating on a remainder of the
parallel programming unit; setting a pointer to indicate at
least one physical structure 1n the remainder of the parallel
programming unit; and performing a second operation using,
the pointer to operate on no more than the remainder of the
parallel programming unit. In this way, the method may
realign programming to the parallel programming unit when
partial writes to the parallel programming unit occur.

According to another embodiment, a storage device 1s dis-
closed. The storage device includes a non-volatile memory
configured to be programmed 1n a parallel programmable unit
and a controller 1n commumnication with the non-volatile
memory. The controller configured to: perform a first opera-
tion on the parallel programming unit, the first operation
operating on only some of the multiple physical structures 1n
the parallel programming unit and not operating on a remain-
der of the parallel programming unit; set a pointer to indicate
at least one physical structure in the remainder of the parallel
programming unit; and perform a second operation using the
pointer to operate on no more than the remainder of the
parallel programming unait.

Other features and advantages will become apparent upon
review of the following drawings, detailed description and
claims. Additionally, other embodiments are disclosed, and
cach of the embodiments can be used alone or together 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

combination. The embodiments will now be described with
reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a host connected with a memory system
having multi-bank non-volatile memory.

FIG. 2 1s an example block diagram of an example tlash
memory system controller for use 1n the multi-bank non-
volatile memory of FIG. 1.

FIG. 3 1s an example one flash memory bank suitable as one
of the flash memory banks 1llustrated 1n FIG. 1.

FIG. 4 1s a representative circuit diagram of a memory cell
array that may be used in the memory bank of FIG. 3.

FIG. 5 1llustrates an example physical memory organiza-
tion of the memory bank of FIG. 3.

FIG. 6 shows an expanded view of a portion of the physical
memory of FIG. 5.

FI1G. 7 1s a flow chart of a method of writing successively to
physical data structures 1n a parallel programming unit.

DETAILED DESCRIPTION

A flash memory system suitable for use 1n implementing
aspects of the invention 1s shown 1n FIGS. 1-6. A host system
100 of FIG. 1 stores data into and retrieves data from a
memory system 102. The memory system may be flash
memory embedded within the host, such as in the form of a
solid state disk (SSD) drive installed 1n a personal computer.
Alternatively, the memory system 102 may be 1n the form of
a card that 1s removably connected to the host through mating
parts 104 and 106 of a mechanical and electrical connector as
illustrated in FIG. 1. A flash memory configured for use as an
internal or embedded SSD drive may look similar to the
schematic of FIG. 1, with the primary difference being the
location of the memory system 102 internal to the host. SSD
drives may be in the form of discrete modules that are drop-1n
replacements for rotating magnetic disk drives.

One example of a commercially available SSD drive 1s a 32
gigabyte SSD produced by SanDisk Corporation. Examples

of commercially available removable tflash memory cards
include the CompactFlash (CF), the MultiMediaCard

(MMC), Secure Digital (SD), miniSD, Memory Stick, and
TransFlash cards. Although each of these cards has a unique
mechanical and/or electrical interface according to its stan-
dardized specifications, the flash memory system included 1n
cach 1s similar. These cards are all available from SanDisk
Corporation, assignee of the present application. SanDisk
also provides a line of flash drives under its Cruzer trademark,
which are hand held memory systems in small packages that
have a Universal Serial Bus (USB) plug for connecting with a
host by plugging into the host’s USB receptacle. Each of
these memory cards and tlash drives includes controllers that
interface with the host and control operation of the flash
memory within them.

Host systems that may use SSDs, memory cards and tlash
drives are many and varied. They include personal computers
(PCs), such as desktop or laptop and other portable comput-
ers, cellular telephones, personal digital assistants (PDAs),
digital still cameras, digital movie cameras and portable
audio players. For portable memory card applications, a host
may include a built-in receptacle for one or more types of
memory cards or tlash drives, or a host may require adapters
into which a memory card 1s plugged. The memory system
usually contains 1ts own memory controller and drivers but
there are also some memory-only systems that are instead
controlled by software executed by the host to which the

US 9,009,436 B2

3

memory 1s connected. In some memory systems containing,
the controller, especially those embedded within a host, the
memory, controller and drivers are often formed on a single
integrated circuit chip.

The host system 100 of FIG. 1 may be viewed as having
two major parts, insofar as the memory system 102 1s con-
cerned, made up of a combination of circuitry and soitware.
They are an applications portion 108 and a driver portion 110
that interfaces with the memory system 102. In a PC, for
example, the applications portion 110 can include a processor
112 running word processing, graphics, control or other
popular application software, as well as the file system 114
for managing data on the host 100. In a camera, cellular
telephone or other host system that 1s primarily dedicated to
performing a single set of functions, the applications portion
108 includes the software that operates the camera to take and
store pictures, the cellular telephone to make and receive
calls, and the like.

The memory system 102 of FIG. 1 may include non-vola-
tile memory, such as a multi-bank flash memory 116, and a
system controller 118 that both interfaces with the host 100 to
which the memory system 102 1s connected for passing data
back and forth and controls the memory 116. The system
controller 118 may convert between logical addresses of data
used by the host 100 and physical addresses of the multi-bank
flash memory 116 during data programming and reading. The
multi-bank flash memory 116 may include any number of
memory banks 120, with four memory banks shown in FIG. 1
simply by way of 1llustration. Functionally, the system con-
troller 118 may include a front end 122 that interfaces with the
host system, controller logic 124 for coordinating operation
of the memory 116, flash management logic 126 for internal
memory management operations such as system initiation,
writing data within a block, bad block management and han-
dling block linkage information, as well as one or more flash
interface modules (FIMs) 128 to provide a communication
interface between the controller with the tflash memory 116.

The system controller 118 and may be implemented on a
single integrated circuit chip, such as an application specific
integrated circuit (ASIC) such as shown 1n FIG. 2. The pro-
cessor 206 may comprise a miCroprocessor, a microcontrol-
ler, an application specific integrated circuit (ASIC), a field
programmable gate array, a logical digital circuit, or other
now known or later developed logical processing capability.
For example, the processor 206 of the system controller 118
may be configured as a multi-thread processor capable of
communicating separately with each of the respective
memory banks 120 via a memory interface 204 having 1/O
ports for each of the respective banks 120 1n the multi-bank
flash memory 116. The system controller 118 may include an
internal clock 218. The processor 206 communicates with an
error correction code (ECC) module 214, a RAM builer 212,
a host interface 216, and boot code ROM 210 via an internal
data bus 202.

Each bank 120 1n the multi-bank tlash memory 116 may
consist of one or more integrated circuit chips, where each
chip may contain an array of memory cells organized into
multiple planes. An illustration of a memory bank 300 on a
single chip 1s shown in FIG. 3. The memory bank 300 of FIG.
3 shows such planes 310 and 312 for simplicity but a greater
number of planes, such as four or eight planes, may instead be
used. Alternatively, the memory cell array of a memory bank
may not be divided into planes. When so divided, however,
cach plane has its own column control circuits 314 and 316
that are operable mndependently of each other. The circuits
314 and 316 receive addresses of their respective memory cell
array from the address portion 306 of the system bus 302, and

10

15

20

25

30

35

40

45

50

55

60

65

4

decode them to address a specific one or more of respective bit
lines 318 and 320. The word lines 322 are addressed through
row control circuits 324 in response to addresses recerved on
the address portion 306 of the system bus 302. Source voltage
control circuits 326 and 328 are also connected with the
respective planes, as are p-well voltage control circuits 330
and 332. If the bank 300 1s in the form of a memory chip with
a single array of memory cells, and if two or more such chips
exist 1n the system, the array of each chip may be operated
similarly to a plane within the multi-plane chip described
above.

Data are transferred into and out of the planes 310 and 312
through respective data input/output circuits 334 and 336 that
are connected with the data portion 304 of the system bus 302.
The circuits 334 and 336 provide for both programming data
into the memory cells and for reading data from the memory
cells of their respective planes, through lines 338 and 340
connected to the planes through respective column control
circuits 314 and 316.

Each memory chip 1n each bank 120 contains controlling
circuitry that executes commands from the controller 118 to
perform such functions. Interface circuits 342 are connected
to the control and status portion 308 of the system bus 302.
Commands from the controller 118 are provided to a state
machine 344 that then provides specific control of other cir-
cuits 1n order to execute these commands. Control lines 346-
354 connect the state machine 344 with these other circuits as
shown 1n FIG. 3. Status information from the state machine
344 1s communicated over lines 356 to the interface 342 for
transmission to the controller 118 over the bus portion 308.

A NAND architecture of the memory cell arrays 310 and
312 1s discussed below, although other non-volatile memory
architectures or technologies, alone or combination, such as
NOR, can be used 1nstead. An example NAND array 1s illus-
trated by the circuit diagram of FIG. 4, which 1s a portion of
the memory cell array 310 of the memory bank 300 of FIG. 3.
A large number of global bit lines are provided, only four such
lines 402-408 being shown 1n FI1G. 4 for simplicity of expla-
nation. A number of series connected memory cell strings
410-424 are connected between one of these bit lines and a
reference potential. Using the memory cell string 414 as
representative, a plurality of charge storage memory cells
426-432 are connected 1n series with select transistors 434
and 436 at either end of the string. When the select transistors
of a string are rendered conductive, the string 1s connected
between 1ts bit line and the reference potential. One memory
cell within that string 1s then programmed or read at a time.

Word lines 438-444 of FIG. 4 individually extend across
the charge storage element of one memory cell 1n each of a
number of strings of memory cells, and gates 446 and 4350
control the states of the select transistors at each end of the
strings. The memory cell strings that share common word and
control gate lines 438-450 are made to form a block 452 of
memory cells that are erased together. This block of cells
contains the minimum number of cells that are physically
crasable at one time. One row of memory cells, those along
one of the word lines 438-444, may be programmed 1n par-
allel at a time. Typically, the rows of a NAND array are
programmed 1n a prescribed order, 1n this case beginning with
the row along the word line 444 closest to the end of the
strings connected to ground or another common potential.
The row of memory cells along the word line 442 1s pro-
grammed 1n parallel next, and so on, throughout the block
452. The row along the word line 438 1s programmed 1n
parallel last.

A row of memory cells 1s merely one example of a parallel
programming unit. The parallel programming unit may

US 9,009,436 B2

S

include one or both of the following: (1) all physical struc-
tures (such as memory cells) can be programmed/read in
parallel; and (2) all physical structures can be programmed/
read with the same or similar completion time. Element (2) 1s
for purposes of elliciency, although not required for a parallel
programming unit.

The row of memory of memory cells may be composed of
cells that are 1n the same physical location on a die. Alterna-
tively, the row of memory cells may be composed of cells that
are 1n different physical locations on die or dies that are all
programmable 1n parallel. Moreover, other parallel program-
mable units are contemplated 1n which memory cells may be
programmed 1n parallel.

A second block 454 1s similar, 1ts strings of memory cells
being connected to the same global bit lines as the strings in
the first block 452 but having a different set of word and
control gate lines. The word and control gate lines are driven
to their proper operating voltages by the row control circuits
324. I there 1s more than one plane 1n the system, such as
planes 1 and 2 of FIG. 3, one memory architecture uses
common word lines extending between them. There can alter-
natively be more than two planes that share common word
lines. In other memory architectures, the word lines of indi-
vidual planes are separately driven.

The memory cells may be operated to store two levels of
charge so that a single bit of data 1s stored 1n each cell. This 1s
typically referred to as a binary or single level cell (SLC)
memory. Alternatively, the memory cells may be operated to
store more than two detectable levels of charge 1n each charge
storage element or region, thereby to store more than one bit
of data 1n each. This latter configuration 1s referred to as multi
level cell (MLC) memory. Both types of memory cells may be
used 1 a memory, for example binary flash memory may be
used for caching data and MLC memory may be used for
longer term storage. The charge storage elements of the
memory cells are most commonly conductive floating gates
but may alternatively be non-conductive dielectric charge
trapping material.

FI1G. 5 conceptually illustrates an organization of one bank
120 of the multi-bank flash memory 116 (FIG. 1) that 1s used
as an example in further descriptions below. Four planes
502-508 of memory cells may be on a single integrated
memory cell chip, on two chips (two of the planes on each
chip) or on four separate chips. The specific arrangement 1s
not important to the discussion below. Of course, other num-
bers of planes, such as 1, 2, 8, 16 or more may exist in a

system. The planes are individually divided into blocks of
memory cells shown 1n FIG. 5 by rectangles, such as blocks
510, 512, 514 and 516, located 1n respective planes 502-508.
There can be hundreds or thousands of blocks 1n each plane.

As mentioned above, the block of memory cells 1s the unit
of erase, the smallest number of memory cells that are physi-
cally erasable together. For increased parallelism, however,
the blocks may be operated 1n larger metablock units. One
block from each plane 1s logically linked together to form a
metablock. The four blocks 510-516 are shown to form one
metablock 518. All of the cells within a metablock are typi-
cally erased together. The blocks used to form a metablock
need not be restricted to the same relative locations within
their respective planes, as 1s shown 1n a second metablock 520
made up of blocks 522-528. Although it 1s usually preferable
to extend the metablocks across all of the planes, for high
system performance, the memory system can be operated
with the ability to dynamically form metablocks of any or all
of one, two or three blocks 1n different planes. This allows the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

s1ze of the metablock to be more closely matched with the
amount of data available for storage in one programming
operation.

The 1individual blocks are 1n turn divided for operational
purposes into pages ol memory cells, as 1llustrated in FIG. 6.
The memory cells of each of the blocks 510-516, for example,
are each divided into eight pages PO-P7. Alternatively, there
may be 16, 32 or more pages of memory cells within each
block. The page 1s the unit of data programming within a
block, containing the minimum amount of data that are pro-
grammed or read at one time. In the NAND architecture of
FIG. 3, a page 1s formed of memory cells along a word line
within a block. However, i order to increase the memory
system operational parallelism, such pages within two or
more blocks may be logically linked into metapages. A
metapage 602 1s illustrated in FIG. 6, being formed of one
physical page from each of the four blocks 510-516. The
metapage 602, for example, includes the page P2 in each of
the four blocks but the pages of a metapage need not neces-
sarily have the same relative position within each of the
blocks. Within a bank, a metapage 1s the maximum unit of
programming.

As noted above, FIGS. 5-6 illustrate one embodiment of
the memory cell arrangement that may exist in one memory
bank 120 of the multi-bank memory 116. In one embodiment,
regardless of individual memory cell configuration for each
bank 120, the memory 1s broken up 1nto a plurality of physical
subarrays that are each mapped to a unique set of host LBA
addresses referred to herein as LBA regions.

Referring again to FIGS. 1-2, one example frontend 122 1s
seen 1n FIG. 1 where the host interface 1n the front end 122
may include any of a number of known interfaces, such as a
serial ATA interface (SATA). The front end 122 may handle
caching of data from the host 100 with a volatile or non-
volatile cache memory. RAM 212, which may be DRAM, 1s
shown 1in FI1G. 2 and may be used to cache incoming host data.
A processor 206 1n the front end 122 manages separation and
routing of data from the host to the appropriate subarray based
on the host LBA addresses that have been preassigned to each
subarray. A mapping of the preassigned host LBA addresses
and subarrays may be maintained 1n a table and checked by
the front end 122 against host LBA addresses of data arriving
from the host or the mapping may be determined by the front
end 122 executing an algorithm against the incoming data
host LBA addresses to sort the data to the approprate flash
subarray. For example, sequential LBA addresses 1n the
address space at the host interface may be interleaved 1n
bursts amongst individual subarrays. In one implementation,
if each burst contains 64 LBA addresses and there are 8
subarrays, address bits O to 5 may define an LBA within a
page ol a subarray and address bits 6 to 8 may define the
subarray which should be addressed. The LBA address
received at the host interface may be passed directly to the
subarray addressed by bits 6 to 8, after bits 6 to 8 have been
removed from it.

In addition to the routing of the incoming data to the sub-
array associated with the host LBA address of the data, the
front end 122 1s arranged to provide centralized management
of the various controllers so that concurrent foreground write
operations and background operations such as reclaim (gar-
bage collection) may be coordinated amongst the controllers.
The front end 122 may be logic in the same ASIC 208 that
houses the controller functions, such as shown 1n FIG. 2, a
collection of one or more discrete circuits, or a combination
of the two.

As discussed above, the memory system 102 may perform
operations on a parallel programming umt in parallel. The

US 9,009,436 B2

7

operations may include read operations or write operations.
One example of a parallel programming unit 1s a row of
memory cells.

When data 1s written to flash memory, the data 1s written,
where possible, 1n units of the maximum parallel program-
ming unit. There are, however, instances when this 1s not
possible and where there 1s insuificient data to fill the parallel
programming unit. In this way, an operation 1s performed on
part, but not all, of the physical data structures 1n the parallel
programming unit. The available data 1s written 1n such a way
that the data fills as many physical data structures in the
parallel programming unit as are needed.

One example of an operation with insufficient data 1s a
cache flushing operation. The host system 100 may send a
host flush command that instructs the memory system 102 to
write all cached data 1n volatile memory to flash memory,
resulting in the cache flushing operation to write data from the
cache to flash memory. Alternatively, the memory system 102
may determine that a cache flush operation be performed. In
cache flushing operations, a portion (or all) of the data 1n the
cache 1s copied from the cache to the main storage area and
then removed from the cache to make room for new mput data
in the cache, or simply to clear the cache as for a host flush
command. For example, some, but not all, of the cells 1n the
parallel programming unit are written to 1n the cache flushing
operation. So that, a remainder of the cells in the parallel
programming unit are not written to.

In one aspect, a subsequent operation 1s performed 1n order
to realign programming to the parallel programming unit. For
example, when there 1s msuificient data in the previous write
to fill the parallel programming unit (and a part of the parallel
programming unit 1s not written to in the previous write,
termed the remainder of the parallel programming unit), the
next write to the flash memory fills up to (but not more than)
the remainder of the parallel programming unit. In the event
that the next write does not fill the remainder of the parallel
programming unit, subsequent writes may be repeated until
the parallel programming unit 1s filled. In this way, the next
same operation (such as the next write operation) 1s con-
strained to fill at most the remainder of the parallel program-
ming unit, thereby realigning the programming of the pro-
gramming unit. So that, subsequent operations may be
performed on the entire parallel programming unit (such as a
subsequent write to a different row of memory cells). As
discussed above, different parallel programming units (such
as different rows of memory cells (1.e., aligned different par-
allel programming sets)) may have different programming/
read times and thus 1 sub-parts of adjacent sets were merged
together, they may not necessarily conform to element (2) of
the parallel programming unit (namely, that the physical
structures can be programmed/read with the same or similar
completion time) and may not even conform to element (1)
(namely that the physical structures (such as memory cells)
can be programmed/read 1n parallel).

FIG. 7 1s a flow chart 700 of a method of writing succes-
stvely to physical data structures 1n a parallel programming
unit. At 702, 1t 1s determined whether there 1s enough data to
write from the pointer to the end of the parallel programming
unit. In one embodiment, the pointer includes information
indicative of where the next write should begin (such as the
next cell to program). In the example of the parallel program-
ming unit having a row of cells, the pointer may include
information as to the row and column of the cell where the
next write should begin. For example, if a previous write filled
the parallel programming unit, the pointer may point to the
first cell 1n the row (such as row “X” and column *“0””, with the
column *“0” indicating that the entire row 1s to be pro-

10

15

20

25

30

35

40

45

50

55

60

65

8

grammed). As another example, if a previous write did not fill
the parallel programming unit, the pointer may point to a cell
other than the first cell in the row (such as row “X” and
column *“20” indicating that the first 19 cells were pro-
grammed 1n the previous write, and that the remainder of the
row (irom cell 20 to the end of the row) will fill the parallel
programming unit). In an alternate embodiment, the pointer
includes information of where the last write was performed.

As discussed above, at 702, it 1s determined whether
there’s enough data to write from the pointer to the end of the
parallel programming unit (regardless of whether or not the
pointer 1s pointing at the first cell i the row). If there 1s
enough data to write, at 704, an operation to write 1s per-
formed. At 706, the pointer 1s then set to the first data structure
(such as the first cell) of the next parallel programming unit.
Alternatively, the pointer may be set to the last data structure
written to. The pointer thus indicates that the next write 1s to
program the entire parallel programming unat.

If1t1s not determined that there’s enough data to write from
the pointer to the end of the parallel programming unit, at 708,
it 1s then determined whether cache flushing 1s required. As
discussed above, one operation 1s a cache tlushing operation,
which results from recerving a host flush command to imme-
diately clear some (or all) of the cache 1n the memory system
102. At 710, an operation to write 1n order to flush the cache
1s performed. The writing of data in a cache flushing operation
may fill more than one parallel programming unit (such as
more than one row of memory cells). In this way, one of the
parallel programming units may not be entirely filled with
data (termed the unfilled parallel programming unit or a
remainder of the parallel programming umt). At 712, the
pointer 1s set to the first remaining physical data structure in
the parallel programming unit. Thus, the pointer indicates the
physical data structure (such as the cell) that 1s to be first
programmed at the next write. In the above example, if the
write for the cache flush operation results 1n the first 19 cells
of the current parallel programming unit being filled, the
pointer will point to the 207 cell to indicate that this is the cell
to begin the next write operation. In this way, due to the
pointer pointing to the 207 cell, the next write operation limits
the write so that, at most, the remainder of the unfilled parallel
programming unit is filled (e.g., from the 207 cell to the end
of the row 1n the parallel programming unit). Alternatively,
the pointer may point to the 19 cell (the last cell written to)
to indicate that the next cell (the 20” cell) is the next cell to be
written to. Thus, i1 the operation does not fill at least one of the
parallel programming units, a realignment operation may be
performed. One type of realignment operation 1s to perform
one (or multiple) write operations to fill the remainder of the
unfilled parallel programming unit with data before other
parallel programming units are written to.

I1 there 1s not enough data to fill from the pointer to the end
of the programming unit and cache flushing 1s not required,
the flow chart 700 loops back to 702 to wait. For example, the
flow chart may wait until enough data 1s stored in temporary
storage to {ill from the pointer to the end of the programming,
umt or until a cache flush 1s required. In certain instances, the
next write operation will fill the remainder of the unfilled
parallel programming unit (e.g., 11 the pointer does not point
to the first cell 1 the parallel programming unit). In other
instances, the next write operation will not {ill the remainder
of the unfilled parallel programming unit (such as 1f another
cache flush 1s required), so that the flow chart will iterate
through until the unfilled parallel programming unit 1s filled.

It 1s mtended that the foregoing detailed description be
understood as an 1llustration of selected forms that the inven-
tion can take and not as a definition of the invention. It1s only

US 9,009,436 B2

9

the following claims, including all equivalents, that are

intended to define the scope of this invention. Also, some of

the following claims may state that a component 1s operative
to perform a certain function or configured for a certain task.
It should be noted that these are not restrictive limitations. It
should also be noted that the acts recited 1n the claims can be
performed 1n any order and not necessarily 1n the order in
which they are recited.

I claim:
1. A method of performing operations on a parallel pro-
gramming unit in a memory system, the method comprising
the memory system:
performing a first operation on the parallel programming
unit, the parallel programming unit comprising multiple
physical structures configured to be operated on in par-
allel, the first operation operating on only some of the
multiple physical structures in the parallel programming
umt and not operating on a remainder of the parallel
programming unit;
setting a pointer to indicate at least one physical structure 1in
the remainder of the parallel programming unit; and

performing a second operation using the pointer to operate
on no more than the remainder of the parallel program-
ming unit by writing only to memory cells 1n a row, as
indicated by the pointer, from a column, as indicated by
the pointer, to an end of the row.

2. The method of claim 1, wherein the first operation com-
prises a cache flushing operation.

3. The method of claim 1, wherein the parallel program-
ming unit comprises a row of memory cells.

4. The method of claim 3, wherein the pointer indicates a
first cell not operated on 1n the first operation.

5. The method of claim 4, wherein the column of the
pointer indicates a number of the remainder of the parallel
programming unit.

6. The method of claim 1, wherein the first operation and
second operation are write operations.

7. The method of claim 6, further comprising iteratively
writing, after performing the second operation, to the remain-
der of the parallel programming unit until all of the remainder
1s written to.

8. The method of claim 1, wherein the parallel program-
ming umt comprises all physical structures 1in the memory

10

15

20

25

30

35

40

10

system that can be programmed or read 1n parallel and can be
programmed or read with a same or similar completion time.
9. A storage device comprising:
a non-volatile memory comprising parallel programmable
units, the parallel programming units comprising mul-
tiple physical structures configured to be operated on 1n
parallel; and
a controller 1 communication with the non-volatile
memory, the controller configured to:
perform a first operation on the parallel programming
unit, the first operation operating on only some of the
multiple physical structures 1n the parallel program-
ming unit and not operating on a remainder of the
parallel programming unit;

set a pointer to indicate at least one physical structure 1n
the remainder of the parallel programming unit; and

perform a second operation using the pointer to operate
on no more than the remainder of the parallel pro-
gramming unit by writing only to memory cells 1n a
row, as indicated by the pointer, from a column, as
indicated by the pointer, to an end of the row.

10. The storage device of claim 9, wherein the {irst opera-
tion comprises a cache flushing operation.

11. The storage device of claim 9, wherein the parallel
programming unmt comprises a row ol the memory cells.

12. The storage device of claim 11, wherein the pointer 1s
configured to idicate a first cell not operated on in the first
operation.

13. The storage device of claim 12, wherein the column of
the pointer 1s configured to indicate a number of the remain-
der of the parallel programming unit.

14. The storage device of claim 13, wherein the first opera-
tion and second operation are write operations.

15. The storage device of claim 14, wherein the controller
1s Turther configured to iteratively write, after performing the
second operation, to the remainder of the parallel program-
ming unit until all of the remainder 1s written to.

16. The storage device of claim 9, wherein the parallel
programming unit comprises all physical structures in the
memory system that can be programmed or read in parallel
and can be programmed or read with a same or similar
completion time.

	Front Page
	Drawings
	Specification
	Claims

