12 United States Patent

US009009329B2

(10) Patent No.: US 9.009,329 B2

1 : : :
Malakapall et al 45) Date of Patent Apr. 14, 2015
(54) PLATFORM FOR ENABLING TERMINAL 7,849,192 B2* 12/2010 Brandstatter 709/226
SERVICES VIRTUALIZATION 8,375,127 B1™ 2/2013 Lita ..cocoovviviiiiiiiininnn, 709/226
2004/0088377 Al 5/2004 Henriquez
1
(75) Inventors: Meher Malakapalli, Smmamish. WA 20060069707 AL* 32006 Abdaelal. ooonnevrs. 709231
(US); 1do Ben-Shachar, Kirkland, WA 2006/0195895 Al* 82006 Ben-Shacharetal. ... 726/11
(US); Artem Belkine, Renton, WA (US); 2006/0200453 Al1* 9/2006 Santrosyanetal. ... 707/3
Ashwin Palekar, Sammamish, WA 2007/0168525 Al* 7/2007 DeLeonetal. ... 709/228
(US); Niraj Agarwala, Redmond, WA 2007019320 Al §2007 Croft et al, .ovovovr 07710
Eugg Mahadev Alladi, Redmond, WA 2007/0198656 Al* 82007 Mazzaferrietal. 709/218
u 2007/0204153 Al 82007 T t al.
2007/0233869 Al* 10/2007 Jngleef al. 709/226
(73) Assignee: Microsoft Technology Licensing, LL.C, 2007/0237077 Al* 10/2007 Patwardhanetal. ... 370/230
Redmond, WA (US) 2007/0239859 Al 10/2007 Wilkinson et al.
’ 2007/0244966 Al* 10/2007 Stoyanovetal. ... 709/204
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1126 days. OTHER PUBLICATIONS
(21) Appl. No.: 12/277,723 Chitnis, P.V., “Terminal Services Team Blog,” http://blogs.msdn.
com/ts/, Sep. 2, 2008, 1-17.
(22) Filed: Novw. 25, 2008 (Continued)
(65) Prior Publication Data
US 2010/0131654 Al May 27, 2010 Primary Examiner — Hamza Algibhah
(51) Int.Cl Assistant Examiner — James Edwards
COGF 15/16 (2006.01) (7%1) Attorney, Agent, or Firm — Ben Tabor; David Andrews:
HO4L 29/08 (2006.01) Micky Minhas
(52) U.S. CL
CPC ... HO4L 67/08 (2013.01); HO4L 67/2814 57 ARSTRACT
(2013.01); HO4L 67/2819 (2013.01); HO4L (57)
67/1006 (2013.01); HO4L 67/14 (2013.01): Disclosed are techniques for providing a platform and appli-
HO4L 67/1002 (2013.01); H 0?2;0612/ 10 ‘iz) cation program interface (API) that leverages a terminal ser-
' vices session broker infrastructure to support third party plug-
(58) Field of Classification Search in applications. In a typical scenario, when a user requests for
USPC .. 709/227 q Comection to access ‘[hlrd party plug_ln applicationsj the
See application file for complete search history. application program interface may interact with the session
_ broker process to identily sessions or suitable servers to
(56) References Cited which the user can be connected. The user may access the

U.S. PATENT DOCUMENTS

6,922,724 B1* 7/2005 Freemanetal. 709/223
7,243,138 B1* 7/2007 Majkutetal. 709/219
7,334,039 B1* 2/2008 Majkutetal. 709/229

200

third party plug-in applications through the i1dentified ses-
s10ms or suitable servers.

20 Claims, 21 Drawing Sheets

514 ~ 908
EDIRECT

Processor(s)

-

J, ReDirector
\ 522~

518 510

/2 J—
SERVER
526 VIRTUAL
/ DESKTOR. S

Z

SESSION BROKER VIRTUAL

1 PESKTOP

PoLICY 528 I
Poorwwesnstlt— (" visra
CESKTOP. 51
Broker »

524_/ TERMINALSERVER

212

US 9,009,329 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0082666 Al* 4/2008 Brandstatter 709/226

2008/0235624 Al* 9/2008 Murataccccoveeeernenn, 715/825

2009/0287772 Al* 11/2009 Stoneetal. 709/203

2009/0313338 Al™* 12/2009 Lankfordetal. 709/206

2011/0167159 Al* 7/2011 Bethlehemetal. 709/226
OTHER PUBLICATTIONS

Madden, B., “When to Use VDI, When to Use Server-based Com-

puting, and How the Citrix Ardence Dynamic Desktop Fits into All
This,” http://www.brianmadden.com/content/article/When-to-use-

VDI-when-to-use-server-based-computing-and-how-the-Citrix-
Ardence-dynamic-desktop-fits-into-all-this, Mar. 15, 2007, 1-10.
Wolt, C., “Virtual Server RDP Administration Annoyance,” http://
virtualization.com/guides/2006/03/22/virtual-server-rdp-adminis-
tration-annoyance/, Mar. 22, 2006, 1-6.

Chappell, D., “Virtualization for Windows: A Technology Over-
view,” http://download.microsoft.com/download/0/ A/C/O0ACS57003-
473C-4F9A-84B0-SADEF6ACE753/MS__Virtualization_ Over-
view_vl.l.doc, Jul. 2007, 1-25.

Rouse, P., “Virtual Desktop Infrastructure (VDI) Overview,” http://

www.msterminalservices.org/articles/ Virtual-Desktop-Infrastruc-
ture-Overview.html, Dec. 20, 2006, 1-5.

* cited by examiner

US 9,009,329 B2

Sheet 1 of 21

Apr. 14, 2015

U.S. Patent

0S anu] Addog

9Ot

suoneanddy

Op Rleoqiay

T "IN T I I T S sees sy’ T T S G

90IAa(] abelols

|
|
|
|
[y JOUUOW “
|
_
_
_

€5 /] AOMiEN

3/ HOd [BLRg

£7 SNg WBISAG

g sng

1ISOS

7 9SNOW

I "Old

BZ oDRI01G S|gRAOILISY

A ZNN. @

9z oAl Addopd ™,

Q€ aAN [eond

7

Pe
{1 SAUQ |eondO

4

G9

Joldeny 1s0H

£€ 2/ 8AUQ
)s1@ onsubep

174

19ydepy 09pIA

07 Jondwo’)

b

[zzenuapen |

k 4

ZE /)
9ALQ XSIQ PUBH

LC

nun buissasoid .“

wUOEm_E Emﬁmﬂhm

hme{mGDm&
m. d3H.1.0

9t SWVHOOH
NOILYIIl lddVY

_ St 50 _

¥
WvH)

9¢ SOI9

(72 WOM)
rA7

|

US 9,009,329 B2

Sheet 2 of 21

Apr. 14, 2015

U.S. Patent

el Oid

291 N 10ssa20.d |edISAYd 0ST ademplep

9Ll
N J0SS920.1d

[ENLIA

0F1 J24e Buizijenpi

vl
| 10SS@201d

Jenpip

[X43
N SUIUOe[A [BNIA

mﬂL

JUAWIUOLIAUT SUIYIe [enMIA

091) Jossanold |edlsAyd

Z71 J9|npayog

ZlL oLt
N 10889201 | 10Ss890.d

|enMIA [ENLIIA

ozl
| SUIYSEW [ENLIA

U.S. Patent Apr. 14, 2015 Sheet 3 of 21 US 9,009,329 B2

204

T s '
T - — w
Fir m o 8 o smm I t.DI Input
T S - e —] T
TRIDOIN el Al okl almllatom s, —lewa homew o
e TEAAEE T T ME iEE T TerTHETRRTE TR) - - 4
Bmptm e m e mias e s = ome = mim gt - e - - -
' . Pl T T T T T i M R - . T
Talll l :'!f'.: P e I PAr . A - 'i.-\. oRIZe = e T -1
1 LN FIIRYEEL % =|= tmaps - i m . Vel g mE
:=-=-i-.-;-."‘-;'“'“:‘- . - A bl o b iordha e
v m HEE) el A BT R
R N .- [ALFE Y] LU LY 2'__'5: N e N
i e ey = 'i;";:" - I (AR SR B -
oramm owmra o _E '.-r-rinu 'I T ’-'I-:‘-'H:'J'"'}_
R R R TR INTIE - TR LY T
PR .I...L.._E: . LS R R T N R = N
rom i '-':; fietow Wt e e I A -
. L T A A N o= o mm e s - m o rm s oam =W
L M AR MR b T T - L L
m et T L [|! HEE -0 R T T R T A N R
Piam i l;'!;ﬂ.:lt:; | T . R A T e o i w i
sem . e . mma o m ot am - -
BEE Rl . SRRl N :
L} L] L} LRI I] = -
SRR R L N S LR LN Phicers n
E iire Fimie eRietRRce T e oo r "IE'.'H'}"':"I}: Tys 1 . '
e L Il e e
P T m O T T T
Sy Sl e e
| oo LA SR O TS
. —L o (R RE BEEN Bal B ub i o LY
i a a
-
——
I] |-I
|
.I L] L} L} L} [I] [] L} - L] - = - L} L} L} L} -.) ——))) ! !
P L - i y - 1) R AT MR AN g SgEn A mE R Ry R ki -
e] -;;u;'r;-;'c-'-".:_g;\.:-:.;--.:;.-r;.::r'--.'r'-::'_ A A Tt T T T I T bl TRl mum e rLe g emfihe o i s
= H HER=R S e S T T - S,
:'“:";":":'"._:l:“'\'t '.E:'._::I:IC:IC'- L:I:A:_H:I:H._L!!_.LEI.!..L!.A.I.L e ma . - T ,__.e:.?.__.\!g.__g_.ls. WAL o ym oy
P TR T .'\.E—-.'\.-{r-n: e e e el sl B Ll s T I L R R - -] HELEE XD MmN IL TED T AT cE T e o == -
E?I.ﬁﬁi._j:tl-:-r:.:\-:r :\.-.E.::\.IE:...--\”.. TR LI LA A SRR R S E I TN DL R L L S T A d .
PR ...{.E ik Folie SO A e RN N Salt N B e N S U N O T -n . Tea O N R L]
IR L H'!'.H'n':h:— AR oAr o odErcars Ar YA dF BN AR HE Coan . . hb
TR bt f R i TR SR TS T O S A S, et L
P A A T N et N T T Y i Y S RS e [Tt -
e A ' - - Hi- 2 4 w-giraiAs 4 48 20 - Looa . D .:';
e om o am oLm o oLm g . ' R A . o ame . e
- N .. = aem - . =, H R Loz, - .
SrrrIierriir a3t R R S T AL FV Y IR TR i O
T TR T R T Y] LT h] rdes Er i ECET BTE R I T "N e g, L T L [I o
L T R T ot e - -'i-'l"—id;'\-""\-' PETHE C4F e oewes mnen o= - = -__5 _E
R LT P e T Tredrabeesli, e N A - Tty
o nEr R A voam e R AT R e tem mioE R EF G mw - - - - - - -
N G e e oup - TRl TTIETITUTERT —— - p— - —
- N | rw v o - - R N
H R LR R YIoars - - . Ve EMEIERY O
T I T T T T I K o Lm Lm !) mgmmg g ma oL
KA W CTCE W T R R R T T 1" q1 . . Iy . - RN ot
PAMRTEML DI H = SR = o TR L A S o e = . o : o o
b " o
vt ShERECES I DR P B T SR ! ' e : ol
oL C D maw X a R N R Y T CArTT b th o fttw PR . . u ! i
A e FeerormrE SRR SRR oA tT R Pt e P R
p_ S L L e S S EES—
Tttt 1 osw vm ormaw e aw Lmiaemrie g PEmaEEgE im0 E_® 1 CiEmramaw 1
' i -
=L - . =t smmam o am s sammim o sam ms o mam s m smmsmram mrs I 3
TR i "W e R C o T W W om o dWw W W W T TR R T
A BRI P R LRI R ETN I P TRCE RN
S i : e A - B
- T e, e - AR e W T
- - [(LR T R T T
: M RELTFE R
- . o= b T . ' RO R EC T e Tm
I e oam omr o oy 4 Ao i . Wt e T e
P T R O T R - P R iy R T T LR
e mmr e - L. e e LI B .. X imy = - -
. .o - R R T N TR e e s R e T w
om TR T S w e mde e amas AE TE T A Alm W CmT SN e
. = i mm1 =1 om P ' ' e e
ISmm 3 s mm e 11 s & -—
i ol - n
" L I L T
- [N L e o N O N DL S N p T e e
S e T 5 e T e T R R e
R T T T i ' o e TTakEaETEIE TR T EA an i e amien »
al ._:Ei-.;ﬁ':-'i:l. NI . T N B W IR TR SO R I N TR Y I TR N S T TR R A O T
Tt A e T R I e
TETTTRT T Ty ey FR e T IR TR Y R
=T - L3 B .
dmen AL dE 4 - = AR Mo ey peese e -
E A= e - T Taeiava I
e . - I =
P T S - L LTRL]
Lo - L ol - e e
" w I T T " R .
wmmme AR AR R T h . L HE _owoe bl
PR I BN P T s T L LR s o o
K] = Tioaimiw - = = T om . - - " e . L
AR E L AR R R P T N e A LA R L]
v w BH ek L L R - - B e B - w
WS R E T e o Ik I R I R 2T
nr ul m » o = m | x m! " . . .!! .
Ly e aaom -t e L T e o e, L
-'.E!'-' wAIEr T w oo Gy wre EF i TR/t AMR RS E -
S S LA [P s T el el R “ao- :
R T - R ' . v E;
I~ [- P e T LR S A . o m -
w o EnEawnk owk e Al e LY B TR Al e T b L T N Mo =Rl N i..:_:T:"T:
TR e R L o TR I L TR L
e e ¢ - i TR R © e Lo it T e e "'_;..':f.i N R T T T
TR R LI T FE el T Ar faetr o T CaCl Al omCi T oAl Lma.uLe! L oK. ftED I ET CEonE NTTE £ E "
DorgeIE oMy mm St R U e I a B c R D ot e Emial mm R G AW mwom tsmmr L mm = mmn e o P
Corne Tl s T ! Pl T e e S
T L] H YRR T T T T o gt oM. Ll = u R ol T ol T o B w
:-\.-\.-c:-':--' 2 - - R tafe P .
H - T o ' . - P
" " " bl oL LA - 1
l"'- Ll ' : L TS i 1 1 'E . T
N oL i ey g T R TN T T N T TR P P miam: ‘-
R e S e e LI L T O N _ .=
-'\-.i'—'\--“!i!'\-:'\-'- L - R T R I e e L T A . N X - A .- Lo
MR RN S MRS SR MIR DAL AR RD RD DR R D oER LT Va R CE R R R R EE T R TRTT = -] s
. SR T LmmL EgE Eogmml g m o ramammramd o mim 4 TR .-\..- .-:-\.
i - pERIIL LY v nnTobanon -
- e IR SN SR . . e
Bl 1 B I’ hl = = =
L
d
b
E
el — L] L] L] L] L] L] E | | r]
r
r
p——— - TR mrsem
e g e e e e e e b e mm AR e = P
BN I R - R R - B e e
Fn PEemrrm e ab PR AP e
n PR R Mt IR -
- N e L L DRI .os
- el IyIomnn .t o Taiwa
: P iagE i e giirw A R
: PR g o g
i . A
AT e ' o
e . : LK Rl
PR iR P .— .
e ,.._..\..E_. - [=R, b = R
AR EN R i e lE e Rt T s mairc i Afie AT RO T iR e et Wt
aneo o mbaiay Lmaom e a R e L
AR TSR TAE T g - wetoTer et o IgIvIvd TED L - Il z
- e . . i R aETE wtd o mTF m T mha
e e e T T -
"TEL TR Emim e e ED oE o Eom
= no. '

412

e}
==
N\
%
% g Old
—
<.
=)
2
= HIAYISTYNINGAL ; _ o
8¢S
1230.9

N LG dOIMST
= IVNLHIA 0£G YISVYNVIN 100
=
.4
: 97 G ADIT0d
f _
= _

81G dOIMS] !
_ WNLYIA H3AM0OUG zo__mmﬁ l0j08l1g9Y
" . L
o
< 781G dOMST]
— TVNLAIA 9¢cs v _
: (s)losseooid
£ N OL03dId3Y

0LG mrm mom

U.S. Patent
3

U.S. Patent Apr. 14, 2015 Sheet 5 of 21 US 9,009,329 B2

CLIENT DEVICE / 600

502\
| PROCESSOR (S) 802 |

S ————
MEMORY 604
| OPERATING SYSTEM
I I MODULE 606

APPLICATION (S } 608

‘ ‘ { PROTOCOL HANDLER 610'
[NETWORK INTERFACE 612 |<—>

FIG. 6

U.S. Patent Apr. 14, 2015 Sheet 6 of 21 US 9,009,329 B2

518 VIRTUAL DESKTOP /_ 700

! PROCESSOR (S) 702 ‘

oo 7o
! OPERATING SYSTEM

MODULE 706

I ‘ APPLICATION (S) 708 l
| DATABASE 712 I

FIG. 7

U.S. Patent Apr. 14, 2015 Sheet 7 of 21 US 9,009,329 B2

2800
-\ REDIRECTOR/ BROKER
RECEIVE REQUESTFROM CLIENTTO |/~ c02
CONNECTTO VIRTUAL DESKTOP

REQUEST SESSION BROKERTO
CONNECTTO VIRTUAL DESKTOP

/— 806
REQUEST DESKTOPSAVAILIBLE
/— 808
DETERMINEAVAILABLE DESKTOPS
810
SENDAVAILABLE DESKTOPTO
SESSION BROKER
) _ 812
SELECTVIRTUAL DESKTOPRIN
ACCORDANCEVMTH PCLICY
| | 314
SEND | NDICATIONOF VIRTUAL
DESKTOPTO R EDIRECTOR
816
SENDACKNOWLEDGEMENTOF
CONNECTIONTO CLIENT
818
RECEIVE DATA & CETERMINE ORIGIN
820
DATA ORIGIN?
Server Client
] 824 - 828
SEND RETREIVED SEND CLIENT
CONTENTTO CLIEN CONTENTTO SERVER

FIG. 8

U.S. Patent Apr. 14, 2015 Sheet 8 of 21 US 9,009,329 B2

000 CLIENT
902
A

S
REQUEST CONNECTION TO SERVER I

‘ s 904

l RECEIVE ACK AND RDP TOKEN I

206
I

CONNECTTO SERVER SPECIFIED IN
TOKEN

FIG. 9

U.S. Patent Apr. 14, 2015 Sheet 9 of 21 US 9,009,329 B2

VIRTUAL SERVER

1000
\

1002
" RECEIVE REQUESTS FOR VIRTUAL
DESKTOP AVAILABILITY
- 1004
P [
INDICATED AVAILIBILITY I
1006
0y [
RECEIVE REQUESTS FOR CONNECTION I
Y

CONNECT VD TO CLIENT , SEND AND
RECEIVE CONTENT

FIG. 10

U.S. Patent Apr. 14, 2015 Sheet 10 of 21 US 9,009,329 B2

SERVER

.
COLLECTION BROKER N N -~
o s PLUGAN (S)

1108 Cond

SESSION BROK
MODULE

1016

=ENSIBLE API
1018

:I-.-i'jgi_:';'-- ___._.:!.,_. ..:J-'!;i:-.-.-:-g
nirda eed iR pn . R
g 0 adnr LRI

CLIENTDEVICE

CLIENTDEVICE

U.S. Patent Apr. 14, 2015 Sheet 11 of 21 US 9,009,329 B2

1200 \
SERVER SESSION BROKER SERVE
1104

SESSION BROKER PROCESS 1108

REMOTE j 2 1 0
SESSION
MANAGER INITIALIZATION R EEZERY

1204

DISCONNECTED SESSIONS

PING SESSION DIRECTORY

SESSION DIRECTORYVERSION

SERVER RECONNECTING PENDIN

SESSION RECONNECTED
1222

SESSION
BROKERC LIENT

1202

EXTENSIBLE AP

21118

(CREATE SESSION

SESSION DISCONNECTED

CONFIGURATION SETTING

SERVERONLINE

SERVER QFFLINE

DELETESESSION

LOCAL SESSION
MANAGER

1206

REPOPULATE ALL SESSIONS

FIG. 12

U.S. Patent

Apr. 14, 2015 Sheet 12 of 21

S ESSION BROKER SERVER
1108

SYSTEMMEMORY
1302

PROGRAM MODULES
1308

SESSION BROKER M ODULE
INITIALIZINGM ODULE FUNCTIONCALLING
1314 MODULE13186
REJOINING M ODULE MONITORINGM ODULE
1318 1320

EXTENSIBLEAPI
1118

E)(TERNALS ESSION SUITABLE SERVER
COLLECT!DN‘I 322 COLLECTIDN‘| 324
SESSION CHANGE MACHINE C HANGE
NOTIFICATION 1326 NOTIFICATION1 328

OTHER PROGRAMS
1317

PROGRAM DATA
1310

REGISTRY
1205

FIG. 13

US 9,009,329 B2

PRCCESSOR(S) NETWORK INTERFACES
1300 1304

U.S. Patent Apr. 14, 2015 Sheet 13 of 21 US 9,009,329 B2

REQUEST FORCONNECTION TO A
SESSION

1402

ALLGETUSERDISCONNECTEDSESSIO
TO OBTAINTHE SESSION

1404

CALLGETUSEREXTERNAL SESSION IN
RESPONSE TO
GET USERDISCONNECTED SESSION

1406

SEARCH EXTERNAL SESSION
1408

vES | REDIRECTCONNECTIONTO EXTERNAL

D ?
SESSION FOUN SESSION

1410

1412

IDENTIFY AN EXISTING SESSION
1414

OLLECT SESSION DETAILSOF EXISTING

ESTABLISH A CONNECTION WITH THE
SERVER HAVINGTHE EXISTING SESSION

1418

FIG. 14

U.S. Patent Apr. 14, 2015 Sheet 14 of 21 US 9,009,329 B2

1500\

REQUEST FOR CONNECTION TC A
SESSION FOR APPLICATION

1502

ALLGET USERDISCONNECTEDSESSIO
TOOBTAINTHES ESSION

1204

CALLGETMOSTSUITABLE SERVER TO
IDENTIFY S ERVER HAVING THES ESSION

1506

COLLECT SERVER D
1508

VALIDATE SERVER |ID
1510

1 1S
SERVER ID VALID 7

1512

YESI|REDIRECT CONNECTION TO SUITABLE

LOG AN APPLICATION ERROR EVENT
1216

IDENTIFY A SERVER FROMA LIST OF
SERVERS B ENERATED REDIRECT CONNECTION TO S

US 9,009,329 B2

Sheet 15 of 21

Apr. 14, 2015

U.S. Patent

9l "OId

L1SoNn5)

—.. —\ m _... _xdﬁ.ﬂ

(lenpjA) wred WA

@Wymﬁﬁwﬂ_ﬁ

s

.L-.-.. o

L
iy
i

Jusi o

| pulvigpfinigiguyn_ gl H \ppiyiy
Y

— e e o' L=
- EE R gy oY
- i -,

194049
e 60 LOISSag

G091

U.S. Patent Apr. 14, 2015 Sheet 16 of 21 US 9,009,329 B2

1700
start

1702 recerving request for a virtual machine session

1704 requesting a redirection packet

1706 invoking a first plug-in ‘
1708 returning an indication of the target destination ‘

1710 1ndicating one or more secondary plug-ins

1712 1invoking the one or more secondary plug-ins

1714 1dentifying an internet protocol (IP) address

1716 embedding said IP address

1718 connecting the client computer

FIG. 17

U.S. Patent Apr. 14, 2015 Sheet 17 of 21 US 9,009,329 B2

1802 request for the virtual machine session is received by a redirector

]

804 request for the redirection packet is received by a service broker

1806 embedding and transmitting 1s ¢xecuted by the redirector

1808 redirector and service broker resides on the same server

1810 first plug-in communicates with a central publishing service to obtain personal
desktops assigned to said client computer using an Active Directory {AD) schema

1812 said one or more secondary plug-ins comprises f{ilter plug-ins and resource plug-ins

I T

| 1816 more than one of said filter plug-ins may be loaded |

1818 filter plug-in priority can be enforced by using an integer sub-kcy

1814 filter plug-ins can override the resource plug-in

FIG. 18

U.S. Patent Apr. 14, 2015 Sheet 18 of 21 US 9,009,329 B2

1902 said one or more secondary plug-ins comprises a virtual machine plug-in

1904 communicating to a virtual machine host agent on a host virtual machine

1906 obtaining the IP address using key-value pairs

1908 the key-value pairs is implemented by a hypervisor

1910 target destination may be a terminal server farm, virtual machine farm, or personal
desktop

FIG. 19

U.S. Patent Apr. 14, 2015 Sheet 19 of 21 US 9,009,329 B2

Redirecteor 2010

2012 connect the client computer to a terminal server and request a redirection
packet

Session Broker 2020

2022 determine an IP address identifying a virtual machine as the target

destination

2024 identify a plug-in module for load balancing and orchestrating said
redirecting

2026 determine a current state of the target destination

2028 prepare the target destination for accepting connections

2030 send a redirection packct including the IP address to the redirector

FIG. 20

U.S. Patent Apr. 14, 2015 Sheet 20 of 21 US 9,009,329 B2

2102 the virtual machine 1s executing on a server farm

2104 virtual machine 1s a personal desktop

2106 session broker configured to communicatc with a central publishing service to obtain
personal desktops assigned to said client computer using an Active Directory (AD) schema

2108 redirector {urther effects the connecting of the client computer to one of the plurality
of virtual machines based on information contained in the redirection packet

FIG. 21

US 9,009,329 B2

Sheet 21 of 21

Apr. 14, 2015

U.S. Patent

902¢
sul-6njd Bupjoau)

10} suojonisuy

e

7Y 44
sadA1 ui-Bnid

10} SUOIIoNJISU]

0122

Bumpiwisues

pue buippaquw3
10} SUOIJONESU)

Ol

¥022
JoxOEd

uciisalipay bunssnbay

10] sUCI3aNnJIsuj

ZLee
day buisn

40]) SUOLIONI}SU|

8022

10} SUCIIdNIISU|

0022
wnipay ajgepeay Jayndwon

ssalppy d] Bulfuap

[A1YA
ysanbay Bulalasay

10} SUOIIANILISUY

US 9,009,329 B2

1

PLATFORM FOR ENABLING TERMINAL
SERVICES VIRTUALIZATION

CROSS-REFERENC.

L1

This application 1s related to the subject matter disclosed in
the following commonly assigned applications, the entirety
of which are hereby incorporated by reference herein: U.S.
patent application Ser. No. 12/114,582 *“Session Broker
Extensibility Application Program Interface” filed on May 2,
2008 and U.S. patent application Ser. No. 11/771,921 “Vir-
tual Desktop Integration with Terminal Services™ filed on
Jun. 29, 2007.

BACKGROUND

Remote computing systems may enable users to access
resources hosted by the remote computing systems. Servers
on the remote computing systems can execute programs and
transmit signals indicative of a user interface to clients that
can connect by sending signals over a network conforming to
a communication protocol such as the TCP/IP protocol. Each
connecting client may be provided a session, 1.e., an execu-
tion environment that includes a set of resources. Each client
can transmit signals indicative of user input to the server and
the server can apply the user input to the appropriate session.
The clients may use protocols such as the Remote Desktop
Protocol (RDP) to connect to a server resource. Protocols
such as RDP typically handle graphics, device tratfic such as
USB, printer keyboard and mouse and 1n addition, virtual
channels for application between server and a client. The
terminal server hosts client sessions which can be in hundreds
in a typical server configuration.

Enabling remote connections to centralized desktops
hosted 1n virtual machines 1s commonly used for centralized
computing scenarios. Deployment of wvirtual desktops
requires load balancing of host computers that host virtual
machines, placement of virtual machines on the hosts, and
properly orchestrating the startup, wake up, and preparation
of virtual machines for receiving connections. Thus 1t would
be advantageous to provide an infrastructure that enables a
user to mdividually customize each of the above steps to
provide fast and elfficient load balancing, placement, and
orchestration of virtual machines using services such as RDP.

SUMMARY

Methods and systems are disclosed for providing terminal
services virtualization (TSV) that enables remote desktop
connections to virtual desktops. In the disclosed TSV plat-
torm, the balancing, placement, and orchestration steps may
be performed seamlessly from a single remote desktop client
connection to give the end user the same experience as con-
necting to a physical desktop. In various embodiments, such
a platform may include an infrastructure including one or
more APIs that provide interfaces to enable terminal services
virtualization. The platform may include a component called
a session broker that brokers remote desktop connections to
final destinations by communicating with various plug-ins
via the APIs and TSV infrastructure.

The disclosed methods and systems provide extensibility
to allow plug-ins to perform or optimize individual steps such
as load balancing, placement, and orchestration. The dis-
closed methods and systems may further allow third parties to
implement resource and filter plug-ins that specialize 1n indi-

10

15

20

25

30

35

40

45

50

55

60

65

2

vidual tasks such as placement and manage one or more farms
of virtual machines and their relationship to the session bro-

ker.

In addition to the foregoing, other aspects are described 1n
the claims, drawings, and text forming a part of the present
disclosure. It can be appreciated by one of skill 1n the art that
one or more various aspects of the disclosure may include but
are not limited to circuitry and/or programming for effecting
the herein-referenced aspects of the present disclosure; the
circuitry and/or programming can be virtually any combina-
tion of hardware, software, and/or firmware configured to
cifect the herein-referenced aspects depending upon the
design choices of the system designer.

The foregoing 1s a summary and thus contains, by neces-
sity, stmplifications, generalizations and omissions of detail.
Those skilled 1n the art will appreciate that the summary 1s
illustrative only and 1s not intended to be 1n any way limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example computer system wherein
aspects of the present disclosure can be implemented.

FI1G. 1a illustrates a virtual machine environment, with a
plurality of virtual machines, comprising a plurality of virtual
processors and corresponding guest operating systems; the
virtual machines are maintained by a virtualizing layer which
may comprise a scheduler and other components, where the
virtualizing layer virtualizes hardware for the plurality of
virtual machines;

FIG. 2-4 depict an operational environment for practicing
aspects of the present disclosure.

FIG. 5 illustrates an example system 1n which virtual desk-
tops may be integrated with a terminal server for connecting
with client devices.

FIG. 6 illustrates a block diagram depicting selected mod-
ules 1n a client computer.

FIG. 7 illustrates a block diagram depicting selected mod-
ules 1n a virtual desktop.

FIG. 8 illustrates a tlow diagram of an exemplary process
operating on a redirector/broker device for connecting and
transierring content between a client device and the virtual
desktop.

FIG. 9 illustrates a flow diagram of an exemplary process
executed with a client device for connecting and transferring
content between the client device and the virtual desktop.

FIG. 10 illustrates a flow diagram of an exemplary process
executed with a server device for connecting and transferring
content between the client device and the virtual desktop.

FIG. 11 1llustrates a block diagram illustrating an exem-
plary network architecture for leveraging a remote access
system session broker infrastructure to support third party
plug-1n applications.

FIG. 12 1llustrates a block diagram 1llustrating an exem-
plary architecture for leveraging a remote access system ses-
s10n broker infrastructure to support third party plug-1n appli-
cations.

FIG. 13 illustrates a block diagram illustrating an exem-
plary server system for leveraging a remote access system
session broker infrastructure to support third party plug-in
applications.

FIG. 14 illustrates a flow chart illustrating an exemplary
method for leveraging a remote access system session broker
inirastructure to support third party plug-in applications.

FIG. 15 illustrates a flow chart 1llustrating another exem-
plary method for leveraging a remote access system session
broker infrastructure to support third party plug-in applica-
tions.

US 9,009,329 B2

3

FIG. 161s a functional block diagram 1llustrating aspects of
a platform for enabling terminal services virtualization.

FIG. 17 1llustrates an example operational procedure for
practicing aspects of the present disclosure.

FIG. 18 1illustrates an example operational procedure for
practicing aspects of the present disclosure.

FIG. 19 illustrates an example operational procedure for
practicing aspects of the present disclosure.

FI1G. 20 illustrates an example system and operational pro-
cedure for practicing aspects of the present disclosure.

FI1G. 21 1llustrates an example system and operational pro-
cedure for practicing aspects of the present disclosure.

FIG. 22 illustrates a computer readable medium bearing,
computer executable 1nstructions discussed with respect to

FIGS. 1-21 above.

DETAILED DESCRIPTION

Computing Environments in General Terms

Certain specific details are set forth in the following
description and figures to provide a thorough understanding
of various embodiments of the presently disclosed subject
matter. Certain well-known details often associated with
computing and software technology are not set forth 1n the
tollowing disclosure to avoid unnecessarily obscuring the
various embodiments of the disclosed subject matter. Further,
those of ordinary skill in the relevant art will understand that
they can practice other embodiments of the disclosed subject
matter without one or more of the details described below.
Finally, while various methods are described with reference
to steps and sequences in the following disclosure, the
description as such 1s for providing a clear implementation of
embodiments of the disclosed subject matter, and the steps
and sequences of steps should not be taken as required to
practice this subject matter.

It should be understood that the wvarious techniques
described herein may be implemented 1n connection with
hardware or software or, where appropriate, with a combina-
tion of both. Thus, the methods and apparatus of the presently
disclosed subject matter, or certain aspects or portions
thereot, may take the form of program code (1.e., instructions)
embodied 1n tangible media, such as tloppy diskettes, CD-
ROMs, hard drives, or any other machine-readable storage
medium wherein, when the program code 1s loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the disclosed subject
matter. In the case of program code execution on program-
mable computers, the computing device generally includes a
processor, a storage medium readable by the processor (in-
cluding volatile and nonvolatile memory and/or storage ele-
ments), at least one mput device, and at least one output
device. One or more programs that may implement or utilize
the processes described 1n connection with the disclosed sub-
ject matter, e.g., through the use of an application program-
ming interface (API), reusable controls, or the like. Such
programs are preferably implemented 1n a high level proce-
dural or object oriented programming language to communi-
cate with a computer system. However, the program(s) can be
implemented 1n assembly or machine language, 11 desired. In
any case, the language may be a compiled or interpreted
language, and combined with hardware implementations.

A remote desktop system 1s a computer system that main-
tains applications that can be remotely executed by client
computer systems. Input 1s entered at a client computer sys-
tem and transierred over a network (e.g., using protocols
based on the International Telecommunications Union (ITU)
1.120 family of protocols such as Remote Desktop Protocol

10

15

20

25

30

35

40

45

50

55

60

65

4

(RDP)) to an application on a terminal server. The application
processes the mput as 1f the imnput were entered at the terminal
server. The application generates output 1n response to the
received 1nput and the output 1s transferred over the network
to the client computer system. The client computer system
presents the output data. Thus, iput 1s recerved and output
presented at the client computer system, while processing
actually occurs at the terminal server. A session can include a
shell and a user interface such as a desktop, the subsystems
that track mouse movement within the desktop, the sub-
systems that translate a mouse click on an 1con 1nto com-
mands that effectuate an instance of a program, etc. In another
example embodiment the session can include an application.
In this example while an application 1s rendered, a desktop
environment may still be generated and hidden from the user.
It should be understood that the foregoing discussion 1s exem-
plary and that the presently disclosed subject matter may be
implemented 1n various client/server environments and not
limited to a particular terminal services product.

In most, if not all remote desktop environments, input data
(entered at a client computer system) typically includes
mouse and keyboard data representing commands to an appli-
cation and output data (generated by an application at the
terminal server) typically includes video data for display on a
video output device. Many remote desktop environments also
include functionality that extend to transfer other types of
data.

Communications channels can be used to extend the RDP
protocol by allowing plug-ins to transier data over an RDP
connection. Many such extensions exist. Features such as
printer redirection, clipboard redirection, port redirection,
etc., use communications channel technology. Thus, 1n addi-
tion to mput and output data, there may be many communi-
cations channels that need to transier data. Accordingly, there
may be occasional requests to transier output data and one or
more channel requests to transier other data contending for
available network bandwidth.

FIG. 2 shows an implementation 200 enabling terminal
services. A'TS client machine 202 and a'T'S 204 communicate
using RDP. The TS client machine 202 runs a TS client
process 206 that sends RDP input device data 208, such as for
example keyboard data and mouse click data, to a T'S session
210 that has been spawned on the TS and receives RDP
display data 212, such as user interface graphics data. Gen-
erally, the TS client process 206 1s a thin client process and
most processing 1s provided on the TS 204.

FIG. 3 shows an implementation 300 enabling terminal
services through a firewall 302. A remote TS client 304 con-
nects to a terminal services gateway (15G) 306 over a net-
work 308. A Hypertext Transfer Protocol (HTTP) transport
process 310 on the TS client and an HT'TP process 312 on the
TSG 306 facilitate communication through the firewall 302.
The HTTP transport process 310 wraps data, such as Remote
Procedure Call (RPC) data or RDP data, in HI'TPS headers
for the TSG 306. The TSG 306 may connect to the TS 314
over a socket connection 318 via a socket out process 316.
Once the TS client 304 1s authenticated and a connection 1s

established, RDP data 320 may be passed back and forth
between the TS client 304 and the TS 314.

FIG. 4 shows a generalized example of an implementation
400, wherein an existing remote procedure call/hypertext
transport protocol (RPC/HTTP) proxy i1s leveraged, thereby
providing a terminal services protocol, such as RDP, over an
RPC/HTTP connection through a firewall 402. The architec-
ture of the implementation 1illustrates that by wrapping the
RDP protocol within RPC calls, an existing RPC-based proxy
can be advantageously utilized. In particular, an RPC Trans-

US 9,009,329 B2

S

port Plug-In 404 on the TS client 406 wraps an RDP stream
providing communication between the TS client 406 and the
terminal server 408 within an RPC protocol. This facilitates
utilization of an RPC-based proxy, thereby enabling firewall
navigation. The RPC-based proxy 410, which may run 1n a
user-mode on the TS, can forward received data to a socket
listener 412, which may run 1n kernel-mode on the TS.

As discussed above, clients may use a remote protocol such
as Remote Desktop Protocol (RDP) to connect to a resource
using terminal services. When a remote desktop client con-
nects to a terminal server via a terminal server gateway, the
gateway may open a socket connection with the terminal
server and redirect client traffic on the RDP port or a port
dedicated to remote access services. The gateway may also
perform certain gateway specific exchanges with the client
using a terminal server gateway protocol transmitted over
HTTPS.

A virtual machine monitor, such as a hypervisor, 1s a pro-
gram that creates virtual machines, each with virtualized
hardware resources which may be backed by underlying
physical hardware resources. FIG. 1a illustrates a virtual
machine environment 100, with a plurality of wvirtual
machines 120, 121, comprising a plurality of virtual proces-
sors 110, 112, 114, 116, and corresponding guest operating,
systems 130, 132. The virtual machines 120, 121 are main-
tained by a virtualizing layer 140 which may comprise of a
scheduler 142 and other components (not shown), where the
virtualizing layer 140 virtualizes hardware 150 for the plu-
rality of virtual machines 120, 121. The plurality of virtual
processors 110, 112, 114, 116 can be the virtual counterparts
of underlying hardware physical processors 160, 162.

All of these vanations for implementing the above men-
tioned partitions are just exemplary implementations, and
nothing herein should be interpreted as limiting the disclosure
to any particular virtualization aspect.

TSV Virtualization Generally

The present disclosure 1s directed to a system that provides
virtual desktop integration with terminal services. An
example of a remote access system 1s Terminal Services™
systems provided by the Microsoft® Corporation. A Termi-
nal Services™ system 1s discussed in the examples below;
however, 1t 1s to be appreciated that the techniques discussed
are applicable to other remote access systems such as Virtual
Network Computing (VNC), Citrix XenApp, and the like.

A session broker controls the allocation of sessions to users
communicating in a remote access system environment. A
session broker allocates a session to a user based on session
state information stored in the session broker. Session state
information may include, for example, session IDs, user
names, names of the servers where sessions are residing, the
number of active sessions 1n each server computer, and so on.

In a remote access system environment, a server may
receive a user request for a connection. The server may 1ni-
tially accept the connection request and then query the ses-
s10n broker to determine where the user can be redirected. The
session broker analyzes the session state information of that
particular environment and 1dentifies a server to which the
user can be redirected. A suitable server may possess a session
previously accessed by the user, but later disconnected, to
which the user can be reconnected again. In an implementa-
tion, a suitable server may provide a new session to which the
user can be connected, provided the user does not possess any
other existing sessions. The session broker sends information
to the requested server enabling the server to establish a
connection with the suitable server. For example, the inifor-
mation may 1nclude a machine ID, a session ID, and location
of the suitable server. The requested server analyzes the infor-

10

15

20

25

30

35

40

45

50

55

60

65

6

mation received and redirects the user to the suitable server.
Once the user establishes the connection with the suitable
server, the user can access applications present 1n the suitable
server. These applications may be compatible to the session
broker logic that was used 1n identifying the suitable server
from the terminal services environment. In one embodiment
a client computer 1s connected via a redirector/broker device
to one the virtual desktops running on a server or a terminal
server. The client computer examines a redirector token 1n a
remote desktop protocol (RDP) compliant packet. The client
computer connects to one of the many virtual desktops based
on information contained in the redirector token. Use of the
redirector token enables integration of the session hosted with
one or more VMs (or terminal servers) with the existing
terminal session deployment model. The client computer,
using the token, can be appropriately directed to either a
virtual desktop or terminal session.

In another embodiment, an RDP client computer 1s con-
nected to one of the virtual desktops using a session broker
and a pool manager. The session broker assigns the virtual
desktops to the client computer when the client computers
connected to a virtual desktop hosted on a VM, and the pool
manager indicates which of the virtual desktops are available
to be assigned. The session broker can be abstracted from
code that creates and manages VM 1mages on-the-ly. This
abstraction can be achieved by extensibility points within the
broker. Thus the virtual desktop hibernation and state transi-
tion may occur and be transparent to the RDP client.

In a further embodiment, the RDP client computer 1s con-
nected to a virtual desktop. The RDP client computer indi-
cates a network name that 1s used by the broker to generate an
internet protocol (IP) address to establish connection between
the client computer and the virtual desktops. By hiding the
individual virtual desktop IP addresses from the RDP clients,
only a single network name of the broker 1s mitially required
to be externally exposed to the terminal server clients. The
construction of the virtual desktop and terminal services inte-
gration system and an environment in which this integration
system may be enabled by techniques 1s set forth first below
with reference to the figures.

FIG. § 1llustrates an example system 500 1n which there 1s
shown plurality of client devices 502(a-») connected via net-
work 504, redirector device 508 and broker 524 to virtual
desktop server 510 and terminal server 552. In one embodi-
ment, the redirector device 508 and the broker 524 are dis-
posed on the same server. In another embodiment, a gateway
(not shown) may be connected between redirector device 508
and network 504 or client devices 302(a-n).

Client devices 502(a-n) may be any computing device
capable of communicating with a network 504, and are also
referred to as terminal services clients. In one embodiment,
the client devices 502(a-») are general purpose desktop com-
puting devices assigned to users (e.g., employees) that are
connected to the wired network 504. Although the illustrated
client devices 502(a-n) are depicted as a desktop PC, the
client devices may be implemented as any of a variety of
conventional computing devices including, for example, a
server, a notebook or portable computer, a workstation, a
mainframe computer, a mobile communication device, a
PDA, an entertamnment device, a set-top box, an Internet
appliance, a game console, and so forth. In one embodiment,
client devices 502(a-n) transmit requests for content, send
content and recerve content using an RDP protocol 514. Cli-
ent devices 502(a-n) receive content 1n an RDP packet 516
format from redirector device 508.

Network 504 may be any type of communications network,
such as a local area network, wide area network, cable net-

US 9,009,329 B2

7

work, the imnternet, the World Wide Web or a corporate enter-
prise network. Content 1s transmitted from and received by
client devices 502(a-n) 1n a packetized format via network
504 for delivery to and from redirector device 508.

Redirector device 508 includes a processor 518. Included
in memory (not shown) may be a redirector module 522.
Broker module 524 includes a session broker module 526, a
policy module 528 and a pool manager module 530. Broker
module 524 may be disposed 1n a server, such as server 510,
may be disposed in a standalone server or may be disposed
within redirector device 508.

Server 310 includes a plurality of virtual desktops 518(a-
n), generally known as virtual machines. Although the 1llus-
trated virtual desktops 518(a-») are shown as a blade within
510 server, the virtual desktops 518(a-») may be individually
implemented as any of a variety of conventional computing
devices including, for example, a server, a notebook or por-
table computer, a workstation, a mainframe computer, a
mobile communication device, a PDA, an entertainment
device, a set-top box, an Internet appliance, a game console,
and so forth. Redirector 522 recerves RDP packets from cli-
ents 502(a-n) and mcorporates those packets for delivery to
broker module 524. Redirector 522 also transmits requests
from broker module 524 to establish a connection between
one of virtual desktops 518(a-») and client devices 502(a-n).
Such requests are received in broker 524 by session broker
526. Broker 524 also receives from server 550 an indication
of which virtual desktops 518(a-») are available.

Session broker 526 also receives a policy indication from
policy module 528 indicating criteria for selection of virtual
desktops 518(a-n). Session broker 526 then provides an indi-
cation to redirector 522 indicating which one of the virtual
desktops 518(a-n) are available for connection to one of the
client devices 502(a-n). In one embodiment, session broker
526 may indicate that one of client devices 502(a-z) may
connect to terminal server 512. The redirector 522 feeds a
packet 516 to one of client devices 502(a-») containing a
redirection token 528, indicating an IP address of the virtual
desktop. Also the redirector 522 sends an indication of con-
nection to one of client devices 502(a-r), but, in one embodi-
ment, does not expose the IP address of the virtual desktop
that the client device 1s connected. In this embodiment, the
re-director maintains a list of the names of the virtual desk-
tops indicated by each of the client devices 502(a-») and the
corresponding IP address of the virtual desktop 518. Thus
when a connection name 1s provided with the request, the
re-director 522 establishes a connection between one of the
client devices 502(a-») with the corresponding virtual desk-
top 518. In another embodiment, redirector 508 may supply
the IP address of the virtual desktop to the client device 502 so
that client device 502 may directly connect to the virtual
desktop.

FIG. 6 depicts a block diagram 600 illustrating selected
modules 1n one of client devices 502(a-nr) (herein referred to
as client device 502) of the integration system 500.

The client device 502 has process capabilities and memory
suitable to store and execute computer-executable instruc-
tions. In this example, client device 502 includes one or more
processors 602, memory 604 and 1s coupled with network
interface 512. The memory 604 may include volatile and
nonvolatile memory, removable and non-removable media
implemented 1n any method or technology for storage of
information, such as computer-readable instructions, data
structures, program modules or other data. Such memory
includes, but 1s not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology,, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, magnetic cas-

10

15

20

25

30

35

40

45

50

55

60

65

8

settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, RAID storage systems, or any other
medium which can be used to store the desired information
and which can be accessed by a computer system.

Stored 1n memory 604 are operating system module 606,
application(s) 608, and RDP protocol handler module 512.
The modules may be implemented as software or computer-
executable instructions that are executed by the one or more
processors 602.

The operating system module 606 contains an operating,
system that may enable the other modules of the client device
502 to recerve, process, and exchange data. In addition, the
operating system module 606 may also enable the client
device 502 to communicate with other devices across a net-
work 504 using network interface 512.

FIG. 7 depicts a block diagram 700 1llustrating selected
modules 1n one of virtual desktops 5318(a-») (herein referred
to as virtual desktop 518) of the integration system 500.
Virtual desktop 518 may be embedded in a server, for
example as a blade, or 1n one embodiment may be set-up as a
process 1n a server having one or more processors.

The wvirtual desktop 518 has process capabilities and
memory suitable to store and execute computer-executable
instructions. In this example, virtual desktop 518 includes
one or more processors 702 and memory 704. The memory
704 may include volatile and nonvolatile memory, removable
and non-removable media implemented 1n any method or
technology for storage of information, such as computer-
readable 1nstructions, data structures, program modules or
other data. Suchmemory includes, but 1s not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, RAID storage systems, or
any other medium which can be used to store the desired
information and which can be accessed by a computer sys-
tem.

Stored 1n memory 704 are operating system module 706,
one or more application(s) 708, and database 712. The mod-
ules may be implemented as software or computer-executable
instructions that are executed by the one or more processors
702.

The operating system module 706 contains an operating,
system that may enable the other modules of the virtual desk-
top 518 to receive, process, and exchange data. In addition,
the operating system module 706 may also enable the virtual
desktop 702 to communicate with other devices via redirector
device 508.

The flow diagram 1n FIG. 8 depicts exemplary processes

802-828 used by processor 518 (see FIG. 5) 1n redirector
device 508 and broker 124 (see FIG. 35), and represents a
sequence of operations that can be implemented 1n hardware,
software, and a combination thereof. The flow diagram 1n
FIG. 9 depicts exemplary processes 502-506 used by proces-
sor 602 (see FIG. 6) 1n client device 502 (see FIGS. 5 and 6),
and also represents a sequence of operations that can be
implemented 1n hardware, software, and a combination
thereof. The flow diagram 1n FIG. 10 depicts exemplary pro-
cesses 602-608 used by processor (not shown) 1n server 510
(see FIG. 5), and additionally represents a sequence of opera-
tions that can be implemented 1n hardware, software, and a
combination thereof. In the context of software, the blocks
represent computer-executable instructions that, when
executed by one or more processors, perform the recited
operations.

Generally, computer-executable instructions include rou-
tines, programs, objects, components, data structures, and the

.L

US 9,009,329 B2

9

like that perform particular functions or implement particular
abstract data types. The order in which the operations are
described 1s not intended to be construed as a limitation, and
any number of the described blocks can be combined 1n any
order and/or 1n parallel to implement the process. For discus-
s1on purposes, the processes are described with reference to
system 500 of FIG. 5 and system 600 of FIG. 6, although it
may be implemented in other system architectures.

FI1G. 8 1llustrates a flow diagram of an exemplary process
800 used by a redirector device 508 and broker 524 to connect
client device 502 with a virtual desktop 518 or terminal server
552. At block 802, arequest 1s received from the client device
502 to connect to one of the virtual desktop 518(a-#). The
request may include the name of the requesting client device
and a name of the virtual desktop. Such a request 1s recerved
by the redirector 522 and 1s sent to session broker 526 in block
804. In block 806, the session broker transmits a request to
pool manager 530 requesting available virtual desktops. In
block 808, the pool manager 530 determines which virtual
desktops 518(a-n) are available, by polling the virtual desk-
tops or by reading a table stored in memory that tracks the
virtual desktop availability. In one embodiment, the pool
manager 530 may determine that the terminal server 5352 1s
available for transmitting and receiving content. In block 810
pool manager 530 provides a notification of virtual desktop
availability to session broker 526.

In block 852, the session broker 526 reads a table 1n policy
module 528 indicating which of the virtual desktops 518(a-»)
may be used with a particular client device 502. Such ele-
ments of the table may be set by an admimstrator. In accor-
dance with the table, the virtual desktop 518 1s selected and
the IP address for the virtual desktop 518 is provided to
redirector 522 1n block 814. Redirector 522 then stores the IP
address and the corresponding name provided by the client
device 502. In block 816, a connection 1s established by
feeding an acknowledgment of the connection request to
client device 502.

Once the connection 1s established, 1in block 818 the redi-
rector device 508 then recerves content during a session from
either one of the virtual desktops 318(a-») or one of the client
devices 502(a-n). In block 820, the origin of the content 1s
determined. If the content originates from one of the virtual
desktops 518(a-») 1n server 510, 1n block 824 the redirector
522 feeds retrieved content to the client device 502 If the
content originates from one of the client devices 502(an), 1n
block 826 the redirector 122 reads the address for the device
originating the content, and feeds the client content using
redirector device 508 to the corresponding virtual desktop
518 (or terminal server 512) 1n block 828.

FI1G. 9 1llustrates a flow diagram of an exemplary process
900 used by client device 502 to connect via redirector device
508 with a virtual desktop 518 or terminal server 512. At
block 902, a request 1s made by the client device 502 to
connect to one of the virtual desktops 3518(a-z). In one
embodiment, the request may be made by the device 502 to
connect with the terminal server 512. In block 904, the client
device 502 may receive and acknowledgment that 1t 1s con-
nected to the virtual desktop. Once 1t 1s connected, client
device 502 may start a session by transmitting or receiving
data from the virtual desktop 518. In one embodiment, a token
may be recerved from the redirector device 508 in the RDP
packet indicating an IP address, or a name of the virtual
desktop that the client device 502 1s connected. In block 906,
the client device may indicate that name or address to redi-
rector device 508 when connecting the virtual desktop 518. In
another example, the name or address may correspond to an
IP address of terminal server 512.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 10 illustrates a flow diagram of an exemplary process
1000 used by server 510, e.g. a VM host, to 1nitiate a connec-
tion to client device 502 via redirector device 508. At block
1002, the server 510 receives requests for virtual desktop 518
availability. In block 1004, the server 510 polls 1ts virtual
desktops, and feeds an availability indication to server 508. In
block 1006, the server 510 receives requests for connection
between one of the virtual desktops 518 and one of the client
devices. The request may include the IP address of the
requested virtual desktop. In block 1008, server 310 indicates
that a connection has been established. Further, server 510
both sends content to and receives content from the client
device 502.

API for Terminal Services Virtualization

Further described 1n the present disclosure are techniques
for a remote access system session broker infrastructure that
may support third party plug-in applications. A challenge that
the remote access system environment faces 1s to provide
users access to thurd party applications, and 1n particular
plug-in applications. The techniques described herein
addresses this challenge by providing an application program
interface (API) that leverages the remote access system ses-
s10n broker infrastructure to support third party plug-in appli-
cations. In a typical scenario, when a user requests for a
connection to access third party plug-in applications, the API
may override the session broker logic and interact with the
session broker process to 1dentily sessions or suitable servers
to which the user can be connected. The user may access the
third party plug-in applications through the identified ses-
sions or suitable servers.

In one embodiment, the third party plug-in applications
may be updated from changes made 1n the remote access
system environment, for example, creation of new sessions,
deletion of sessions, configuration changes 1n servers, con-
nection and disconnection information of sessions, etc. The
session broker process may manage the changes in the remote
access system environment, and notify the changes to the
third party plug-in applications upon receiving instructions
from the API.

The techniques described herein may be used 1n many
different operating environments and systems. Multiple and
varied implementations are described below. An exemplary
environment that 1s suitable for practicing various implemen-
tations 1s discussed 1n the following section.

Exemplary systems and methodologies for leveraging a
remote access system session broker infrastructure to support
third party plug-in applications are described in a general
context of computer-executable instructions (program mod-
ules) being executed by a computing device, such as a per-
sonal computer. Program modules generally include routines,
programs, objects, components, data structures, etc., that per-
form particular tasks or implement particular abstract data
types. While the systems and methods are described 1n the
foregoing contexts, acts and operations described hereinatter
1s 1implemented 1n hardware or other forms of computing
platiorms.

FIG. 11 shows an exemplary network architecture 1100 for
leveraging a remote access system session broker infrastruc-
ture to support third party plug-in applications. To this end, a
network architecture 1100 1s described that includes a num-
ber of client devices 1102-1, 1102-2, . . ., 1102-N (collec-
tively referred to as client devices 1104) that may communi-
cate with a server collection 1104, an external server or server
106, and a session broker server 1108 through a network 110.
In one implementation, the server collection 1104, the server
106, and the session broker server 1108 may interact with
numerous personal computers (PCs), web servers, and other

US 9,009,329 B2

11

computing devices spread throughout the world 1n the net-
work architecture 1100. Alternatively, 1n another possible
implementation, the network architecture 1100 can include a
limited number of PCs communicating with a single server
through a local area network (LAN) or a wide area network
(WAN), and the like.

The network 1110 may be a local area network (LLAN), a
wide area network, a wireless network, an optical network, a
metropolitan area network (MAN), etc. The client devices
1102 may be a general-purpose computing device, a laptop, a
mobile computing device, and so on.

The server collection 1104 may include a number of serv-
ers 1112-1, 1112-2, . . ., 1112-N (collectively referred to as
servers 1112). The servers 1112 may have plug-in(s) 1114
available for the client devices 1102. The plug-in (s) 1114
may include, for example, third party plug-in applications,
and any other software applications. As discussed above,
sessions created between the servers 1112 and the client
devices 1102 enable the client devices 1102 to access the
plug-n(s) 1114 hosted 1n the servers 1112. The servers 1112
create these sessions based on instructions recerved from the
session broker server 1108.

In one embodiment, a client device 1102-1 may send a
request to the server collection 1104 to access the plug-in(s)
1114 hosted there. A server 1112-1 from the server collection
1104 accepts the request and establishes a connection with
the client device 1102-1. The server 1112-1 may send a query
to the session broker server 1108 to determine where to redi-
rect the client device 1102-1. It 1s to be noted that any server
1112 from the server collection 1104 may accept the connec-
tion request from the client device 1102-1. In another imple-
mentation, the server 1112-1 may act as a dedicated redirector
and accepts the connection request from the client device
1102-1. In such an implementation, the client device 1102-1
requesting for a connection may 1nitially connect to the server
1112-1.

The session broker server 1108 may implement a session
broker module 1116 and an extensible API 1118 to process
the query sent by the server 1112-1 and 1dentify a session that
can be provided to the client device 1102-1. The extensible
API 1118 may be a Distributed Component Object Model
(DCOM) based interface that enables several software com-
ponents distributed across server network computing devices
to communicate with each other. In one implementation, the
extensible API 1118 may be a Component Object Model
(COM) based interface that enable communication between
various soltware components 1n a network environment.

In one embodiment, the session broker module 1116 may
receive the query and notily the extensible API 1118 of the
receipt of the query. The extensible API 1118 generates a
function call that may trigger the session broker module 1116
to 1dentity the session. The identified session may be an
existing session that was earlier associated with the client
device 1102-1. The session broker module 1116 may then
instruct the server 1112-1 to redirect the client device 1102-1
to any one of the servers 1112, for example, the server 1112-2,
having an existing session. In this instance, the server 1112-1
redirects the client device 1102-1 to establish a connection
with the server 1112-2. In another implementation, the ses-
s1on broker module 1116 may also redirect the client device
1102-1 to the server 1108 having an existing session, located
outside the server collection 1104.

In yet another embodiment, the session broker module
1116 may 1dentity any suitable server 1112 having a new
session that can be provided to the client device 1102-1,
which may not have any existing session in the remote access
system environment. The session broker module 1116 then

10

15

20

25

30

35

40

45

50

55

60

65

12

instructs the server 1112-1 toredirect the client device 1102-1
to a suitable server out of the servers 1112. In yet another
implementation, the session broker module 1116 may 1den-
t1fy the server 1108 as capable of providing the new session to
the client device 1102-1.

FIG. 12 shows an exemplary system architecture 1200 for
leveraging a remote access system session broker infrastruc-
ture to support third party plug-in applications. The system
architecture 1200 1llustrates interactions between one of the
server from the server collection 1106, for example, server
1112-1, and the session broker server 1108. The server
1112-1 may include a session broker client 1202 that interacts
with a remote connection manager 1204 and a local session
manager 1206. It 1s to be noted that the servers 1112 1n the
server collection 1104 may include their respective session
broker client, remote connection manager, and local session
manager. The session broker server 1108 may further include
the session broker module 1116 interacting with a registry
1208 and the extensible API 1118.

The server 1112-1 imtially connects with a client device
1102-1 and recerves a request from the client device 1102-1
for connection to a session. The session broker client 1202
collects the request along with client information. The client
information may include, for example, machine ID and loca-
tion of the client devices 1102 1n the remote access system
environment. The session broker client 1202 sends both the
request and the client information to the session broker mod-
ule 1116. The session broker module 1116 may perform
various functions shown as a part of a session broker process
1208 to 1dentify a server out of the servers 1112 to which the
client device 1102-1 can be redirected.

In operation, the session broker module 1116 may inform
the extensible API 1118 about the receipt of the request. In
one 1mplementation, the session broker module 1116 may
perform a function, namely mitialization 1212 to iitialize the
plug-in(s) 1114. During the process of initialization 1212, the
session broker module 1116 determines a class ID of the
plug-in(s) 1114 from the registry 1208. The registry 1208
may include, for example, class IDs of various plug-in appli-
cations, information about settings of hardware, operating
system, nonoperating system, client devices, servers, and so
on. Pursuant to identifying the class IDs of the plug-in(s)
1114, the session broker module 1116 may create an instance
tor the plug-in(s) 1114, which in turn mitialize the plug-in(s)
1114. Once an 1nstance 1s created, the extensible API 1118
may trigger the session broker module 1116 to imtiate a
function call ‘TSSDRpcGetUserDisconnectedSessions’,
depicted as disconnected session 1214, to identify the session
to which the client device 1102-1 can be redirected. In one
implementation, disconnected session 1214 may determine
an existing session to which the client device 1102-1 was
connected previously, but later disconnected. In such a sce-
nario, the session broker module 1116 may make function
calls, namely “TSSDRpcPingSD’” and ‘TSSDRpcQuerySD-
Version’, to i1dentily an existing session from the session
directory and, at the same time determine the version of the
session directory. The above function calls may be shown as
ping session directory 1216 and session directory version
1218, respectively. The existing session may be a session
associated with any one of the servers 1112 1n the server
collection 1104. In another implementation, the existing ses-
s1on may be associated to the server 1106 located external to
the server collection 1104.

Upon 1dentifying an existing session, the session broker
module 1116 may collect session details, for example, ses-
sion ID, machine ID, and location related to the server that
may provide the existing session (e.g., server 1112-1). For

US 9,009,329 B2

13

example, the session broker module 1116 may then send the
session details along with mstructions to establish a connec-
tion to the remote connection manager 1204. The remote
connection manager 1204 i1dentifies the server 1112-2 out of
the servers 1112 based on the session details, and redirects the
client device 1102-1 to the server 1112-2 to establish a con-
nection. During the process of redirecting the client device
1102-1, the remote connection manager 1204 may send a
request for a connection to the server 1112-2.

The session broker module 1116 continuously monitors
the status of the connection and updates the extensible API
1118 of any changes that occur 1n the remote access system
environment. During the monitoring process, the session bro-
ker module 1116 may make a function call (i.e., “TSSDRpc-
SetServerReconnectPending’), shown as server reconnection
pending 1220, to inform the extensible API 1118 that a
request for connection with the server 1112-2 1s pending.

Once the connection 1s established, the session broker
module 1116 may report the connection status to the exten-
sible AP11118. For example, the session broker module 1116
may make a function call ‘TSSDRpcSetSessionRecon-
nected’, shown as session reconnected 1222, to confirm the
extensible API 1118 that the client device 1102-1 1s con-
nected.

The extensible API 1118 may imitiate the session broker
module 1116 to generate another function call (1.e., discon-
nected session 1214), to 1identily a new session that can be
provided to the client device 1102-1. In such a case, the
session broker module 1116 collects server details associated
with the server, that may be either from the server collection
1104 for example, server 1112-2 or the external server 1106,
and sends the server details to the remote connection manager
1204. The remote connection manager 1204 directs the client
device 1102-1 to create a new session with the server 1112-2
or the server 1106. In an implementation, the session broker
module 1116 confirms whether a new session 1s created and
accordingly mitiates a function call, namely “TSSDRpcCrea-
teSession” depicted as create session 1224, to inform the
plug-n(s) 1114 about the creation of the new session.

In the above implementations, the extensible API 1118
may randomly but continuously mitiate the session broker
module 1116 to make a function call (1.e., “TSSDRpcSetSes-
sionDisconnected’), depicted as session disconnected 1226,
to inform the plug-in(s) 1114 that the session connecting the
client device 1102-1 and the server 1112-2 or the server 1106
1s disconnected. In such a situation, the session broker module
1116 may instruct a local session manager to momtor the
disconnected session.

In addition to the above, the extensible API 1118 may
trigger the session broker module 1116 to provide informa-
tion regarding configuration changes made in the remote
access system environment. In such a scenario, the session
broker module 1116 may 1nitiate a function call (1.e., “TSS-
DRpcUpdateConfigurationSetting’) shown as configuration
setting 1228, that may collect information related to configu-
ration changes and reports the changes, 11 any, to the plug-ins
1114.

The extensible API 1118 may instruct the session broker
module 1116 to i1dentily the status of the server 1112-2 or
server 1108 connected to the client device 1102-1. The ses-
sion broker module 1116, after receiving instructions, may
make function calls, namely ‘TSSDRpcServerOnlineEx’,
and ‘“TSSDRpcServerOfiline’, respectively shown as server
online 1230 and server oflline 1232, to mform the plug-in
1114 whether the server 1112-2 or server 1108 1s ofiline.

The extensible API 1118 may interact with the session
broker module 1118 to determine the status of various ses-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

s1ons running at a specific time 1n the remote access system
environment. In such an implementation, the session broker
module 1118 may initiate a function call, for example “TSS-
DRpcDeleteSession’, shown as delete session 1234 to inform
the plug-in(s) 1114 that the session 1s deleted. The session
broker module 1118 may mitiate a function call, namely
“TSSDRpcRepopulateAllSession” shown as repopulate all
sessions 1236, to check status of all the sessions managed by
the session broker module 1118.

FIG. 13 describes certain functional aspects of session

broker server 1108 associated with leveraging a remote
access system session broker infrastructure to support third
party plug-in applications 1n detail. The server 1108 includes
processor(s) 1300 and a system memory 1302. The server
1108 further includes network interfaces 1304 to provide
connectivity to a wide variety of networks, such as the net-
work 1102 described in the FIG. 11, and protocol types such
as wired (e.g., LAN, cable, etc.) and wireless networks (e.g.,
WLAN, cellular, satellite, etc.). Input/output interfaces 1306
provide data input and output capabilities for the server 1108.
The mput/output interfaces 1306 may include, for example, a
mouse port, a keyboard port, etc.
The system memory 1302 stores program modules 1308
and program data 1310. The program modules 1308 may
include the session broker module 1116, an extensible API
1118, and other application program modules 1312 (e.g., an
Operating System (OS) to provide a runtime environment,
networked communications between multiple users).

The session broker module 1116 has several responsibili-
ties including acting as a central unit to the remote access
system environment, allocating sessions to the client devices
1102 requesting for connection, and momtoring the sessions
in the remote access system environment. The session broker
module 1116 may include an initializing module 1314, a
function calling module 1316, a monitoring module 1318,
and a rejoining module 1320.

As discussed above, the session broker module 1116 may
be employed to receive a request for a session sent by the
client device 1102-1 through the server 1112-1. Based on the
request recerved, the mitializing module 1314 mitializes the
extensible API1 1118. The mnitializing module 1314 may deter-
mine a class ID of the plug-in(s) 1114 from the registry 1208.
Once the class ID of the plug-in(s) 1114 matches with the
class ID as stored 1n the registry, the imtializing module 1314
may create an nstance to mnitialize the extensible API 1118.

The extensible API 1118 1nstructs the session broker mod-
ule 1116 to generate appropriate function calls as discussed
previously to 1dentily the session to which the client device
1102-1 can be redirected. Therefore, a function call, for
example ‘WTSSBX_ GetUserExternalSession” shown as
external session collection 1322, 1s called to 1dentily external
sessions present 1 the remote access system environment.
The external session may be sessions provided by the server
1106 located outside the server collection 1104. In such a
case, the external session collection 1322 may trigger the
function calling module 1316 to generate a function call such
as disconnected session 1214 to determine whether the server
1106 can offer an external session to the client device 1102-1
and also collect the session details 1f connected externally.
Thereatter, the session broker module 1116 may collect the
session details and direct the client device 1102-1 to the
server 1106 through the server 1112-1. The function call
made by the function calling module 1316 may be monitored
by the monitoring module 1318 to determine whether the
function call 1s pending beyond a predefined time. The pre-
defined time may be preset by a user, such as an administrator.
In case the function call remains pending beyond the pre-

US 9,009,329 B2

15

defined time, the monitoring module 1318 may instruct the
session broker module 1116 to log an error message, if the
plug-in(s) 1114 fails. Thereafter, the session broker module
1116 may nitiate the extensible API 1118 again.

In one embodiment, the external session collection 1322
may trigger the function calling module 1316 to generate a
tfunction call to determine an existing session associated with
the client device 1104 from the remote access system envi-
ronment. The function calling module 1316, 1n turn generates
function calls, such as ping session directory 1216 and ses-
sion directory version 218, to 1dentily an existing session of
the client device 1102-1 from the session directory. The func-
tion calling module 1316 may identify any one of the servers
1112 in the server collection 1104, for example server 1112-2
capable of providing an existing session. In such a scenario,
the function calling module 1316 collects server details of the
server 1112-2 and provides their server details to the session
broker module 1116. Based on the server details, the session
broker module 1116 may directthe client device 1102-1 to the
server 1112. In another implementation, the existing session
may be provided by the server 1106 located external to the
server collection 1104.

The extensible API 1114 may mnitiate the function calling
module 1316 to make a function call, namely suitable server
collection 324 to i1dentity a suitable server from the server
collection 1104 or external server 1106, that can provide a
new session to the client device 1102-1. For example, the
function calling module 1316 may make a function call
namely, ‘WTSSBX_GetMostSuitableServer’ to 1dentily the
suitable server that can provide a new session to the client
device 1102-1. Therefore, the function calling module 1316
collects server details associated with a suitable server that
looks suitable for connection and enables the session broker
module 1116 to instruct the server 1112-1 to establish a
connection between the client device 1104 and the suitable
Server.

The function call as discussed above may be monitored by
the monitoring module 1318 to determine whether the func-
tion call 1s pending beyond a predefined time. In case the
function call remains pending beyond the predefined time, the
monitoring module 1318 may instruct the session broker
module 1116 to log an error message, 11 the plug-in(s) 1114
tails. Thereafter, the monitoring module 1318 redirects the
extensible API 1118 to interact with a load balancing algo-
rithm of the session broker module 1116. The load balancing
algorithm enables the session broker module 1116 to 1dentify
a list of suitable servers. The session broker module 1116
identifies a suitable server having the least number of sessions
and mstructs the server 1112-1 to redirect the client device
1102-1 to the suitable server.

In the above embodiments, the extensible API 1118 may be
configured to make a call session change notification 1326
that triggers the session broker module 1116 to update the
plug-in(s) 1114 about changes occurring 1n the sessions. For
example, the extensible API 1118 may make a function call,
namely ‘“WTSSBX_SessionChangeNotification’, to enable
the session broker module 1116 to collect information about
any changes occurring 1n the sessions, such as creation of new
sessions, disconnection of existing sessions, reconnection of
sessions, and deletion of sessions.

In one embodiment, when the function call namely,
‘WTSSBX_SessionChangeNotification’” remains pending
more than the predefined time and plug-in(s) 1114 fails, an
error event 1s logged.

In addition, the extensible API 1118 may make a call
‘WTSSBX_MachineChangeNotification’, shown as

machine change notification 1328, to initiate the session bro-

10

15

20

25

30

35

40

45

50

55

60

65

16

ker module 1116 to gather information and then report about
changes occurring in the servers 1112 and external server
1106 1n the remote access system environment to the plug-in
(s) 1114. The changes that occur may include, configuration
changes in the servers, and changes in status of the servers
(1.e., online or ofthne status of the servers). In an implemen-
tation, when a function call *‘WTSSBX_MachineChangeNo-
tification’ remains pending for more than a predefined time
and the plug-in(s) 1114 fail, an error event 1s logged.

Exemplary processes for leveraging a remote access sys-
tem session broker infrastructure to support third party plug-
in applications are described with reference to FIGS. 11-13.
These processes may be described 1n the general context of
computer executable instructions. Generally, computer
executable instructions can include routines, programs,
objects, components, data structures, procedures, modules,
functions, and the like that perform particular functions or
implement particular abstract data types. The processes may
also be practiced 1n a distributed computing environment
where functions are performed by remote processing devices
that are linked through a communications network. In a dis-
tributed computing environment, computer executable
instructions may be located in both local and remote com-
puter storage media, including memory storage devices.

FIG. 14 illustrates an exemplary method 1400 for leverag-
Ing a remote access system session broker infrastructure to
support third party plug-in applications. The process 1400 1s
illustrated as a collection of blocks 1n a logical flow graph,
which represents a sequence of operations that can be imple-
mented 1n a hardware, software, or a combination thereof. In
the context of software, the blocks represent computer
instructions that, when executed by one or more processors,
perform the recited operations.

The order 1n which the method 1s described 1s not intended
to be construed as a limitation, and any number of the
described method blocks can be combined 1n any order to
implement the method, or alternate method. Additionally,
individual blocks may be deleted from the method without
departing from the spirit and scope of the subject matter
described herein. Furthermore, the method can be imple-
mented 1n any suitable hardware, software, firmware, or a
combination thereot, without departing from the scope of the
disclosed subject matter.

Atblock 1402, a user requests for a connection to a session.
In one mmplementation, user of the client device 1102-1
makes a request to the server 1112-1 for a session 1n order to
access the plug-in(s) 1114 or any other applications hosted on
the servers. The session broker module 1116 receives the
request for a session from the server 1112-1, that 1s mitially
connected with the client device 1102-1. Thereafter, the ses-
sion broker module 1116 1nitializes the extensible API 1118
associated with the plug-in(s) 1114.

At block 1404, a function call, 1.e., ‘GetUserDisconnect-
edSession’, 1s called to obtain a session. In one implementa-
tion, the server 1112-1 acting a redirector for the client device
1102-1 makes the function call to the session broker server
1108. The session broker module 1116 of the session broker
server 1108 recerves the function call and informs the exten-
sible API of the function call.

Atblock 1406, a function call, namely ‘GetUserExternalS-
ession’, 15 made 1n response to the call “‘GetUserDisconnect-
edSession’. The session broker module 1116 may send the
server function call made by the server 1112-1 to the exten-
sible API1 1118. The extensible API1 1118, upon receipt of this
server function call, may make a function call ‘GetUserEx-
ternalSession’ to 1identily a session for the client device 1102-

1.

US 9,009,329 B2

17

At block 1408, an external session for the user of the client
device 1s searched. A function call ‘GetUserExternalSession’
initiated by the extensible API 1118 may trigger the session
broker module 1116 to 1dentity a user external session present
in the remote access system environment.

At block 1410, a determination 1s made whether the exter-
nal session 1s present or not. If an external session 1s present
(1.e., the “YES” path from block 1410), the client device
1102-1 1s redirected to the server 106 to establish the external
session. If there are no external sessions present in the remote
access system environment (1.e., the “NO” path from block
1410), an exiting session associated with the client device
1102-1 1s 1dentified at block 1414.

At block 1416, after an existing session 1s 1dentified, ses-
s10n details of that existing session 1s collected. Such session
details may be stored 1n the session directory stored in the
session broker server 1108. At block 1418, a connection with
the server having an existing session 1s established. The ses-
sion broker module 1116 may send instructions along with
the session details of the suitable server having an existing
session to the server 1112-1 configured to redirect the client
device 1102-1. The server 1112-1 identifies the suitable
server based on the session details and redirects the client
device 1102-1 to the suitable server to establish a connection.

FIG. 135 illustrates another exemplary method 1500 for
leveraging a remote access system session broker inirastruc-
ture to support third party plug-in applications. At block
1502, a request for a connection to a session 1s made. The
session broker module 1116 may receive a request for a
session through a server, say the server 1112-1, thatis mnitially
connected with the client device 1102-1. Thereafter, the ses-
sion broker module 1116 mitializes the extensible API 1118
associated with the plug-in(s) 1114.

At block 1504, a function call ‘GetUserDisconnectedSes-
sion’ 1s made to obtain a session. In one implementation, the
server 1112-1 acting as a redirector for the client device
1102-1 may make the function call to the session broker
server 1108. The session broker module 1116 of the session
broker server 1108 receives the function call and informs the
extensible API 1118 of the function call.

At block 1506, a function call ‘GetUserExternalSession’ 1s
made 1n response to a call ‘GetMostSuitableServer’. The
session broker module 1116 may send the server function call
made by the redirecting server 1112-1 to the extensible API
1118. The extensible API 1118 upon receipt of this server
function call may call the function call ‘GetMostSuita-
bleServer’ that may 1nitiate the session broker module 1116 to
identily a suitable server, for example, any server out of the
servers 1112 or the external server 106, to which the client
device 1102-1 can be redirected.

At block 1508, the server ID associated with the suitable
server 15 collected. The session broker module 1116 gathers
the server 1D of the suitable server in the remote access
system environment.

At block 1510, the server ID of the suitable server 1s vali-
dated. In one implementation, the session broker module
1116 may check the registry 1208 to identify whether the
server ID 1s present 1n the registry 1208 or not and also checks
whether the server 1D relates to the suitable server.

In another implementation, the session broker module
1116 may determine whether the suitable server having the
server 1D 1s 1n drain mode or not. If the suitable server 1s 1n
drain mode, the suitable server may deny any new remote
logon from other users. Further, 1n such a condition, the users
in the remote access system environment having existing
session with the servers may be reconnected. In yet another
implementation, the session broker module 1116 may check

10

15

20

25

30

35

40

45

50

55

60

65

18

whether the suitable server having the desired server 1D has
crossed the maximum number of sessions allocated to suit-
able server.

At block 1512, a determination 1s made whether the server
ID 1s valid or not. If the server ID 1s valid (1.e., the “YES” path

from block 1512), the client device 1102-1 1s redirected to

establish a connection with the suitable server at block 1514.
If the server ID 1s not valid (1.e., the “NO” path from block
1512), aplug-in error event 1s logged. For example, a warning,

1s logged when the function call *“WTSSBX_GetMostSuita-
bleServer’ called by the extensible API 1118 returns an
invalid server ID.

In another scenario, i1f the function call “WTSSBX Get-
MostSuitableServer’ redirects the client device 1102-1 to the
suitable server in drain mode, the plug-in error event 1s logged
as a warning. Sumilarly 1n yet another scenario, a plug-in error
event 1s logged when the function call *“WTSSBX_GetMost-
SuitableServer’ provides the suitable server that has violated

a predefined session limit.

At block 1518, a suitable server 1s 1dentified from a list of
servers having their corresponding weights. The session bro-
ker module 1116 may employ a load balancing algorithm to
assign weights to each server in the remote access system
environment based on the number of sessions handled by
cach server. The session broker module 1116 generates a list
of servers and identifies a suitable server from the list. The
server 1dentified may possess a lesser number of sessions and
thus shows the capability of providing a session to the client
device 1102-1. At block 1520, the client device 1102-1 1s
redirected to establish a connection with the identified server.
Platform and API for TSV Virtualization

The following exemplary description of an API for TSV
may be better understood 1n conjunction with the exemplary
functions provided in the Appendix. Referring to FIG. 16,
depicted 1s a client 1655, redirector 1633, a session broker
1651, virtual machine farm 1663 and terminal server farm
1665. The terminal service client 1655 may connect to a
terminal server redirector 1653 which 1n turn may contact the
session broker 1651 through an RPC call. The redirector 1653
may be a component that acts as a proxy for an RDP connec-
tion to communicate with session broker 1651 1n order to send
back a redirection packet to the terminal service client 1655.
The session broker 16351 1s the component that may handle
load balancing and redirection of terminal service sessions
and mvoke a policy plug-in to determine an appropriate end
point.

A plug-in may, for example, be a software object such as a
Component Object Model (COM) based dynamic link library
(DLL). Typically, only administrators can install resource and
filter plug-1ns, for security purposes. The following interfaces
may be implemented by plug-ins and supported by the ses-
sion broker: (1) Resource, (2) Policy, (3) Filter Resource, (4)
Load Balancing, (5) Placement, and (6) Orchestration. Plug-
ins may implement one or more of these interfaces. A plug-in
that implements one of these interfaces may turther deter-
mine the type of resource that may be managed, such as
terminal server farm resources, virtual machine resources, or
other resources. A filter plug-in may implement load balanc-
ing, placement, and orchestration interfaces imvoked during
connection time. A resource plug-in manages a farm 1n addi-
tion to implementing balancing, placement, and orchestration
interfaces. Thus, aresource plug-in implements various other
interfaces that relate to farm management. The session broker
may manage the plug-ins as follows:

1. A single plug-in may manage multiple resource types
(terminal server, virtual machine, etc.).

US 9,009,329 B2

19

2. Multiple plug-ins can manage a single resource type
(terminal server, virtual machine, etc.).

3. While the scenario where multiple plug-ins manage a
single resource type and 1dentical farms may be discouraged
(for example, a “Citrix Terminal Server Plug-in” and
“Microsoft Terminal Server Plug-in” should not manage the
same farm), the policy plug-in may be responsible to deter-
mine which of these plug-ins should actually be used.

Plug-ins may be loaded when session broker service 1s
initiated. In some embodiments, plug-ins may be dynami-
cally loaded at run-time. Plug-ins may further register under
a registry key. Each subkey may be enumerated by the session
broker and treated as a plug-in.

The endpoint may be a virtual machine farm, a personal
desktop or a terminal server. The client may connect to this
final endpoint. While the above process 1s described 1n terms
of a farm scenario, the principles may be applied to other
embodiments.

Returning to FIG. 16, a terminal server client 1655 may
connect 1601 to a redirector terminal server 1633 that can
reside either on the session broker machine or a dedicated
machine. The redirector terminal server 1653 may call 1603
the session broker 1651 to request a redirection packet in
order to redirect the client 1635 to a final destination terminal
server or virtual machine.

The session broker 1651 may call 1603 the policy plug-in
1680 to determine which farm or personal desktop the user
should be redirected to. A policy plug-in determines the target
farm (or machine) for the client requested connection. The
policy plug-1n may implement an assignment policy or other
policies. The policy plug-in 1680 may return at least two
pieces of information:

(a) The name of the farm or personal desktop. In some
embodiments an indication that the returned name 1den-
tifies a farm may be included.

(b) The 1dentification of a resource plug-in that should
handle the redirection decision for the returned farm.
The resource plug-in determines the most suitable
machine within the farm to send the connection to, pre-
pares the machine or image, and/or prepares the machine
to receive the connection.

If the endpoint 1s a personal desktop (PD), the policy plug-

1n may communicate to a central publishing service which in
turn communicates with an Active Directory (AD) to obtain

assigned personal desktops to a user using an updated AD
schema for personalized desktops 1n TSV scenarios.

The session broker 1651 may call 1609, 1607 at least one
filter plug-in 1670 and/or a resource plug-in 1675 1dentified
by the policy described above. A filter plug-1n may be a third
party plug-in that can override some of the load balancing,
placement, and orchestration functions of a resource plug-in.
Filter plug-ins may also be loaded without resource plug-ins.
In some embodiments, a filter plug-in may be implemented
with the resource plug-in functions. Resource plug-ins may
implement all of the resource plug-in functions. A resource
plug-1n may also responsible for reporting host/session state
changes to the session broker. When a resource plug-in
reports host or session changes to the session broker, notifi-
cation of the changes may be provided to the filter plug-ins.

Both resource and filter plug-ins may exist independently
of each other. For example, 1n a non-farm case with a single
terminal server desktop or personalized virtual machines that
are not part of a virtual machine pool, a load balancing deci-
s1on 15 not required since the target host 1s known. Accord-
ingly, 1t may not be necessary for the session broker to main-
tain host/session states.

10

15

20

25

30

35

40

45

50

55

60

65

20

Typically, a resource plug-in may be used when a pool of
resources are present—such as virtual machines, terminal
servers, and blades 1n a farm. The plug-1n(s) may make a load
balancing decision to decide a target host. Since the endpoints
are not dedicated to a particular client, the plug-in should also
keep track of disconnected or logged off sessions. Such a
decision may be driven by the host/session states maintained
by the session broker based on the notifications triggered by
the resource plug-in to the broker.

Some of the actions of a resource plug-in may be overrid-
den by a filter plug-1n. Such actions may comprise four meth-
ods: GetMostSuitableTarget, QueryHostEnvironmentFor-
Target, CreateHostEnvironmentForTarget and
PrepareTargetForConnect. Notifications from a resource
plug-in cannot be overridden by a filter plug-in. Resource
plug-1n may notily the session broker about any changes to
host/session configurations using the above described meth-
ods. Examples of notifications include: “Machine join to a
farm™ and ““‘user disconnected from a session on a machine.”
The session broker may thus be able to maintain the host/
session states. This state information can be queried by a
resource plug-in generally used to make load balancing deci-
sions. A single filter plug-1n can override multiple resource
plug-1ns 1n the calls for load-balancing, placement, or orches-
tration

A filter plug-in may register with the session broker to
receive notifications from the session broker 1n order to track
host/session state changes. The session broker may then for-
ward host or session change notifications to the filter plug-ins
whenever a resource plug-in notifies the broker.

The session broker may allow multiple filter plug-ins to
implement the same method. To enforce an order 1n which the
filter plug-ins may be called, the filter plug-1n may register a
priority. In one embodiment this may be a positive integer
value. The priority may vary between 1 to N, where 1 1s the
highest priority and N 1s the lowest priority, where N=number
of filter plug-ins. Each filter plug-in may have an entry 1n the
registry where the priority is entered as a registry sub key.

Continuing with FIG. 16, the session broker 1651 may ask
the filter plug-ins and/or the selected resource plug-in for the
functions described below. Filter plug-ins may override a
resource plug-in for any or all of the below functions. More
than one filter plug-in may be loaded. As described above,
filter plug-in priority may be enforced by using a integer
sub-key 1n the registry for each plug-in. These iteger sub-
keys determine the order 1n which filter plug-ins are called.

a. a most suitable machine to redirect the client to

b. whether the machine 1s ready/placed;

c. place if machine 1s not already placed (Placement 1s the
process of locating the virtual machine 1mage and making
sure 1t 1s ‘placed’ 1n the nght virtual machine host. When an
end-user finishes using a VM, that VM 1s available to be
moved off of the VM host into a fileshare or data library. Thus
a filter plug-in which implements placement may optionally
consider whether the filter should “un-place” or remove the
VM when the end-user 1s finished using the VM.);

d. prepare the identified machine for accepting connec-
tions.

Filter plug-ins 1675 and/or resource plug-ins 1670 may
respond to the above steps and return an IP address for the
selected endpoint machine. In FI1G. 16, the filter plug-in 1675
may be the default resource plug-in that performs load bal-
ancing and orchestration. The plug-in 1675 may communi-
cate 1611 to a VM host agent on the VM host machine in order
to orchestrate the virtual machine and i1nitialize the virtual
machine. Orchestration 1s the process of preparing the
machine/VM 1mage to start up a VM, boot up the VM, and

US 9,009,329 B2

21

accept terminal server connections. The plug-in 1675 may
then obtain an IP address using key-value pairs (KVP). KVP
may be implemented, for exampled by a hypervisor in Win-
dows™, The IP address may then be returned to the session
broker 1651.

The session broker 1651 may send 1613 the target IP
address to the redirector 16353. The redirector may then send
1615 a redirection packet to client 1655. Finally, the client
1655 may connect to the IP address received in the redirection
packet.

In accordance with the above features, disclosed herein 1s
an application programming interface (API) that provides
terminal server session broker extensibility to enable load-
balancing and remote desktop connections to various types of
machines such as virtual machines, terminal servers, or other
types of endpoint entities. The API may be exposed to the
above described plug-ins 1n order to manage a farm of virtual
machines, a farm of terminal servers, and the like.

In one embodiment the session broker 1651 may query for
GetMostSuitableTarget to determine an endpoint to return to
the client. The session broker 1651 may query filter plug-in
1675 to determine 11 the GetMostSuitableTarget function 1s
implemented. In the example shown n FIG. 16, the filter
plug-in 1675 has implemented the function and may inform
the session broker 1651. The filter plug-in 1675 may then
determine a suitable target and return the target name to
session broker 1651. Since filter plug-in 1675 was able to
handle the request, session broker 1651 need not query addi-
tional filter plug-ins or resource plug-ins to fulfill the Get-
MostSuitableTarget function.

In another embodiment, the session broker 1651 may query
for PrepareTargetForConnect to prepare the identified host
environment. The session broker 1651 may query {ilter plug-
in 1675 to determine 1 the PrepareTargetForConnect func-
tion 1s implemented. In the example shown in FIG. 16, the
filter plug-in 1675 has implemented the function and may
inform the session broker 1651. Since filter plug-in 16735 was
able to handle the request, session broker 1651 need not query
additional filter plug-ins or resource plug-ins to fulfill the
PrepareTargetForConnect function. This method may be a
no-operation in the case of a terminal server farm or terminal
server desktops. In the case of a virtual machine farm, filter
plug-1n 1675 may check if the host environment 1s ready for
a connection. I not, filter plug-in 1675 may prepare the
identified host environment for a connection. Filter plug-in
16775 returns the host object to the session broker 1651.

In another embodiment, the session broker 1651 may query
for PrepareTargetForConnect to prepare the host for a con-
nection. In the example shown 1n FIG. 16, the filter plug-in
1675 has implemented the function and may inform the ses-
sion broker 1651. The filter plug-in 1675 may call the session
broker 1651°s PrepareTargetForConnect which signals to the
broker that the host 1s ready for connection. Although filter
plug-1n 1675 can override some processes of a resource plug-
in, filter plug-in 1675 1s typically not permitted to override
processes that signal host related events to the session broker
1651. It 1s the responsibility of the resource plug-in 1670 to
handle such events.

In the case where no filter plug-ins have implemented a
requested function, session broker 1651 may query the
resource plug-in 1670. Resource plug-in 1670 may monitor
host related events and inform the broker about the host
related events. Such events may include, for example, Add-
TargetToStore, AddSessionToStore, and the like.

Generally, the extensibility principles disclosed herein
provide for plug-in interoperability in a way that any plug-in
can be plugged in as long as they adhere to the API interfaces.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIGS. 17 and 18 depict an exemplary operational proce-
dure for connecting a client computer to one of a plurality of
virtual machines executing on a plurality of servers including
operations 1700, 1702, 1704, 1706,1708, 1710, 1712, 1714,
1716, and 1718. Referring to FIG. 17, operation 1700 begins
the operational procedure and operation 1702 illustrates
receiving a request for a remote session. Operation 1704
illustrates receiving at one of said plurality of servers a
request from the client computer for a virtual machine ses-
sion. Operation 1704 1llustrates requesting a redirection
packet for redirecting the client computer to a target destina-
tion. Operation 1706 1llustrates 1nvoking a first plug-in for
determining the target destination. Operation 1708 illustrates
returning an indication of the target destination and operation
1710 illustrates further indicating one or more secondary
plug-1ns for load balancing and orchestrating said redirecting.

Operation 1712 1llustrates invoking the one or more sec-
ondary plug-ins and requesting the following: (1) a selected
virtual machine; (2) indication of whether the selected virtual
machine 1s instantiated; (3) a location when the selected vir-
tual machine 1s not instantiated; and (4) preparing the selected
virtual machine for accepting a new connection. Operation
1714 1illustrates identifying an internet protocol (IP) address
for said selected virtual machine and returning the IP address.
Operation 1716 1llustrates embedding said IP address 1n said
redirection packet and transmitting the redirection packet to
the client computer. Operation 1718 1llustrates connecting the
client computer to one of the plurality of virtual machines
based on information contained in the redirection packet.

FIGS. 18 and 19 illustrate further embodiments of the
operational procedure of FIG. 17. As 1s depicted in FIG. 18,
operation 1802 1illustrates that the request for the wvirtual
machine session 1s recerved by a redirector executing on the
one of said plurality of servers. Operation 1804 illustrates that
the request for the redirection packet is received by a service
broker and said IP address 1s returned to the service broker,
the service broker in turn sending the IP address to the redi-
rector. Operation 1806 illustrates that said embedding and
transmitting 1s executed by the redirector.

Operation 1808 illustrates that the redirector and service
broker resides on the same server. Operation 1810 illustrates
that the selected virtual machine 1s a personal desktop, the
first plug-in communicates with a central publishing service
to obtain personal desktops assigned to said client computer
using an Active Directory (AD) schema for personalized
desktops, wherein the central publishing service communi-
cates with the Active Directory. Operation 1812 illustrates
that said one or more secondary plug-ins comprises filter
plug-ns and resource plug-ins.

Operation 1814 1llustrates that the filter plug-ins can over-
ride the resource plug-ins. Operation 1816 illustrates that
more than one of said filter plug-1ns may be loaded. Operation
1818 1llustrates that filter plug-1n priority can be enforced by
using an integer sub-key in a registry for each filter plug-in,
wherein the integer sub-keys determine the order in which
filter plug-ins are called.

Continuing with FIG. 19, operation 1902 1llustrates that
said one or more secondary plug-ins comprises a virtual
machine plug-in, wherein the virtual machine plug-in 1s a
default resource plug-in. Operation 1904 illustrates commu-
nicating to a virtual machine host agent on a host virtual
machine 1n order to 1mitiate and orchestrate the host virtual
machine. Operation 1906 further i1llustrates obtaiming the IP
address using key-value pairs. Operation 1908 1llustrates that
in a further embodiment, the key-value pairs 1s implemented

US 9,009,329 B2

23

by a hypervisor. Operation 1910 illustrates that said target
destination may be a terminal server farm, virtual machine
farm, or personal desktop.

FIGS. 20 and 21 depict an exemplary system and opera-
tional procedure for connecting a client computer to one of a
plurality of virtual machines executing on a plurality of serv-
ers. Referring to FIG. 20, system 2000 comprises a redirector
2010 and session broker 2020. Redirector 2010 1s further
configured to connect the client computer to a terminal server
and request a redirection packet for redirecting the client
computer to a target destination. Session broker 2020 1s con-
figured to recerve said request and communicate with one or
more plug-in modules to (2022) determine an IP address
identifying a virtual machine as the target destination, (2024)
identify a plug-in module for load balancing and orchestrat-
ing said redirecting, (2026) determine a current state of the
target destination, (2028) prepare the target destination for
accepting connections, and (2030) send a redirection packet
including the IP address to the redirector

Continuing with FIG. 22, system 2000 may further be
configured as follows. Operation 2202 illustrates that the
virtual machine 1s executing on a server farm. Operation 2204
illustrates that the virtual machine 1s a personal desktop and
the session broker 1s further configured to communicate with
a central publishing service to obtain personal desktops
assigned to said client computer using an Active Directory
(AD) schema for personalized desktops. Operation 2206
illustrates that the redirector further etfects the connecting of
the client computer to one of the plurality of virtual machines
based on information contained in the redirection packet.

Any of the above mentioned aspects can be implemented 1n
methods, systems, computer readable media, or any type of
manufacture. For example, per FIG. 21, a computer readable
medium can store thereon computer executable nstructions
for connecting a remote client computer to one of a plurality
of virtual machines executing on a plurality of servers. Such
media can comprise a first subset of instructions for recerving,
at one of said plurality of servers a request from the client
computer for a virtual machine session 2102; a second subset
ol 1nstructions for requesting a redirection packet for redi-
recting the client computer to a target destination on said
plurality of servers 2104; a third subset of mstructions for
invoking one or more plug-in modules for determining the
target destination, performing load balancing, and orchestrat-
ing said redirecting 2106; a fourth subset of mstructions for
identifying an internet protocol (IP) address for said target
destination 2108; and a fifth subset of instructions for embed-
ding said IP address 1n said redirection packet and transmiut-
ting the redirection packet to the client computer 2110. It wall
be appreciated by those skilled 1n the art that additional sets of
instructions can be used to capture the various other aspects
disclosed herein, and that the three presently disclosed sub-
sets of mstructions can vary in detail per the present disclo-
sure.

For example, the instructions can further comprise instruc-
tions 2112 for implemented said connecting using Remote
Desktop Protocol (RDP). The instructions can further com-
prise instructions for implementing said one or more plug-in
modules as policy plug-ins, resource plug-ins, or filter plug-
ins 2114.

As described above, aspects of the presently disclosed
subject matter may execute on a programmed computer. FIG.
1 and the following discussion 1s intended to provide a brief
description of a suitable computing environment 1n which the
those aspects may be implemented. One skilled 1n the art can
appreciate that the computer system of FIG. 1 can 1n some
embodiments effectuate the server and the client of FIGS.

10

15

20

25

30

35

40

45

50

55

60

65

24

2-4. In these example embodiments, the server and client can
include some or all of the components described in F1G. 1 and
in some embodiments the server and client can each include
circuitry configured to instantiate specific aspects of the
present disclosure.

The term circuitry used through the disclosure can include
specialized hardware components. In the same or other
embodiments circuitry can include microprocessors config-
ured to perform function(s) by firmware or switches. In the
same or other example embodiments circuitry can include
one or more general purpose processing units and/or multi-
core processing units, etc., that can be configured when soft-
ware 1instructions that embody logic operable to perform
function(s) are loaded into memory, e.g., RAM and/or virtual
memory. In example embodiments where circuitry includes a
combination of hardware and software, an implementer may
write source code embodying logic and the source code can
be compiled into machine readable code that can be pro-
cessed by the general purpose processing unit(s).

FIG. 1 depicts an example of a computing system which 1s
configured to with aspects of the disclosed subject matter. The
computing system can include a computer 20 or the like,
including a processing unit 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
The system memory includes read only memory (ROM) 24
and random access memory (RAM) 25. A basic input/output
system 26 (BIOS), containing the basic routines that help to
transier information between elements within the computer
20, such as during start up, 1s stored in ROM 24. The computer
20 may further include a hard disk drive 27 for reading from
and writing to a hard disk, not shown, a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29,
and an optical disk drive 30 for reading from or writing to a
removable optical disk 31 such as a CD ROM or other optical
media. In some example embodiments, computer executable
instructions embodying aspects of the disclosed subject mat-
ter may be stored in ROM 24, hard disk (not shown), RAM 25,
removable magnetic disk 29, optical disk 31, and/or a cache
of processing unit 21. The hard disk drive 27, magnetic disk
drive 28, and optical disk drive 30 are connected to the system
bus 23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer readable media
provide non volatile storage of computer readable mnstruc-
tions, data structures, program modules and other data for the
computer 20. Although the environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, 1t should be appreciated by those
skilled 1n the art that other types of computer readable media
which can store data that 1s accessible by a computer, such as
magnetic cassettes, tlash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMSs), read
only memories (ROMs) and the like may also be used in the
operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35, one or more application
programs 36, other program modules 37 and program data 38.
A user may enter commands and information mto the com-
puter 20 through mnput devices such as a keyboard 40 and
pointing device 42. Other mput devices (not shown) may
include a microphone, joystick, game pad, satellite disk,
scanner or the like. These and other input devices are often

US 9,009,329 B2

25

connected to the processing unit 21 through a serial port
interface 46 that 1s coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game
port or universal serial bus (USB). A display 47 or other type
of display device can also be connected to the system bus 23
via an interface, such as a video adapter 48. In addition to the
display 47, computers typically include other peripheral out-
put devices (not shown), such as speakers and printers. The
system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external
storage device 62 connected to the SCSI bus 56.

The computer 20 may operate 1n a networked environment
using logical connections to one or more remote computers,
such as a remote computer 49. The remote computer 49 may
be another computer, a server, a router, a network PC, a peer
device or other common network node, a virtual machine, and
typically can include many or all of the elements described
above relative to the computer 20, although only a memory

storage device 50 has been illustrated 1n FIG. 1. The logical
connections depicted 1n FIG. 1 can include a local area net-
work (LAN) 31 and a wide area network (WAN) 52. Such
networking environments are commonplace 1n oflices, enter-
prise wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 20 can be connected to the LAN 51 through a network
interface or adapter 533. When used in a WAN networking
environment, the computer 20 can typically include a modem
54 or other means for establishing communications over the
wide area network 52, such as the Internet. The modem 54,
which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked
environment, program modules depicted relative to the com-
puter 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the net-
work connections shown are examples and other means of
establishing a communications link between the computers
may be used. Moreover, while 1t 1s envisioned that numerous
embodiments of the presently disclosed subject matter are
particularly well-suited for computer systems, nothing 1n this
document 1s intended to limait the disclosure to such embodi-
ments.

The foregoing detailed description has set forth various
embodiments of the systems and/or processes via examples
and/or operational diagrams. Insofar as such block diagrams,
and/or examples contain one or more functions and/or opera-
tions, 1t will be understood by those within the art that each
function and/or operation within such block diagrams, or
examples can be implemented, mdividually and/or collec-
tively, by a wide range of hardware, software, firmware, or
virtually any combination thereof.

While particular aspects and embodiments of the subject
matter described herein have been shown and described, it
will be apparent to those skilled 1n the art that, based upon the
teachings herein, changes and modifications may be made
and, therefore, the appended claims are to encompass within
their scope all such changes and modifications as are within
the true spirit and scope of the subject matter described
herein.

What 1s claimed:

1. In a system for enabling connections between a client
computer and at least one of a plurality of virtual machines
executing on a plurality of servers, a method comprising:

receiving at one of said plurality of servers a request to

connect the client computer to one of the plurality of
virtual machines;

10

15

20

25

30

35

40

45

50

55

60

65

26

requesting a redirection packet for redirecting the client
computer to connect to a target destination server of the
plurality of servers;

invoking a policy plug-in configured to determine the tar-
get destination server and a resource plug-in for process-
ing a redirection decision from the target destination
server, the resource plug-in configured to 1identily one of
the plurality of virtual machines to connect to and pre-
pare the i1dentified virtual machine to receive the con-
nection;

returning an indication of the target destination server and
an 1ndication of the resource plug-in and a filter plug-in
configured to load balance and orchestrate redirecting
across the plurality of virtual machines;

requesting from the resource plug-in and filter plug 1n:
a selected virtual machine, said selected virtual machine

chosen by a process comprising load balancing;

an 1ndication of whether the selected virtual machine 1s

instantiated;
a location of the selected virtual machine when the
selected virtual machine 1s not instantiated; and
preparation of the selected virtual machine for accepting
a new connection:
identifying an 1internet protocol (IP) address for said
selected virtual machine and returning the IP address;
embedding said IP address 1n said redirection packet and
transmitting the redirection packet to the client com-
puter; and
connecting the client computer to one of the plurality of
virtual machines based on information contained in the
redirection packet.

2. The method of claim 1 wherein:

the request 1s recerved by a redirector executing on the one

of said plurality of servers;

the request for the redirection packet is recerved by a ses-

sion broker and said IP address 1s returned to the session
broker, the session broker 1n turn sending the IP address
to the redirector; and

said embedding and transmitting 1s executed by the redi-

rector.

3. The method of claim 2 wherein the redirector and session
broker resides on the same server.

4. The method of claim 2, wherein said resource plug-in
manages one or more server farms via one or more applica-
tion programming interfaces (APIs) provided by the session
broker.

5. The method of claim 4, wherein the filter plug-ins can
override the resource plug-ins.

6. The method of claim 4, wherein more than one of said
filter plug-ins may be loaded and the filter plug-ins can reg-
ister for target, session, and connection notifications using the
one or more APIs.

7. The method of claim 6, wherein filter plug-in priority can
be enforced by using an integer sub-key in a registry for each
filter plug-in, wherein the integer sub-key determines the
order 1n which filter plug-ins are called.

8. The method of claim 4, wherein said one or more sec-
ondary plug-ins comprises a virtual machine plug-in, wherein
the virtual machine plug-in 1s a default resource plug-1n.

9. The method of claim 8, further comprising communi-
cating to a virtual machine host agent on a host virtual
machine in order to mitiate and orchestrate the host virtual
machine.

10. The method of claim 9, further comprising obtaining
the IP address using key-value pairs implemented by a hyper-
VISOr.

US 9,009,329 B2

27

11. The method of claim 1, wherein when the selected
virtual machine 1s a personal desktop, the filter plug-1n com-
municates with a central publishing service to obtain personal
desktops assigned to said client computer using an Active
Directory (AD) schema for personalized desktops, wherein
the central publishing service communicates with the Active
Directory.

12. The method of claim 1, wherein said invoking further
comprises determining whether the filter should remove the
selected virtual machine when the client computer 1s fimshed
using the selected virtual machine.

13. The method of claim 1, wherein said target destination
server may be a terminal server farm, virtual machine farm, or
personal desktop.

14. A system configured to connect a client computer to
one of a plurality of virtual machines executing on a plurality
ol servers, comprising:

at least one processor; and

at least one memory communicatively coupled to said at
least one processor, the memory having stored therein
computer-executable instructions for implementing;:

a redirector configured to connect the client computer to
a terminal server and request a redirection packet for
redirecting the client computer to a target destination
server from the plurality of servers; and

a session broker configured to:
apply a policy indication, said policy indication com-

prising criteria for selecting suitable target virtual
machines; and

recerve said request and communicate with one or

more plug-in modules configured to: (1) determine
an internet protocol (IP) address 1dentifying a tar-
get virtual machine destination, (2) identify a
resource plug-in configured to apply a redirection
indication from the target destination server 1den-
tifying the target virtual machine destination, and
prepare the target virtual machine destination for
accepting connections, and filter plug-ins config-
ured to load balance and orchestrate said redirect-
ing across the plurality of virtual machines, (3)
determine a current state of the target virtual
machine destination, (4) send a redirection packet
including the IP address to the redirector, and (35)
override session broker logic for selecting suitable
target virtual machines.

10

15

20

25

30

35

40

28

15. The system of claim 14, wherein the virtual machine 1s
executing on a server farm.

16. The system of claim 14, wherein the virtual machine 1s
a personal desktop and the session broker 1s further config-
ured to communicate with a central publishing service to
obtain personal desktops assigned to said client computer
using an Active Directory (AD) schema for personalized
desktops.

17. The system of claim 14, wherein the redirector further
cifects the connecting of the client computer to one of the
plurality of virtual machines based on information contained
in the redirection packet.

18. A computer readable storage device storing thereon
computer executable instructions for enabling connection of
a remote client computer to one of a plurality of virtual
machines executing on a plurality of servers, comprising
instructions for:

receving, by at least one of said plurality of servers, a
request to connect the remote client computer to one of
the plurality of virtual machines;

requesting a redirection packet for redirecting the client
computer to connect to a target destination on said plu-
rality of servers;

invoking a resource plug-in for processing a redirection
decision from the target destination and a filter plug-in to
determine the target destination on said plurality of serv-
ers, perform load balancing, and orchestrate said redi-
recting across the plurality of virtual machines, the
resource plug-in configured to identify one of the plu-
rality of virtual machines to connect to and prepare the
identified virtual machine to receive the connection;

identifying an internet protocol (IP) address for said target
destination; and

embedding said IP address 1n said redirection packet and
transmitting the redirection packet to the remote client
computer.

19. The computer readable storage device of claim 18,

wherein said connection 1s implemented using Remote Desk-
top Protocol (RDP).

20. The computer readable storage device of claim 18,
further comprising invoking policy plug-ins.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

