12 United States Patent

Chakrabarti et al.

US009002791B2

(10) Patent No.: US 9,002,791 B2
45) Date of Patent: Apr. 7, 2015

(54) LOGGING MODIFICATIONS TO A
VARIABLE IN PERSISTENT MEMORY

(75) Inventors: Dhruva Chakrabarti, San Jose, CA
(US); Hans Boehm, Palo Alto, CA (US)

(73) Assignee: Hewlett-Packard Development
Company, L. P., Houston, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 297 days.
(21) Appl. No.: 13/596,500
(22) Filed: Aug. 28,2012
(65) Prior Publication Data
US 2014/0067761 Al Mar. 6, 2014
(51) Int.CL

GOGF 17/30 (2006.01)
GOGF 7/00 (2006.01)
GOGF 11/14 (2006.01)
(52) U.S.CL
CPC oo GOGF 7/00 (2013.01); GO6F 11/1471

(2013.01); GOGF 17/30359 (2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0088814 Al* 5/2003 Campbell etal. 714/54

2006/0259723 Al* 11/2006 Petruzzo 711/162

2010/0037094 Al* 2/2010 Baketal 714/15
OTHER PUBLICATIONS

Chandy, K., et al., Distributed Snapshots: Determining Global States
of Distributed Systems, ACM Transactions on Computer Systems,
vol. 3, No. 1, Feb. 1985, pp. 63-75.

Coburn, J., et al., NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories, ASPLOS’11, Mar.
5-11, 2011, Newport Beach, CA, 13 pgs.

Flanagan, C., et al., FastTrack: Efficient and Precise Dynamic Race
Detection, PLDI’09, Jun. 15-20, 2009, Dublin, Ireland, 13 pgs.
Rieker, M., et al., Transparent User-Level Checkpointing for the
Native POSIX Thread Library for Linux, http://people.csail. mit.edu/
jansel/papers/2006pdpta.pdf, Jun. 26-29, 2006, 7 pgs.

Sorin, D.J., et al., SafetyNet: Improving the Availability of Shared
Memory Multiprocessors with Global Checkpoint/Recovery, 29th
Annual International Symposium on Computer Architecture (ISCA -
29), Anchorage, AK, May 25-29, 2002, 12 pgs.

Volos, H., et al., Mnemosyne: Lightweight Persistent Memory,
ASPLOS’11, Mar. 5-11, 2011, Newport Beach, CA, 13 pgs.

Xu, M., et al., A “Flight Data Recorder” for Enabling Full-system
Multiprocessor Deterministic Replay, 30th Annual International
Symposium on Computer Architecture (ISCA-30), San Diego, CA,
Jun. 9-11, 2003, 12 pgs.

Ziarek, L., et al., Modular Checkpointing for Atomicity, www.
sciencedirect.com, Jun. 22, 2007, 31 pgs.

* cited by examiner

Primary Examiner — Bai D. Vu
(74) Attorney, Agent, or Firm — Wagner Blecher, LLP

(57) ABSTRACT

A log entry 1s created 1n persistent memory that represents a
modification to a variable that resides in persistent memory. A
log entry 1s created 1n persistent memory that represents a
synchronization operation. A program-order based dynamic
ordering relationship 1s created between two successive log
entries within an execution entity. A synchronization-order
based dynamic ordering relationship 1s created between two
log entries corresponding to synchronization operations in

concurrently executing distinct execution entities of said
execution instance.

20 Claims, 7 Drawing Sheets

LOG STRUCTURE 100
STATE TRAKER (ST) GLOBAL LOG ENTRY POINT
112 117
GLH LIST OF HEADER ENTRIES
HEAD TAIL 118 119
112 s HEADER ENTRY (HE)
NEXT iSCOMPLETE 120
ST 115 116
POINTER TO ST 121 |
NEXT HE 122 |
LOG ENTRY (LE)
101
~PE ~ODR HASH Tfo-BQLE (HT)
102 103
SUAL PO _RELN LIST OF BUCKET POINTERS
104 105 107
HASH RECORD(HRY)
109

LOG ADDR 110 \
NEXT HR 111 |

US 9,002,791 B2

Sheet 1 of 7

Apr. 7, 2015

U.S. Patent

Ll dH LXdN

0Ll ¥aav 901

601
(MH)QY¥023y HSYH

101
Sd31NIOd 13XON4_g 40 1SI1

90l
(LH) 319VL1 HSVH

Ll 1S Ol 431NIOd

\Y4R
(3H) AYMLNT ¥3IAV3IH

6L1
Sdld1Nd d4dVdH 40 1511

LI
LNIOd AY1N3 901 TvEa019

101
(37) AMLNI 907

9Ll
313 1dINODS!

AN
(LS) ¥3aMVHL 31V1S

0l JdNLONALS D071

US 9,002,791 B2

Sheet 2 of 7

Apr. 7, 2015

U.S. Patent

POLC

(Z1o0|UN~o0
e=X~U
X=A~W

(ZIM20] ~ |

400¢ Pea4y)

V¢ Old

(LIM20jUN~ [
(Z1)M20jUN~ |
g=X~U
X=A~D
(Z1)M20]|~ }

| =Z2~9°
(ZIM20|UN~p
L =X~
(Z1M201~9
(LIo0|~e

e00¢ Pealy)

QHNH>HK

qolc

Tmo_‘w

201¢

U.S. Patent Apr. 7, 2015 Sheet 3 of 7 US 9,002,791 B2

100

GLH
120b 118

101a 1011

120a

1122 X,0 X, 1
1010 -

| next iy
z0 -
L2a [~101f

1019 109a

101h

1011

101

U.S. Patent Apr. 7, 2015 Sheet 4 of 7 US 9,002,791 B2

300
Y
EXECUTE CREATE & PUBLISH STORE
303 INSTR?
302
N
EXECUTE VISIBILITY BARRIER ACQUIRE EXECUTE ACQUIRE INSTR
304 INSTR? 312
306
N
EXECUTE THE STORE N

INSTRUCTION RELEASE
INSTR?

307

305

@ EXECUTE CREATE & PUBLISH EXECUTE VISIBILITY BARRIER
308 314

EXECUTE VISIBILITY BARRIER
309

EXECUTE RELEASE INSTR
310

EXECUTE CREATE & PUBLISH
313
Y

FIG. 3A

U.S. Patent Apr. 7, 2015 Sheet 5 of 7 US 9,002,791 B2

ALLOCATE MEMORY FOR A LOG ENTRY
321
N

N

SET TYPE = STR sETS:;DTJESE;—ALCO%UEAEDDR SET TYPE = RELEASE
SET ADDRESS = ADDR _

! ADDRESS = LOUK ADD! SET ADDRESS = LOCK ADDR
SET DUAL = VALUE = HT.FIND (

SET DUAL = NULL
ADDR)

327
325 326 32/

SET PO RELN=LAST LOG ENTRY OF CREATING EXECUTION ENTITY
328

N IS THIS LOG ENTRY THE FIRST IN A CONSISTENT MUTUALLY
EXCLUSIVE INSTRUCTION EXECUTION REGION?

329

Y

AUTOMATICALLY SET TAIL OF ALLOCATE MEMORY FOR A NEW ST
CURRENT ST TO LOG ENTRY 330
340 -

SET HEAD AND TAIL OF ST TO LOG

@ ENTRY. SET NEXT OF ST TO NULL

331

IF THIS IS THE LAST LOG ENTRY IN AN INSTRUCTION REGION, THEN SET IS COMPLETE=TRUE
332
N IS THIS THE FIRST LOG ENTRY OF THIS EXECUTION ENTITY? Y
333

AUTOMATICALLY SET NEXT IN PREVIOUS ST OF THIS EXECUTION ENTITY
TO POINT TO THE CURRENT ST
334

ALLOCATE MEMORY FOR HE

SET “POINTER TO ST” TO NEWLY CREATED ST
SET “NEXT HE” TO NULL

USING A CAS-LOOP, INSERT HE AT THE HEAD OF THE LIST OF HES
POINTED TO BY GLH

335

U.S. Patent Apr. 7, 2015 Sheet 6 of 7 US 9,002,791 B2

400

BEGINS /
410

A LOG ENTRY IS CREATED IN PERSISTENT MEMORY THAT REPRESENTS A
MODIFICATION TO A VARIABLE THAT RESIDES IN PERSISTENT MEMORY OR A
LOG ENTRY IS CREATED IN PERSISTENT MEMORY THAT REPRESENTS A
SYNCHRONIZATION OPERATION
420

A PROGRAM-ORDER BASED DYNAMIC ORDERING RELATIONSHIP IS CREATED
BETWEEN TWO SUCCESSIVE LOG ENTRIES WITHIN AN EXECUTION ENTITY
440

A SYNCHRONIZATION-ORDER BASED DYNAMIC ORDERING RELATIONSHIP IS
CREATED BETWEEN TWO LOG ENTRIES CORRESPONDING TO SYNCHRONIZATION
OPERATIONS IN CONCURRENTLY EXECUTING DISTINCT EXECUTION ENTITIES OF

THE EXECUTION INSTANCE
450

METADATA THAT IDENTIFIES SAID LOG ENTRIES FOR SAID EXECUTION ENTITY IS |
| CREATED AT THE GRANULARITY OF SAID CONSISTENT MUTUALLY EXCLUSIVE |
| INSTRUCTION EXECUTION REGIONS |
| 460

A SINGLE GLOBAL ENTRY POINT TO SAID LOG STRUCTURE OF SAID LOG |
| ENTRIES IS CREATED FOR AN EXECUTION INSTANCE OF AN APPLICATION THAT |
| THE EXECUTION ENTITY IS ASSOCIATED WITH |
| 470

FIG. 4

U.S. Patent Apr. 7, 2015 Sheet 7 of 7 US 9,002,791 B2

SYSTEM 500

LOG-ENTRY-CREATION-COMPONENT
210

PROGRAM-ORDER-CREATION-COMPONENT
230

SYNCHRONIZATION-ORDER-CREATION-COMPONENT
540

| 9550 |

e e e e e e e e o 1 ____________
I ___________ — s e s e s s e e “1
SINGLE-GLOBAL-ENTRY-POINT-CREATION-COMPONENT |

| 560 |
L o e e e e
I ________________________ “1
CREATE&PUBLISHNEWLOGENTRY |

| 570 |
L e o o e e e e e e e e Y Y Y e e
I ________________________ -
VISIBILITYBARRIER |

| 580 |
L e
I ________________________ “2
INSTRUCTION-EXECUTION-COMPONENT |

| 590 |
L e e e e e e e e e e e e e e e e e e e s —

FIG. 5

US 9,002,791 B2

1

LOGGING MODIFICATIONS TO A
VARIABLE IN PERSISTENT MEMORY

RELATED APPLICATION SECTION

This application 1s related to co-pending U.S. patent appli-

cation Ser. No. 13/441,656 filed on Apr. 6, 2012 entitled
“Identitying Globally Consistent States in a Multithreaded
Program™ by Chakrabarti, and assigned to the assignee of the
present application.

BACKGROUND

Persistent memory maintains the values stored in variables
even after the computer system where the persistent memory
(also known as “non-volatile memory™) resides has lost
power. Therefore, 11 a value 1s stored 1n a persistent variable
betore the computer system crashes, that same value will still
be stored 1n that persistent variable when the computer system
1s powered back on.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and form a part of this Description of Embodiments, 1llustrate
various embodiments of the present invention and, together
with the description, serve to explain principles discussed
below:

FIG. 1 depicts a block diagram of a log structure for log-
ging modifications to a persistent variable, according to one
embodiment.

FIG. 2A depicts an example of a code segment containing,
two execution entities, according to one embodiment.

FIG. 2B depicts an example of a log structure for the code
segment 1n FIG. 2A, according to one embodiment.

FIGS. 3A to 3B depict a tlow chart for creating a log
structure that represents modifications to a variable 1n persis-
tent memory, according to one embodiment.

FI1G. 4 1s a block diagram of a flow chart for creating a log
structure that represents modifications to a variable 1n persis-
tent memory, according to one embodiment.

FIG. 5 depicts a block diagram of a system for creating a
log structure that represents modifications to a variable 1n
persistent memory, according to one embodiment.

DESCRIPTION OF EMBODIMENTS

According to one embodiment, an application may be rep-
resented by source code and each instance of execution of that
source code 1s an instance of that application. One or more
execution entities, such as threads or processes, can be asso-
ciated with an application 1stance. An application 1nstance
can store values to variables 1n persistent memory (referred to
herein as “persistent variables”). As discussed herein, the
same value will be available 1n a persistent vaniable after the
computer system has been powered back on after 1t has lost
power. If the value of a persistent variable 1s corrupted or i
there 1s an inconsistency in the value with respect to different
execution entities 1 an application instance, the problem
cannot be fixed by rebooting the computer system.

Theretfore, according to various embodiments, the logging
of modifications to a persistent variable 1s provided 1n order to
deal with problems such as corruption or inconsistencies that
enable unwinding an application instance back to a consistent
state. According to one embodiment, the logging of the modi-
fications to a persistent variable enables determination of the

10

15

20

25

30

35

40

45

50

55

60

65

2

order 1n which modifications to that persistent variable were
performed, as will become more evident.

According to various embodiments, a way of building a
structure of log entries 1s provided so that distinct execution
entities can traverse and read the log entries safely at the same
time that the structure 1s being built. An execution instance of
the application 1s able to modily the log entries as well.
Non-blocking, concurrent access by different execution enti-
ties allows dynamic, efficient, concurrent computation of
properties of the application instance, according to one
embodiment. An example 1s computation of a globally con-
sistent state and 1ts evolution as the application instance
executes. A globally consistent state can be useful for
machines with non-volatile memory (NVM) where a byte
addressable store can result 1n data persisting in memory. In a
specific example, persistent memory may be located on the
memory bus of a computer system that executes one or more
execution entities that modily the values of the persistent
variables. This 1s 1n contrast to the current use of block inter-
faces for writing data persistently, for example, to a disk drive.
Without a mechanism that provides consistency, a failure at
an opportune time may leave persistent data inconsistent,
causing it to appear corrupt and unusable to an execution
entity that accesses the data.

According to one embodiment, individual execution enti-
ties, such as threads, record their own state (referred to as
“local state”), maintain intra- and inter-execution entity
dependencies between such states, and compute a globally
consistent state (GCS) based on those dependencies. For
example, 1I a state X happens after state y, state x can be
included in the above GCS only if state v 1s also included.
Local states or log entries that capture the writes performed
by execution entities can be analyzed oftline for computing a
GCS. However, according to one embodiment, capturing a
GCS can be done while an application instance, that contains
a single execution enfity or multiple execution entities,
updates a persistent variable. Such an online capture of a GCS
enables continual pruning of the log entries. Stmultaneously,
the states and dependencies can be built as the application
instance that modifies the persistent variable 1s executing,
according to various embodiments.

According to one embodiment, a relationship can exist
between two log entries. The relationship can be etther an
intra-execution entity relationship or an inter-execution entity
relationship. An intra-execution entity relationship (also
referred to herein as “program order”) can arise out of the
order of the instructions associated with the execution entity.
If an operation x 1s executed before (after) an operation v by
the same execution entity, then operation x happens before
(after) operation y. An inter-execution entity relationship can
arise out of synchronization operations. For example, if an
execution entity t1 acquires a lock L after execution entity t2
releases the same lock L, then a happens-before relationship
can exist from the release of the lock L 1n execution entity t2
to 1ts acquisition 1n execution entity tl. In this example, a
happens-after relationship exists from the lock acquisition in
execution entity t1 to the lock release 1n execution entity t2.

According to one embodiment, log entries are created to
represent writes to persistent variables. Reads of persistent
variables do not have to be logged since they do not result in
changes to the persistent variables. The dependencies that
arise from the reads may be represented. However, according
to various embodiments, tracking either happens-before or
happens after dependencies through synchronization opera-
tions, such as lock acquires and releases, are enough to cap-
ture the pertinent dependencies. Various embodiments are
also well suited for fork and join operations. Various embodi-

US 9,002,791 B2

3

ments are also well suited for dertving happens-after depen-
dencies from happens-before dependencies and vice versa.

According to one embodiment, the log entries are created
in persistent memory as well, so that 11 a crash-restart occurs,
the recovery process can make use of the log entries 1n per-
sistent memory to revert the persistent application state,
which will possibly be inconsistent, back to a globally con-
sistent state (GCS).

Execution entities include operations (also known as
“instructions”) that perform reads or writes to persistent vari-
ables and operations that provide for mutually exclusive
instruction execution regions. According to one embodiment,
istructions performing modifications to a persistent vari-
able, such as write instructions, are performed inside of a
mutually exclusive instruction execution region to prevent,
among other things, inconsistencies ol persistent variables or
data races between execution entities.

Examples of mutually exclusive instruction execution
regions 1nclude, but are not limited to, critical sections and
atomic sections. A critical section 1s begun with an instruction
acquiring a lock (also known as a “lock acquisition™) and ends
with an instruction releasing the acquired lock (also known as
a “lock release™). An atomic section can be begun with, for
example, an “atomic” keyword and a character such as a
beginning curly bracket “{” and end with, for example, a
character such as an ending curly bracket ““}.” The acquisition
of a lock, the release of a lock, the “atomic” keyword and a
character that begins an atomic section, and a character that
ends an atomic section are examples of code constructs of a
mutually exclusive mstruction execution region. The mnstruc-
tions between a pair of code constructs are examples of a code
section.

FIG. 1 depicts a block diagram of a log structure for log-
ging modifications to a persistent variable, according to one
embodiment. The blocks that represent features in FIG. 1 can
be arranged differently than as illustrated, and can implement
additional or fewer features than what are described herein.
Further, the features represented by the blocks 1n FIG. 1 can
be combined in various ways. As depicted, the log structure
100 includes various data structures, such as a state tracker
(ST) 112, a global log entry point 117, a log entry (LE) 101,
and a hash table (HT) 106.

A log entry 101 may contain four fields such as a type (ty)
102, a memory address (addr) 103, a dual 104, which may be
pointer-sized, and a program order relationship field
(PO_reln) 105. The type field 102 indicates the kind of opera-
tion the log entry 101 corresponds to. Examples of the kinds
of operation that a log entry 101 can correspond to include a
store to a persistent variable, the beginning of a mutually
exclusive instruction execution region, such as an instruction
to acquire a lock or the beginning of an atomic section, and the
end of the mutually exclusive instruction execution region,
such as an instruction to release the lock or the end of an
atomic section. The addr field 103 1s the address of the loca-
tion being written to in the case of a write and the addr field
103 1s the address of the lock in the case of an acquire or
release operation.

In one embodiment, for a write, dual 104 captures the last
value of addr 103. Thus, according to one embodiment, the
log entries 101 can be used as undo log entries that can be used
during a recovery phase. Other embodiments are possible as
well. For a lock acquire, dual 104 points to the log entry for
the last release of the same lock. For a lock release, dual 104
1s null.

For a given log entry 101, the PO_reln 103 points to the log
entry 101 created last by the same execution entity. According
to one embodiment, a log entry 101°s fields are written only

10

15

20

25

30

35

40

45

50

55

60

65

4

once. Once created, the individual fields 102, 103,104, 105 of
a log entry 101 are not mutated hencetforth by any execution
entity. However, 1t 1s possible for a log entry 101 to become
unnecessary and be removed entirely from the log structure
100 (also referred to as “pruning”). According to one embodi-
ment, a plurality of log entries 101 for an execution entity are
referred to as that execution entity’s consistent mutually
exclusive mstruction execution region (CREG), also referred
to as “instruction region” for the sake of simplicity. In one
embodiment, a CREG starts and ends at points of an applica-
tion instance where no locks are held.

For every CREG, some metadata, which are represented by
a state tracker ST according to one embodiment, 1S main-
tained. The state tracker 112 includes pointers, such as head
113, tail 114, next ST 115, and 1s Complete 116. Head 113
points to the first log entry 101 for the CREG associated with
that state tracker 112. The tail 114 points to last log entry 101
for the CREG associated with the same state tracker 112.
“Next ST 115 points to the next state tracker 112 1n the
program order for that execution entity. The 1s Complete field
116 indicates whether the corresponding CREG has com-
pleted execution.

During creation of a CREG with log entries 101, tail 114
can change until the CREG 1s complete. As long as the CREG
1s incomplete, tail 114 1s made to atomically point to the last
log entry 101 created until that point of time for that CREG.
The atomic operation ensures that all other execution entities
see the effect of the operation 1n 1ts entirety. Tail 114 becomes
immutable once the last operation in that CREG 1s executed.
The “next ST field 114 1s first set to null but then made to
atomically point to the metadata as represented by a state
tracker 112 associated with the succeeding CREG. Thus,
“next ST 115 remains mutable for some time before chang-
ing to immutable. Thelog entries 101 within every CREG can
be concurrently accessed at any point in time, even before 1t 1s
complete. However, most execution entities, such as one
wanting to compute any global property of the application
instance from the log entries 101, would examine a local state
when 1t 1s quiescent, for example, when 1s Complete 116 has
been set to true, according to one embodiment. The global log
entry point 117 includes a global log header (GLH)118 and a
list of header entries (HEs) 119. The list of header entries 119
includes one or more header entries 120. Each header entry
120 includes a pointer to a state tracker 121 and a “next HE”
122. The “pointer to ST” 121 may point to the first state
tracker (ST) 112 for the execution entity that corresponds to
the same header entry 120. The pointer to next HE 122 may
point to the next header entry (HE) 120 1n the header entry list
119. According to one embodiment, the CREGs of an execu-
tion entity are accessible through the global log entry point
117. The header entries 120 corresponding to execution enti-
ties can be organized 1n the form of a list 119. The global log
header (GLH) 118 points to the first header entry 120 1n the
list of header entries 119. The GLH 118 can be used as a
global gateway to the log entries 101.

Neither of the two header entry fields 121, 122 needs to be
atomic since the HE fields 121 and 122 are assigned once by
an execution entity and then published to other execution
entities. Once the HE fields 121 and 122 are published, they
are immutable, according to one embodiment. An execution
entity that wants to traverse the log entries 101 can start from
GLH 118 and read the CREGs from the header entries 120
even when a concurrent addition of a new log entry 101 1s 1n
progress. This 1s rendered possible by inserting new header
entries 120 at the head of the list of header entries 119 pointed
to by the GLH 118, making sure that the existing data struc-
tures accessible from GLH 118 will not be changed, accord-

US 9,002,791 B2

S

ing to one embodiment. A compare-and-swap loop (CAS-
loop), according to one embodiment, 1s used to allow correct
concurrent 1nsertion of header entries by multiple execution

entities.
The hash table (HT) 106 includes a list of bucket pointers

107 where each bucket includes a list of hash records (HR)
109 for a particular lock. A hash record (HR) 109 includes a
log address 110 and a next HR 111. The log address (“log

addr”) 110 may point to a log entry for the last release of a
lock. Corresponding “next HR” 111 associated with the hash
record 109 points to the next hash record. According to one

embodiment, the hash table (HT) 106 1s shared among all of

the execution entities associated with an application instance
and the one or more execution entities that are used for cre-
ating, traversing, maintaining, or modilying, or combination
thereol, the log structure 100 1n order to maintain the corre-
lation between a lock address and a log entry 101.

“Next HR” 111 1s assigned by an execution entity before
being inserted 1nto the hash table 106. Once a hash record HR
109 1s inserted into the hash table 106, the next HR 111 1s

immutable, according to one embodiment. This 1s made pos-
sible, according to one embodiment, by inserting new hash
record 109 at the head of the list corresponding to a bucket for
a lock. For this reason, the bucket pointers 107 may also be
marked atomic. The log address 110 1s marked atomic since it
can change multiple times as one or more execution entities
associated with an application instance execute.

According to one embodiment, two operations are sup-
ported on a hash table 106. Those two operations are “insert”
and “find”. Both of the insert and the find can be implemented
in a non-blocking manner. According to one embodiment,
once a “find” for a lock L has been invoked, no new log entry
corresponding to that lock L will be 1nserted into the hash
table 106 belfore the “find” operation completes.

According to one embodiment, an msertion nto the hash
table 106 happens at the head of the corresponding hash table
bucket. This guarantees that any concurrent “find” operation
will identily the relevant hash table bucket, read the pointer
1077 of that bucket atomically, and scan through the obtained
l1st 1n a sate manner. I the log address 110 of hash record 109
for a bucket 1n the hash table 106 has a matching lock, thatlog
address 110 1s returned. Otherwise, 1t 1s assured that no match
exists 1n the hash table 106.

For an “insert” operation, a “find” 1s invoked first. If a hash
record 109 1s found by the find, the log address 110 of the hash
record 109 1s atomically changed to the new log entry 101. IT
no hash record 109 1s found, a new hash record 109 1s created
and populated. The log address 110 1s set to the address of a
log entry 101 for a lock release, the “next HR” field 1s set to
point to the first hash record 109 for the bucket, and the bucket
pointer 107 1s set to point to this new hash record 109. The
bucket pointer 107 1s retrieved and set within a compare-and-
swap loop (CAS-loop) to ensure concurrent non-blocking
construction of the hash table 106. According to one embodi-
ment, while collisions are possible 1n the open hashing
scheme, no false conflicts are possible, meaning that when the
hash table 106 1s queried with a lock address, the log entry for
the last release of this lock 1s computed precisely. According
to one embodiment, no delete operator on the hash table 106
1s provided but this may be combined with a scheme for
eventually garbage collecting unused hash records.

FIG. 2A depicts an application instance, according to one
embodiment. FIG. 2B depicts a block diagram of a log struc-
ture 100, according to one embodiment. The blocks that rep-
resent features 1 FIGS. 2A and 2B can be arranged differ-
ently than as illustrated, and can implement additional or

10

15

20

25

30

35

40

45

50

55

60

65

6

fewer features than what are described herein. Further, the
teatures represented by the blocks 1n FIGS. 2A and 2B can be
combined 1n various ways.

In FIG. 2A, two execution entities 200a, 2005 are depicted.
According to one embodiment, an execution entity is a thread
or a process. Execution entity 200q includes 1nstructions a-
and execution entity 2006 includes mstructions 1-0. For the
sake of illustration assume that the variables X, y, and z are
persistent variables. Execution enftities 200q¢ and 2005
include nstructions ¢, e, g, h, m, n that perform modifications
on the persistent variables. The persistent variables X, y, and z
are 1mitially set to zero.

Both execution entities 200a, 2006 have mutually exclu-
s1ve 1nstruction execution regions 210a-210d that are demar-
cated by lock acquisitions and releases. In this i1llustration, the
execution entities 200a, 2005 are implemented using critical
sections. In this illustration, lock L2 1s used for protecting
shared variables x and vy, and lock L1 1s used for protecting
shared variable z.

FIG. 2B depicts a log structure 100 for logging modifica-
tions to a variable 1 persistent memory, according to one
embodiment. The structure 100 reflects the logging modifi-
cations for the application mnstance’s 200a, 20056 persistent
variables X, y and z and, theretfore, shall be described 1n the
context ol application instance 200. The structure 100
includes two header entries 120a, 1205, log entries 101a-
1010, state trackers 112a, 1125, a hash table 106, and hash
records 109a, 1095.

The logentries 101a-1010 are organized on a per execution
entity basis, according to one embodiment. For example,
execution enftity 200a’s log entries 101a-1017 are linked
together 1n one list and execution entity 2005’s log entries

101/-1010 are linked together 1n another list. There 1s aheader
entry 120a, 1206 for each of the execution entities 200aq,
200b. The header entries 120a, 1206 are linked together in a
l1st 119. There 1s a global listheader (GLLH 118), for accessing
the list 119, thus providing a global log entry point 117.

Further, there are state trackers 112a, 1125 on a per execu-
tion entity basis. For example, execution entity 200a’s state
tracker 1s state tracker 112a and execution entity 2005’s state
tracker 1s state tracker 1125. The hash table (HT) 106 has one
or more bucket pointers 107 that correspond to the releases
for each of the locks L1 and L2 depicted in FIGS. 2A, 2B. For
example, FIGS. 2A, 2B depict two locks L1 and L2. There-
fore, the hash table 106 includes a bucket pointer 107a to a list
of hash records that represents the last release of lock L2 and
another bucket pointer 1075 points to a list of hash records
that represents the last release of lock 1. Each of the bucket
pointers 107a, 1075 points to a respective hash record (HR)
109a, 1095 for the respective lock releases of L2 and L1.

For the sake of illustration, assume that execution entity
200a starts executing before execution entity 20056. Further,
for the sake of 1llustration, assume that execution entity 200q
obtains the lock L2 at instruction b before the instruction I of
execution entity 2005 1s executed. In this case, instructions
a-d of execution entity 200q are executed and the correspond-
ing log entries 101a-1014 are created before instruction I of
execution entity 2005 1s executed. When instruction d 1s
executed, the hash record 109q for the bucket pointer 107a
corresponding to lock L2 1s updated to point to the log entry
1014 that represents the most recent release of lock L2.

The 1struction 1 executes to obtain lock L2 and the log
entry 101/1s created for execution entity 20056. The hash table
106 1s searched to obtain a pointer to the log entry for the last
release of lock L2. At this point in this 1llustration, the hash
record 109a 1s pointing to log entry 101d. This pointer can be

US 9,002,791 B2

7

used to update log entry 101/ to point to log entry 101d as
indicated by 290qa. Other timings of execution of the istruc-
tions are possible.

Execution entity 200a’s first unlock of L2 as a result of
executing nstruction d happens belfore execution entity
2000°s lock of L2 as a result of executing instruction I in this
illustration. Execution entity 2006 continues execution
resulting in the creation of log entries 101m-1010 for the
respective mstructions m-o. When 1nstruction o 1s executed,
the hash record 109a 1s updated to point to log entry 1010
since 1t 1s the last release of lock L2 at this point in time 1n thas
illustration. Other timings of execution of the instructions are
possible.

The execution of 1nstruction € can be executed at any point
in time during the execution of execution entity 200a since
instruction €’s execution 1s protected by lock L1 whereas
execution entity 2005 1s entirely protected by lock L2. Log
entry 101e 1s created as a result of the execution of instruction
¢. Lock L2 can be obtained as a result of the execution of
instruction 1 and the log entry 101/ representing instruction
1s created. The hash table 106 1s searched to determine 11 a
previous release of lock L2 has been performed. In this 1llus-
tration, the hash record 109a includes a pointer 110 to log
entry 1010, at the time that instruction 1 1s executed, because
log entry 1010 1s associated with the previous release of L2.
That pointer 110 from the hash record 109« 1s used to update
log entry 101/to point to log entry 1010 as indicated by 2905.

Instructions g-1 are executed resulting 1n the creation of log,
entries 101g-101;. As a part of creating log entry 101:, which
represents a release of lock L2 at instruction 1, the hash record
109q 1s updated to point to log entry 101:, which represents
the most recent release of L2 by mnstruction 1. Thus, the log
address 110 associated with hash record 109a 1s updated to
point respectively at log entries 1014, 1010, and 101; as the
result of executing 1nstructions d, o, and 1 1n this 1llustration.

Instruction 7 1s executed resulting 1 log entry 101/ being
created. The hash table 106 1s searched to determine if a
previous release of lock L1 has been performed. Since this 1s
the first release of lock L1, the bucket pointer 1075 1s 1n1tial-
1zed to point to a hash record 10956 and the log address 110
associated with hash record 1095 1s 1mmitialized to point to log
entry 101;.

Although various embodiments are described 1n the con-
text of data structures, such as log entries 101a, 1015, 1014,
101/,101/,101;, 101/, 1010, among other things, that corre-
spond to lock acquisitions and lock releases, various embodi-
ments are well suited for other types of code constructs, such
as the start and the end of an atomic section. For example, the
log entries 101a,1015,1014,101/,101/,101;,101/, 1010 can
represent respective starts and ends of respective atomic sec-
tions instead of critical sections. Although the application
instance 200a, 2005 1n this illustration 1s for multiple execu-
tion entities 200a, 2005, various embodiments are well suited
to creating a log structure 100 for an application instance with
a single execution entity.

According to various embodiments, one or more execution
entities associated with an application entity, one or more
execution entities used for creating a structure 100, and one or
more execution entities for accessing the log structure 100
can be performed concurrently. According to various embodi-
ments, the mstructions that modily persistent variables, such
as instructions ¢, g, h, m, and n (FI1G. 2A), and code constructs
of mutually exclusive instruction execution regions, such as
istructions a, b, d, 1,1, 1, and o (FIG. 2A), are instrumented so
that appropriate routines, that perform processing and create
a log structure 100 as the execution entities 200a, 20056 (FIG.
2A) execute, are mvoked.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The creation and publication of a log entry shall be dis-
cussed 1n preparation of a discussion of processing that is
performed as a part of mstrumenting instructions, as dis-
cussed herein. The creation and publication of a log entry
shall be referred to as Create&PublishNewLogEntry. For the
sake of simplicity, the Create&PublishNewLogEntry shall
also be referred to as Create&Publish.

According to one embodiment, the effect of a write to a
persistent variable 1s made visible to persistent memory. For
example, i a value that 1s written to a persistent variable 1s
stored 1n cache before being stored 1n the persistent memory,
a function, which 1s referred to herein as VisibilityBarrier, 1s
provided that causes the value to be written to persistent
memory from the cache. The VisibilityBarrier can use a cache
line flush, among other things, to write the value from cache
to persistent memory. A VisibilityBarrier 1s inserted after
creation of a log entry and before the corresponding store,
according to one embodiment.

FIGS. 3A to 3B depict a flow chart for creating a log
structure, according to one embodiment. Although specific
operations are disclosed in flowchart 300, such operations are
exemplary. That 1s, various embodiments are well suited to
performing various other operations or variations of the
operations recited in flowchart 300. It 1s appreciated that the
operations 1n tlowchart 300 may be performed in an order
different than presented, and that not all of the operations 1n
flowchart 300 may be performed.

Lock acquisition instructions, lock release instructions,
and 1nstructions that store into persistent variables are instru-
mented so that the appropriate processing and data structures
depicted in FI1G. 1 are created as execution entities 200a, 2005
(FI1G. 2A) associated with an 1nstance 200 of an application
are executed, according to one embodiment, as discussed
herein. Therefore, according to one embodiment, instructions
a,b,c,d,e, 1, g, h,1,7,1,m, n, and o as depicted in FIG. 2A are
instrumented. Instrumented instructions, according to one
embodiment, cause the processing depicted 1n FIGS. 3A-3B
to be executed.

FIG. 3A shows the overall effect of instrumentation,
according to one embodiment. At 302, 306, 307, the obtained
instruction 1s analyzed to determine 11 1t 1s an mstruction that
stores data into a persistent variable, a lock acquisition
instruction, or a lock release instruction respectively. For
example, mnstruction a 1n FIG. 2A 1s an acquisition of a lock
.1, so the determination at 306 would be true when executing
instruction a during execution of execution entity 200a. The
lock acqusition 1nstruction a 1s executed at 312. The
Create&PublishNewLogEntry routine 1s executed at 313 and
the VisibilityBarrier 1s executed at 314.

FIG. 3B describes the operations of the routine,
Create&PublishNewLogEntry, according to one embodi-
ment. At 321, memory 1s allocated for alog entry 101. Using
322,323, and 324, a determination 1s made on the type of log
entry being published. According to one embodiment, if the
log entry 1s for a store instruction, the fields of the log entry
are set 1n 3235, The type 102 of the log entry 1s set to retlect a
store, the addr 103 of the log entry 1s set to the memory
address of the corresponding store instruction, and the dual
104 15 set to the last value of the memory address of the
corresponding store instruction. According to one embodi-
ment, 11 the log entry 1s of type acquire, the fields of the log
entry are set 1n 326. The type 102 of the log entry 1s set to
reflect an acquire 1nstruction, the addr 103 of the log entry 1s
set to the lock address of the corresponding lock nstruction,
and the dual 104 1s set to the return value of a find on the hash
table 106 with the lock address of the lock instruction as the
argument. According to one embodiment, 1f the log entry 1s of

US 9,002,791 B2

9

type release, the fields of the log entry are setin 327. The type
102 of the log entry 1s set to reflect a release 1nstruction, the
addr 103 of the log entry 1s set to the lock address of the
corresponding release 1nstruction, the dual 104 1s set to null,
and the log entry 1s 1nserted into the hash table 106.

In 328, the PO_reln field 105 of the log entry 101 1s set to
the last log entry of the execution entity that created this log
entry. At this point, the new log entry 101 1s created and
attached to the log structure 100 but this log entry 101 1s not
yet published to other execution entities yet, according to one
embodiment.

At 329 a determination 1s made as to whether the newly
created log entry 101 1s the first log entry in a CREG. If it 1s
the first log entry, at 330 memory 1s allocated for a new state
tracker 112 and at 331 1ts head 113 1s set to the log entry 101,
tail 114 to the log entry 101, and “next ST 115 to null. If the
log entry 101 1s not the first in a CREG, at 340, the ta1l 114 of
the state tracker corresponding to the CREG 1s atomically set
to the log entry 101.

At 332 a determination 1s made as to whether the log entry
101 1s the last instruction in a CREG. If so, 1s Complete 116
1s set to true. At 333, a determination 1s made as to whether the
newly created log entry 101 1s the first in the creating execu-
tion entity. If not, at 334, “next ST” 1135 of the state tracker
112 corresponding to the previous CREG in the execution
entity that created the log entry 101 1s atomically set to point
to the state tracker 112 that contains the newly created log
entry 101. At this point, the state tracker 112 of the CREG
containing the newly created log entry 1s attached to the log
structure but may not be published yet to other execution
entities, according to one embodiment. 11333 determines that
it 1s the first, at 335, memory 1s allocated for a header entry
120, “pointer to ST 121 1s made to point to the newly created
state tracker 112, “next HE” 122 1s set to null. Using a CAS-
loop, the header entry 120 1s imnserted at the head of the list of
header entries pointed to by GLH 118. At this point, the log
entry 101 1s published to all execution entities, according to
one embodiment.

According to one embodiment, the PO_reln field 105 in the
respective log entries 1015-1015 and log entries 101-101a
are used as a part of implementing respective program-order
based dynamic ordering relationships between respective log
entries. According to one embodiment, the pointers 290a,
2906 are used as a part of implementing synchronization-
order based dynamic ordering relationships between respec-
tive log entries 1014, 101/, 1010, 101/ corresponding to syn-
chronization operations, such as instructions d, 1, 1, o, 1n
concurrently executing distinct execution entities 200a, 20056
ol an execution 1nstance 200 of an application.

FIG. 4 1s a block diagram of a flow chart showing the
high-level steps for creating a log structure that represents
modifications to a variable in persistent memory, according to
one embodiment. Although specific operations are disclosed
in flowchart 400, such operations are exemplary. That 1s,
various embodiments are well suited to performing various
other operations or vanations of the operations recited 1n
flowchart 400. It 1s appreciated that the operations 1n flow-
chart 400 may be performed in an order different than pre-
sented, and that not all of the operations 1n flowchart 400 may
be performed.

At 410, the method begins. At 420, a log entry 101 1s
created iI a modification to a persistent variable 1s encoun-
tered or a log entry 101 1s created 11 a synchronization opera-
tion 1s encountered. Every log entry 101 1s attached to the list
of log entries in the same execution entity at 440. For every
log entry 101 corresponding to a lock acquisition, a happens-
betore dependence 1s added from the log entry corresponding,

10

15

20

25

30

35

40

45

50

55

60

65

10

to the last release of the same lock to this log entry in 450.
Metadata 1n the form of a state tracker 112 that 1dentifies the
log entries at the granularity of consistent mutually exclusive
instruction execution regions are built up 1n 460 and attached
to the log structure 100. At 470, any necessary header entry
120 1s built up and attached to the list of header entries 119
that 1s 1n turn reachable from the single global entry point 117
of the log structure 100. 470 ensures that a newly created log
entry 1s now published to all execution entities. At 480, the
method ends. According to one embodiment, 460 and 470 are
optional.

FIG. 5 depicts a block diagram of a system 300 for creating,
a log structure 100 that represents modifications to a variable
in persistent memory, according to one embodiment. The
system 500 includes a log-entry-creation-component 510, a
program-order-creation-component 530, and a synchroniza-
tion-order-creation-component 540, according to one
embodiment. According to one embodiment, the system 500
optionally includes a metadata-creation-component 530, a
single-global-entry-point-creation-component 560,
Create&PublishNewLogEntry 570, as discussed herein, Visi-
bilityBarrier 580, as discussed herein, and mstruction-execu-
tion-component 390.

The log-entry-creation-component 510 1s for creating 420
a log entry 1n persistent memory that represents a modifica-
tion to a variable that resides in persistent memory and for
creating a log entry in persistent memory that represents a
synchronization operation, as discussed herein. The program-
order-creation-component 530 1s for creating 440 a program-
order based dynamic ordering relationship between two suc-
cessive log entries within an execution entity, as discussed
herein. The synchronization-order-creation-component 540
1s for creating 450 a synchronization-order based dynamic
ordering relationship between two log entries corresponding
to synchronization operations in concurrently executing dis-
tinct execution entities of the execution instance, as discussed
herein.

The metadata-creation-component 550 1s for creating 460
metadata that identifies the log entries for the execution entity
at the granularity of the consistent mutually exclusive istruc-
tion execution regions, as discussed herein. The single-glo-
bal-entry-point-creation-component 560 1s for creating 470 a
single global entry point to the log structure of the log entries
for an execution istance of an application that the execution
entity 1s associated with, as discussed herein.

According to one embodiment, at least one execution
entity 1s associated with the system 500 for creating, manipu-
lating or traversing, or a combination thereof, the data struc-
tures 112, 101, 117, 106 associated with a log structure 100.
According to one embodiment, an execution entity for creat-
ing data structures 112,101, 117, 106 associated with the log
structure 100 are also referred to herein as a log structure
creating execution entity or a creation entity. Examples of
components associated with the log structure creation execus-
tion entity include any one or more of the creation-compo-
nents 510, 530, 540, 550, 560 and the
Create&PublishNewLogEntry 570. Examples of concur-
rently executing execution entities include execution entities
200a, 2005 of an application instance 200 or any one or more
execution entities associated with the system 500, or a com-
bination thereof.

According to one embodiment, the VisibilityBarrier 580
guarantees that a log entry 1s visible on persistent memory
betore the effects of the corresponding data or synchroniza-
tion operation are visible on persistent memory. According to
one embodiment, the Create&PublishNewLogEntry 570
publishes a log entry corresponding to a store instruction, to

US 9,002,791 B2

11

make the log entry of the store instruction visible to other
execution entities. According to one embodiment, the
Create&PublishNewLogEntry 570 makes a log entry for an
existing mutually exclusive instruction execution region vis-
ible to other concurrently executing execution entities by an
atomic pointer switch, where the atomic pointer switch con-
s1sts of resetting a tail of a state tracker representing a mutu-
ally exclusive instruction execution region to the log entry.
According, to one embodiment, the
Create&PublishNewLogEntry 570 makes a new consistent
mutually exclusive instruction execution region visible to
other concurrently executing entities by creating and popu-
lating a first state tracker, and subsequent to the populating,
making an atomic pointer switch, where the atomic pointer
switch consists of resetting a connector, such as the next ST
115, between a second state tracker and the first state tracker
and where the second state tracker immediately precedes the
first state tracker.

For the sake of 1llustration, assume that the execution entity
200a begins execution before execution entity 2005, and,
therefore, according to one embodiment, the header entry
120a that corresponds to execution entity 200a 1s created
betore the header entry 1205 that corresponds to execution
entity 2005. According to one embodiment, the
Create&PublishNewLogEntry 570 makes a new header entry
1206, which corresponds to the new execution entity 2005,
visible to other concurrently executing execution entities by
repeatedly executing a sequence of a first operation, a second
operation and a third operation until the sequence 1s deemed
successiul, where the first operation in the sequence i1s a
retrieval of a location pointed to by GLH 118, the second
operation 1n the sequence 1s to connect the new header entry
12056 to a location returned by the first operation, the third
operation 1n the sequence 1s an atomic compare-and-swap of
GLH 118 with an address of the new header entry 1205, and
the sequence 1s deemed successiul when the atomic compare-
and-swap operation completes successtully.

The program-order-creation-component 530 1s further for
arranging the log entries 101a-101; of an execution entity
200a 1n the form of a list under the header entry 120a. Simi-
larly, the log entries 101/-1010 of execution entity 2005 are
arranged 1n the form of another list under the header entry
1205.

The metadata-creation-component 550 1s further for creat-
ing a state tracker to capture a consistent mutually exclusive
instruction execution region corresponding to a code section
identified by code constructs, where the head and tail of a state
tracker refer to the start and end respectively of the corre-
sponding code section, the state trackers denoting the consis-
tent mutually exclusive instruction execution regions are con-
nected together 1n the form of a list. Examples of consistent
mutually exclusive instruction regions are 210aq-2104. In
FI1G. 2B, the state tracker 112a 1dentifies a consistent mutu-
ally exclusive instruction execution region 210c¢. The head
and tail of 112a point to the first 101a and the last instruction
101; respectively corresponding to the consistent mutually
exclusive 1nstruction execution region 210c. Similarly, the
head and tail of state tracker 1125 point to the first 101/ and
the last mstruction 1010 respectively corresponding to the
consistent mutually exclusive instruction execution region
2104d. The next fields of both 112a and 1125 are NULL since
they are the last consistent mutually exclusive instruction
execution regions in their respective execution entities.

The single-global-entry-point-creation component 560 1s
turther for creating a header entry 120 for every execution
entity that 1s used to refer to the list of state trackers 112 of the
execution entity, connecting the header entries 120 represent-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing all the concurrently executing entities 1n the form of a list
119, and creating an atomically updatable global log entry-
point 118 that points to the list 119 of header entries 120.

According to one embodiment, the log structure 100 1s
dynamically built, for example using the creation-compo-
nents 3510-560, as the instance 200 of the application
executes, where for every release synchronization operation,
a corresponding synchronization object address, such as the
address in memory of a lock variable L1 or L2 accessible for
example through the addr field 103, and 1ts representing log
entry are added to a hash table 106 as the instance 200 of the
application executes, where for every acquire synchroniza-
tion operation, the hash table 106 1s queried with the corre-
sponding synchronization object and a happens before order-
ing relationship 1s dynamically added to the log structure 100
from any log entry obtained from a query to a log entry for an
acquire synchronization operation.

According to one embodiment, the log structure 100 and a
hash table 106 are created, manipulated, and traversed with-
out any of a plurality of execution entities 200a, 2005, and any
one or more execution entities associated with the system
500, being blocked while performing any of the creating, the
mampulating, and the traversing, wherein the creating, the
mampulating, and the traversing are performed by at least
some of the plurality of execution entities that are not blocked
while performing any of the creating, the manipulating and
the traversing, and a non-blocking nature of the execution
entities 1s provided by performing atomic pointer switching,
such as a CAS-loop or an atomic pointer update, within the
log structure 100 and the hash table 106.

According to one embodiment, the instruction-execution-
component 590 1s for executing the store instruction after the
publishing, whereas for an acquire synchronization opera-
tion, the acquire synchronization operation 1s executed and
then the corresponding log entry 1s published by the
Create&PublishNewLogEntry 570 and VisibilityBarrier 580
to be visible to other execution entities and to persistent
memory, where for a release synchronization operation, the
corresponding log entry 1s published by the
Create&PublishNewLogEntry 570 and VisibilityBarrier 58
to be visible to other execution entities and to persistent
memory, and subsequent to the publishing, executing the
release synchronization operation.

Various embodiments were illustrated assuming certain
timings of execution of various instructions. However,
embodiments are well suited for other timing of execution of
istructions. For example, execution entity 200a may start
betfore execution entity 20056 or vice versa. Execution entity
200a may obtain a particular lock before execution entity
2005 obtains the same lock or vice versa. Further still, the
instructions of a first instance ol an application may be
executed 1n a different order and with different timings than
the mstructions of a second instance of the same application.
The order in which the data structures 112,101,117, 106 of a
log structure 100 are created and the values of the fields 1in the
data structures 112, 101, 117, 106 retlect the different execu-
tion order and timing between the different application
instances, according to one embodiment.

Any one or more of the embodiments described herein can
be implemented using non-transitory computer readable stor-
age medium and computer-executable instructions which
reside, for example, in computer-readable storage medium of
a computer system or like device. The non-transitory com-
puter readable storage medium can be any kind of memory
that instructions can be stored on. Examples of the non-
transitory computer readable storage medium include but are
not limited to a disk, a compact disk (CD), a digital versatile

US 9,002,791 B2

13

device (DVD), read only memory (ROM), flash, and so on. In
the event that the computer readable storage medium 1s main
memory, the main memory can be eirther volatile or non-
volatile, 1.e., persistent. As described above, certain processes
and operations of various embodiments are realized, 1n one
embodiment, as a series of mstructions (e.g., software pro-
gram) that reside within non-transitory computer readable
storage memory of a computer system and are executed by the
computer processor of the computer system. When executed,
the 1nstructions cause the computer system to implement the
functionality of various embodiments. According to one
embodiment, the non-transitory computer readable storage
medium 1s tangible.

In prior art, various techniques, such as check pointing,
annotations, systems that require specialized hardware spe-
cifically for logging modifications to variables are used by
conventional systems. But such checkpoints 1n prior art are
not always globally consistent. Conventional thread-private
logs do not maintain any inter-thread relationships. Accord-
ing to various embodiments, specialized hardware for log-
ging modifications to a variable 1n persistent memory 1s not
used or 1s not required. According to one embodiment, soft-
ware that executes on hardware, which 1s not specialized for
the purpose of logging modifications to a variable 1n persis-
tent memory, provides for the logging modifications to a
variable 1n persistent memory. According to one embodi-
ment, the executing entities with operations or mstructions
that modily a persistent variable execute on the same com-
puter system. According to one embodiment, the executing,
entities with operations or instructions that modify a persis-
tent variable execute on the same computer system are not or
are not required to execute on different computer systems.
According to one embodiment, the execution entities can be
parts of a distributed program and hence execute on distinct
machines. According to one embodiment, the persistent
memory 1s located on the memory bus of the computer system
that executes the execution entities that modily a persistent
variable. According to one embodiment, the persistent
memory 1s not or 1s not required to be a disk drive.

Example embodiments of the subject matter are thus
described. Although the subject matter has been described 1n
a language specific to structural features and/or methodologi-
cal acts, it 1s to be understood that the subject matter defined
in the appended claims 1s not necessarily limited to the spe-
cific features or acts described above. Rather, the specific
teatures and acts described above are disclosed as example
forms of implementing the claims. The illustrations of vari-
ous embodiments are only provided by way of example and
not by way of limitation.

Various embodiments have been described in various com-
binations and 1illustrations. However, any two or more
embodiments or features may be combined. Further, any
embodiment or feature may be used separately from any other
embodiment or feature. Phrases, such as “an embodiment,”
“one embodiment,” among others, used herein, are not nec-
essarily referring to the same embodiment. Features, struc-
tures, or characteristics of any embodiment may be combined
in any suitable manner with one or more other features, struc-
tures, or characteristics.

What 1s claimed 1s:

1. An online, non-blocking method for creating a log struc-
ture, for an execution instance of an application, representing,
modifications to a variable residing 1n persistent memory and
for capturing dynamic ordering relationships among log
entries, the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

14

creating a log entry 1n persistent memory that represents a
modification to a variable that resides in persistent
memory;

creating a log entry 1n persistent memory that represents a
synchronization operation;

creating a program-order based dynamic ordering relation-
ship between two successive log entries within an execu-
tion entity; and

creating a synchronization-order based dynamic ordering
relationship between two log entries corresponding to
synchronization operations in concurrently executing
distinct execution entities of said execution instance.

2. The method as recited by claim 1, wherein the method

further comprises:

guaranteeing that said log entry representing said modifi-
cation 1s visible on persistent memory belore effects of
said modification are visible on persistent memory;

arranging said log entries of said execution entity 1n a list;

configuring the said log entries at the granularity of con-
sistent mutually exclusive instruction execution regions;

creating a state tracker to capture a consistent mutually
exclusive instruction execution region corresponding to
a code section of said execution entity 1dentified by code
constructs, wherein a head and a tail of a state tracker
refer to a start and an end respectively of said code
section, wherein state trackers denoting said consistent
mutually exclusive instruction execution regions are
connected together 1n a list; and

creating a single global entry point to said log structure of
said log entries for said execution mstance of said appli-
cation.

3. The method as recited by claim 1, wherein the method

further comprises:

dynamically building said log structure as said instance of
said application executes, wherein for every release syn-
chronization operation, a corresponding synchroniza-
tion object address and its representing log entry are
added to a hash table as said instance of said application
execules,

wherein for every acquire synchronization operation, said
hash table 1s queried with said corresponding synchro-
nization object and a happens before ordering relation-
ship 1s dynamically added to said log structure from any
log entry obtained from a query to a log entry for an
acquire synchronization operation.

4. The method as recited by claim 1, wherein the method

further comprises:

creating, manipulating, and traversing of said log structure
and a hash table without any of a plurality of execution
entities being blocked while performing any of said
creating, said manipulating, and said traversing, wherein
said creating, said mampulating, and said traversing are
performed by at least some of said plurality of execution
entities that are not blocked while performing any of said
creating, said manipulating and said traversing, and

providing a non-blocking nature of said execution entities
by performing atomic pointer switching within said log
structure and said hash table.

5. The method as recited by claim 1, wherein the method

further comprises:

publishing, performed by a log structure creating execution
entity, a log entry corresponding to a store instruction, to
make said log entry of said store instruction visible to
other execution entities and to persistent memory;

executing said store instruction after said publishing,
wherein for an acquire synchronization operation, said
acquire synchronization operation i1s executed and then

US 9,002,791 B2

15

said corresponding log entry 1s published by said log
structure creating execution entity to be visible to other
execution entities and to persistent memory, wherein for
a release synchronization operation, said corresponding
log entry 1s published by said log structure creating
execution enftity to be visible to other execution entities
and to persistent memory; and

subsequent to said publishing, executing said release syn-

chronization operation.

6. The method of claim 5, wherein the method further
COmMprises:

making a log entry for an existing consistent mutually

exclusive 1nstruction execution region visible to other
concurrently executing execution entities and to persis-
tent memory by an atomic pointer switch, wherein said
visibility 1s performed by said log structure creating
execution entity and wherein said atomic pointer switch
consists of resetting a tail of a state tracker representing
a consistent mutually exclusive instruction execution
region to said log entry.

7. The method of claim 5, wherein the method further
COMprises:

making wvisible a new consistent mutually exclusive

istruction execution region to other concurrently

executing entities and to persistent memory by:

creating and populating a first state tracker, and

subsequent to said populating, making an atomic pointer
switch, wherein said atomic pointer switch consists of
resetting a connector between a second state tracker
and said first state tracker and wherein said second
state tracker immediately precedes said first state
tracker.

8. The method of claim 5, wherein the method further
COmMprises:

making visible, performed by a new execution entity, a new

header entry corresponding to said new execution entity
to other concurrently executing execution entities and to
persistent memory by repeatedly executing a sequence
of a first operation, a second operation and a third opera-
tion until said sequence 1s deemed successiul,

wherein said first operation in said sequence s a retrieval of

a location pointed to by a single global entry point,
wherein said second operation 1n said sequence 1s to con-
nect said new header entry to a location returned by said
{irst operation,
wherein said third operation in said sequence 1s an atomic
compare-and-swap of said single global entry point with
an address of said new header entry, and
wherein said sequence 1s deemed successiul when said
atomic compare-and-swap operation completes suc-
cessiully.

9. An online, non-blocking system for creating a log struc-
ture, for an execution instance of an application, representing,
modifications to a variable residing 1n persistent memory and
for capturing dynamic ordering relationships among log
entries, configured at a granularity of consistent mutually
exclusive instruction execution regions, the system compris-
ng:

a processor; and

a non-transitory computer readable medium comprising

istructions executed by the processor to implement at

least:

a log-entry-creation-component to create a log entry 1n
persistent memory that represents a modification to a
variable that resides 1n persistent memory;

10

15

20

25

30

35

40

45

50

55

60

65

16

the log-entry-creation-component to create alog entry 1n
persistent memory that represents a synchronization
operation;

a program-order-creation-component to create a pro-
gram-order based dynamic ordering relationship
between two successive log entries within an execu-
tion entity; and

a synchronization-order-creation-component to create a
synchronization-order based dynamic ordering rela-
tionship between two log entries corresponding to
synchronization operations in concurrently executing
distinct execution entities of said execution instance.

10. The system of claim 9, further comprising instructions
to implement:

a Create&PublishNewLogEntry to guarantee that said log
entry representing a data operation 1s visible on persis-
tent memory before effects of said data operation are
visible on persistent memory;

the program-order-creation-component to arrange the log
entries ol an execution entity 1n a list;

a metadata-creation-component to create a state tracker to
capture a consistent mutually exclusive instruction
execution region corresponding to a code section 1den-
tified by code constructs, wherein a head and a tail of a
state tracker refer to a start and an end respectively of the
corresponding code section, wherein the state trackers
denoting the consistent mutually exclusive mstruction
execution regions are connected together 1n a list; and

a single-global-entry-point-creation component for creat-
ing a header entry for every execution entity that 1s used
to refer to the list of state trackers of the said execution
entity, connecting the header entries representing all the
concurrently executing entities in a list, and creating an
atomically updatable global log entry-point that points
to the list of header entries.

11. The system of claim 9, wherein said log structure 1s
dynamically built as said instance of said application
executes, wherein for every release synchronization opera-
tion, a corresponding synchronization object address and its
representing log entry are added to a hash table as said
instance of said application executes,

wherein for every acquire synchronization operation, said
hash table 1s queried with said corresponding synchro-
nization object and a happens before ordering relation-
ship 1s dynamically added to said log structure from any
log entry obtained from a query to a log entry for an
acquire synchronization operation.

12. The system of claim 9, wherein said log structure and a
hash table are created, manipulated, and traversed without
any of a plurality of execution entities being blocked while
performing any of said creating, said manipulating, and said
traversing, wherein said creating, said manipulating, and said
traversing are performed by at least some of said plurality of
execution entities that are not blocked while performing any
of said creating, said manipulating and said traversing, and a
non-blocking nature of said execution entities 1s provided by
performing atomic pointer switching within said log structure
and said hash table.

13. The system of claim 9, further comprising nstructions
to implement:

a Create&PublishNewLogEntry to publish a log entry cor-
responding to a store mstruction, to make said log entry
of said store 1nstruction visible to other execution enti-
ties and to persistent memory; and

an 1nstruction-execution-component to execute said store
instruction after said publishing, wherein for an acquire
synchronization operation, said acquire synchronization

US 9,002,791 B2

17

operation 1s executed and then said corresponding log
entry 1s published by said log structure creating execu-
tion entity to be visible to other execution entities and to
persistent memory, wherein for a release synchroniza-
tion operation, said corresponding log entry 1s published
by said log structure creating execution entity to be
visible to other execution entities and to persistent
memory, and subsequent to said publishing, executing
said release synchronization operation.
14. The system of claim 13, wherein the instructions to
implement the Create&PublishNewLogEntry are further to:
make a log entry for an existing consistent mutually exclu-
stve 1nstruction execution region visible to other concur-
rently executing execution entities and to persistent
memory by an atomic pointer switch, wherein said vis-
ibility 1s performed by said log structure creating execu-
tion entity and wherein said atomic pointer switch con-
sists of resetting a tail of a state tracker representing a
consistent mutually exclusive instruction execution
region to said log entry.
15. The system of claim 13, wherein the instructions to
implement the Create&PublishNewLogEntry are further to:
make visible a new consistent mutually exclusive instruc-
tion execution region to other concurrently executing
entities and to persistent memory by:
creating and populating a first state tracker, and
subsequent to said populating, making an atomic pointer
switch, wherein said atomic pointer switch consists of
resetting a connector between a second state tracker
and said first state tracker and wherein said second
state tracker immediately precedes said first state
tracker.
16. The system of claim 13, wherein the instructions to
implement the Create&PublishNewlLogEntry are further to:
make visible, performed by a new execution entity, a new
header entry corresponding to said new execution entity
to other concurrently executing execution entities and to
persistent memory by repeatedly executing a sequence
of a first operation, a second operation and a third opera-
tion until said sequence 1s deemed successiul,
wherein said first operation 1n said sequence 1s a retrieval of
a location pointed to by a single global entry point,

wherein said second operation 1n said sequence 1s to con-
nect said new header entry to a location returned by said
first operation,

wherein said third operation in said sequence 1s an atomic

compare-and-swap of said single global entry point with
an address of said new header entry, and

wherein said sequence 1s deemed successiul when said

atomic compare-and-swap operation completes suc-
cessiully.

17. A non-transitory computer readable storage medium
having computer-executable instructions stored thereon for
causing a computer system to perform an online, non-block-
ing method for creating a log structure, for an execution
instance of an application, representing modifications to a
variable residing in persistent memory and for capturing
dynamic ordering relationships among log entries, config-
ured at a granularity of consistent mutually exclusive instruc-
tion execution regions, the method comprising:

10

15

20

25

30

35

40

45

50

55

18

creating a log entry 1n persistent memory that represents a
modification to a variable that resides 1n persistent
memory;

creating a log entry in persistent memory that represents a
synchronization operation;

creating a program-order based dynamic ordering relation-
ship between two successive log entries within an execu-
tion entity; and

creating a synchronization-order based dynamic ordering
relationship between two log entries corresponding to
synchronization operations in concurrently executing
distinct execution entities of said execution instance.

18. The non-transitory computer readable storage medium

of claim 17, wherein the method further comprises:

guaranteeing that said log entry representing said modifi-
cation 1s visible on persistent memory before effects of
said modification are visible on persistent memory;

arranging said log entries of said execution entity 1n a list;

creating a state tracker to capture a consistent mutually
exclusive 1nstruction execution region corresponding to
a code section of said execution entity 1dentified by code
constructs, wherein a head and a tail of a state tracker
refer to a start and an end respectively of said code
section, wherein state trackers denoting said consistent
mutually exclusive instruction execution regions are
connected together 1n a list;

creating a header entry for every execution entity that 1s
used to refer to said list of said state trackers of said
execution enfity;

connecting said header entries representing all concur-
rently executing entities of said instance of said appli-
cation 1n a list; and

creating an atomically updatable global log entry-point
that points to said list of said header entries.

19. The non-transitory computer readable storage medium

of claim 17, wherein the method further comprises:

dynamically building said log structure as said instance of
said application executes, wherein for every release syn-
chronization operation, a corresponding synchroniza-
tion object address and its representing log entry are
added to a hash table as said instance of said application
executes,

wherein for every acquire synchronization operation, said
hash table 1s queried with said corresponding synchro-
nization object and a happens before ordering relation-
ship 1s dynamically added to said log structure from any
log entry obtained from a query to a log entry for an
acquire synchronization operation.

20. The non-transitory computer readable storage medium

of claim 17, wherein the method further comprises:

creating, manipulating, and traversing of said log structure
and a hash table without any of a plurality of execution
entities being blocked while performing any of said
creating, said manipulating, and said traversing, wherein
said creating, said mampulating, and said traversing are
performed by at least some of said plurality of execution
entities that are not blocked while performing any of said
creating, said manipulating and said traversing, and

providing a non-blocking nature of said execution entities by
performing atomic pointer switching within said log structure

«0 and said hash table.

	Front Page
	Drawings
	Specification
	Claims

