US008996944B2
12 United States Patent (10) Patent No.: US 8.996,944 B2
Ivanov et al. 45) Date of Patent: Mar. 31, 2015
(54) CLIENT-SERVER GAMING 5,984,786 A 11/1999 Ehrman
6,031,818 A * 2/2000 Loetal. .coevevveveeennn.. 370/216
. . 6,126,548 A 10/2000 Jacobs et al.
(75) Inventors: g“genfl Ivall\lfv’ MOS?{? _(illj)’ Iv?ln M. 6,405,259 B1* 6/2002 Cheston etal. 709/245
gorodov, Moscow (RU); Alexander 6,628,287 Bl 9/2003 Duda et al.
Zelenshikov, Moscow (RU) 6,866,587 BL* 3/2005 1aN€ ..ooovcoveerereeereverenn. 463/43
6,932,708 B2 82005 Yamashita et al.
(73) Assignee; Nival, Inc., Santa Monica, CA (US) 7,127,653 B1* 10/2006 Gorshecoeoni. 714/746

7,627,632 B2 12/2009 Douceur et al.

% e : : * : 7,824,268 B2 11/2010 Harvey et al.
(*) Notice: Subject to any disclaimer, the term of this 3.074.136 B2* 12/2011 Yu otal 714/746
patent 1s extended or adjusted under 35 8.132.071 B2* 3/2012 Hayashi 714/751
U.S.C. 154(b) by 529 days. 8,181,077 B2* 5/2012 Nassoretal. ..ooooovvvn... 714/748
8,312,350 B2* 11/2012 Fujimoto et al. 714/775
(21) Appl. No.: 13/339,129 8489742 B2* 7/2013 Clubbetal. oo 709/226
2006/0258462 Al 11/2006 Cheng et al.
o 2007/0099703 Al 5/2007 Terebilo
(22) Filed: Dec. 28,2011 2010/0241692 Al 9/2010 Klee et al.

(65) Prior Publication Data
US 2013/0172079 Al Jul. 4, 2013

FOREIGN PATENT DOCUMENTS

EP 1617615 A 1/2006

(1) Int. CI. * cited by examiner

Go6l 11/00 (2006.01)

A63F 13/30 (2014.01)

A63F 1320 (2014'01) Prfmary Lixaminer — James C Kerveros
(52) U.S.CL (74) Attorney, Agent, or Firm — The Mueller Law Office,

CPC ..ol A63F 13712 (2013.01); A63F 13/06 P.C.

(2013.01); A63F 2300/50 (2013.01); A63F
2300/407 (2013.01); A63F 2300/64 (2013.01) (57) ABSTRACT

USPC e, 714/746 _ | _

(58) Field of Classification Search In a client-server game system, or in accordance with a com-

CPC HO4T 1/0061: HO4I. 1/004: HO3M 13/09: puter-readable program stored on a non-transitory computer-
HO3IM 13 /6306'5 HO3M 13 /37f HO3M 13/1 5? readable medium, a client participates in a game with other

HO3M 13/05: HO3IM 13/11: HO3M 13/1545- clients by performing an in-game simulation. Based on
AGAF 2306/50. AG3F 13;1 7. AG3F 13 /10f results of the in-game simulation, the client sends error-

AG63F 2300/807: A63F 13/06: AG63F checking data to a server. The server analyzes the error-

2300/1031; A63F 2300/105; A63F 2300/1062: checking data to determine whether a simulation error has
A63F 2000/2489 been caused by at least one of the clients. Upon determining

USPC e 714/746, 748 thatthe simulation error has been caused, the server causes a
reference simulation to be performed. Based on the results of
the reference simulation, the server identifies the client(s) that

See application file for complete search history.

(56) References Cited caused the simulation error. The server then sends a patch to
the client(s) that caused the simulation error. The client
U.S. PATENT DOCUMENTS applies the patch to correct and reset the in-game simulation.

5,838,909 A 11/1998 Roy et al.
5,964,660 A 10/1999 James et al. 20 Claims, 8 Drawing Sheets

Simulation ¢—102

Server ’/1 00
' 4 ¢—101

Schaduler
Server

104

Internet/ WWW/Cloud/Network

Client

\
103 103

U.S. Patent Mar. 31, 2015 Sheet 1 of 8 US 8,996,944 B2
Simulation <4—102
Server
Scheduler
Server
104
Internet/ WWW/Cloud/Network
Y
Client Client Client Client
1 2 3 N
103 Flg 1 103
100
10{ /
Command | Command
Data > < Data
Error-Checking Error-Checking
Data > < Data
. Partial Partial .
C\Ifnt Model Data > S(:Sheergg‘rer < Model Data Clﬁnt
< Aggregate - Aggregate >
Command Data Command Data
Corrected Corrected >
Model Data Model Data

\‘

103

F1g.2

103

U.S. Patent Mar. 31, 2015 Sheet 2 of 8 US 8,996,944 B2

105
101 /
10\3 \ 1/03
Client Scheduler Client
1 Server 2
0w 111
T~
11277 > Step M Step M — |13
Only CRC %/ Only CRC
115
118\ CRC Match —116
StepM | 117 119
Step M+ - —
120/\ CRC and Confirmed Step M+1 PBW
Partial 199 CFFEC arlld 121
Model Data artia
MModel Data
CRC Match 124
Step M+1
Confirmed 125
Compile Server 196
World Model

\109/
Fig.3

109

U.S. Patent

106

Mar. 31, 2015

R

103

Client
1

132

Command 2

01—

Scheduler
Server

127

N

1 33\/
\/1 34

128

Aggregated

Command Data
(Commands 1 and 2)

Sheet 3 of 8 US 8,996,944 B2

103

\ Client

2

— 31

Command 1

_— N\

Command 3 137

%ggregated

Command Data
198 (Commands 1 and 2) A/1 3

Aggregated

(Command 3) (130

)

Command Data 129

o

Aggregated
Command Data

(Command 3) _\/1 40

Command D

Aggregated
ata Command Data

Aggregated

(None) \

/. (None)

109

F1g.4

109 Y

U.S. Patent Mar. 31, 2015 Sheet 4 of 8 US 8,996,944 B2

101
10\3 \ mg
Client Scheduler Client
1 Server 5
T Command 1 +
Command 2 _/
T Aggregated | | | Aggregated
Command Data Command Data 1
14 (Commands 1and 2)| + |(Commands 1 and 2) \L/1 42
\—{
In-Game
Slrréﬁfaart?:n T Simulation
x CRC and /\
1437 | ™~ CRC and Partial 144
\ F(’jarltlgl t Model Data
odel Data |
100 109 Y

F1g.5

U.S. Patent Mar. 31, 2015 Sheet 5 of 8 US 8,996,944 B2

108
102 101 /
/ \ w1
Simulation Scheduler - -

Server Server CI|2ent C\|1e nt

Step M
CRC and 146
148 Partial Step M
& Model Data CRC and ’\

149\/ ~| Partial

Model Data 147
CRC Mismatch 12U
Enter Recovery

153 Mode — [™~151

\<_ Compiled Server

World Model and 152
Command Data from
Last Confirmed Step

to Step M
Reterence
Simulation Step M 195
Vi CRC and)./\ Corrected
151 Model Data Viodel
Exit Data “\ 156
| Recovery /
157 Mode
Apply Corrected
Model Data

s 109 Al v\109)
-1g.6

U.S. Patent Mar. 31, 2015 Sheet 6 of 8

158

R

160

199

(sanf

2

Begin Timeout

¥

Receive Command Data

Delete Command Data

A

Queue/Store Command Data

165

End

Timeout N
? /
166 Y
\ Y
Transmit Aggregate

Command Data with Step ID

US 8,996,944 B2

U.S. Patent Mar. 31, 2015

169—(Start)

Sheet 7 of 8

A

>
Y

Receive CRC (and
Partial Model Data)

Clients
Reported
(?

1%

CRC N

173 + ’ Match | 177
\ \?/ ¢ ;

All

US 8,996,944 B2

168

Command Data and Partial Model

Mark Current Enter
Step Confirmed Recovery Mode 178
174 Y \
Send Latest World Model, Stored

Restore
Normal Mode

<N MCOczjrgfll:?;?a Data to Simulation Server
Y 176
17\5 Recelve Results from o
Simulation Server
Compile/Update
Latest World Model ¢ 180
+ Determine which I~
. Client(s) Failed
Delete Previous World Model 181
and Command Data for ¢ [
Previous Confirmed Steps Send World Model
\ Patch to Failed Client(s)
(
176 Y
182

U.S. Patent Mar. 31, 2015 Sheet 8 of 8 US 8,996,944 B2

184 185\< Start)
R F

186— Recelve
User | Aggregate |World Model

a7 Input | Commands Patch
Ly Y
Send Command Apply World 190

to Scheduler Server 88 Model Patch

Y | Y

> Pertform Reset

Simulation | | Simulation

Y \

183~"5end CRC (and 191
Partial Model Data)

Fig.9 (E:d y192

193

\ (Start 194
<

199——_| Receive World Model, Command
Data and Partial Model Data

196 Y
T~ Perform Simulation and

Generate CRC and Model Data

Y

197—_| Send Resuilts to
Scheduler Server

Y
Fig.10 (0

US 8,996,944 B2

1
CLIENT-SERVER GAMING

BACKGROUND OF THE INVENTION

Many computer games allow multiple people (players,
gamers, users, etc.) using networked computers (e.g. general
purpose computers or dedicated game consoles) to participate
in a game with or against each other through a network (e.g.
a LAN, a WAN, the Internet, a direct cable or wireless con-
nection, etc.). Such games are commonly based on variations
of client-server architectures or peer-to-peer (P2P) architec-
tures.

In a common P2P system, each computer may communi-
cate directly with all of the other computers participating 1n
the game. Additionally, each computer typically maintains its
own model or simulation of the game and broadcasts 1ts own
command data to all the other computers through the net-
work. Each computer, thus, updates 1ts model based on com-
mands of 1ts player and all of the received command data.

In a client-server system, on the other hand, each computer
client typically communicates through a server to the other
computer clients that are participating 1n the same game. The
server commonly manages a major portion of the computing
workload for the game. For example, the server typically
creates and controls the entire game or game world simulation
and communicates the state of the game to the client comput-
ers. The client computers typically render the game for the
players and transmit player actions back to the server for
continued game simulation.

In general, client-server systems and P2P systems (and
variations or hybrids thereol) have various strengths and
weaknesses that must be considered when designing an
online or networked game and deciding what type of archi-
tecture to use. There are some considerations that apply to all
networked games.

Major considerations for all networked game designs, for
example, include the level of communication traffic that the
game will impose on the network and the network’s speed and
bandwidth capabilities. After all, the game will not be fun for
the players 1f the network cannot handle the necessary size
and number of communication packets that must be shared 1n
order to play the game. For many networked games, however,
the various players may access the network (e.g. the Internet)
through an unknown number and variety of communication
devices (e.g. routers, hubs, repeaters, modems, adapters,
etc.), each having an unknown communication speed or band-
width. To make the game playable or enjoyable for the most
number of players, therefore, network traffic usually must be
mimmized.

In client-server systems (or hybrid systems, such as P2P
systems 1n which one of the computers doubles as a sort of
server), another significant consideration 1s the level of the
workload on the server. In a typical example client-server
system, the server may handle all, or a large portion, of the
compute-intensive game world simulation functions, while
the clients only have to render the results received from the
server, among other less compute-intensive functions. In this
case, a player may use almost any relatively cheap computer
for a client, and the game 1s thus potentially accessible to a
wide audience. In another example client-server system,
simulations are caused by each client, as well as by the server.
However, the server maintains the “true” or correct state of
the simulation. To maintain a consistent game simulation
across all the clients, the server periodically resynchronizes
the states of the clients by sending a message indicating the
correct state of the simulation to all clients. In either example,
the server often must be a relatively expensive high-powered

10

15

20

25

30

35

40

45

50

55

60

65

2

computer to handle the highly processor/memory-intensive
functions necessary for many of today’s multiplayer online
games. A gaming business entity may, thus, assemble a large
and very expensive server farm for its customers to access. To
make a client-server-based game profitable for the business
entity and affordable for its customers, therefore, server
workload usually must be minimized.

Another significant consideration 1s rapid and accurate
error detection and correction. This 1ssue 1s especially (but not
exclusively) significant 1n P2P systems 1n which each com-
puter performs its own simulation of the game and in client-
server system 1n which a portion of the simulation functions
are performed by the clients, instead of the server, or the
clients duplicate all or part of the simulation performed by the
server. With such decentralized game simulation, there 1s a
relatively high potential for discrepancies occurring between
different simulations of the game. It 1s thus necessary for such
errors to be detected early and corrected quickly for the play-
ers to have an acceptable game experience. If a game system
has no feature for correcting errors, then the players may find
that they are playing completely different games due to the
discrepancy, and the game may suddenly terminate, leaving
the players frustrated and highly disappointed with the game.

It 1s with respect to these and other background consider-
ations that the present invention has evolved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a simplified diagram of an example client-server
system 1ncorporating an embodiment of the present inven-
tion.

FIG. 2 1s a simplified diagram of a different logical repre-
sentation of the example client-server system shown in FIG.
1 showing example data communication, according to an
embodiment of the present invention.

FIGS. 3-6 are simplified timeline diagrams for example
functions within the example client-server system shown 1n
FIG. 1, according to an embodiment of the present invention.

FIG. 7 1s a simplified flowchart of an example process for
a server within the example client-server system shown 1n
FIG. 1, according to an embodiment of the present intention.

FIG. 8 1s a simplified flowchart of another example process
for a server within the example client-server system shown 1n
FIG. 1, according to an embodiment of the present intention.

FIG. 9 1s a simplified flowchart of an example process for
a client within the example client-server system shown 1n
FIG. 1, according to an embodiment of the present intention.

FIG. 10 1s a simplified flowchart of another example pro-
cess for a server within the example client-server system
shown 1n FIG. 1, according to an embodiment of the present
intention.

[l

DETAILED DESCRIPTION OF THE INVENTION

An example client-server system 100, incorporating an
embodiment of the present invention, 1s shown in FIG. 1. The
client-server system 100 generally includes servers 101 and
102 (referred to as a scheduler server 101 and a simulation
server 102, and which may be one or more physical machines/
computers) and a variety of clients 103 (e.g. computers or
computerized devices, such as desktop computers, notebook
computers, tablet computers, palm computers, cell phones,
smart phones, 1Phones, game consoles connected to televi-
sions/displays, all-in-one game consoles, hand-held game
devices, 1Pods, 1Pads, etc.) connected by a network 104 (e.g.
the Internet, the World Wide Web, a cloud, a LAN, a WAN,

etc.). The clients 103 generally have at least a display and a

US 8,996,944 B2

3

control device with which users (e.g. players, gamers, etc.) of
the clients 103 generally play one or more networked or
online computerized games with or against each other
through the network 104. The games generally ivolve a
model of a virtual world 1n which the players are participating
and which 1s presented to the players through the displays of
the clients 103. The clients 103 have no direct connections
between each other, so the scheduler server 101 generally
manages the game play by forwarding the players’ command
data between the clients 103. The scheduler server 101 also
maintains game data (as described below), but does not usu-
ally perform a stimulation of the world model for the game.
Instead, each of the clients 103 maintains and performs its
own in-game simulation of the world model for presentation
to the players through the displays of the clients 103. It1s only
when a simulation error 1s detected that the scheduler server
101 may imitiate a reference simulation (using the stmulation
server 102), which 1s performed only to determine how to
correct the error (1.e. to determine the correct state of the
world model), as described below.

In this manner, the workload of the scheduler server 101
and the simulation server 102 1s generally minimized, since
the servers 101 and 102 do not simulate the world model all
the time, but only during a recovery mode (described below).
Additionally, network communication traffic 1s also generally
mimmized, since a significant amount of simulation data does
not have to be transmitted through the network very often, but
only when an error needs to be corrected. Furthermore, the
error detection and correction method (described below) can
be performed relatively quickly, resulting in minimal inter-
ruption to the users’ game play.

FIG. 2 illustrates the primary types of data communica-
tions made between the scheduler server 101 and the clients
103 1n accordance with embodiments of the present inven-
tion. The simulation server 102 1s not shown 1n FIG. 2 since its
function 1s generally transparent to the clients 103. Addition-
ally, although only two clients 103 and one scheduler server
101 are shown, 1t 1s understood that any number of clients 103
may be used, and the scheduler server 101 may comprise any
appropriate or necessary number of physical and/or virtual
machines.

Each client 103 generally sends command data, error-
checking data and partial model data, among other possible
types of data, to the scheduler server 101. Additionally, the
scheduler server 101 generally sends aggregate command
data and corrected model data (e.g. a model patch), among
other possible types of data, to the clients 103.

At least some of the command data 1s generally sent 1n
response to mputs, commands or actions made by the user by
manipulating the control device of the client 103, e.g. a key-
board, mouse, pointing device, game controller, joystick,
control pad, touch pad, touch-sensitive display or other
appropriate type of iput or control device. Other command
data, 1n some embodiments, may be generated by the client
103 as part of the in-game simulation and represent selections
made by the client 103, rather than actions made by the user.
For example, some of the commands may represent instruc-
tions for a player’s avatar to move, to cast a magic spell, to
attack an enemy, to pick up an item or to communicate with a
non-playing character or another player. Some command data
may simply represent various keystrokes, mouse movements
or joystick toggles.

The command data 1s generally sent from each client 103 to
the scheduler server 101 for the scheduler server 101 to join
the command data together into the aggregate command data.
The scheduler server 101 periodically sends the aggregate
command data to the clients 103 for the clients 103 to

5

10

15

20

25

30

35

40

45

50

55

60

65

4

progress each of their in-game simulations of the world model
(1.e. client world models) for the game.

The m-game simulations of the clients 103 are generally
performed 1n a series of steps that occur with a specified
frequency (i1.e. number of steps per second), so that each
in-game simulation in each client 103 proceeds the same.
Therefore, each packet of command data from the clients 103
may represent one or more inputs, actions or selections made
during one or more simulation steps in the sending client 103.
Each packet of aggregate command data, on the other hand,
may represent one or more inputs, actions or selections made
during one or more corresponding simulation steps 1n all of
the clients 103.

The clients 103 parse the individual commands from the
aggregate command data. Each client 103 then uses the com-
mands to perform its in-game simulation to progress through
one or more simulation steps 1n its world model.

At the end of each simulation step (or an appropriate num-
ber of simulation steps, €.g. based on a desired frequency for
sending error-checking data), each client 103 generates the
error-checking data based on the then current state of the
client world model. The error-checking data 1s preferably any
appropriate type of cyclic redundancy check (CRC) data and/
or checksum data that can adequately represent a sufficient
level of detail of the state of the client world model.

The error-checking data 1s sent by the clients 103 to the
scheduler server 101 for the scheduler server 101 to analyze
to determine whether any one or more of the clients 103 has
potentially performed a simulation error. The scheduler
server 101 generally does this analysis by comparing the
error-checking data from all of the clients 103 to determine
whether it all matches. IT all the error-checking data matches,
then the states of all the client world models at the end of the
corresponding simulation step are considered to be the same,
which means that the in-game simulations of the clients 103
have thus far proceeded the same. A mismatch 1n the error-
checking data, however, indicates that the states of the client
world models at the end of the given simulation step are not all
the same. The implication of this situation 1s that at least one
of the clients 103 may have performed an error 1n its in-game
simulation, e.g. due to recerving faulty aggregate command
data, losing some command data, attempting to cheat (e.g.
generate counterfert command data) or some other possible
cause.

Although the above described usage of the error-checking
data 1s considered to be very effective and efficient, 1t 1s
understood that the present invention 1s not necessarily lim-
ited to embodiments incorporating this error determination
technique or to embodiments that use CRC and/or checksum
data. Rather, some embodiments of the present invention may
use any appropriate technique for determining that not all of
the clients 103 participating 1n a grven game have generated
the same simulation results.

In some embodiments, the clients 103 generate the partial
model data at the end of each simulation step along with the
error-checking data. However, 1t 1s preferable in some
embodiments not to generate the partial model data with
every simulation step, but only after some appropriate num-
ber of simulation steps. Additionally, 1n some embodiments,
the partial model data 1s simply not generated as often as the
error-checking data.

The partial model data of each client 103 generally repre-
sents, or 1s mdicative of, at least a part of the client world
model simulated by the client 103. The part of the client world
model involves at least the part that the in-game simulation by
the client 103 has affected in the simulation steps since any
previous partial model data was generated.

US 8,996,944 B2

S

The partial model data 1s sent by the clients 103 to the
scheduler server 101 typically, but not necessarily, along with
the error-checking data. The scheduler server 101 uses the
partial model data from all the clients 103 to compile 1ts own
version of the world model (1.e. a server world model). The
scheduler server 101 does not maintain 1ts server world model
as an ongoing simulation for the game. Instead, the scheduler
server 101 merely periodically updates or compiles the server
world model whenever 1t has the partial model data from all of
the participating clients 103 for a given simulation step, as i
periodically taking a “snapshot” of the world model, as
described below.

The corrected model data (or world model patch) 1s sent by
the scheduler server 101 whenever a simulation error has
occurred (e.g. whenever the error-checking data does not
match). The scheduler server 101 causes a reference simula-
tion (described below) to be performed 1n the simulation
server 102 upon determiming that a simulation error has
occurred. The reference simulation generally simulates only a
most recent portion of the game using the latest compiled
server snapshot of the world model and any command data
and (optionally) partial model data recerved after the server
world model was compiled. Based on the results of the ref-
erence simulation and the data received from the clients 103,
the scheduler server 101 identifies which one or more of the
clients 103 (1.e. the failed clients 103) may have performed
the simulation error and generates the corrected model data
that 1s needed for each failed client 103 to correct or reset the
state of 1ts client world model.

As an alternative, mstead of performing the reference
simulation upon determining that a simulation error has
occurred, the scheduler server 101 may fetch the most recent
confirmed snapshot of the model data from one of clients 103
and forward 1t to the other clients 103. This alternative may
depend on the overall model data size, but may sometimes be
more elficient than performing the reference simulation. This
alternative may relieve the work load on the scheduler server
101 and/or the simulation server 102 at the cost of a tempo-
rary increase in network communication traffic. This tradeoif
between server work load and network communication traffic
may be beneficial in situations wherein one or both of the
servers 101 and 102 1s experiencing a relatively heavy work
load, such that initiating the reference simulation or identity-
ing the failed client 103 would put an undesirably heavier
work load of either of the servers 101 or 102. To implement
this alternative, one or more of the clients 103 may provide for
storing of the most recent confirmed step, and the scheduler
server 101 may provide confirmation information to such
clients 103, while also keeping track of the work load of the
servers 101 and 102 and the client 103 with the fastest trans-
mission time.

When any of the clients 103 recerves the corrected model
data, 1t applies the indicated correction to correct and reset 1ts
in-game simulation or state of its client world model. The user
of that client 103 may then experience a corrective jump 1n the
game play as the user’s avatar and/or point of view and/or
some of the other avatars, non-playing characters and/or
objects suddenly move to correct positions. The game play
then proceeds from this corrected state.

FIGS. 3, 4, 5 and 6 show example timeline diagrams 103,
106, 107 and 108 for example actions or functions that the
servers 101 and 102 and clients 103 may perform, according
to some embodiments of the present invention. In these Figs.,
timeline arrows 109 generally represent the progress of time
tor each server 101 or 102 or client 103 shown. It 1s under-
stood that these examples are used for illustrative purposes
only and that the use of other actions or functions or combi-

10

15

20

25

30

35

40

45

50

55

60

65

6

nations thereof may occur and other numbers of the servers
101 and 102 and clients 103 may be used within the scope of
the present invention. Additionally, FIGS. 3, 4, 5 and 6 show
relatively few events occurring during the time periods cov-
ered. However, 1n a real game situation, many events can
occur at almost the same time. To illustrate the tull complex-
ity of such game play would require timeline diagrams with
many overlapping lines. For clarity, therefore, relatively few

events are shown 1n each timeline diagram 1035-108.

For the timeline diagram 105 of FIG. 3, the scheduler
server 101 and two clients 103 are shown communicating the
error-checking data and the partial model data for a game. In
this example, the two clients 103 have performed correspond-
ing simulation steps in their respective in-game simulations
of their client world models. (The corresponding simulation
steps are referred to as step M for both clients 103.) For step
M, each client 103 generates (at times 110 and 111) CRC data
(1.e. the error-checking data) based on the state of 1ts client

world model that results from 1ts in-game simulation. The
clients 103 send (at times 112 and 113) only this data to the
scheduler server 101.

The scheduler server 101 recerves (at times 114 and 115)
the CRC data from the clients 103. Since the scheduler server
101 has recerved the CRC data for step M from all participat-
ing clients 103 at this time, the scheduler server 101 compares
the CRC data together and determines, in this example, that
the CRC data match (at time 116), thus determining that no
simulation error occurred in either client 103 for step M. The
scheduler server 101 then marks step M as confirmed (at time
117).

In some embodiments, the scheduler server 101 performs
the comparison of the CRC data for a given simulation step
only after the CRC data has been received from all partici-
pating clients 103 for that simulation step. In other embodi-
ments, the scheduler server 101 does not perform the com-
parison of the CRC data for a given simulation step until all
expected data, not just the CRC data, has been recerved from
all participating clients 103 for that simulation step. In this
case, the workload of the scheduler server 101 may be
reduced, but the CRC data comparison and subsequent
actions may be delayed. In other embodiments involving
more than two clients 103, however, the scheduler server 101
may perform the comparison of the CRC data for a given
simulation step as soon as the CRC data has been received
from any two or more participating clients 103 for that simu-
lation step. Then when later-arriving CRC data 1s recerved for
that stmulation step, a portion of the comparison will already
have been performed, so the final comparison can occur ear-
lier and more quickly and any subsequent reference simula-
tion can begin earlier. Additionally, a potential simulation
error between the early-reporting clients 103 can be discov-
ered earlier. Then the reference simulation can begin earlier,
and the final comparison with the later-arriving CRC data
need not even occur. In this case, however, the overall work-
load of the scheduler server 101 may be increased 11 on
average the CRC data comparisons occur more often, but the
subsequent actions may begin and end sooner, resulting 1n a
better game performance experience for the users.

After times 112 and 113, and while the CRC data 1s being
communicated to the scheduler server 101 and the scheduler
server 101 1s analyzing the CRC data, the clients 103 are most
likely continuing to perform their in-game simulations.
Theretfore, by times 118 and 119, the clients 103 have per-
formed at least one more simulation step (step M+1) (depend-
ing on network latency between the scheduler server 101 and
the clients 103), so the clients 103 generate the CRC data for
this stimulation step. In this example, the clients 103 also
generate (at times 118 and 119) the latest partial model data.

US 8,996,944 B2

7

Theclients 103 then send (at times 120 and 121) the CRC data
and the partial model data to the scheduler server 101.

Since the clients 103 continue to perform their mn-game
simulations and generate and send their various data while the
scheduler server 101 is analyzing previously sent data, the >
error-checking scheme may be referred to as a delayed simu-
lation error-checking scheme. The period of time of the delay
generally depends on the current workload of the servers 101
and 102. Additionally, this overlap 1n functions of the clients
103 and the scheduler server 101 (and optionally the simula-
tion server 102) allows for an eflective or efficient overall
hardware usage.

The scheduler server 101 recerves (at times 122 and 123)
the CRC data and the partial model data from the clients 103.
Since the scheduler server 101 has recerved the CRC data for
step M+1 from all participating clients 103 at this time, the
scheduler server 101 then compares the CRC data together
and determines, 1n this example, that the CRC data match (at
time 124), thus determining that no simulation error occurred 20
in either client 103 for step M+1. The scheduler server 101
then marks step M+1 as confirmed (at time 125). Addition-
ally, since the scheduler server 101 has recerved the partial
model data from all participating clients 103 at this time, the
scheduler server 101 also compiles (at time 126) the server 25
world model, which represents the full model data at the end
of step M+1.

For the timeline diagram 106 of FIG. 4, the scheduler
server 101 and two clients 103 are shown communicating the
command data for a game. In this example, regular time
intervals are separated by time markers 127-130. In some
embodiments, these time intervals are generally used for the
scheduler server 101 to determine when to send the aggre-
gated command data to the clients 103. One appropriate such
time interval has been discovered to be about 100 millisec-
onds 1n length. However, 1t 1s understood that the present
invention 1s not so limited. Other time interval lengths that
result in an acceptable user game performance experience are
also within the scope of the present invention. Additionally, 4
time intervals of irregular lengths are also within the scope of
the present invention.

In this example, the two clients 103 send command data
(e.g. command 1 and command 2 representative of nputs
received from their users) to the scheduler server 101 at times 45
131 and 132. The scheduler server 101 receives the command
data at times 133 and 134, which are both within the first time
interval between time markers 127 and 128. At the end of the
first time 1nterval (at time marker 128), the scheduler server
101 aggregates (11 not already aggregated) the command data
received during the preceding time interval and sends the
aggregated command data (e.g. contaiming commands 1 and
2) to the clients 103, which recerve the aggregated command
data at times 135 and 136. In some embodiments, the sched-
uler server 101 aggregates the command data as 1t 1s recerved
during a given time interval. Also, in some alternative
embodiments, for each participating client 103, the scheduler
server 101 may generate specific aggregate command data
that does not include the commands sent by that client 103,
since the client 103 already has this command data. Such
embodiments may also require that the command data
include timing data for each command 1n order for each client

103 to determine the order of the commands, whether
received from the scheduler server 101 or generated by the 65
client 103 itself. However, the work load of the scheduler

server 101 to generate client specific aggregate command

10

15

30

35

50

55

8

data (including timing data) may be relatively large compared
to stmply sending the same aggregate command data to every
client 103.

Meanwhile, one of the clients 103 (on the right) sends new
command data (e.g. command 3) to the scheduler server 101
at time 137. The scheduler server 101 recetves the new com-
mand data at time 138, which 1s 1n the second time interval
between time markers 128 and 129. At the end of the second
time 1nterval (at time marker 129), therefore, the scheduler
server 101 sends new aggregated command data (containing,
command 3) to the clients 103, which recerve the aggregated
command data at times 139 and 140. (Alternatively, since the
client 103 on the right 1s the only client 103 that sent com-
mand data to the scheduler server 101 for the second time
interval, the contents of the aggregated command data 1s
redundant to the client 103 on the right, so sending the aggre-
gated command data to the client 103 on the right 1s optional.
Network traflic can thus be reduced by not sending aggre-
gated command data to any clients 103 for which the aggre-
gated command data 1s entirely redundant.)

In this example, no command data 1s recerved by the sched-
uler server 101 during the third time interval between time
markers 129 and 130. The sending of the aggregate command
data simply to inform the clients 103 that there 1s no command
data for this time interval 1s optional. Network traffic can be
reduced 1n some embodiments by not sending a communica-
tion packet 1n this case.

For the timeline diagram 107 of FIG. S, the scheduler
server 101 and two clients 103 are shown communicating the
command data, the error-checking data and the partial model
data with a similar description as that given above for FIGS.
3 and 4. In other words, FIG. 5 shows additional events or
features involving some of the previous events of both FIGS.
3 and 4. For example, between receiving the aggregated com-
mand data (at times 141 and 142) and sending the CRC data
and (optionally) the partial model data (at times 143 and 144),
cach client 103 performs the in-game simulation based on the
agoregated command data (and any other inputs recerved
from the user during this time). Additionally, in some embodi-
ments, the scheduler server 101 must confirm that all partici-
pating clients 103 have been sent the aggregate command
data for a given simulation step before performing the analy-
s1s of the CRC data or compiling the server world model for
that step (e.g. at time 145).

Additionally, 1n some embodiments, events may occur
within the clients 103 upon recerving inputs from the users or
upon completing a stmulation step at almost any time, so the
clients 103 may generate and send any of the data (described
above, but not shown in FIG. §) at irregular time points
without regard to regular time intervals, like those delineated
by the time markers 127-1301n FI1G. 4. In other embodiments,
the clients 103 may save some or all of the data generated
within a given time interval until the end of the time interval
and then send 1t all together. In this manner, network tratfic
can be economized, though game performance may be com-
promised.

For the timeline diagram 108 of FIG. 6, the scheduler
server 101, the simulation server 102 and two clients 103 are
shown communicating some of the various types ol data
described above. In this example, the clients 103 have com-
pleted 1m-game simulations for step M, so the clients 103
generate and send the CRC data and the partial model data at
times 146 and 147. The scheduler server 101 receives the
CRC data and the partial model data at times 148 and 149. The
scheduler server 101 then analyzes the CRC data and deter-
mines (at time 150) that there 1s a mismatch in this example,
indicating that a stmulation error has occurred within or been

US 8,996,944 B2

9

caused by at least one of the clients 103. Therefore, the
scheduler server 101 enters a recovery mode at time 151.

In the recovery mode, the scheduler server 101 stops aggre-
gating the command data, since any command data recerved
during this time will be rendered superfluous by the upcom-
ing reference simulation, which will eventually lead to reset-
ting the in-game simulations of the clients 103 to a simulation
step that precedes the steps at which any new command data
1s generated. Therefore, in some embodiments, the command
data recerved during the recovery mode 1s deleted. However,
an alternative to deleting all received command data during
the recovery mode 1s to store the command data until the
failed clients 103 have been determined. Then the scheduler
server 101 may delete only the command data recerved from
the failed clients 103, aggregate the remaining command data
and send the aggregated command data to the clients 103.
Additionally, in some embodiments, the scheduler server 101
informs the clients 103 of the recovery mode 1n order to
prevent command data from being sent when 1t 15 unneces-
sary, thereby potentially reducing network tratfic.

Also 1n the recovery mode, the scheduler server 101 1ni1-
tiates a reference simulation and sends (at time 152) the latest
compiled server world model and the command data (and
optionally the partial model data) for simulation steps
between the stmulation step for which the server world model
was compiled and the current simulation step (1.e. step M).
Upon receiving this data at time 153, the simulation server
102 begins the reference simulation. From the results of the
reference simulation, the simulation server 102 generates (at
time 154) the correct CRC data and correct model data that
the clients 103 should have sent. (Alternatively, the simula-
tion server 102 sends the results of the reference simulation to
the scheduler server 101 for the scheduler server 101 to gen-
erate the correct CRC data and correct model data.) With the
correct CRC data, the scheduler server 101 1dentifies which
one or more of the clients 103 (the failed clients 103) caused
or performed the simulation error and sends (at time 153) the
corrected model data to the failed client(s) 103 for the failed
client(s) 103 to apply (at time 156) the corrected model data
to correct and reset 1ts in-game simulation or the state of its
client world model to the correct state for step M. The failed
client(s) 103 can then resume their in-game simulations.

Additionally, after sending the corrected world model, the
scheduler server 101 exits the recovery mode at time 157. In
some embodiments, the scheduler server 101 may also imme-
diately send aggregate command data (not shown) recerved
during the recovery mode from the clients 103 that did not
have the simulation error. In any case, functions described
above with respect to FIGS. 3, 4 and 3 are resumed.

In some embodiments, the partial model data 1s preferably
sent often enough that the scheduler server 101 can keep 1ts
compiled server world model sufliciently up to date so that a
reference simulation doesn’t take too long. There 1s a tradeoif
in workload and user game experience, however, related to
the frequency of sending the partial model data. For example,
if the scheduler server 101 updates or compiles its server
world model more often, then any reference simulation will
take less time, since fewer simulation steps and less command
data (and optionally partial model data) have to be accounted
for 1n the reference simulation to reach the true or correct state
tor the server world model. Since the reference simulations
take less time 1n this scenario, the users experience a quicker,
shorter corrective jump 1n their game play when their client
103 applies the corrected model data to the in-game simula-
tion. This user experience 1s preferable. However, if the par-
tial model data 1s sent less often, so the scheduler server 101
updates or compiles 1ts server world model less often, then

10

15

20

25

30

35

40

45

50

55

60

65

10

even though a reference simulation will take more time, the
combined workload of the scheduler server 101 and the simu-
lation server 102 together may be beneficially reduced. For
some embodiments, the frequency of sending the partial
model data may be set after empirically determining how
often a simulation error 1s likely to occur and how big of a
corrective jump most users are willing to accept during game
play. In other embodiments, the frequency of sending the
partial model data may be dynamically set and reset during
game play, resulting in a higher sending frequency when
simulation errors or corrective jumps occur more often (or
when a corrective jump has recently occurred) and a lower
sending frequency when simulation errors occur less often. In
this manner, overall server workload 1s reduced whenever
possible and 1increased only when necessary.

FIG. 7 shows a flowchart for an example procedure 158 for
the scheduler server 101 to handle incoming command data in
accordance with an embodiment of the present invention. It 1s
understood, however, that the specific procedure 138 1s
shown for 1llustrative purposes only and that other embodi-
ments (1n addition to specifically mentioned alternative
embodiments) may involve other procedures or multiple pro-
cedures with other individual functions or a different order of
functions and still be within the scope of the present mnven-
tion.

Upon starting (at 159), the scheduler server 101 begins (at
160) a timeout period (or alternatively, queries a clock and
records the current time.) Upon recerving (at 161) command
data from one or more of the clients 103, the scheduler server
101 determines (at 162) whether the recovery mode 1s on,
indicating that the reference simulation and accompanying
functions are being performed to identify and correct a failed
client103. I so, then the recerved command data 1s deleted (at
163). (Alternatively, the command data 1s stored until it has
been determined whether 1t came from a failed client 103 and
deleted only 11 true.) It the scheduler server 101 1s not 1n the
recovery mode (as determined at 162), then the scheduler
server 101 queues, stores, collects or aggregates the received
command data (at 164). If the timeout period has not ended or
the desired length of time has not passed (determined at 165),
then the scheduler server 101 repeats 161-165. On the other
hand, 1t the timeout period has ended or the desired length of
time has passed (as determined at 165), then the scheduler
server 101 transmits the aggregated command data along with
a corresponding step 1D to the clients 103. The scheduler
server 101 then preferably continues back at 160 for another
timeout period. (Optionally, the procedure 158 may be ended
at 167.)

FIG. 8 shows a flowchart for an example procedure 168 for
the scheduler server 101 to handle and respond to incoming
error-checking (e.g. CRC) data and partial model data 1n
accordance with an embodiment of the present invention. It 1s
understood, however, that the specific procedure 168 1s
shown for illustrative purposes only and that other embodi-
ments (in addition to specifically mentioned alternative
embodiments) may involve other procedures or multiple pro-
cedures with other individual functions or a different order of
functions and still be within the scope of the present mven-
tion.

Upon starting (at 169), the scheduler server 101 the sched-
uler server 101 recerves (at 170) the error-checking data and
(usually less often) the partial model data from one or more of
the clients 103. It not all the clients 103 have reported this data
for the same simulation step (determined at 171), then the
scheduler server 101 repeats 170. Once all the clients 103
have reported this data for the same simulation step (as deter-
mined at 171), then the scheduler server 101 analyzes the

US 8,996,944 B2

11

error-checking data to determine (at 172) whether all of this
data matches. If the error-checking data matches, then the
current simulation step 1s marked as confirmed (at 173). ITany
partial model data was also received, thus completing the
receipt of such data from all of the clients 103 for the same
simulation step (determined at 174), then the scheduler server
101 compiles or updates (at 175) 1ts latest server world model
and deletes (at 176) the command data queued for previous
confirmed steps and the previous server world model and
partial model data, 1f any. Upon completing 175 and 176 or i
the determination at 174 was negative, then the scheduler
server 101 returns to 170 to repeat the foregoing.

If the error-checking data did not all match (as determined
at 172), the scheduler server 101 enters the recovery mode at
177. The latest compiled server world model, the stored com-
mand data and (optionally) the partial model data are sent (at
178) to the simulation server 102 for the simulation server
102 to perform the reference simulation. After the scheduler
server 101 receives (at 179) the results from the simulation
server 102, the scheduler server 101 determines (at 180)
which one or more of the clients 103 failed or caused a
simulation error. The scheduler server 101 then sends (at 181)
the world model patch or corrected world model to the failed
client(s) 103. The normal mode 1s then restored or the recov-
ery mode 1s exited at 182, and the scheduler server 101 pret-
erably returns to 170 to repeat the foregoing. (Optionally, the
procedure 168 may be ended at 183.)

FIG. 9 shows a tlowchart for an example procedure 184 for
cach of the clients 103 to handle incoming data. It 1s under-
stood, however, that the specific procedure 184 1s shown for
illustrative purposes only and that other embodiments (in
addition to specifically mentioned alternative embodiments)
may involve other procedures or multiple procedures with
other individual functions or a different order of functions and
still be within the scope of the present invention.

Upon starting (at 185), the client 103 recerves (at 186) the
user mput, the aggregate command data or the world model

patch. Upon recerving the user input (at 186), the client 103
generates an appropriate command data packet and sends 1t to
the scheduler server 101 (at 187). The client 103 performs (at
188) 1ts in-game simulation using the command based on the
user input. On the other hand, the client 103 performs (at 188)
its 1n-game simulation using the aggregate command data
upon receiving the aggregate command data (at 186). After
performing the m-game simulation, the client 103 generates
the appropnate error-checking (e.g. CRC) data and (option-
ally) the partial model data and sends (at 189) this data to the
scheduler server 101. Upon receiving the world model patch
or corrected model data (at 186), the client 103 applies (at
190) the world model patch to correct 1ts in-game simulation
or state ol 1ts client world model. The client 103 then resets (at
191) the in-game simulation to the stmulation step indicated
with the recetved world model patch. Upon sending the error-
checking data (at 189) or resetting the in-game simulation (at
191), the client 103 preferably returns to 186 to repeat the
foregoing. (Optionally, the procedure 184 may be ended at
192.)

FIG. 10 shows a flowchart for an example procedure 193
for the simulation server 102 to handle the reference simula-
tion activities. It 1s understood, however, that the specific
procedure 193 1s shown for illustrative purposes only and that
other embodiments (in addition to specifically mentioned
alternative embodiments) may involve other procedures or
multiple procedures with other individual functions or a diif-
terent order of functions and still be within the scope of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

12

Upon starting (at 194), the simulation server 102 receives
(at 195) the latest compiled server world model, the command
data and (optionally) the partial model data from the sched-
uler server 101. At 196, the simulation server 102 performs
the reference simulation and generates the correct CRC and
world model data. At 197, the simulation server 102 sends the
results to the scheduler server 101. The simulation server 102
then preferably returns to 195 to wait for the next reference
simulation to begin or ends the procedure 193 at 198.

Some embodiments of the present invention mvolve one or
more of the structures and/or methods described above. Addi-
tionally, some embodiments of the present invention imvolve
a non-transitory computer-usable or computer-readable stor-
age medium (the storage medium) on which 1s stored com-
puter-readable program code or instructions (the program)
adapted to be executed (e.g. by a computerized device, pro-
cessing unit or other appropriate machine or combination of
machines) to implement or perform one or more of the meth-
ods described above. The storage medium may be any appro-
priate article that may be sold through a storefront or by mail
order. The storage medium may alternatively be within or
connected to a server from which the program can be down-
loaded. Furthermore, the storage medium may also be within
or connected to a user’s computer, into which the user may
have loaded or downloaded the program.

While the specification has been described in detail with
respect to specific embodiments of the invention, 1t will be
appreciated that those skilled 1n the art, upon attaining an
understanding of the foregoing, may readily conceirve of alter-
ations to, variations of, and equivalents to these embodi-
ments. These and other modifications and variations to the
present invention may be practiced by those of ordinary skall
in the art, without departing from the spirit and scope of the
present invention, which 1s more particularly set forth 1n the
appended claims. Furthermore, those of ordinary skill 1n the
art will appreciate that the foregoing description 1s by way of
example only, and 1s not intended to limait the invention. Thus,
it 1s intended that the present subject matter covers such
modifications and variations as come within the scope of the
appended claims and their equivalents.

What 1s claimed 1s:

1. In a client-server game system, a method comprising:

a server recerving through a network error-checking data
associated with a plurality of clients that are participat-
ing in a game through the network;

the server analyzing the error-checking data to determine
whether a stmulation error has been caused by at least
one of the clients while participating 1n the game; and

upon determining that the simulation error has been
caused, the server a) causing a reference simulation to be
performed, b) based on the results of the reference simu-
lation, 1dentifying one or more of the clients that caused
the stmulation error, and ¢) sending a patch through the
network to the one or more clients that caused the simu-
lation error for the one or more clients to correct and
reset an in-game simulation.

2. The method of claim 1, further comprising;

upon determining that the simulation error has been
caused, the server causing the reference simulation to be
performed 1n accordance with a compiled server world
model and additional data for simulation steps that fol-
low a latest simulation step for which the server world
model has been compiled.

3. The method of claim 2, further comprising:

the server recewving through the network a plurality of
commands from the clients, the commands being used

US 8,996,944 B2

13

by the clients to perform the in-game simulation, and the
commands forming at least a portion of the additional
data.

4. The method of claim 3, further comprising;

the server recerving through the network partial model data
from the clients, the partial model data from each client
being indicative of at least a part of a client world model
simulated by the client, and the partial model data form-
ing at least another portion of the additional data.

5. The method of claim 3, further comprising;

before causing the reference simulation to be performed,
the server entering a recovery mode;

after sending through the network the patch to the one or
more clients that caused the simulation error, the server
exiting the recovery mode;

after recerving through the network at least one command
from at least one of the clients, the server storing the
received command 11 not in the recovery mode, and the
server deleting the recerved command 11 1n the recovery
mode; and

the server periodically sending through the network the
stored commands to the clients for each of the clients to
perform the in-game simulation in accordance with the
commands.

6. The method of claim 1, further comprising:

upon determining that the simulation error has not been
caused by any of the clients 1n a current stmulation step,
the server confirming the current simulation step.

7. The method of claim 6, further comprising;

upon determiming that the simulation error has not been
caused, the server compiling a server world model for a
latest stmulation step for which all preceding simulation
steps have been confirmed.

8. The method of claim 6, further comprising;

the server recerving through the network partial model data
from the clients, the partial model data from each client
being indicative of at least a part of a client world model
simulated by the client;

upon determiming that the simulation error has not been
caused, the server compiling a server world model for a
latest simulation step for which all preceding simulation
steps have been confirmed and for which the partial
model data has been received from all clients.

9. The method of claim 8, further comprising;

upon compiling the server world model, the server deleting
confirmed simulation steps, partial model data and com-
piled server world models, 11 any have been stored, that
precede the latest simulation step for which the server
world model has been compiled.

10. The method of claim 1, wherein:

the analyzing further comprises comparing the error-
checking data received through the network from each
client to determine whether all of the error-checking data
matches, a mismatch indicating the simulation error by
the one or more clients 1n a current simulation step.

11. In a client-server game system, a method comprising:

a client, which has a display and a control device and 1s
connected to a network and 1s one of a plurality of clients
participating 1n a game through the network, performing
an in-game simulation and presenting the in-game simu-
lation through the display;

the client generating error-checking data based on results
of the in-game simulation;

the client sending the error-checking data through the net-
work to a server for the server to analyze the error-
checking data to determine whether at least one of the
plurality of clients has generated a simulation error, to

10

15

20

25

30

35

40

45

50

55

60

65

tory computer-readable medium,
executed by a computer, causing the computer to perform a
method comprising:

14

identily which one or more of the plurality of clients
generated the simulation error, and to generate a patch
for correcting the simulation error; and

upon receiving the patch from the server through the net-
work, the client applying the patch to correct and reset
the in-game simulation.

12. The method of claim 11, further comprising:

the client sending command data through the network to
the server for the server to generate aggregate command
data from command data received by the server through
the network from the plurality of clients;

the client recerving the aggregate command data through
the network from the server; and

upon receiving the aggregate command data, the client
performing the in-game simulation 1n accordance with
the aggregate command data and presenting the in-game
simulation through the display.

13. The method of claim 11, wherein:

the error-checking data 1s sent through the network to the
server for the server, alter determining that the simula-
tion error has been generated, to cause a reference simu-
lation to be performed to determine a correct state of a
server world model for the game and to 1dentily which
one or more of the plurality of clients generated the
simulation error based on the correct state of the server
world model.

14. The method of claim 13, further comprising;:

the client sending partial model data through the network to
the server to be used in the reference simulation, the
partial model data being indicative of at least a part of a
client world model simulated by the client.

15. The method of claim 14, wherein:

the partial model data 1s sent through the network to the
server also for the server to compile a confirmed version
of the server world model from partial model data
received by the server through the network from the
plurality of clients and for the server to use the confirmed
version of the server world model 1n the reference simu-
lation.

16. A computer-readable program stored on a non-transi-

the program, when

the computer, which 1s a client in a client-server game
system, performing an n-game simulation for a net-
worked computerized game, the computer being con-
nected to a network, the computer being one of a plural-
ity of clients participating in the game via the network,
the computer having a display and a control device, the
in-game simulation being for presentation through the
display to a user when the user 1s playing the game by
mampulating the control device;

the computer generating error-checking data based on
results of the in-game simulation;

the computer sending the error-checking data through the
network to a server for the server to analyze the error-
checking data to determine whether at least one of the
plurality of clients has generated a simulation error, to
identily which one or more of the plurality of clients
generated the simulation error, and to generate a patch
for correcting the simulation error; and

upon recerving the patch from the server through the net-
work, the computer applying the patch to correct and
reset the mn-game simulation and presenting the cor-
rected in-game simulation through the display.

17. The computer-readable program of claim 16, wherein

the method further comprises:

US 8,996,944 B2

15

the computer generating command data 1n response to the
user manipulating the control device;

the computer sending the command data through the net-
work to the server for the server to generate aggregate
command data from command data recerved by the
server through the network from the plurality of clients;

the computer recewving the aggregate command data
through the network from the server; and

upon recerving the aggregate command data, the computer
performing the in-game simulation 1n accordance with
the aggregate command data and presenting the in-game
simulation through the display.

18. The computer-readable program of claim 16, wherein

according to the method:

the error-checking data 1s sent through the network to the
server for the server, alter determining that the simula-
tion error has been generated, to cause a reference simu-
lation to be performed to determine a correct state of a
server world model for the game and to 1dentity which

16

one or more of the plurality of clients generated the
simulation error based on the correct state of the server
world model.

19. The computer-readable program of claim 18, wherein

5 the method further comprises:

10

15

the computer sending partial model data through the net-
work to the server to be used 1n the reference simulation,
the partial model data being indicative of atleast a part of
a client world model simulated by the computer.

20. The computer-readable program of claim 19, wherein

according to the method:

the partial model data 1s sent through the network to the
server also for the server to compile a confirmed version
of the server world model from partial model data
received by the server through the network from the
plurality of clients and for the server to use the confirmed
version of the server world model 1n the reference simu-
lation.

	Front Page
	Drawings
	Specification
	Claims

