US008990127B2
a2y United States Patent (10) Patent No.: US 8,990,127 B2
Taylor 45) Date of Patent: Mar. 24, 2015
(54) METHOD AND SYSTEM FOR USPC e, 706/12, 45
ONTOLOGY-DRIVEN QUERYING AND See application file for complete search history.
PROGRAMMING OF SENSORS
(56) References Cited
(75) Inventor: Kerry Lea Taylor, Australian Capital
Territory (AU) U.S. PATENT DOCUMENTS
(73) Assignee: Commonwealth Scientific and 2008/0250316 Al 1072008 Zhang et al.
Industrial Research Organisation, OTHER PURBI ICATIONS
Campbell, Australian Capital Territory
(AU) Lee, M. C., Tsai, K. H., & Wang, T. I. (2008). A practical ontology
query expansion algorithm for semantic-aware learning objects
(*) Notice: Subject to any disclaimer, the term of this retrieval. Computers & Education, 50(4), 1240-1257.%
patent is extended or adjusted under 35 L Lily ?glds Kerry TgY_lor*t gfémewirk forférélgngc;gggorélework
SCIVICCS. CIVICC-UTICIILC ompuling—- . DPIINger
U.5.C. 154(b) by 298 days. Berlin Heidelberg, 2008. 347-361.*
(21) Appl.No.. 13/380,469 (Continued)
(22) PCT Filed: Jun. 22, 2009 Primary Examiner — David Vincent
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione
(86) PCT No.: PCT/AU2009/000799
$ 371 (¢)(1). (37) ABSTRACT
(2), (4) Date: Mar. 19, 2012 Described embodiments relate to a method of ontology-
driven querying or programming of at least one sensor. The
(87) PCT Pub. No.: WO02010/148419 method comprises generating at a query origin a query or
PCT Pub. Date: Dec. 29, 2010 fonmgiq fOI:[1f.e-l,xecu‘[i011 1n relation t?l tthe at leait ijne Sfinsor,,
ransmitting the query or command to an ontology trans-
(65) Prior Publication Data former over a first network, classifying the query or command
according to a domain ontology and one or more predeter-
g gy P
US 2012/0161940 Al Jun. 28, 2012 mined capabilities of the at least one sensor, generating a
transformed query or program based on the classified query
(1) Int. CI. H or command using one or more code fragments stored 1n a
GO6F 15/18 (2006'0;~) memory accessible to the ontology transformer, transmitting
GO6E 17/50 (2006.01) the transformed query or program to at least one sensor node
H query Or prog
GOID 21/00 (2006.01) in communication with the at least one sensor for execution of
(52) US. CL the transtformed query or program by the at least one sensor
CPC ..., GO6F 17/30734 (2013.01); GOID 21/00 node 1n relation to the at least one sensor, recerving at the
(2013.01); GOOF 17/30967 (2013.01); GOOF ontology transformer from the at least one sensor node at least
17730979 (2013.01) one result of the query or program, and returning the at least
USPC .. 70 6/12 one result_
(58) Field of Classification Search
CPC e, GO6F 9/4443; GO6N 5/02 27 Claims, 9 Drawing Sheets
10 L 300
m:nﬂut;wm Create query or '/
G I—La]'di:ls o qu—‘l?i? o = L
mﬂn:u:n‘;mlua gy H EEEIIEEE’“:? Eﬁ:l::nzglm / -
l l 335
mﬁﬁf |, 335 Filter results /

ontology reasoner 1

l

Return resulis to | 350

Classify query or

command

query editor 4

£ 130

¥

Renun clessified

query or commenc

to ontology
transformer

';335

v

Process classifisd

query or command

to soloct code

fragments needed to

exccuto query or
command

.

Exegute query ot

command in

relation 10 sensors

/ 345

US 8,990,127 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Ding, L1, et al. “Using ontologies in the semantic web: A survey.”

Ontologies. Springer US, 2007. 79-113.*

Na, A. et al., Sensor Observation Service, Open Geospatial Consor-
tium Inc., Jan. 18, 2006, Doc. Refterence OGC 05-088rl.

Gomez M. et al., An Ontology-Centric Approach to Sensor-Mission

Assignment, Proceedings of the 16th International Conference on
Knowledge Engineering: Practice and Patterns, Sep. 29-Oct. 2, 2008,
Lecture Notes 1n Artificial Intelligence; vol. 5268.

Russomanno D. J.et al.: “Building a Sensor Ontology: A Practical
Approach Leveraging ISO and OGC Models”, Jun. 27-30, 2005, The

2005 International Conference on Artificial Intelligence.

Russomanno D. J. et al.: “Sensor Ontologies: From Shallow to Deep
Models” Mar. 20-22, 2005, ISBN: 0-7803-8808-9.

Henson C. A. et al. “An Ontological Representation of Time Series
Observations on the Semantic Sensor Web”, Jun. 1, 2009, 1st Inter-
national Workshop on the Semantic Sensor Web (SemSensWeb

2009).

Preece A. et al. “An Ontology-Based Approach to Sensor-Mission
Assignment”, Sep. 25-27, 2007, Annual Conference of ITA 2007,

Barnaghi P. M. et al. “Sense and Sens’abilty: Semantic Data Model-

ling for Sensor Networks”, Jun. 10-12, 2009, ICT Mobile Summut
2009 Conference Proceedings.

* cited by examiner

o

an

aﬂ 001 } DI

. /; -

— I 1.

N .

SN |

= pmmmmm———een | uENOsVaY
ADOIOLNO

7P, |

-

-’“__—_—-“ﬂ#“-_—‘r_ﬂ g

—_—_-ﬁ--‘-—j_i——_*-——-h—-—
o el R e g, ey i St (g ---ﬂ“—---_—"“—

o

2.
|
|
i
{
{
|
|
!
)
{
!
¥
|
|
{
{

Sheet 1 0of 9

Mar. 24, 2015

}
i

S¥T
AVAMERLYD

U.S. Patent

U.S. Patent Mar. 24, 2015 Sheet 2 of 9 US 8,990,127 B2

ONTOLOGY TRANSFORMER

MEMORY

/1 ONTOLOGY | 220 15
225 .
/1 CODE FRAGMENTS |
130
SENSOR CAPABILITIES
235 .
240

QUERY MANAGEMENT
MODULE SENSOR
/I RESULT FILTERING MODULE |
245 155

PROCESSOR PROCESSOR
I MEMORY |

255
ONTOLOGY GATEWAY
REASONER

135 145

U.S. Patent Mar. 24, 2015 Sheet 3 of 9 US 8,990,127 B2

305 300

Create query or ’/

command

Provide query or
command to
ontology reasoner
for classification

320

Send query or
command to
ontology

transformer

355§
Send query or Filter results /
325
command to

ontology reasoner

Generate validation
outcome

Receive results
from sensors

Return results to | 360
query editor

Classify query or |, 330
command

Return classified

query or command |, 335
to ontology

transformer

Process classified

query or command

to select code 340
fragments needed to

execute query or

command

Execute query or
command in 145

relation 10 sensors

US 8,990,127 B2

puoles AWy K)

qiuow:aun €;-H

W@ |

apuwaw B B o @
o “ = abescAy @ - -
= “ AR @
=

uoneNCl:aus] & - 63

= y ol
&
. | (uoau(:eleds pue pum:euawouayd) WOs SINSPI ()] {peads:Ayiadasd pue puim :eudwouayd) JWos saINsesw e
m | (uondaxq:adeds pue pupyeuswousyd) Ajuo seinseaw (peads :A1ed0.d PUR PUA: CUSWOUSYD) AJUO S3INSeaW S

osusc:DUY RUIAIeW 8%
JOSUIE NOIIIIID PUIAA

AOSURS: DUy e ew G
JOSUIS PIIAS PUIAA _

s.nwiedwa] :Auedoid ewos sansesw B

APPRUNHOANPIRY AY1000.d AjU0 S2INSROW smnieradwa) Ajedosd Ajuo SBNSEAW @_
05035 : Uy jeuaew £ 105066 Bunyy ™ [eLIeRW %_
105U3s AIpIminy A€y J0suas aanyerdduwia |

L e

ABPIINEAIRIE ! AYJadosd DWos SSNsSesu ﬂ

U.S. Patent

8 "SI

US 8,990,127 B2

uopdungebe.loxces & -

RIIpoLIs A ianb m..!m

eyYquaundAinb &
salpqeded0ostinm & -3

§

sucnuNgpelesD (i -H

&N
I
-
\f,
'
s
s
=
7
S o —
y—
—
2 .
M . .muc_n_._.afucou.aamagc: .w.E ucDu__._mu_m_Ommﬁ“mu_BE:t w M PUDDASISIUN SBY YUNUNR JRgseY:saiawny £33 |
= 1:3-1 10 181205 5N 20 J0BASNIBWOL (32 | osue) 1sIBWNU 10 JBRIG:SILBWIN 10 IOTIEAISHISWNY (5]
(O nGrauR a0 P 1 & | 0385 Ww0s oSSy @
puosesiaun & 33U Swos popsdgnssey @ |
(Puo3ag 40 Nui) Apuo pouadgnssey @B |

Ao} auny £ __

SUONIILIISIL PUOIIS SUOIIINIISIE JHOY]

U.S. Patent

6 51

US 8,990,127 B2

>sReIS WoS sISsesn (3
(JOSUAGUORISHAPULW, 10 JOSUSSDIDASPUIM, L0 JOSUSSAYPIUNY 10 JOSUDSRNIRISAWD]) Pwos josuscsasn (P
(PUOISG 10 SN 10 MNOH 10 AeQ) BWOS pouadsesn {3

= HOIUN J2EVL0IS)IFS
g

7 (10SUSGUOIIIAQPULY 10 JOSUSCPEBUdSPUIM 40 JOSURSANPRUNG 40 JOsUacainieiadwa]) awos Jjosuacsasn &

({{(eIsu]: 2wy 10 VORE NG W) JWOS POUSISASN) JoU pue (NSRS DWOS IYSIPIGSAsN))
10

nl ({(msnels awos NSeISsasn) Jou pue ((UeISU] 'sw 10 LVOEING:SWN) BIIOS POLISJ5asN)) @ I
> pIp(poriagdiond
= m
m (JOSUSCUOIIRIGPULM 40 J0SUISPIRCCPUAAN 10 JOSUSSANIWNK 20 JOSUISRINIRISCUIR 1) 2W0Ss 105usssash (B

(MRS DWOS KseISesN) Jou G

((3ue3ISUT iUy 10 LDRENQISWR) PWOS Pouadsesn) Jou € |
opqgIua4amHyAunb |

U.S. Patent

US 8,990,127 B2

JOSUSCANPRIN] | Ap3oexa _om:mwmu..ﬂ._. w
(onsneIs Swos JNseISsaIsh) Jou B
((uesuliowny 40 UONRMNQ:SuN)) WDS pouadgsasn) Jou 5

N

S suoiPUN4PAeald D

= Aranb Ayiprmang juaaand jsanbay
Aeq awos poLRdsasn

. e e e e et e emare Pt s e o e et

= abeioAy OWOS INSHRISSesN

“.,_ 105UISATPRUNY 1 Aj3Iexa Josuassasn €

R ((AeQ awWOS PoLIRJGNGSEL) PUR LORRING:AUN) SWOS pouddsesn (B

m SUoRJIUNJpeIRald @

Aranb Surmwieadoada)y |

U.S. Patent

US 8,990,127 B2

Sheet 8 0f 9

Mar. 24, 2015

U.S. Patent

- ey = Al w F o W F T SR TR W - M e Y A -

{uogoun4ebeois)es 1o BERQUALNDAIEND 10 8BQPOIIIdAISND) BlUOS uogouNJsey
(uopoun gabeoisies 1o erQuaun)ilanb Jo eEeQpouadiend) Ajuo uoounsey @

- - . o e s/l p N - . - . [y vellin

oHAR(]

SSE1D 009 1A UL

A IRE|

iosuasasnessduia) 1 Ap3aexa osuecsesn £
pUOlas WS PoLSYsIn B

NN IWOS POLIDISISH &

INOH SWOS poadsash {3

ARQ @WDSs poledsasn (B

(c11sRe3Sc Iwos MERIcsesn) you
suonsunpareesd

ZAdanyporiaod

11 "siq

WL awos Xsiessesn (3P
Wl S10s X51R5sesn (3
U3.UNT JNOS NINIPICSISN @
sbriaay JwWOs MRS
osuasasneadwa] | Apdexa osusssesn &
({(yuejsur:aun 10 LONE N W) SWas pouagsesn) Jou
SUOIUNINAES.D P

flaand)poriod .

US 8,990,127 B2

Sheet 9 of 9

$

Buy | JMo @

. ol - P o Sk S e a v oo s e - o o-.._'-.l.....-li.u.. i_-....ru_“-...a 1.-..'_.-...... R E & Yl & e b e ey oy oAy v o & . L e b |]

1Bl NHALL W0 UoIPDUN JsBy @

it S-toc- 0 AR

LB1EINHAW Ajuo udipuUndsey

Mar. 24, 2015

U.S. Patent

US 8,990,127 B2

1

METHOD AND SYSTEM FOR
ONTOLOGY-DRIVEN QUERYING AND
PROGRAMMING OF SENSORS

This application 1s a National Stage of International Appli-
cation No. PCT/AU2009/000799 filed on Jun. 22, 2009, the
entirety of which 1s hereby incorporated by reference.

TECHNICAL FIELD

The described embodiments relate to methods and system
tor ontology-driven querying and programming of sensors. In
particular, the sensors may be part of a remote sensor network
in communication with a node that 1s accessible using a public
network.

BACKGROUND

Programming sensor nodes for data collection 1n sensor
networks 1s notoriously difficult. A programmer has to think
not only 1n terms of the network-wide result to be achieved,
but also how to deal with message routing, data loss, energy
conservation, radio behaviour, radio management and local
event interactions, as well as heterogeneity 1n the underlying
sensor architectures, sensor capabilities and programming
languages supported by such sensors.

It 1s desired to address or ameliorate one or more short-
comings or disadvantages associated with existing tech-
niques for data collection and/or programming of sensors, or
to at least provide usetul alternatives thereto.

SUMMARY

Certain embodiments relate to a method of ontology-
driven querying or programming of at least one sensor, the
method comprising:

generating at a query origin a query or command for execu-
tion 1n relation to the at least one sensor;

transmitting the query or command to an ontology trans-
former over a first network;

classityving the query or command according to an ontol-
ogy and one or more predetermined capabilities of the at least
One sensor;

generating a transformed query or program based on the
classified query or command using one or more code frag-
ments stored 1 a memory accessible to the ontology trans-
former;

transmitting the transformed query or program to at least
one sensor node 1n communication with the at least one sensor
for execution of the transformed query or program by the at
least one sensor node 1n relation to the at least one sensor;

receiving from the at least one sensor node at least one
result of the query or program; and

returning the at least one result.

Other embodiments relate to a system for ontology-driven
querying or programming ol at least one sensor, the system
comprising:

means for generating at a query origin a query or command
for execution in relation to the at least one sensor and for
transmitting the query or command to an ontology trans-
former over a first network;

means for classifying the query or command according to
an ontology and one or more predetermined capabilities of
the at least one sensor;

means for generating a transformed query or program
based on the classified query or command using one or more
code fragments stored 1n a memory accessible to the ontology

10

15

20

25

30

35

40

45

50

55

60

65

2

transformer, wherein the means for generating a transformed
query or program comprises means for transmitting the trans-
formed query or program to at least one sensor node 1n com-
munication with the at least one sensor for execution of the
transiformed query or program by the at least one sensor node
in relation to the at least one sensor and comprises means for
receiving from the at least one sensor node at least one result
of the query or program and returning the at least one result.

Other embodiments relate to a system for ontology-driven
querying or programming of at least one sensor, the system
comprising;

a query origin configured to generate a query or command
for execution 1n relation to the at least one sensor;

an ontology reasoner configured to classity the query or
command according to an ontology and one or more prede-
termined capabilities of the at least one sensor;

at least one sensor node 1n communication with the at least

one sensor; and

an ontology transformer 1n communication with the query
origin, the ontology reasoner and the at least one sensor,
wherein the ontology transformer 1s configured: to receive the
query or command and pass the query or command to the
ontology reasoner for classification, to generate a trans-
formed query or program based on the classified query or
command using one or more code fragments stored 1n a
memory accessible to the ontology transformer, to transmit
the transformed query or program to the at least one sensor
node for execution of the transformed query or program by
the at least one sensor node 1n relation to the at least one
sensor, to receive from the at least one sensor node atleast one
result of the query or program and to return the at least one
result.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are described in further detail below, by way
of example, with reference to the accompanying drawings in
which:

FIG. 1 1s a block diagram of a system for ontology-driven
querying and programming ol sensors;

FI1G. 2 1s a block diagram showing some components of the
system of FIG. 1 1n further detail; and

FIG. 3 1s a flow chart of a method for ontology-driven
querying and programming ol sensors.

FIG. 4 15 an illustration depicting a table of definition of
SEeNsors.

FIG. 5 1s an illustration depicting a statistic class for
weather station capability.

FIG. 6 1s an 1llustration depicting umts of time for the
weather station.

FIG. 7 1s an illustration depicting a table of a definition of
hour and second.

FIG. 8 1s an1illustration depicting weather station capability
concepts.

FIG. 9 1s an illustration depicting a complete defimition of
capability classes.

FIG. 10 1s an 1llustration depicting example queries.

FIG. 11 1s an illustration depicting examples of queryPe-
riodData queries.

FIG. 12 1s an illustration depicting a weather station device
description.

FIG. 13 1s an illustration depicting a class to find which
devices can handle myCurDatal query.

DETAILED DESCRIPTION

The described embodiments relate generally to methods
and systems for ontology-driven querying and programming

US 8,990,127 B2

3

ol sensors. Such sensors may include, for example, single or
plural sensors, possibly operating in 1solation or as a partof a
sensor network, in communication with a sensor node. The
sensor node 1s responsible for direct querying or control of
cach of the sensors associated with that node. The embodi-
ments described herein facilitate ontology-driven querying or
control of the sensors via the relevant node 1n a manner that 1s
independent of any technical requirements of the interface of
cach sensor, thereby tolerating the heterogeneity that 1s com-
mon among different sensors across various sensor networks.
Embodiments are described herein in a generalised manner,
as well as with reference to specific examples.

Referring now to FIG. 1, there 1s shown a system 100 for
ontology-driven querying or programming of sensors. Sys-
tem 100 comprises one or more computer systems 103, such
as a personal computer or server, each having a query editor
110 executable thereon. System 100 also comprises an ontol-
ogy server 120, one or more ontology transformers 125, one
or more ontology reasoners 135, one or more gateways 145,
one or more nodes 155 and one or more sensors 160 associ-
ated with each node 155.

The query editor 110 comprises executable program code
stored 1n a memory (not shown) of computer system 105 or
otherwise accessible to computer system 105. Query editor
110 functions to facilitate user query or command formation
and to interpret and display (1n a display not shown) results
received in relation to such queries or commands. The execut-
able program code of query editor 110 comprises, or other-
wise has access to, program code for executing an ontology-
aware interface 115 for facilitating the creation or generation
ol queries or commands that are compliant with a predeter-
mined ontology 1n relation to the one or more sensors 160.
The query editor 110 1s 1n communication with the ontology
transformer 1235 over a network, such as a public network like
the Internet, via ontology server 120 so that the ontology
transformer 125 receives the queries or commands generated
by query editor 110 for processing as described herein.

Ontology transformer 125 and ontology reasoner 135 may
be resident or executable on the same server system 140 or on
separate servers. Server systems 140 are 1n communication
with ontology server 120 over a network and with gateways
145 over a network.

When ontology transformer 123 receives a query or com-
mand from query editor 110, 1t passes the query or command
to ontology reasoner 135, with which the ontology trans-
former 125 1s 1n communication. Ontology transformer 1235
may be comprised 1n a computer system, such as server sys-
tem 140, and has a memory 120 (shown 1n FIG. 2) 1n which
are stored code fragments 130. The code fragments 130 can
be assembled to form suitable commands based on a classi-
fication of the query or command by ontology reasoner 135.
The classified query or command generated by ontology rea-
soner 135 1s processed by ontology transformer 123 to select
one or more code fragments 130 that are suitable to execute
the query or command. Ontology transformer 1235 uses the
selected code fragments 130 to generate and send a command
to one or more nodes 155 via gateway 143 for execution in
relation to one or more of the sensors 160. Such a command
may be for retrieving data or information in relation to mea-
surements made by the sensors 160 or for reprogramming or
reconiiguring the sensors 160.

Ontology transformer 125 has access to a capability ontol-
ogy that defines the particular functional capabilities of the
sensors 160 1 terms of the quernies they can handle. The
capability ontology should be designed so that the named
capability classes that identily query types are disjoint. The
ontology transformer 1235 includes program code that

5

10

15

20

25

30

35

40

45

50

55

60

65

4

searches the classification result for known, named, capabil-
ity superclasses (immediate or transitive) of the query. When
such a superclass 1s found (of which there 1s at most one), the
ontology transtormer 125 then invokes a particular module or
method that 1s written to handle that query type. For example,
when a query 1s classified to be of the type that reprograms the
sensor node, the ontology transformer 125 executes program
code that assembles and loads a new program for the sensor
node 155, using nstance mformation in the user’s query to
specily what the new program should do.

Transmission of commands from ontology transformer
125 to one or more nodes 155 may be performed over one or
more networks, such as a public network like the Internet.
Where numerous nodes 155 are to be accessed, an interme-
diate server or gateway node, such as gateway 145, may be
employed to facilitate communication between such nodes
155 and ontology transformer 125.

As shown 1n FIG. 1, each node 155 has associated there-
with, and 1s 1n communication with, one or more sensors 160.
Such association of node 155 and sensors 160 may be physi-
cal and/or logical. The number of nodes 155 1n system 100
may be as few as one and as many as the system architecture
can support. The number of sensors 160 associated with each
node 155 may similarly be as few as one and as many as the
node and sensor network architecture can support. System
100 1s specifically designed for scalability of the number of
nodes 155 and sensors 160 because of the ontology-driven
querying or command paradigm employed by system 100
that allows queries or commands to be processed indepen-
dently of the underlying hardware or technical requirements
ol each of the sensors 160.

Ontology server 120 provides a repository for an ontology
to be employed by all ontology transformers 125 within sys-
tem 100. This ontology provides contextual information and
a vocabulary for the phrasing of queries and commands over
the sensor network, and may be considered to be comprised of
two parts: a domain ontology that provides general back-
ground terms and a capability ontology that specifically mod-
els the functions of the sensors 160 and nodes 155 1n the
network. This capability ontology 1s also shared amongst the
heterogeneous sensor networks 150 and 1s loaded 1nto query
editors 110.

For a domain ontology, some embodiments use an ontol-
ogy expressed i the W3C’s ontology language OWL,
extended from SWEET (from NASA, at http://sweet.jpl.na-
sa.gov). SWEET provides contextual classes phenomena:
Wind, space: Direction, property: Speed, property: Tempera-
ture 1including and property: RelattiveHumidity. Some
embodiments may extend SWEET to define classes and prop-
erties that are generally useful to describe the capabilities of
sensors 1n a particular sensor network, for example including
those shown 1n, FIGS. 4, 5, and 6. In the capability ontology,
classes and properties may be defined that specifically model
the capabilities of the sensors, for example such as those 1n
FIGS. 8,9, 10, 11, and 12.

Each ontology transformer 125 comprises computer pro-
gram instructions (described in further detail below, with
reference to FIG. 2) that allow the ontology transformer 125
to be configured to receive a query or command from query
editor 110. Ontology transformer 1235 employs ontology rea-
soner 135 to classity the query or command and map the
classified query or command onto a capability ontology that
accounts for the specific capabilities of the sensors 1n the
destination sensor network 150.

Ontology transformer 125 builds a transformed query
based on the classified query and capability ontology by
sourcing code fragments 130. In this way, ontology trans-

US 8,990,127 B2

S

former 125 may be considered to apply a dynamically deter-
mined ontology transformer to each recerved query or com-
mand thereby allowing the query or command to be executed
in relation to the sensors, regardless of any heterogeneity
among the sensors.

Code fragments 130 comprise data in the form of language
templates or program fragments in the language of the desti-
nation sensor nodes 155. Such code fragments 130 are used
by the ontology transformer 1235 to generate executable pro-
grams or queries in the language of the sensor nodes 155, as
described herein.

The transformed query or command 1s sent by ontology
transformer 125 to gateway 145 (which may comprise a node
155 within sensor network 150) over a network or via a
dedicated communication medium, whether wired or wire-
less. Ontology transformer 1235 may also use a result filtering
module 245 (FIG. 2) to filter responses returned from sensor
network 150 via gateway 145, where the returned data from
gateway 145 1s more than what 1s required for a complete
response to the original query. For example, using a weather
station as an example of a sensor node 155 that provides a
natrve command to request the current data from all sensors
simultaneously, the ontology and query editor 110 may per-
mit the user to query the current measurement from any
particular sensor (see QueryCurrentData in FIG. 9: one or
more sensors must be named in the query). The ontology
transformer 125 1ssues the same command to the weather
station (which acts as a sensornode 155) 1n each case, because
cach such query 1s a subclass of QueryCurrentData, but the
ontology transformer filtering code within result filtering
module 245 discards the part or parts of the response that do
not correspond to the named sensor or sensors.

Ontology reasoner 135 comprises computer executable
program code for performing logical reasoning using the
established axioms of an ontology. In particular, ontology
reasoner 135 performs the function of classitying the classes
and properties of the ontology into subsumption hierarchy.
Thus, ontology reasoner 135 1s employed by ontology trans-
former 125 to classily a query or command according to the
established ontology, which 1s referred to herein as the
domain ontology. Where ontology reasoner 135 1s unable to
classity the query or command according to the domain
ontology, a message to this effect 1s provided to ontology
transformer 125, which 1n turn notifies query editor 110 so
that a suitable message can be displayed to the originating
user or other query originator, if necessary.

As a validation step prior to sending the query to ontology
transformer 125, query editor 110 may mitially provide the
query or command to ontology reasoner 135 for classifica-
tion. If the query or command can be classified as a subcon-
cept of a capability concept for at least one sensor node 155,
then this, in effect, validates the query or command for further
processing within system 100. I classification cannot be
performed, then query editor 110 can be used to reframe the
query or command.

Gateway 145 comprises a node within the sensor network
150 that may or may not have 1ts own sensors 160 associated
therewith and may comprise a fully functional sensor node
155. Gateway 145 1s used as the network access point for
sensor network 150, for example through a public or private
network, such as the Internet or a public switched telephone
network (PSTN). Gateway 145 should have a reliable power
supply 1n order that 1t can reliably perform its gateway func-
tion. Gateway 145 1s used as a point of control and single
access to and from sensor network 1350.

Each sensor node 155 generally comprises a program-
mable system for activating and controlling the individual

10

15

20

25

30

35

40

45

50

55

60

65

6

sensors 160. Each sensor node 155 may store measurements
and communicate with other nodes 155 by radio or fixed
network to share sensor measurements or other messages,
including messages received via gateway 145. Non-limiting
examples of sensors 160 may comprise chemical, biological,
clectrical, physical or other sensors for measuring environ-
mental, medical, industrial or other conditions, for example.

Sensor network 150 comprises a collection or grouping,
whether virtual or physically associated, of sensor nodes 155
and sensors 160, where nodes 155 and sensors 160 within
network 150 have at least one common theme, function, role
or association that makes them desirably grouped together
within a network.

The capability ontology 1s designed such that the classifi-
cation of a query by the ontology reasoner 135 places that
query 1nto a class of like queries (a capability class) for which
common program code 1n the ontology transformer 125 may
be used to execute the query. The ontology transformer 1235
includes program code (such as may be comprised 1n query
management module 240 described below 1n relation to FIG.
2) that searches the classification result for known, named,
capability classes that are superclasses (1immediate or transi-
tively) of the query. When such a superclass 1s found, the
program code then invokes a particular module or method that
1s written to handle that capability class. Some capability
classes require parameters, such as a particular date or tem-
perature range, so the individual part of the query (comprising,
datatype and object property instances) can be passed as a
parameter to query management module 240 and can be used
to particularise the query according to the user request.

For example, sensor network 150 may use the Environdata
WeatherMaster 1600 weather station, which has an inbuilt
processor and memory with a predefined control language,
with the weather station acting as a sensor node 135 with
several sensors 160. One of the recognised commands, the
STORAGE command, can be used to reprogram the weather
station to take selected sensor readings at selected intervals
and to store the raw readings or aggregate readings 1n a
selected memory location. The STORAGE command itself
begins with the keyword “STORAGE” which 1s followed, on
the same line of text, by parameters to reflect those selections.
For effective use of the command, 1t must be preceded by the
one-line command “MEM ON” and followed by the one-line
command “MEM OFF”. All three commands must be trans-
mitted to the weather station to reprogram the weather station.

Query editor 110 supports a user to construct a query as an
expression 1n the ontology language. For example, let us
consider the reprogramming query of FIG. 10. By the defini-
tion of the class given i FIG. 10, the query 1s a subclass of a
CreatedFunctions class. The user creates this query class and
requests the reasoner ontology 1335 to classity it. If it 1s not a
subclass of a capability class, then 1t 1s not a valid query and
can be rejected. In this case, it 1s a subclass of the setStorage-
Function class of FIG. 9. The user 1s then prompted to enter
datatype values for (inherited) instance properties of the
class. Because the capability ontology 1s designed with
appropriate datatype properties for classes used 1n the query,
the query editor 110 immediately prompts for the property
values: 1n this case integers for hasStrgTabNo, timel and
time2oiDay, as properties of CreatedFunctions. Suppose the
user enters the values of 3, 0900 and 0, respectively. Further,
suppose the ontology has been previously mitialised with a
sensorNo datatype property of HumiditySensor set to a value
of 5, which corresponds to the weather station’s native sensor
numbering system, the Day class to have a property time-
typeCmd with value “HOUR” (which, in the native language
means to measure daily at a fixed time of day) and the Average

US 8,990,127 B2

7

class to have a datatype property statCmd set to a value of
“AVERAGE”. When the ontology transformer 125 receives
the query and 1nstances from the query editor 110, 1t classifies
the query as a subclass of the setStorageFunction capability
class and uses 1nternal code to translate the query to the form
required by the weather station as follows. The ontology
transformer 125 constructs the “STORAGE” command
string, appending the parameters appropnately as retrieved
from the query instances. It also internally generates a com-
mandNo through an internal sequence number allocation
method and nserts fixed character strings where required. In
this case, 1n the language of the WeatherMaster, the requested
command becomes “STORAGE 6 AVERAGE 3 5100
HOUR 0900 0, where the parameters correspond respec-
tively to commandNo, statCmd, hasStrglabNo, sensorNo, 1,
0, 0, timetypeCmd, timel, and time2oiDay. Further, the
ontology transformer 125 brackets this line of text by the two
MEM commands discussed above.

Referring now to FIG. 2, ontology transformer 1235 1s
shown 1n greater detail with reference to at least one node 155
and at least one sensor 160. Ontology transformer 1235 com-
prises a processor 210 and a memory 220. Various software
components 2235, 230, 240 and 2435, in the form of executable
program 1instructions, are stored in memory 220 and are
executable by processor 210. Processor 210 may comprise
one or more processors, either physical or virtual and either
co-located or distributed. Memory 220 1s accessible to pro-
cessor 210 and may comprise one or more storage media,
whether distributed or localised.

When executing, the ontology transtormer 125 loads a
domain ontology 2235 into memory 220 from ontology server
120. Ontology transformer 125 also loads a predetermined
local ontology of sensor capabilities 235 from ontology
server 120 or retained 1n the ontology transformer 125, and
combines the capability ontology with the domain ontology
225 to form an ontology that the ontology transformer 123
uses to map classified queries or commands onto suitable
code fragments 130 that can be executed at nodes 155. The
capability and domain ontologies may be combined by file
concatenation, after removing any duplication of header text
or other redundant text in the second file. Alternatively one
ontology may be imported into the other using features of the
ontology language, or, similarly, a third skeleton ontology
may 1mport each of them.

Memory 220 also comprises a query management module
240 that, when executed by processor 210, 1s configured to
receive a query from query editor 110, combine that with the
domain ontology and sensor capability ontology, and then
invoke ontology reasoner 135 to classily the query into a
query class already described in the capability ontology. If the
query class 1s not subsumed by a query class 1n the capabaility
ontology, then the query is rejected as ivalid because the
query does not request a function that the sensor network 1s
able to perform. In order to combine the query with an ontol-
ogy, the query may be asserted as a named class description in
the ontology by, for example, appending 1t to the ontology file
prior to submitting the ontology to the ontology reasoner 155
for classification.

Ontology transformer 123 uses the query class to access a
library or file system of code fragments 130 or code templates
that embody the structures to execute the query class 1n the
language of the sensor network. Ontology transformer 1235
then completes the transformation by completing the tem-
plates or program fragments according to parameters speci-
fied 1n the query, and submits the transformed query or com-
mand (as a program) to the gateway 143 for execution on the
sensor network 150. The template 1s filled 1n by 1nserting data

10

15

20

25

30

35

40

45

50

55

60

65

8

retrieved from the 1nstance of the query class and its proper-
ties specified by the query editor or as asserted as instances in
the ontology beforehand.

Queries submitted through query editor 110 may be com-
posed of two parts. The first part 1s a class definition (and
optionally associated property axioms) that 1s classified to
determine the query type. The second part may be a group of
instances that are used to further refine the query with
grounded values for datatype properties or other object prop-
erties of the class. Query editor 110 supports the entering of
both types of information, but not all query types require
instance data. As an example, the setStorageFunction query
type of FIG. 9 inherits a datatype property called “time 17
from the Function class (via the CreatedFunctions class), and
the query editor prompts the user to enter an integer into this
field. Only the class definition part of the query 1s used for
classification. The ontology transformer 125 may use this
integer value as part of the command to the weather station—
in particular 1t 1s a multiple for a time unit to separate sensing
measurements. Similarly, ontology instances may be used to
store some lixed values used 1 query processing (for
example, the respective digit which corresponds to the
weather station’s identifier for each sensor in commands).
These instance values become parameters to be inserted into
the strings or program code being assembled for a sensor node
command under construction.

Ontology transformer 125 receives responses back from
the sensor network nodes 155 via the gateway 145. In the case
that the response recerved contains more data than 1s required,
to satisly the original query which can happen 11 the sensor
network 1s not capable of being as selective as required,
ontology transformer 125 will apply a result filter using a
result filtering module 245 to reduce the results to only those
specified 1n the original query. The ontology transformer 125
then returns the filtered or unfiltered results to the query editor
110.

The Gateway 143 transmits and installs the classified and
transformed program or query received from the ontology
transformer 125 onto one or more nodes 155 and loads the
program or query mnto a memory 255 of the relevant sensor
network nodes 155 of the sensor network for which the gate-
way 145 1s responsible. The classified and transformed query
or program 1s then executed by a processor 250 of each node
155 to which the query or program was directed. According to
the program or query, some sensors 160 of the network may
become active and take measurements, which are recorded 1in
the memory 2355 of the node 155 and possibly further analy-
sed by the processor 250 according to the query or program
instructions. The measurements are then transmitted to the
gateway 145 1n one or more messages. The gateway 145 may
aggregate responses from more than one sensor node 155
within sensor network 150 and will then transmit one or more
responses to the ontology transformer 123.

Referring now to FIG. 3, there 1s shown a method 300 of
ontology-driven querying and programming ol sensors.
Method 300 begins at step 303, 1n which the ontology-aware
interface 1135 accepts a query or command. The query or
command may be represented as a fragment of web ontology
language (OWL) code, for example, containing one or more
class descriptions and property axioms and may also include
instances of classes, object properties and datatype proper-
ties. The query or command may be received from a query
origin that relies on user input or from an automated querying
system. Alternatively, the query or command may be repre-
sented as description logic axioms or by graphical means 1n a
graphical ontology editor, such as Protége or a Protege plug-
1n.

US 8,990,127 B2

9

As an optional validation sub-process, the query or com-
mand, together with an ontology (comprising a domain ontol-
ogy and one or more capability ontologies) may be sent by
query editor 110 to an ontology reasoner 135 at step 310 for
classification of step 315 and the classified ontology returned
to the ontology-aware interface 1135 for presentation to the
user and for error reporting. In order for the query to be valid
it must be classified as a sub-class of a query class 1n the
ontology capability class, and the sensor nodes in the ontol-
ogy that are capable of responding to that query class are the
nodes to which the transformed query may be sent.

At step 320, the query or command 1s sent to the ontology
transformer 125. The ontology transformer 1235 repeats steps
310 and 313 (in steps 325 and 330) by sending the query or
command to ontology reasoner 135 to classify the query or
command, to validate 1t, and to discover which sensor nodes
are capable of responding to the query or command. At step
335, ontology reasoner 135 returns the classified query or
command to ontology transformer 135. This 1s generally a
representation of the combined ontology and query or com-
mand that places the query or command within a subsumption
hierarchy and from which the query or command’s subclasses
and superclasses 1n the ontology may be readily extracted.

At step 340, the ontology transformer 123 retrieves code
fragments 130 or command templates that correspond to the
query class in which the query was classified, and then
assembles the fragments and {fills 1n remaining parameters
arising from the query or command, so producing an execut-
able query or program for the sensor network 150. At step 345
the executable query or program 1s transmitted to the sensor
network 150 by the appropriate communication medium and
the relevant nodes 155 sensor network 150 are 1nstructed to
execute 1t.

At step 350, which may be repeated many times 11 results
are requested at timed 1ntervals or according to other recur-
ring criteria, the results from the nodes 1535 1n sensor network
150 are returned to the ontology transformer 125 via gateway
145.

At step 3535, if the results contain more data than required
for the original query, the excess data 1s filtered out and the
remaining results are returned to the query editor or possibly
some other destination (as specified 1n the original query or
command) at step 360. For example, 1f the user query requests
temperature data in a query of the queryCurrentData type
(FIG. 9), the weather station can only return data for all
sensors at once, so then the query to the weather station just
asks for all sensors and the ontology transformer 125 parses
the result and discards the unwanted data. In more detail, the
sensor number 1s stored as an instance for each sensor in the
ontology, and passed with the concept part of the query to the
ontology transformer 125. The ontology transtormer 123
constructs the query without the sensor number, but then just
passes back lines of the response that have the right sensor
number 1n the appropriate position on the line.

Specific examples of components of system 100 and/or
steps ol method 300 are described heremaifter. All such
examples are merely 1llustrative and are non-limiting, being
intended for contextualising the described embodiments.

According to the described embodiments, a user, which
may be a human or software agent and may be unfamiliar with
sensor availability or programming style, can use the lan-
guage ol an ontology to phrase a query that 1s a request for
some sensor observations to be made or a command for some
specific reconfiguration of those sensors. This query or com-
mand 1s sent, 1n a modified form, to one or more sensor nodes
155, which act as sensor control devices. A sensor node 155
control may comprise, for example, a programmable weather

10

15

20

25

30

35

40

45

50

55

60

65

10

station, where the sensors 160 are sensors that accomplish a
weather-related measurement function, such as temperature,
relative humidity, wind speed or wind direction measure-
ment, for example. In this example, the weather station (as
one example of a sensor node 1355) receives the transformed
query or command and executes that query or command 1n
relation to the environmental sensors with which 1t 1s associ-
ated and 1n communication (whether or not physically con-
nected thereto).

For 1illustration purposes, the weather station example 1s
continued. In this example, the weather station may be a
Weather Master 1600, available from Environdata Australia
Pty Ltd of Queensland, Australia, as one sensor node 155.
Query editor 110, ontology transformer 125 and ontology
reasoner 135 may use a web ontology language such as OWL,
and 1n particular the sub language OWL-DL, as the ontology
language. Pellet version 1.5.1 by Clark & Parsia LLC may be
used as the ontology reasoner 135 for OWL-DL. Protege
OWL editor 3.3.1 from Stanford University may be used as
the query editor 110, optionally 1n combination with a Java
(Version 6) plug-in to Protege. The Java plug-in implements
the ontology-aware interface 1135 to provide a graphical user
interface (GUI) and for interfacing with a Java implementa-
tion of ontology transformer 125.

The general ontology described herein may be a purpose-
built ontology, as described herein, that imports the ontology
SWEET 1.0 published by NASA. This ontology may be
thought of as a combination of a domain ontology and a
sensor capability ontology, as described herein. In the present
context, the domain ontology may be considered to be that
part of the ontology that may persist unchanged as a base
ontology, while the capability ontology 1s changed and
extended to account for each new sensor network 150 added
to the system 100.

The examples described below show extracts the domain
ontology displayed in Protege, but it should be understood
that other manifestations of the OWL ontology language may
be used, including but not limited to logical expressions, the
Manchester Syntax, the OWL 2 Functional-Style-Syntax or
RDE/XML, which 1s an XML (extensible mark-up language)
syntax for RDF (Resource Description Framework).

The weather station sensor capabilities may be modelled 1n
the ontology as described below. The weather station has four
sensors: a temperature sensor, a relattve humidity sensor, a
wind speed sensor and a wind direction sensor. Fach sensor of
the weather station 1s modelled as a class with the SWEET
superclass “material_thing: Sensor restricted to using the
measures” property with a sensor-specific filler, as illustrated
in FIG. 4.

The weather station, and many other sensing devices, can
take a measurement and compute the average, maximum and
minimum of the current value and past (stored) values. This
capability 1s modelled as subclasses of a created class “Sta-
tistic” with no special restrictions but disjoint to each other, as
shown 1n FIG. 5. Measurements can be taken periodically,
once every X units, for some integer x and where a unit 1s
either day, hour, minute or second. A class 1s defined for each
of these units as follows and 1llustrated 1n FIGS. 6 and 7. Each
of these units 1s defined to be a subclass of the corresponding
class of the SWEET ontology. For example, the capability
class “Second’ 1s a subclass of “time: Second’ of the domain
ontology, which has the superclass “time: Duration”. Further,
the property “hasSubPeriod” 1s used to model how each unit
relates to other time units. For example, the class “Hour™ has
restrictions corresponding to having each of “Minute” and
“Second’ as sub-periods but (with an additional closure
axiom) no other sub-periods. The smallest unit, the “Second’,

US 8,990,127 B2

11

1s defined to not have any sub-periods, as shown 1n FIG. 7. In
FIG. 7, definitions above the horizontal line are complete
(necessary and sullicient); the extra information below the
line represents conditions inherited from SWEET and dis-
played by the Protege tool, but not important for this discus-
S101.

To request data from the weather station, 1t 1s desirable to
be able to use specific dates as time specifications, thus we

— -

model the class “Date” as a subclass of SWEET’s “time:
Instant™.
The basic elements of the sensor device capability have
been described, and now modeling of the structure of the
language for interacting with the weather station 1s described.
The functions of the weather station language are organised
so that any user query can be mapped to the weather station
language by a simple classification made by the ontology
reasoner 135. For example, the weather station supports three
kinds of queries as native capabilities:
Query the current data of all sensors[queryCurrentData]
Query a memory for data from date A until date B [query-
PeriodDatal

Reprogram by adding or deleting program lines in the
weather station, which describe exactly what, when and
how we want to measure [setStorageFunction]

A corresponding ontology structure 1s created as illustrated
in FIG. 8. The class “Function” 1s created, which 1s a direct
subclass of “owl: Thing”. Below that, two classes are intro-
duced, which act like a container for other classes and help to
keep the hierarchy well ordered. All queries are placed under
the “CreatedFunctions™ class (see following section), and
there 1s a “Capabilities”™ class, such as
“WM1600Capabilities” to describe the capability classes,
which are a focus of the ontology. There 1s no need for
different sensor devices to have different “Capabilities” sub-
classes—alternatively the capabilities may be grouped into
classes by another convenient class. However, each capability
class must be defined to be disjoint from other capability
classes.

Each of the capability classes are defined 1n more detail by
restrictions which correspond to the parameters required by
the weather station to enact a selected function, as shown 1n
FIG. 9. Complete (necessary and suilicient) definitions are
used for these capability classes and their definitions ensure
that they are disjoint. The disjointness of the definitions can
be confirmed by the ontology reasoner 135, 11 desired when
developing the appropriate capability description.

The classes defined so far provide a framework for express-
ing user queries. A valid query for any device 1s exactly a class
definition that 1s a (semantic) subclass of a predefined device
capability. By ‘semantic subclass’1s meant that the query may
be interpreted to be a subclass by a sound OWL reasoner; 1t 1s
not required that the query be explicitly asserted as a subclass.
For example, to reprogram the weather station, 1t 1s necessary
to use the three properties “usesPeriod”, “usesSensor” and
“usesStatistic”. To ask the weather station about the current
temperature, it 1s necessary to use the “usesSensor” property,
and also express that the other properties are not used, by
negating these restrictions.

FI1G. 10 shows the definitions of two example queries, one
to reprogram the weather station, and one to request the
current humidity. As 1s evident, these queries are similar to the
parent capability classes. In the context of a more complex
ontology, the queries could appear to be syntactically quite
different to the capability classes, because the ontology rea-
soner 135 1s capable of interpreting the ontology correctly to
identity the proper semantic relationships. To keep the ontol-

10

15

20

25

30

35

40

45

50

55

60

65

12

ogy well-ordered (with no significant semantic effect), both
queries are defined as subclasses of the “CreatedFunctions™
class.

The example query to request the current humidity 1s quite
simple, as 1t 1s just specified to use only the “HumiditySen-
sor”’, while the other properties of the corresponding capabil-
ity definition are negated.

The example query to reprogram the weather station takes
advantage of the ontology to enable the system to recognize
when a query can be answered by another query that has also
been requested. For this query (FIG. 10), a period restriction
(usesPeriod some (time: duration and (hasSubPeriod some
Day))) 1s given that 1s necessary and suificient, in addition to
an only necessary restriction (usesPeriod some Day). This
means that a reprogramming query that describes a request
for a measurement which can be answered by filtering (select-
ing) the measured data from another reprogramming query
will be classified by the ontology reasoner 135 as a subclass of
the latter. For example, a reprogramming query which mea-
sures the data from the humidity sensor every minute would
be classified as a subclass of the reprogramming query mea-
suring data from the humidity sensor each five seconds. Rely-
ing on this, after classification, the ontology transformer 135
can sumply transmit the highest-classified reprogramming
queries to the weather station, as others which are subsumed
by at least one highest-classified query are redundant.

When the ontology reasoner 135 i1s mnvoked, either by
ontology transformer 125 or query editor 110, each query that
1s valid, 1n the sense that 1t corresponds to a defined capability
of a sensing device, will be immediately classified as a sub-
class of the respective capability. The reasoner’s classifica-
tion may be mspected visually using the query editor 110 or
programmatically with other software such as the ontology
transformer 125. Furthermore, the ontology reasoner 1335
may be mvoked to ensure that the query class 1s 1tself satisfi-
able 1n the context o the ontology, which will enable the early
rejection of some queries that can never have an answer (for
example, a query with a restriction that usesPeriod some Day
and another restriction that not usesPeriod owl: Thing)).
Because of the original design of these capability classes, this
means that the corresponding structure of the device com-
mand language 1s immediately 1dentified.

Further examples of queries are shown in FIG. 11. These
example queries will both be classified as subclasses of the
capability class “queryPeriodData”, although appearing syn-
tactically quite diflerent.

So far, queries have been described as classes that act as a
template, or schema, that 1s 1tself a subclass of a more general
device capability. The ontology 1s also used to represent OWL
datatype properties of queries, so that 1t 1s possible to distin-
guish queries by the values of query parameters. At this level,
queries are represented as instances of a particular query class
and 1ts properties, having the query parameters instantiated as
the values of OWL datatype properties. Similarly, the current
state of the weather station 1s modelled as a collection of
instances of the ontology.

The capability ontology captures the definition of multiple
sensor devices by defining a class for each device as a
subclass of a “Device” class, and the “hasFunction”
property as a property having domain Device and range
Function, as shown in FIG. 12.

As 1llustrated 1n FI1G. 10, queries that reprogram the device
or request measured data may be phrased by a user in the
terms of the capability ontology. This can be implemented by
creating a definition of a class corresponding to the query, by
verilying the validity of the request (using ontology reasoner
135), by passing the request onto relevant device-specific

US 8,990,127 B2

13

handlers (sensor nodes 155), and then onto the native device
interface (sensors 160), and then recerving the response and
passing 1t to a viewing application, such as query editor 110 or
another destination.

For example, the Pellet OWL-DL reasoner can be used,
which runs on a remote host 140 and can be used by the
ontology transformer 125, as well as by the user’s Protege
client. The user can query and program the weather station
through the Protege OWL Editor 3.3.1 as the user interface, or
more conveniently through a Protéege plug-in graphical user
interface (GUI) that 1s able to simplify the ontology display
and 1nteract with the ontology transformer 1235. It 1s assumed
that the Protege and plug-in client are installed locally on
computer system 105 for the user, and that the ontology
transformer 125 1s deployed on another computer systems
140, which 1s 1n communication with the weather station
according to its own device-specific interface requirements.
The communication between the query editor 110 and the
ontology transformer 125, and between each of those and the
ontology reasoner 135, may be via a TCP/IP socket, for
example.

As an alternative to direct use of Protege as a user client
tool, the definition of the capability classes 1n the ontology
enables the run-time generation of a user interface which can
provide, in this case, three options of selecting classes from a
pre-filtered class tree, where only allowed capability classes
are listed. Through this interface, a user can select permitted
classes to phrase the query without direct Protege interaction.
This client tool can be implemented as a Protege plug-in.
After a selection, the client tool may automatically negate the
restrictions which the user left unselected on the interface to
form a query.

Embodiments have been described as they apply in par-
ticular to the programming of a weather station 1n 1ts propri-
etary control language. The capability ontology 1s structured
into storage functions, sensors, periods, etc according to the
documented characteristics of that language. However, other
suitable programming languages will have function group-
ings which may be similar to this 1n principle (and for which
a Tunctional classification within the ontology can be devel-
oped) but will differ by the terms used and by their classifi-
cation structure.

A deployment method 1s described herein according to an
implementation that 1s specific to the control interface avail-
able for the weather station. Those skilled 1n the art can adapt
this method for an alternative deployment technique, such as
via “Deluge” that can be used for over-the air programming of
wireless sensor networks.

Embodiments have been described in terms of program-
ming and querying features of the environment that may be
measured by a weather station, but the embodiments are not
restricted to this. Embodiments can apply to any measure-
ments taken by in-situ sensors with a remote control possi-
bility, such as still or video 1mages; sound; human health
indicators such as blood pressure, heartbeat, or blood sugar;
water flow, pressure and quality parameters such as dissolved
nutrients and turbidity; ecological parameters such as sun-
shine, wildlife location, density and motion; security moni-
toring parameters such as infrared beams and motion detec-
tors; geophysical parameters such as seismic perturbations
and wave motions, built environment or transport parameters
such as energy consumption, heatmg, ventilation or traflic
flow; or any other remote sensing measurement or applica-
tion.

Embodiments are described 1n terms of a specific design
and implementation that has been put 1nto practice, but the
embodiments permit many possible architectures and tool

10

15

20

25

30

35

40

45

50

55

60

65

14

components. A plug-in to the third-party Protége ontology
editing software 1s described, but other suitable editors or
methods for developing ontologies can be used, and other
mechanisms may be employed to allow a user to express a
sensor data requirement 1n the terms of an ontology, such as a
specialist GUI or a textual format such as an OWL document.
Such alternatives must accept that query, combine 1t with the
domain ontology, invoke areasoner for classification, retrieve
code fragments according to the classification result, and
assemble those code fragments 1n a suitable way.

A vanation that would provide another way to assemble the
code fragments would be via retrieval of compile-time flags
through the classification, and then providing the flags to a
compiler to conditionally compile a code library or to set
compile-time parameters in the usual way. This might be done
when, for example, the target language for the sensor network
1s NesC. Another variation would be to apply the technique to
generate commands 1n the SQL-like language of TinyDB, a
database system for TinyOS-based sensor networks, 1n place
of the weather station native command language as detailed
here.

Embodiments have been described 1n terms of the software
components interacting via TCP/IP sockets, but other distrib-
uted computing or basic communication protocols could be
used.

In the described embodiments the ontology comprises data
that may be updated and extended as required to represent the
addition of new sensor capabilities 1nto the sensor network
querying environment. These new sensor capabilities may
represent both new domain-level capabilities (new pheno-
mona may be measured) or new control and interface capa-
bilities. However, because this information 1s represented in
the ontology, and the ontology 1s read dynamically into the
query interface and actioned dynamically through the reason-
ing tools, providing the new capability to users requires no
change to user query tools and shields the user from needing
to learn anything about the programming interface for the
sensor nodes 153 or gateway 145.

Improved features relate to the use of the domain and
capability ontologies, supported by an ontology reasoner 135
that can make sound inferences over the ontology language,
to classily user-specified queries into classes that identify the
sensor-specific code that can be assembled and executed to
realise the query. This 1s supported by the (domain and capa-
bility) ontology awareness of the query editor 110 and pro-
vides a navigable, hierarchical structure to describe sensors
available for querying and also shields the user from aware-
ness of the heterogeneity of sensor programming languages,
while permitting sound and expressive user queries to be
written.

Advantageous features of the described architecture and
methodology reside in the use of the described formal rea-
soning (or logical inference) over the ontology as a compo-
nent of the query/command processing. This formal reason-
ing 1s generally described as “classification” but may be more
broadly described as “logical inference”. Such features allow
the system 100 to perform query validation and allocation of
queries to sensor nodes 155 that can handle such queries
without requiring special code (1.e. purely on the basis of the
structure of the ontology that 1s a data input to system 100).
This 1s described and illustrated further in the

Example pro-
vided below.
The described system architecture and methodology

allows the reprogramming instructions to be checked for
redundancy based on the ontology alone and therefore
reduces the need for frequent reprogramming, which 1s
important in an environment of a shared/multi-user sensor

US 8,990,127 B2

15

network resource. The described system architecture and
methodology also allows for the organisation of node-specific
program code used for translation into the query or command
language of the sensor node 155 according to the structure of
the node command language, rather than according to the
structure of the network-wide query language that 1s embed-
ded in the ontology. This 1solates the syntaxes of the two
languages and permits varying and, ii desirable, multiple
syntaxes in the ontology language for the same node-specific
query or command without the cost of additional program
code. For example, the classification process performed by
the ontology reasoner 135 can place a query into a relevant
class, and then the ontology transformer 125 will have the
program code to handle that class. This allows the ontology
transformer 125 to not be overly prescriptive about accept-
able syntaxes for queries, and instead address the query
semantics. The described system architecture and methodol-
ogy also allows heterogeneity in sensor nodes and gateways
to be hidden from the user, thereby making use of the sensor
network easier for the user.

The following Example shows how the system 100 can
classily a query so that 1t 1s immediately obvious which
devices (e.g. sensor nodes 135) can handle the query. This
enables query editor 110 to direct the query to the ontology
transformer that 1s responsible for managing the relevant
devices.

This Example uses the definition of the WM 1600 class as
given 1n FIG. 12 and 1ts capabilities as given in FIG. 9. Now
a class can be constructed that corresponds to a query, say the
“Request current humidity query” of FIG. 10. This class can
be called, for example “myCurDatal”.

Now a new class can be defined that describes all the
devices (e.g. sensor nodes 135) that can accept the query
“myCurDatal” as shown 1n FIG. 13.

When this new class (FIG. 13) 1s classified by the ontology
reasoner 135, every device which is capable of handling the
query “myCurDatal”, such as class “WM1 6007, will become
a superclass of this class. By maintaining a mapping for
sensor nodes 155 to the ontology transformers 125 respon-
sible for them, the query editor 110 can direct the query to the
indicated ontology transformer 125.

When this new class (Table 10) 1s classified by the ontology
reasoner 135, every device which 1s capable of handling the
query “myCurDatal”, such as class “WM1600”, will become
a superclass of this class. By maintaining a mapping for
sensor nodes 155 to the ontology transformers 125 respon-
sible for them, the query editor 110 can direct the query to the
indicated ontology transiformer 125.

In this description the examples of ontology expressions
are given as screen copies of the expression in the ontology
editor Protege 3.3. In that style, expressions above a horizon-
tal line are “necessary and suificient” (also called “complete”™
or “equivalent classes™) and those below the horizontal line
are “necessary”’ (also called “superclasses™). Expressions
separated by large dots are combined conjunctively. Where
the horizontal line 1s not displayed, the expressions are nec-
essary and suificient.

Throughout this specification and the claims which follow,
unless the context requires otherwise, the word “comprise”,
and variations such as “comprises™ and “comprising’, will be
understood to imply the inclusion of a stated integer or step or
group ol mtegers or steps but not the exclusion of any other
integer or step or group of integers or steps.

The reference 1n this specification to any prior publication
(or information dertved from 1it), or to any matter which 1s
known, 1s not, and should not be taken as an acknowledgment
or admission or any form of suggestion that that prior publi-

5

10

15

20

25

30

35

40

45

50

55

60

65

16

cation (or information derived from 1t) or known matter forms
part of the common general knowledge 1n the field of endeav-
our to which this specification relates.

The mvention claimed 1s:

1. A method of ontology-driven querying or programming
of at least one sensor, the method comprising:

generating at a query origin a query or command for execu-

tion 1n relation to the at least one sensor;

transmitting the query or command to an ontology trans-

former over a first network;

after the transmitting, classifying the query or command

according to an ontology and one or more predetermined
capabilities of the at least one sensor;

generating a transformed query or program based on the

classified query or command using one or more code
fragments stored 1n a memory accessible to the ontology
transformer:;

transmitting the transformed query or program to at least

one sensor node 1n communication with the at least one
sensor for execution of the transformed query or pro-
gram by the at least one sensor node 1n relation to the at
least one sensor;

receving {rom the at least one sensor node at least one

result of the executed transformed query or program;
and

returning the at least one result.

2. The method of claim 1, wherein the at least one sensor 1s
comprised 1n a sensor network.

3. The method of claim 2, wherein the at least one sensor
node 1s comprised 1n the sensor network and the sensor net-
work has a plurality of sensor nodes.

4. The method of claim 1, wherein the at least one result 1s
returned to the query origin.

5. The method of claim 1, wherein the at least one result 1s
returned to a destination other than the query origin.

6. The method of claim 1, further comprising filtering the at
least one result prior to returning the at least one result.

7. The method of claim 6, wherein the filtering comprises
reducing the at least one result from a larger result set gener-
ated by execution of the transformed query or program to a
result set that satisfies the query or command generated at the
query origin.

8. The method of claim 6, wherein the filtering 1s per-
formed by the ontology transformer.

9. The method of claim 1, wherein the transmitting of the
transformed query or program and receiving of the at least
one result 1s performed via a gateway node in communication
with the ontology transformer over a second network.

10. The method of claim 1, wherein the recerving of the at
least one result 1s performed at the ontology transformer.

11. The method of claim 1, further comprising validating
the query or command prior to transmitting it to the ontology
transiormer.

12. The method of claim 11, wherein the validating com-
prises transmitting the query or command to an ontology
reasoner for classification by the ontology reasoner according
to the ontology and the one or more predetermined capabili-
ties.

13. The method of claim 1, wherein the transmitting of the
query or command to the ontology transformer comprises
transmitting the query or command over the first network to
an ontology server that has access to the ontology, wherein the
ontology server transmits the query or command to a speci-
fied one of one or more ontology transformers accessible over
the first network.

US 8,990,127 B2

17

14. The method of claim 1, wherein the query origin com-
prises a query editor having an interface configured to frame
the query or command within the ontology.

15. A system for ontology-driven querying or programs-
ming of at least one sensor, the system comprising:

means for generating at a query origin a query or command

for execution 1n relation to the at least one sensor and for
transmitting the query or command to an ontology trans-
former over a first network;

means for classitying the query or command according to

an ontology and one or more predetermined capabilities
of the at least one sensor;

means for generating a transformed query or program

based on the classified query or command using one or
more code fragments stored 1n a memory accessible to
the ontology transformer,

wherein the means for generating a transformed query or

program comprises

means for transmitting the transformed query or pro-
gram to at least one sensor node 1n communication
with the at least one sensor for execution of the trans-
formed query or program by the at least one sensor
node 1n relation to the at least one sensor and com-
prises

means for recerving from the at least one sensor node at
least one result of the query or program and returning
the at least one result.

16. The system of claim 15, wherein the means for gener-
ating the transtformed query or program comprises the ontol-
ogy transformer.

17. A system for ontology-driven querying or program-
ming of at least one sensor, the system comprising;:

a query origin configured to generate a query or command

for execution 1n relation to the at least one sensor;

an ontology reasoner configured to classily the query or

command according to an ontology and one or more
predetermined capabilities of the at least one sensor;

at least one sensor node in communication with the at least

one sensor; and

an ontology transformer 1n communication with the query

origin, the ontology reasoner and the at least one sensor,

wherein the ontology transformer 1s configured:

to receive the query or command and pass the query or
command to the ontology reasoner for classification,

to generate a transformed query or program based on the
classified query or command using one or more code
fragments stored 1n a memory accessible to the ontol-
ogy transiormer,

10

15

20

25

30

35

40

45

18

to transmit the transtformed query or program to the at
least one sensor node for execution of the transtormed
query or program by the at least one sensor node 1n
relation to the at least one sensor,

to recerve from the at least one sensor node at least one
result of the query or program and

to return the at least one result.

18. The system of claim 17, wherein the at least one sensor
1s comprised 1n a sensor network.

19. The system of claim 18, wherein the at least one sensor
node 1s comprised 1n the sensor network and the sensor net-
work has a plurality of sensor nodes.

20. The system claim 17, wherein the ontology transformer
1s configured to filter the at least one result prior to returning
the at least one result.

21. The system of claim 20, wherein the ontology trans-
former 1s configured to reduce the at least one result from a
larger result set generated by execution of the transformed
query or program to a result set that satisfies the query or
command generated at the query origin.

22. The system of claim 17, further comprising a gateway
node 1in communication with the ontology transformer over a
second network, wherein the transmitting of the transformed
query or program and receiwving of the at least one result 1s
performed via the gateway node.

23. The system of claim 17, wherein the ontology reasoner
1s configured to validate validating the query or command
prior to transmitting it to the ontology transiformer.

24. The system of claim 17, wherein the at least one result
1s returned to the query origin.

25. The system of claim 17, wherein the at least one result
1s returned to a destination other than the query origin.

26. The system of claim 17, further comprising an ontology
server that has access to the ontology, wherein the transmit-
ting of the query or command to the ontology transformer
comprises transmitting the query or command over the first
network to the ontology server, wherein the ontology server1s
configured to transmit the query or command to a specified
one of one or more ontology transformers accessible over the
first network.

27. The system of claam 17, wherein the query origin
comprises a query editor having an interface configured to
frame the query or command within the ontology.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

