12 United States Patent

Poore et al.

US008978023B2

US 8,978,023 B2
Mar. 10, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

CANONICAL MECHANISM FOR SECURELY
ASSEMBLING FEATURES INTO A MOBILE
APPLICATION

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2013/0283251 Al

Oracle International Corporation,
Redwood Shores, CA (US)

Noel Poore, Mont Vernon, NH (US);
William Bruce Kilgore, Tempe, AZ
(US); Anki R. Nelaturu, Santa Clara,
CA (US); Hinkmond B. Wong,
Sunnyvale, CA (US); Edward J. Farrell,
Los Gatos, CA (US); Dov Zandman,

Cupertino, CA (US); Christopher J.
Plummer, San Martin, CA (US); David
Robert Martin, Atlanta, GA (US);
Denis J. Tyrell, Livermore, CA (US)

Oracle International Corporation,
Redwood Shores, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 26 days.

13/657,778
Oct. 22, 2012

Prior Publication Data

Oct. 24, 2013

Related U.S. Application Data
Provisional application No. 61/581,463, filed on Dec.

29, 2011.

Int. C.

GOG6F 9/44 (2006.01)

GO6F 9/45 (2006.01)

GOGF 9/455 (2006.01)

GOGF 9/54 (2006.01)

U.S. CL

CPC oo GOGF 8/00 (2013.01); GO6F 9/45504
(2013.01); GOGF 9/546 (2013.01); GO6F

9/45529 (2013.01)

717/166; 717/115;717/116; 717/118;
717/148

(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,571,316 Bl 5/2003 D’Souza et al.

6,675,371 Bl 1/2004 York et al.

7,123,933 B2 10/2006 Poor et al.

7,263,696 B1* &/2007 Gruttadauriaetal. 717/166
7,788,660 B2* 8/2010 Chmnappaetal. 717/166
8,176,469 B2 ™ 5/2012 Lucascoocoviivvinvnninnnn, 717/108

(Continued)
OTHER PUBLICATIONS

Joelsson, T., Mobile Web Browser Extensions: Utilizing local device
functionality 1n mobile web applications, Master of Science Thesis,

2008, 64 pages, [retrieved on Oct. 21, 2014], Retrieved from the
Internet: <URL:http://www.diva-portal.org/smash/record.
1si?pid=diva2:511443>*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Geollrey St Leger

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A native application built for a mobile device can embed
non-native JAVA code that may be executed by a JAVA virtual
machine also embedded as a library within the native appli-
cation. Enterprise applications may be extended for use by
mobile devices. Business logic for an application may be
constructed just once and then used in both enterprise appli-
cations and mobile device applications.

20 Claims, 7 Drawing Sheets

| 106 CONTAINER
____________________ 122 HTRILS 8 JAVASCRIPT | g b 149
e T A WEBVIEW | [[T ADF MOBILE
126 ADF MOBILE XMLVIEW |1 430 @@ [L, 0 8o
| LOCAL: R L] | 142
a , erngy | JERVER 4 oo R ™ i
b aag | [AZBADFCONTROUER 1 iATMLU: ey 1 e 2 | ADF FACES R
i E DEVICE E i"l"']; """"""""""" et ifrrr-?l Ei‘ ity
: L MATIVE | | ‘_: E.__';fnaigﬂ ::ﬂ Z T 144
L VIEWS ¥ e T e e o Z % THIRD-PARTY
' 116 1WA j & | RIS
o .1._:1'_{.?’_. P .) ::I:- ::::
| PHONE | | 1232 MANAGED BEANS R RS
o !] E: |
LGAP T T T - :
o b :“ * -) : [:
B __'?"J_’"'_’%.’{l_’.ﬁ?‘T?H‘?‘L??ETLTT.'_'_'_'_'_'_'_'_'_'_'_'_'.'_'.'_'_'_'_'_'_'.'_'.'__ Lo R 145
e R S I ————————————————————— A TR OWEB SERVICES
e oo L A Lot JuCIEEn | {SOAP # REST)
1 108 DEVICE SERVICES -uae o
LOCAL DATA !
102 MOBILE DEVICE 104 SERVER

e o e e o e e e e e e = = = = = = = = o = = e o e e e e = e = = o = = = = = = o o = e o e = e o = = = = = = = = A

US 8,978,023 B2
Page 2

(56)

8,196,129

8,443,345
2003/0154467
2003/0192036
2004/0015936
2004/0158813
2004/0261069
2007/0006203
2007/0168953
2007/0256086
2008/0127143
2008/0134153
2008/0178151
2008/0229299
2009/0172657
2009/0193404
2010/0131951

2012/0272239

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2

* % % % %

% F* % %

NG A A G AN A AN A A

6/2012
5/2013
8/2003
10/2003
1/2004
8/2004
12/2004
1/2007
7/2007
11/2007
5/2008
6/2008
7/2008
9/2008
7/2009
7/2009
5/2010

10/2012

Martinetal. 717/166
Cartertetal. 717/137
Charnell

Karkare et al.

Susarlaetal. 717/166
Xiaetal. ...l 717/116
Verbeke etal. 717/166
Marwinskicoovevinnen, 717/166
Diezetal. ...coooovvvvininnnin, 717/118
Srinivasan et al.

Lagergren 717/148
Lucas ..oooovvvivviiiiiiieeinn, 717/137
Chanetal. 717/115
Martinetal. 717/163
Makelainen et al. 717/174
Kielstra et al.

Cartertretal. 718/100

Kalle et al.

OTHER PUBLICATIONS

Charland, A., et al., Mobile application development: Web vs. Native,

Communications of the ACM, vol. 54 Issue 5, May 2011, pp. 49-53,
[retrieved on Oct. 21, 2014], Retrieved from the Internet:

<URL:http://dl.acm.org/>.*

Non Final Office Action for U.S. Appl. No. 13/657,775 (Oct. 28,
2013). 15 pages.

Global Intelligence Alliance, “Native or Web Application? How Best
to Deliver Content and Services to Your Audiences over the Mobile

Phone™, Apr. 2010, 38 pages.
mobiThinking, “Mobile applications: native v Web apps—what are

the pros and cons?”, Retrieved on Dec. 28, 2011, 3 pages, from URL:
http://mobithinking.com/native-or-web-app.

International Search Report dated for application PCT/US2012/
071445 (Apr. 4, 2013).

Notice of Allowance for U.S. Appl. No. 13/657,775 (Jun. 4, 2014) 10
pages.

Notice of Allowance for U.S. Appl. No. 13/657,774 (Jun. 9, 2014) 19

pages.

* cited by examiner

US 8,978,023 B2

Sheet 1 of 7

Mar. 10, 2015

U.S. Patent

TR oL

43AUIS FOT IDIA30 IHSOW TOT

(153 8 4VOS) .. :
SIOIAYIS §IM e | H .. H | H — H

| VUM TG INGS dav EeE] | | T
b HIANIS |] |

VEL 1 GET [MIIATWX 310 4V 92T

|
|
|

|z .
] T T T =y || .
.. |2 A SNV39 GIDYNYIN CEL ANOHd .
I 0000000000 BLl ”
, O] | , “
i1k m B O s WAL m . m
AHY-QYIHL » || F O SIRE SMIIA |
Ta7a) | 2 S CIALLYN |
m ,,M,,f!... ——d inrif.ﬂln\\.nn..\. k. 4 . m
NE o T 30IA3a

£

a %

= 5

U

ll

FnEow Ay 0 o | MIAEIN LAMISYAYT 8 STALH T2T -

E%ﬁz@uﬁ

e ot o T = T T T = T T = = = T T = = = T = = = = = = =T 1= = = T= o= 1= = == A= "= = 1= 4= = = ~T= o= 1= = == = T = == Y= 4= = = 4= = = == == T = == == 4= = = == 4= "= = == P = == ~T= "o 1= = == = "= = = = = = = o= 1= = = =P T = = Y= 4= = = = 4= = = == T = == = "= = = == 4= = = == 4= = = = o= = = == A "= = = = 4= = = = 1= = == == T = = == 4= = = == == = = == T = == F= "= "= = == = = = = A= = = = o= = = = = = = = = 4= = = o= = = == == T = = == 4 = = = A= = = == = = = = o= = = = = = = = o = =

-

111

US 8,978,023 B2

Sheet 2 of 7

Mar. 10, 2015

U.S. Patent

dr o dr Br o dr br Br r o br o Jr o br b B b o dr B o 0r B e B 0 b 0r O e 0 e B e Or 0 e 0r O o br O B 0 B e e 0 e 0r 0 B 0 e B e O O e 0r B br B O 0r 0 e B 0 e 0 e O 0 0r O e Or O br O 0 br B e e 0 e 0r e e 0r 0 0 0 0 O

LR I I U I I I I O R O O O O O O N R N O O
RN N N N A R O N R R D B R R N N I N O R O T O I O B R B R B R R B R N R R N N O R O N R B N R R R RN O I N R O I B O B R B RN N N L
w4 dr br r r r r r o br b b b r A D E R E E E E E E E E E E EF E E E E E E N E N S E E N E S N E N E N E E N E N E NN E NN E®N L] [[" = § E E E E E §E E E E N N N N N EHN NN

iy

fiay
o

Ao

i

o
. A
Iy
Lot

L]
< gt
1
.
1
.
.
L
L
L]

L)

4 = & & m x ik

~ Fh
SB L
’
"

3

o

u-;n

.
.

.
.

b
.

.
.

.
.

b
.

1
L4
L

L

l*
.
= b
.
o
.
ok
.
[
.
=k
.
]
.
n h
‘.'r*'r
L
L

i:
§
.:E
)
)
)
)
)
F

L
" omom
" s omom
" s omom
" omom
" s omom
" s omom
F ik
F oir ki

R

r
-
-
]
-
-
]
-
-
L}
L4

.
1
.
.
1
.
.
1
L
L
L]

" s omoa e "2 m a2 maomoa
R mdr b dr dr e 0r 0e be B B b O O 0 Jr dr B on RN
- = ;g r b b b b b oS b b oS M b S M kR & = & & & & 4 & & &2 & & & & & & & & & &2 a2 & &2 5 & = x ik
" nn I e T e e S i S U R R R
s omoa b U dr b dr de de dr e b e e b de de b droaon " A aoma a s & = oan
= = = m A A od A odr ol A o d ol S dd iAo = = = = == = = = ==
a2 omoa e 2 m a2 moan 2 n a noa
" mdr b dr dr e e 0e be B B b O O b Jr de Bon R monn R
- & m g r b b b b b b S b S M b S M o " a2 =& A =
. "o I e T e e i i U " mmonm .
" onoa o b U dr b dr de e dr e b b e b de de b deomoa a n a " a
- 4 = = = m A A od A odr ol A o d ol S dd iAo = = = == L]
a & moa e " aomoa a n
N R mdr b dr dr e 0r 0e be B B b O O 0 Jr dr B on N
- Fl r b b b b b oS b b oS M b S M kR = & =y
. I e T e e S i S U N
r . a .r.r._1.r.r.r.r.r._1.....r....r.....r....t....t.....r....r....t.r.v.r.r.r.t.r.r.-n . SILIC L O
. . R " aoam
.._..Il..n a o e e T e A e I T e " aonoa
» r 3 mdr b o . RN T]
a md b b o brm owoaowoaow - -
kb bk nomomonomon
a . N

i

:

5

& m b W b) m = & m & § EA N A N A §F A A & & A & & A & & &2 & &
m = b b b b b b b b b &b bk &k
" & & a2 § & 5 A = A A = a

i

|]
r .-_.-.
L] L]
L] L]
'Y | " momow
L) L) " & onoa NN
i‘ 'l l.T.rlllllllllllllllllllllllllllllllllrr lllllllllllllllllllllllllllllll.T.T.T.—.
LR N N R N N N N N N N N NN N N NN N N N N N N NN NN NN NN
- [| m dr b dr de dr de dr de Jr o de Jr de Jr de Jr e Jr de Qe de Jr de Jr e dr de Jr de Jr e Jr de Jr de Jr de Qe de Jr de Jr de Qe de Jr e Jr e Qe de Jr de Jr de Qe de Qe dr Jr e dr de Qe de Jr e Qe de Jr 0r Jr dr Qe de Qe 0r Jr dr O de Qo 0r Qe e O de O 0r Or o 0r O &
[] [] o dr b b S b oS S dr S S S S b W b b bl b b b e b b e b i e b b e b i e b b bk b bk il e b b e il e i b e i b e il bk il e i b ki b e i i ki b bk i ki ki ki ik
'Y [| I o
[] [] o dr b b S b oS b b S b b b b kb i ki ki ki kil ik ik il il ik ik ik i i i ik i ik i ik i ik i ik iiikiiikiiikiiikiiikiiikiiF
) L]
L) L) 4 & &8 &2 2 2 & & & 2 2 2 & &2 & 2 & 2 & 5 & &2 2 2 & 5 & &2 &4 2 &4 5 & &2 &2 2 & N & &2 4 2N 2 & & &2 2 2 & 2 & &2 2 2 & 5 & &2 &2 2 & 5N & &2 2 2 & 2 & 2 2 2 & 2 & N 2 2 &2 2 & & 2 2 & B & & 2 & & & 4
- [| m dr b dr de Jr de Jr de Jr de Jr de Jr de Jr de Jr de Qe de Jr de Jr dr Jr de Jr de O de O de Jr de O de O dr Jr de O de O de Jr de O de O de Jr de O de O de Jr de Jr de O de Jr de O 0r O 0e Jr dr Jr de e 0r Jr de e 0e e 0r Jr Je 0 0e e 0e Jr 0 0 0 &
[] [] o dr b b S b oS S dr S b b S b b W b b bl b e b b e bl e bl e b i e b ik b bk b i e i b e il e i bk i b e il bk i b e il ki b il kil i ki ki ki S
'Y | . I I I O O I O s A U L U
L) * - r - r e dr dr de Jr dr Jr dr Jr o de Jr 0r Jr dr de de Qe 0r Jr dr dr de Jr dr Jr dr Jr de Jr 0r O dr de de Jr 0r Jr dr dr de Jr 0r Jr dr Jp o 0e Jr 0r Jr o dr O 0e Qo 0r Jr dr dr 0e Jr 0r Jr dr Jr be Jr 0e O de Je be O dr O dr de 0e O 0e O de Je be O de O 0e O b O 0 O 0 &
[] [| . LI I I I O e dr b b b b b b oS b b b b kb b b s mr s mrso R ddd i i i i i i i i i diiiiiiii i i i i ik i
* * D U U L) B b bk kb kbbb d b b dd i hiaaona
- [| m b h bk ook bbb bh bh bk [[[} [B A kb ko bk bk b ok bk d ko bk bk dhon .
L) L) drodr Sr b o dr o Br e o dr o dr Jr 0 O 0 0 » » [» B R bbb dododrdrodoodrdrodrodrodr b dr M b b
'Y [| P e L e el g b e b e e de de e de U e de de de de de e bon ow B
L) L) Jrode dr o de Je be Jr o de Jr o de Je & b 0 B [[} [[Bl b b dr b o de de de o de o de de de o de oo dromoa
¥, A -.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.-.llllln. l-_ II_ IllII...l.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r.r.._.r.r....n "
- n
._..-_ .-_.. mododr M S dodo b e M dr dr e ek »
L) L) o I N N Y L L »
- [| m b h bk bk kb h kbh bbb
& & drodr dr Jr o dr b e Ur o Jr 0 0 O O O »
[] [| LI I I I O e
* * o e e o ﬂ
- [| m b h bk ook bbb bh bh bk [[} r " m or bk bk bbb bh kb kA
[] [] r b b b S b oS S dr S W N o N [] [] - dr b M b o M ko Mk . .
F * P e L e el E U e)
Y [drodr dr Jr o dr O e Jr 0 0r 0 O b 0 .-...'. drodr b Or Jr 0 0 0r Or 0 0 0 K
L L J . m bk bk s s s [] wr b h b h s b h s S
[[] U U L) » |3 L U U U U T U
[. B d dde e de b ke o b b i b kB [w d b drode e b Jr de b b b N
F I U R L R [] dr b b b S b oS W b S b S S N E dr b A b o S ko o

b M N
-.... P e e P P P

b b b oM A b o A o M
br & & br i b o e b b de b b A b

Dl i . m o kb b kA k kb bk »
.) ek ke ke I-.I-.' I-.
.r.r.r.r.r.r.r.r.r.r..r.r.r.ri..l'l'l..'
I.TE.T.I.TE.TE.T..TE.TE."".'"-
o b b oS S b oS S 0 S ode i o N []
" .r.r._1.r.r.r.r.r.r.r.r.r.v.r.r.rk.rkl.t.r.r.rt.r.v.r.-.'l' I-_ I" -'

A

moa dr dr b dr o b dr b dr b b W b s B AR
m & Wk b h s ks h rh s E o

”“%w“”“
X

ndr b A M b b ke d k] kA kR Tl)
.r.r.r.r.r.r.r.r.r.r..r.r.r.r.-.ll.lll..'ll'
i et .r.T.r...t.r.r.._ R .I-. l-_ II 'I I_I
P e) e R
F U d b b de b b dr doode & b 0 O
-.r....r....r....r....r.r.r....r....r.-.ll'l"'l"' '-_' BB Fh b b bk bk bk b b b h b honomomoEoEoEoEE

F i b b e dedrr i oo b gy BEFEBFENEEENEBNERFRERERLES S ik lassasasana g ddrirdiidiikird
-.r.r.v.r.r.v.r.r.vl.r.v.r.r.v.-..r.-.l.." IIIII_I 'IIIII-..T.r....T.r.r.T.r.r.T.r.r.T.r.._.-..-..-..r.r.r.r.r.t.v.r.r.w.r.r.v.r.r.v.r.r.v.r

.T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T..'.T.T.r .T.T.T.r .T.T.T.r & B [] [] [] [] [] *.T.r .T.T.T.T'.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r . .Tl & - .TI & - *l & - .Tl & - .T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r .T.T.T.r i h B
=
o ‘-. .”...T‘”-. ‘”-..T

| A R
ir b b dr b W S N

dr o dr B o Jr o br o dr o br o 0r o dr b odr b 0 0 b X B R A b odrdr r b dr e dr dr o br Jr B br B e e B e B O e 0 e O 0 br dr e b O br 0 e e B e e 0 e 0r 0 e 0r 0 0 0 O O
[I | modr od o dr S e b dr e b O e B 0 O e 0 0 O O o

) E I I E I I I U O U U)
LI N N O R R I I E I I U I N]

] dr o dr Br o Jr o br dr b 0 odr O dr o dr B o dr e dr br b dr b b B b e e b b
m b kb h s b s s S b & ok s sk s ks A

[b bbb o b O e dr b b b b Ak b b ko
LI B N A A O N R R A & Jro b b o dr b b b b b b A

) E I I dr o dr b b M b b b koS M ks
m bk bk s & sk b & bk Fh ok s o

"2k onoa

- " = m o= m o= oEom - ad b b kg b k& A Ak Mk kA Ak momowm sk kAo
U L) o b M d b &k K & = aonoa
w kb bk b kK Ak Jpod koh ko P
- Jodr dr b Jrode b b b i Jodr dr de e de oo b e e Jromomoa
P e) Ak J kb h bk bk bkoaomow
. L Ul L L L) bbb b b b b e o kb bbdeaonoa
m o b drod b bk kA b & o dr b b b Je b de b droaon
- g U L) Jod Mk e de e b de b de b o
m b b bk kb kAL A bk kb bk kb h bk ok ko
. Jodr dr b Jrode b b & i drode drode e de Jr o de de b O 0 O 0)
P o i P i el i e
- o L U L e) e L e

. LI N R R A O NN NN B N NN N R N R B N N N R T I T I I I B T T N NN N N N N N O]
- o dr b b S b oS M b S b b S b M kbl e bl e bl Mk b b b bk bl ki il s s a oA ox i i i i i i i iira aan
= = = b ko h h s h s o

A omdr il iira a Jr b b i irh
LI I B I R I R L R R I R L] L I I
[

a u & b b b odr i i i s s a b b b A b o A b o ik ik S
" m kb h h s s s rh s a & b h F h ok h s s o s
" a m b d i i i i i iiia s a s s ki i i iiiiiiiiiiih

PR i e e e e i U U T
nm n or d kb ok bk Mk b h b ok b h o bk nom ond h b bk bbb ddh bbb ddhd
m s om b dd b b de b ddddde b dd e drmoaon e d dd e ddodddddd i h
R R e e o e I i Sl o L i S S o o T
a & b dr dr dr dr dr dr de dr de dr dr dr dr B dr dr dr o m e Br dr dr dr Jr dr Or 0e 0r B Ok Jr dr 0 0r 0 0 0 X
mon or M kb h b h Mk d ko b h b h bk Jdowh b b h bk b hdh dh ik ddhd
PR I e U U

B or b b d M b b ke d b A A A Jod b doode b dr dr o o e de de de de dr dr O O e 0 0 O 0

moa b d A d e b b b A dr dr A A b d de Jp de de de b dr o o Je B dr B Jr Jr Je 0 0 & 0 0 B
o or b b b b bk bk k b h b b b h bk bk ek b h b h bk ih Ik
a = oaom Ik ke d b b M dr d b A U e Jp de de b b de o do b e de e b dr Je b b & b M &
B or b d A A A b b b A b A b dr d dode de b O Jr Jo Jp Jp Jr dr dr dr Op Jp Jp Jp A 4 A 0

P o N e o i i T il T i s
P " oan ko

m oA d M d d ke d b dr b A A

LA . __ﬂr

LA S A e e R ey

t.u.- d I.T.T.T.T.T.T.T.T.Tll rode bbb ok kN .TI..Tl..Tl..fI..Tl..Tl..fI..Tl..Tl..fI..Tl..Tl..fI..Tl..Tl..fI..Tl..Tl..fI..Tl..Tl..TI..Tl..T...TI..T...T...TI..TI..T...TI.r - . A" L] -l I.T.T N . i
n - s om

o

e
X

U.S. Patent Mar. 10, 2015 Sheet 3 of 7 US 8,978,023 B2

JRRSRLY PR PR PRy R VR PR PRy YU (R PR PR (R (R R PR (R Ry J P PR I i -
—_—
- -

e e e ey S ey ey ey ey ey ey S ey e ey ey ey e

 UNINITIALIZED

j.’

SEND CREATE CHANNEL

E BN OB BN BN B BN B BN BN B BN BN B B B W B B W O m

CREATING

.......... -emama

RECEIVE CREATE CHANNEL CONE

J

o
ShY

3

R Bo- I

CREATED

RECEIVE LISTENING _IND

FEET T YT YT YT YT YT YT YT YT YT YT YT T T YT YT T YT YT YT YT YT YT YT T YT YT YT YT YT T T YT YT T YT YT T T YT T v v v v =v_.

L e

L e T e

L SEND DELETE REQ

210
DELETING

; RECEIVE DELETE _CONF

. N
i)

312

DELETED | RECEIVE DELETE_REQ

FIG. 3

ii

= - W]/ O TN TECITENCEES 3 FE I O O3 K 3N . ?
] E | [] d
[] r 1] L | 1

r] a

r l 1 B, CE SC.EN SC KJ LSS RCJCECJCSE BN, CH S NG CECE K EC] [N BC. CE S KN B O BN KJECECICE . [N B LN S NS
] r 1 u

r

| 5

"

fn-

F vﬁ tLANQD TINNYHD 313 mﬁw%mmmmﬁmﬁmm

aﬁmméﬁﬁmw%mﬁ

US 8,978,023 B2

. . L . (b 03 TEINNYHD mmn_m%%%@%gmum US|
BUUES E 0j91eg

..... u
m 0 ul
<t . m
Qo : :
L T ¥ 03 2L et oL i s S S
o= . _ u _ @mmmmﬁtwm SIS RIS
7 . m .

L3 el

. . m. crimms i smmicn o n e e s mrcmmi O
- ﬂ _ T .
S £ R S I {11 dNGD TINNYHO alvauplsbessapuss | m _
s e AR |
= | BUURYONATLDY |

{1 TENNYHD ERERR e ET

| BUBBUORAILO! PR

N R E R
_mﬂ%ﬁ B B 312810

E%am:_ﬁﬁmau M B _w%ﬁmmm@mmau xun SUUBUSNA DD BUUBUDRA DD h@mmgm%mgﬁmswﬁ} Ew_

U.S. Patent

8y i

ii

-
u
n
n
u
N
Ll
|
|
N
M
]
-
-
N
[
o
-
N
r
E
B
N
E
E

:.m,f L ANOD TINNYHD 31373()0essoppuas
{pdl E%Emam%%

DoAY BUTeMm ONanEm.

US 8,978,023 B2

m I.lI.I.I.IIIIIIII-III-IIll!lll.‘l.‘l.‘ll.‘li.'li.'lil.'li.'li.‘ll]l.‘li.'ll.'

IV EIPEIREIEES: E@m_.ﬂ_.w.%mm%mmmﬁ@,é
. {103y ﬁzz@mm Qidragebessaypoasily
“ [, SBuusyH2B:0p
B RINRL E 813130
ﬂ 1 L ANCO DNINILSIsOesseppuss
S - jlpusg .
— gnosislesuodsey o)
& u » i
= {1 DNINT LS jebEssoppues
2 LRI FE P LR T
TERAISH L jojsiDa
Loy TR |
N : ﬁmﬁﬁ Bunem gnovem
= | S o ~ {1 ANOD TINNYHD 31VIyDIshessoypuss _
— § JisuiByjaesD
. [—————
S | BUUBLDWANLDN b (irosuspjesuodsayso e =]
m ,,,,,,,,,,,,,, UMERD mm-mﬂ_.ﬁmmm.ﬁm%E.mmmm
SLUE I e A :
,,,m ,,,,,,,,, ﬁﬁ @,,_,, oy (L BiE iR
B IBUUEUS MBU B mwmﬁu

RELELE
Al 1843

[BUBEYDA-00!

| 10IPUBHIONUGTH]

U.S. Patent

U.S. Patent Mar. 10, 2015 Sheet 6 of 7 US 8,978,023 B2

METADATA
LATARASE

APPLICATION
[ATABASE

St4

SERVER X VY
.
NETWORK }"“--— 510

508

Fi(z. &

U.S. Patent

g QUBSYSTEM

COMMUNICATICN
SUBSYSTEM

Mar. 10, 2015 Sheet 7 of 7

600

608

STORAGE
DEVICE(S)

ISPLAY
SUBSYSTEM

PROCESSING
ACCELERATION

(. 6

- OtHeER CopE
1 (PROGRAMS)

US 8,978,023 B2

610

COMPUTER
READABLE STORAGE
MEDIA

612

MEDIA READER

024
WORKING

MEMORY

OPERATING
SYSTEM

US 8,978,023 B2

1

CANONICAL MECHANISM FOR SECURELY
ASSEMBLING FEATURES INTO A MOBILE
APPLICATION

CLAIM OF PRIORITY

The present application claims priority under 35 U.S.C.
§119 to U.S. Provisional Patent Application Ser. No. 61/581,

463; titled “ENABLING JAVA FUNCTIONALITY IN
MOBILE APPLICATIONS”; filed on Dec. 29, 2011; and the
entire contents of which are incorporated by reference herein.

BACKGROUND

A great deal of time an effort goes into the construction of
an enterprise application. Development of such an applica-
tion may involve the specification of multiple user interfaces
and corresponding business logic that 1s imnvoked based on a
user’s mnteraction with elements of those user interfaces. In
recent times, mobile devices such as smart phones have
become so popular as to become the premier computing,
device that a person might be most likely to use on a daily
basis. Unfortunately, applications developed for enterprise
scenarios often cannot be ported with simplicity over to a
mobile device context. One of the obstacles sometimes con-
fronting an application developer who might wish to make his
enterprise application available to mobile devices 1s the pos-

s1ibility that the enterprise application might rely heavily on
the JAVA programming language, while the mobile devices
might not have any way of interpreting commands specified
in that language. Mobile devices often do not come config-
ured with a JAVA Virtual Machine. Consequently, application
developers often are discouraged to find that they largely must
start fresh when creating an application for execution on a
mobile device, even 1n scenarios 1 which a substantial por-
tion of the business logic for that application might already
exist within a JAVA-based enterprise application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram that 1llustrates an example of a
flexible runtime architecture, according to an embodiment of
the 1nvention;

FIG. 2 depicts an example of how a VMChannel may
facilitate flow oI messages between a native entity and a JAVA
entity according to an embodiment of the invention;

FI1G. 3 depicts a state diagram for a VM Channel according
to an embodiment of the invention;

FIGS. 4A and 4B depict control message sequence dia-
grams for creating a VMChannel, registering a listener for a
VMChannel, and deleting a VMChannel according to an
embodiment of the invention;

FIG. 5 1s a simplified block diagram 1llustrating compo-
nents of a system environment that may be used in accordance
with an embodiment of the present invention; and

FI1G. 6 1s a simplified block diagram of a computer system
that may be used 1n accordance with embodiments of the
present invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, specific details are set forth 1n order to provide a thor-
ough understanding of embodiments of the mvention. How-
ever, 1t will be apparent that the invention may be practiced
without these specific details.

10

15

20

25

30

35

40

45

50

55

60

65

2

Overview

An environment, 1n which applications can be built for
mobile devices, 1s disclosed. More specifically, an environ-
ment 1n which native applications can be built for mobile
devices 1s disclosed. As used herein, “native” means that the
programming language used to write the source code for the
application corresponds to the operating system, or platiorm,
of the mobile device. Thus, on a mobile device having an 105
platform, a native application might be written 1n the Objec-
tive C programming language. On a mobile device having an
Android platform, a native application might be written 1n the
JAVA programming language. From the perspective of the
user of the mobile device, a native application 1s downloaded
by the mobile device and executes on the mobile device.

Using techniques described herein, enterprise applications
may be extended for use by mobile devices. Business logic for
an application may be constructed just once and then used 1n
both enterprise applications and mobile device applications.

Container

Embodiments of the invention may mvolve a “container,”
which 1s written 1n the native programming code correspond-
ing to the mobile device platform. The container contains all
of the components that are needed to allow native applications
to interact with the mobile device’s operating system. These
components allow the native applications to perform all of the
kinds of operations that a typical application would need to be
able to perform. Such operations may include listening to
events, reacting to events, controlling system resources, and
displaying user interfaces. The container also may provide
security features.

As 1s discussed above, an environment in which native
applications can be built for mobile devices 1s disclosed.
Different environments may be constructed for different
mobile device platforms. For example, one environment may
be constructed in the Objective C programming language,
while another environment may be constructed in the JAVA
programming language. Ideally, an application developer 1s
spared from having to worry about the details of the program-
ming language in which the environment has been con-
structed. Therefore, the container, which provides the envi-
ronment for native applications, 1s generated for the
application developer.

Embedded Java Virtual Machine

In one embodiment of the invention, a JAVA Virtual
Machine (JVM) 1s embedded within the container. The JVM
may be embedded as a library, or as a slave process. The JIVM
allows native applications to execute business logic in the
JAVA programming language. This may be the case even 1f
the native applications are not written 1n the JAVA program-
ming language. Within the container, the JVM may interpret,
or otherwise exercise, the native applications’” JAVA-based
business logic.

Web View

In one embodiment of the mvention, the native applica-
tions’ user interfaces utilize a web view component within the
container. This permits the native applications to generate
user interfaces using Hypertext Markup Language (HIML)
5.0. Such user mterfaces may be viewed by a browser appli-
cation executing on the mobile device. Connective compo-
nents within the container connect the web view component
with the embedded JVM, making the interaction between

US 8,978,023 B2

3

user interfaces and the JVM seamless. These connective com-
ponents handle all of the interface-to-logic bridging on behalf
of the native applications. Communication between the web
view component and the JVM may be both forwards and
backwards, in that information may tlow from the web view
component to the JVM and from the JVM to the web view
component over the connective components. Such commu-
nications permit data changes to occur and to ripple through
to other aspects of the native application.

Modular Elements

In one embodiment of the invention, the environment dis-
cussed above permits the construction of modular elements of
a native application. Each of these modular elements 1s called
a “feature” of the native application. Each feature may be
imagined conceptually as a mimature sandbox that 1solates
that feature’s data and operations from other features’ data
and operations, preventing one feature from inadvertently
tainting another feature. Assuming the existence of features
“A” and “B,” any operations performed within feature “A”
remain within feature “A.” causing no interaction with feature
“B,” except 1n certain allowed instances that are at “applica-
tion scope” level. Thus, an application developer can take
pre-constructed features and use them as building blocks to
construct a complete application. Each feature of the appli-
cation 1s protected from each of the features of that applica-
tion, thereby providing overall security, while connectivity
between components 1s achieved.

User Intertaces

In one embodiment of the invention, the user interfaces of
the native applications are similar to those found in the full-
fledged Oracle Application Development Framework. In one
embodiment of the invention, the user interface 1s constructed
by a developer 1n a development environment. In this envi-
ronment, the developer drags and drops user interface com-
ponents, from a set of user interface components, into the user
interface being constructed. These components may be
dragged and dropped together 1n order to connect these com-
ponents with each other functionally. In one embodiment of
the invention, a declarative language 1s used to bind user
interface elements to underlying business logic and business
objects that implement such logic. In one embodiment of the
invention, an Oracle Application Development Framework
(ADF) mobile extensions (AMX) layer enables this declara-
tive-style binding. Further information regarding the Oracle
ADF may be found 1n “Oracle ADF 11g Primer: Introduction
to the Building Blocks of a Fusion Web Application” (pub-
lished on the Internet 1n April 2007), the entire contents of
which are imcorporated by reference herein.

In one embodiment of the invention, a binding layer, which
cnables the binding of user interface elements to business
objects, 1s split into two ditferent parts. One part of the bind-
ing layer i1s contained within a JAVAScript environment
inside of the web view component discussed above, and
another part of the binding layer 1s contained within a library
that 1s embedded within the container, as discussed above. As
1s discussed above, 1n one embodiment of the invention, this
library represents an embedded JVM. In one embodiment of
the mnvention, all of the binding between user 1nterface ele-
ments and business objects 1s performed within this multi-
part binding layer.

In one embodiment of the invention, JAVA objects are
executed within slave threads as a library. A user interface 1n
a main thread may interact with these JAVA objects. The

10

15

20

25

30

35

40

45

50

55

60

65

4

performance of the binding and interaction in the manner
discussed above makes the binding and interaction seamless

for the application developer.

Flexible Runtime Architecture

FIG. 1 1s a block diagram that illustrates an example of a
flexible runtime architecture 100, according to an embodi-
ment of the mvention. Architecture 100 includes a mobile
device 102 and a server 104. Mobile device 102 includes a
container 106, device services 108, and local data 110. Con-
tainer 106 includes device native views 112, a web view 114,
a JVM 116, and a phone gap 118. Container 106 additionally
includes credential management, single sign-on (SSO), and
access control 120. Web view 114 includes HTMLS5 & JAVA -
Script 122, and server HIML 124. HIMLS & JAVAScript
122 includes ADF mobile extensible markup language
(XML) view 126, ADF controller 128, and local HIML 130.
JVM 116 1includes managed beans 132 and ADF data model
134. In one embodiment of the invention, web view 114
communicates with JVM 116 through one or more virtual
machine channels 136. Device services 108 are communica-
tively coupled with device native views 112, phone gap 118,
and JVM 116. JVM 116 1s also commumnicatively coupled
with local data 110. Phone gap 118 is also communicatively
coupled with HIMLS & JAVAScript 122. Phone gap 118 may
be implemented via an open source project.

Server 140 includes ADF mobile 140, ADF faces rich
client (RC) 142, third-party uniform resource locators
(URLs) 144, and web services (SOAP & REST) 146. SOAP
stands for Simple Object Access Protocol. REST stands for
Representational State Transfer. Server components 140-144
are commumnicatively coupled with server HTML 124 through
container component 120. Similarly, web services (SOAP &
REST) 146 are communicatively coupled with JVM 116
through container component 120.

In one embodiment of the invention, container 106 is pro-
grammatic code written 1n the native programming language
corresponding to the platform of mobile device 102. Con-
tainer 106 1s the shell in which native applications execute.
Container 106 handles interactions with the operating system
ol mobile device 102. Container 106 listens for events. Essen-
tially, container 106 constitutes the main body of a native
application executing on mobile device 102. For example, a
telephone application executing on mobile device 102 typi-
cally needs to be able to perform a certain set of operations 1n
order to interact properly with the operating system of mobile
device 102. Container 106 enables the application to perform
such operations. In one embodiment of the invention, con-
tamner 106 contains multiple sub-systems. Container 106
wraps around and connects these sub-systems together. These
sub-systems may include, for example, sub-systems 112-120
illustrated in FIG. 1. Some of these sub-systems are discussed
in greater detail below.

In one embodiment of the invention, device native views
112 includes views, such as user interfaces, that are native to
mobile device 102. The presence of device native views 112
cnables applications executing on mobile device 102 to
access such native user mterfaces of mobile device 102.

In one embodiment of the invention, web view 114 man-
ages HITML 5.0 components of the application that executes
on mobile device 102. Web view 114 enables such an appli-
cation to access systems that may be external to mobile device
102. These external systems may be accessible through
remote URLs, for example. Web view 114 manages local
HTML 130 that may be used by the application. Web view
114 also manages ADF mobile XML view 126, which

US 8,978,023 B2

S

enables programmatic constructs of the application to be
specified 1n a declarative manner. According to an embodi-
ment, declarative components combine the functionality of
multiple ADF components. ADF components may include,
without limitation, layout components, table and tree compo-
nents, list of value (LOV) components, mput components,
navigation components, output components, query compo-
nents, data visualization components, etc. According to an
embodiment, declarative components have no business logic
and are not data bound. The developer of the declarative
component can hide attributes of that component so that
consumers are prevented from changing those attributes. Web
view 114 also includes ADF controller 128, which, in one
embodiment, manages a user interaction and application flow
that the application developer defines 1n a task tlow. A task
tlow, specified by the application developer, defines an appli-
cation task. The definition of the task may include web pages
and business logic that interacts to allow a user to complete
the task. In one embodiment, ADF controller 128 enables
transitions between web pages of the native application dur-
ing the application’s execution; ADF controller 128 pro-
cesses user input, handles errors, and determines which web
pages a user of the application ought to see at any given point
during the application’s execution.

In one embodiment of the ivention, credential manage-
ment, SSO, and access control 120 performs security func-
tions on behalf of the native application. The presence of
component 120 relieves the application developer from the
burden of custom coding such security functions into the
native application. Component 120 may provide sign-on
capabilities to the native application under circumstances 1n
which the native application attempts to access an external (to
mobile device 102) resource that requires such sign-on to
occur prior to granting access. Such a sign-on may be single-
tenant or multi-tenant. Such a sign-on may be using the
HTTPS protocol or may be non-secure. In one embodiment,
all secure transactions in which the native application
engages with external resources pass through component
120. Web page fetches, web service calls, and REST calls are
types of operations that may be performed as a part of such a
secure transaction. Component 120 provides, to the native
application, protection from potentially malicious external
resources.

In one embodiment of the invention, JVM 116 1s imple-

mented as an embedded JAVA library. In one embodiment of
the invention, JAVA code written by an application developer
1s executed within JVM 116. IVM 116 i1s a separate thread and
sub-system that executes such JAVA code within container
106.

In an embodiment of the invention, JVM 116 includes
managed beans 132 and ADF model 134. In one embodiment,
ADF model 134 implements data access and business logic.
ADF model 134 may include a data-binding facility that
connects a view layer of the application to a data and business
services layer of the application. The view layer typically
includes a web page having user interface components. The
data-binding facility may call business services that are
implemented by managed beans 132. Managed beans 132 are
reusable software components for JAVA. Managed beans 132
are classes that are written 1n the JAVA programming lan-
guage and that conform to a particular convention. Managed
beans 132 may be used to encapsulate many separate JAVA
objects 1nto a single object (a bean), so that those multiple
JAVA objects can be passed around to different parts of the
native application as a single bean object 1nstead of as mul-

tiple individual JAVA objects.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment of the invention, local data 110 1s a
database that contains data that the native application may

read, update, and/or store locally on mobile device 102. Such
data may be encrypted or non-encrypted. In one embodiment
of the invention, container 106 provides database connectiv-
ity services that allow the native application to access local
data 110 1n a database-oriented manner.

In one embodiment of the invention, device services 108
includes other applications and services and features that
typically come shipped with mobile device 102. Such ser-
vices may include, for example, a calendar service, a tele-
phony service, a camera service, a global positioning system
(GPS) service, etc. In one embodiment of the invention, con-
tainer 106 makes device devices 108 available for use by the
native application through a data control facility. If the service
that the native application 1s using 1s a telephony service, then
the native application may access that telephony service
through phone gap 118. For purposes of discussion herein,
both devices services 108 and local data 110 are considered to
be external resources, even though they reside on mobile
device 102, because those resources are not contained within
container 106.

Resources provided by server 104 are also considered to be
external resources for purposes of discussion herein, as such
resources are external to container 106 as well as mobile
device 102. Server 104 may be an enterprise server, for
example. Mobile device 102 may access server 104 through
one or more networks, typically including one or more wire-
less networks and the Internet. The native application execut-
ing on mobile device 102 may request a remote web page
from a resource resident on server 104. Under such circum-
stances, component 120 of container 106 may determine
which parts of the executable code specified within the
remote web page are permitted to execute on mobile device
102. Component 120 may prevent certain parts of such
executable code from executing on mobile device 102 it those
parts are deemed to be security risks. A remote web page
utilized by the native application may include resources such
as ADF mobile 140, ADF faces RC 142, and third-party URLs
144. ADF mobile 140 includes a set of controls that a native
application may utilize. Such controls may be shown within
web view 114. ADF faces RC 142 includes, without limita-
tion, layout components, table and tree components, list of
value (LOV) components, input components, navigation
components, output components, query components, data
visualization components, etc.

The native application additionally or alternatively may
make SOAP or REST calls to web services 146 on server 104
in order to obtain data from server 104. Although the native
application may use web services 146 as a major conduit for
obtaining and storing application data, the native application
additionally may cache such data locally on mobile device
102. For example, the native application may store such data
within local data 110, and/or the native application may retain
such data within the random access memory allocated to
container 106.

Embedding a JVM, Runtime Library, and
Application Code as a Slave Environment in a Native
Application

Techniques described herein enable a JVM, runtime
library, and application code to be embedded as a slave envi-
ronment within a native application. This embedding enables
JAVA code to be executed as part of a native application
(which might not have been written in JAVA). In one embodi-
ment of the invention, JVM 116, as well as a runtime library

US 8,978,023 B2

7

and JAVA application code, 1s embedded into the native appli-
cation, making 1t possible for the native application to execute
JAVA code even under circumstances 1n which no standalone
JAVA Runtime Environment otherwise resides on mobile
device 102.

Embedded JVM 116 provides a way to embed the execu-
tion of JAVA programs into the native application. This
allows, for example, a user mterface to be presented by the
native application while business logic or other code 1s
executed within the JAVA environment. In one embodiment
of the invention, the JAVA code executes independently from
and asynchronously with the native portion of the application
within threads that are created and managed by JVM 116. The
embedding of JVM 116 within the native application makes
possible the native application’s use of JAVA code without
requiring the native application to depend on any JAVA Runt-
ime Environment that 1s external to the native application.
Such a benefit 1s especially valuable under circumstances 1n
which, for technical or commercial reasons, such a standal-
one external JAVA Runtime Environment 1s unavailable or
prohibited. Because JVM 116 1s embedded within the native
application, entities external to native application do not need
to have any awareness that JVM 116 exists; the native appli-
cation may interact with external resources just as though
JVM 116 did not exist.

According to an embodiment of the invention, actual JAVA
code 1s embedded 1nside of a native application (which might
not be written 1n JAVA) 1n such a way that the native code of
the application and the JAVA code can interact and work with
cach other. This approach may be contrasted with an
approach 1n which only the functionality of a JAVA program
1s implemented using native code.

In one embodiment of the invention, container 106

includes a port of the following to the native operating system
of mobile device 102: CVM JVM, CDC, Foundation Profile,

Security Optional Package, and JSR-169 (JDBC) runtime
libraries. The JVM and the runtime libraries are packaged as
native libraries which are linked with the native application.
Embodiments of the invention include a native application
programming interface (API) that enables JVM 116 to be
executed by the code of the native application. This API
provides the ability to pass, to JVM 116, both runtime param-
cters and the mitial JAVA class. At the time that the applica-
tion developer creates the native application, portions of the
runtime library may be ROMized 1n order to increase runtime
performance and reduce startup time. The application devel-
oper candebug his JAVA code using standard JAVA tools even
though the JAVA code 1s embedded into the native applica-
tion. This capability may be available to the application devel-
oper regardless of whether the application developer 1s using
a native debugger.

In one embodiment of the invention, container 106
includes one or more virtual machine channels 136. In one
embodiment of the invention, in response to the first time that
JAVA code needs to be used by the native application, con-
tainer 106 creates JVM 116 and its sub-system based on the
library that 1s embedded within the native application. Thus,
1n one embodiment of the invention, the creation of JVM 116
and 1ts sub-system 1s performed 1n a lazy manner—put off
until 1ts performance becomes necessary. The creation of
JVM 116 and 1ts sub-system may be in response to the native
application’s invocation of a JAVA command, for example.
Alternatively, the creation of JVM and 1ts sub-system may be
in response to the native application’s reference to a JAVA
binding.

In one embodiment, a JAVAScript portion of a binding
detects that the binding needs to be accessed within a JAVA

10

15

20

25

30

35

40

45

50

55

60

65

8

subsystem. In response to detecting this, the JAVAScript por-
tion makes a reference call via phone gap 118. Container 106
intercepts the phone gap command. In response to intercept-
ing the phone gap command, container 106 determines
whether JVM 116 and 1ts sub-system exist yet in executing
form. In response to a determination that JVM 116 and 1ts
sub-system do not yet exist in executing form, container 106
creates JVM 116 and 1ts sub-system based on the library
embedded 1n the native application. Container 106 may per-
form a thread fork 1n order to create JVM 116 and 1ts sub-
system. In one embodiment of the invention, in addition to
creating JVM 116 and its sub-system, container 106 also
establishes at least one virtual machine channel 136. This
virtual machine channel forms a communicative connection
between container 106 and the sub-system of JVM 116. More
specifically, 1n one embodiment, the virtual machine channel
forms a connection between container 106 and a micro-
server, called the feature context manager, within the sub-
system of JVM 116. This feature context manager has control
of all of the bindings and resources that are within the sub-
system of JVM 116.

In one embodiment of the invention, a separate one of
virtual machine channels 136 1s additionally created for each
separate feature within the sub-system of JVM 116. Each
such virtual machine channel 1s a peer-to-peer communica-
tion channel between web view 114 and the particular feature
(within the sub-system of JVM 116) to which that virtual
machine channel 1s connected. The creation of virtual
machine channels 136 creates pairings between parallel enti-
ties: between web view 114 and the feature to which the
virtual machine channel i1s connected. Consequently, web
view 114 may iteract with each feature via that feature’s own
virtual machine channel using a message-passing system.

Thereafter, whenever the native application requests a
property of a JAVA object that resides within the sub-system
of JVM 116, the virtual machine channel for that JAVA object
1s used to retrieve that property transparently to the applica-
tion developer. That property 1s placed, transparently to the
application developer, 1n the memory address space of the
native application for use thereby. The native application may
then access the property from its own memory address space
via a normal memory fetch operation.

In one embodiment, 1n order to increase the speed of the
system, references by the native application into the sub-
system of JVM 116 are avoided whenever possible. In order
to help avoid such references, in one embodiment, data
obtained from the sub-system of JVM 116 in the manner
discussed above 1s cached in the memory address space of the
native application outside of the sub-system of JVM 116.
Cache coherency 1s achieved, 1n one embodiment, via back-
channel communications that container 106 automatically
conducts without requiring the awareness or mnvolvement of
the application developer.

In addition to reading properties of JAVA objects using the
techniques described above, the native application can use
techniques described below 1n order to set properties of those
JAVA objects. In one embodiment, the setting of properties of
these JAVA objects 1s achieved via a write-through cache
maintained within web view 114. In response to web view
114 detecting that a value has been written to the write-
through cache, web view 114 uses the appropriate one of
virtual machine channels 136 to cause the value to be propa-
gated to the appropriate JAVA object to whose property the
written value pertains. Thus, the property of the JAVA object
within the sub-system of JVM 116 1s updated from the write-
through cache.

US 8,978,023 B2

9

In one embodiment of the invention, the sub-system of
JVM 116 includes a validation mechamism that determines
whether types are appropriate before permitting values to be
assigned to JAVA objects. For example, 1n response to detect-
ing that an attempt 1s being made to assign a string type value
to a float type property, the validation mechanism may detect
that the attempted assignment 1s invalid. In response to detect-
ing that the attempted assignment 1s invalid, the validation
mechanism prevents the assignment and throws an exception
that the native application 1s designed to handle. Additionally,
the validation mechanism causes the related write-through
cache entry to reflect the value that the entry contained prior
to the attempted invalid assignment. Alternatively, valid
changes to JAVA object properties are propagated to web
view 114, which may then refresh the native application’s
presentation to the user of mobile device 102 1n order to
reflect the change 11 relevant to a user interface.

In one embodiment of the invention, web view 114 of
native application 1s attempts to invoke a method of a JAVA
object within the sub-system of JVM 116. Web view 114
attempts to invoke this method by making a call to phone gap
118. Container 106 intercepts the phone gap command. In
response to mtercepting the phone gap command, container
106 places the command 1n the one of virtual machine chan-
nels 136 that 1s connected to the JAVA object to which the
method vocation pertains. Components of the sub-system
of JTVM 116 then invoke the method relative to the appropriate
JAVA object.

Under some circumstances, such a method invocation may
pertain to a resource that resides on server 104 rather than
mobile device 102. In response to detecting that the method
invocation pertains to such an external resource, container
106 causes a REST web service call to be made to the appro-
priate one of web services 146 on server 104. Server 104
processes the request made within the call and returns a
response to container 106. Container 106 responsively causes
data contained within the response to be propagated to rel-
evant JAVA objects within the sub-system of JVM 116. In a
manner similar to that described above, binding updates are
performed and updated values are propagated to web view
114, which may refresh the user interface accordingly.

In one embodiment of the invention, whenever a REST call
1s made to server 104 from container 106, that call passes
through component 120. Component 120 responsively deter-
mines whether security 1s needed for the call, and, if so, the
kind of security that 1s needed. Component 120 may detect a
type ol security protocol to be used 1n making the REST call.
If single sign-on functionality 1s requested for the call, then
component 120 may determine whether approprate creden-
tials for the sign-on reside on mobile device 102. Component
120 may embed these credentials within the call prior to
sending the call onward to server 104.

In one embodiment of the invention, depending on the
content of the response recetved from web services 146, web
view 114 may determine that some or all of the content ought
to be stored 1n various repositories resident on mobile device
102. For example, 1n response to determining that the web
service response specifies a list of contacts, web view 114
may determine that the contacts within the list should be
placed within a contact list of mobile device 102; this contact
list may be external to and independent of the native applica-
tion. In response to such a determination, web view 114—
and, more specifically, ADF controller 128, may cause a
command, specilying the content, to be sent to phone gap
118. In response to receiving the command, phone gap 118
may interface with device services 108 and cause an appro-
priate service (e.g., the contact list service) to recerve and

10

15

20

25

30

35

40

45

50

55

60

65

10

process the content specified by the command. In the case of
the contact list service, for example, this processing may

involve storing contacts (previously recerved in a web ser-
vices reply from server 104) within a contact list maintained
by the contact list service within device services 108.

In one embodiment, container 106 stores data into and
retrieves data from local data 110 using JAVA Database Con-
nectivity (JDBC) and a database driver. The communications
between container 106 and local data 110 may be encrypted
or non-encrypted. The native application may use local data
110 as a database to manage the native application’s state
data. Data within local data 110 may be used to set properties
ol JAVA objects within the sub-system of JVM 116. Subse-
quently, a user of the native application may access the prop-
erties of these JAVA objects via a user interface presented by
web view 114. Again, data retrieved from local data 110 may
be cached within container 106 1n order to avoid more expen-
s1ve transactions between container 106 and resources exter-
nal to container 106.

Canonical Mechamism for Creating and Assembling,
Features into a Mobile Application

In one embodiment of the invention, a canonical mecha-
nism 1s provided to users, such as application developers, to
create smaller application features. As used herein, a feature
1s a combination of presentation and business logic. The
canonical mechanism enables these smaller features to be
assembled 1nto a single mobile application while clear sepa-
ration of state 1s maintained. In order to prevent any individual
feature from being corrupted or tampered with, 1 one
embodiment, each feature 1s separately sandboxed so that 1ts
direct exposure to other features of the same mobile applica-
tion 1s limited or eliminated completely. In one embodiment
of the invention, a mobile application’s presentation 1s sepa-
rated from that mobile application’s business logic by placing
cach of these into a separate, distinct application layer that 1s
1solated from other application layers. Each of these layers
may have separate code, data, and life-cycles. Beneficially,
techniques disclosed herein enable multiple disjoint features
to be blended together 1n an 1solated manner so that more
complex applications can be developed rapidly.

Techniques disclosed herein enabled multiple application
features, which may be considered mini-applications, to be
merged together 1nto a single application. In order to promote
or restrict the visibility of feature data, various different appli-
cation-scope, feature-scoped, and page tflow-scoped variable
are supported. Using techniques disclosed herein, developers
are enabled to determine which data i1s being exposed to
various features ol a metadata-driven application.

In order to enable the assembly of multiple different appli-
cation features into a single application, an embodiment of
the imnvention utilizes a canonical mechanism. In one embodi-
ment, this canonicalization 1s achieved through the use of an
expression language. The expression language used may be a
standard expression language, for example. In one embodi-
ment of the mnvention, the expression language used 1s JAVA
Unified Expression Language.

The JAVA Unified Expression Language provides a way to
simplify expressions in JAVA server pages (JSP). It1s a simple
language used for accessing implicit objects and JAVA
classes, and for manipulating collections 1n an elegant man-
ner. The language provides the ability to use run-time expres-
sions outside of JSP scripting elements. The JAVA Unified
Expression Language provides a pluggable, extensible,
resolver mechanism, and a way to set data and 1nvoke meth-
ods from a web page. Additional details regarding the JAVA

US 8,978,023 B2

11
Unified Expression Language can be found 1n ““The JAVA EE
S Tutorial” (© 2010 Oracle), which 1s incorporated by refer-
ence herein.

In one embodiment of the invention, container 106
includes a parser and evaluator constructed in JAVAScript and
a parser and evaluator constructed in JAVA. These parsers and
evaluators parse and evaluate JAVA Unified Expression Lan-
guage expressions that are contained 1n web pages that the
mobile application uses. Because container 106 includes a
JAVAScript parser and evaluator, 1t 1s possible that the parsing
and evaluation of some expressions may be done without
utilizing the JAVA engine, which can produce gains 1n execu-
tion speed. Once the properties of JAVA objects have been
initially obtained from the sub-system of JVM 116, those
properties may be cached and later accessed using JAVAS-
cript. Conversely, 1n one embodiment of the invention, prop-
erties of objects that have been parsed and evaluated using the
JAVAScript parser and evaluator are cached within the sub-
system of JVM 116, so that, thereatter, the JAVA parser and
evaluator can access the properties of these objects without
reference external to the sub-system of JVM 116.

In one embodiment of the invention, each data change
event occurring within container 106 causes two mirrored
copies of the same data to be modified: one copy within the
sub-system of JVM 116 (the JAVA layer) and one copy within
web view 114 (the JavaScript layer). Thus, in one embodi-
ment of the mnvention, a change to data within web view 114
or JVM 116 1s automatically pushed to the other of web view
114 and JVM 116.

According to an embodiment of the invention, 1solation
between features 1s maintained by sandboxing each object’s
data and that data residing 1n any cache. Thus, 1n one embodi-
ment of the invention, each JAVA object 1n the sub-system of
IVM 116 i1s prevented from accessing the data of any other
JAVA object 1n that sub-system, and, additionally,, cach such
JAVA object 1s prevented from accessing the cached data
(e.g., iIn web view 114) of any other JAVA object. Further-
more, 1n one embodiment of the invention, each JAVA object
in the sub-system 116 has its own one of virtual machine
channels 136 that no other JAVA object shares. Communica-
tions between a JAVA object and that JAVA object’s analogue
in web view 114 are, in one embodiment of the invention,
conducted exclusively through the particular virtual machine
channel assigned to that JAVA object and 1ts analogue in web
view 114.

In one embodiment of the ivention, each separate appli-
cation feature 1s loaded with a separate JAVA class loader
assigned exclusively to that application feature and no other.
A system class loader loads all classes that are application-
scoped. However, each feature may contain its own class
loader that 1s a chiuld of the system class loader. Because each
teature 1s loaded by its own class loader, no feature 1s able to
access the data of any other feature directly. This 1s the case
even 1f two separate features are defined 1n the same class file.

In one embodiment of the invention, a mobile application 1s
constructed as a set of projects. One of these projects 1s
designated the application controller project. All objects and
data placed 1nto the application controller project are deemed
to be system-wide 1n scope. In contrast, each feature has its
own separate project. Each feature may encompass a set of
multiple classes. According to an embodiment, the class
loader for a particular feature 1s only capable of accessing the
classes that are 1n the set of classes that are encompassed by
that particular feature. A class loader for one feature 1s unable
to locate classes encompassed by other features. However, 1
a class 1s promoted 1nto the application controller project,
then that class can be located by the class loaders of all

10

15

20

25

30

35

40

45

50

55

60

65

12

features, because then that class has become system-wide 1n
scope. Through such promotion to system-wide scope, data
can be shared between features even 1n a strongly sandboxed
environment.
Virtual Channel for Embedded Process Communication

In one embodiment, the Virtual Machine Channel (VM-
Channel) provides a way to communicate between a native
mobile application and an embedded virtual machine. In one
such embodiment, the basic user interface aspects are per-
tformed by the native application whereas the business logic 1s
performed by the embedded virtual machine. In order to
provide this division, an ultra-fast channeling mechanism 1s
provided that allows core channel and framework commands
as well as application level messages to travel in both direc-
tions.

In one embodiment, the VMChannel provides bidirec-

tional controlled communication. The communication 1s
ultra-fast and priority based. Further, 1t provides a predictable
life-cycle for both the channel and messages.

In one embodiment, the VMChannel provides a canonical
mechanism for the presentation and business logic tiers to
communicate within a single mobile application even though
they are in completely discrete environments and memory
spaces. The VMChannel 1s useful for interactions with an
embedded virtual machine.

An embodiment of a VMChannel 1s incorporated into the
ADF Mobile Framework product from Oracle Corporation.

In one embodiment, a VMChannel provides a messaging,
framework that enables communication flow between a
native entity and a JAVA entity. The messaging framework
cnables a JAVA entity (e.g., JAVA code) to be able to send a
message to a native entity (1.¢., an entity implemented using
native code), have the native entity do processing correspond-
ing to the message, enable the native entity to send a response
back to the JAVA entity corresponding to the message
received from the JAVA entity, and for the JAVA enfity to
receive the response. In the other direction, a native entity
may use a VMChannel to send a message to a JAVA entity and
receive a response message from the JAVA enftity via the
VMChannel.

At a conceptual level, a VMChannel provides a communi-
cation channel between two end points. One of the end points
can be a JAVA entity and the other can be a native entity. In
one embodiment, the VMChannel provides a communication
channel between JAVA messaging system and ADF messag-
ing.

A mobile application 1s an application that 1s written for
execution on a mobile device such as an 1Phone, Blackberry,
Android phone, etc. A native application for a device 1s an
application that is specifically designed to run on that device’s
operating system and machine firmware. Typically, a native
application written for a particular device has to be modified
or adapted before 1t can run on a different device with a
different operating system and/or device firmware. For
example, a mobile native application written for an 1Phone 1s
designed to run on Apple’s 10S operating system. As another
example, a mobile native application designed for an Android
phone 1s designed to run on the Android operating system.
Examples of languages that may be used to code native appli-
cations include Objective C for the 1Pad/1iPhone platiorm,
Android JAVA for the Android platform, C# for the Microsoit
mobile device platform, and others. It 1s to be understood that
the type or nature of the native platiorm or the native language
1s not mntended to limit the scope of embodiments of the
present invention. A VMChannel may be used with various
different platforms and native applications.

US 8,978,023 B2

13

In one embodiment, a VMChannel enables asynchronous,
symmetric, bi-directional messaging between two end points.
In one embodiment, multiple VMChannels may be opened
concurrently, each with its own life cycle. The multiple
VMChannels are managed in a centralized manner. In one
embodiment, a VMChannel allows for variable-sized mes-
saging. In one embodiment, a VMChannel enables correla-
tions to be specified between messages. The correlations may
be used, for example, to implement a request-response mes-
saging paradigm. In one embodiment, messages communi-
cated using VMChannels may be prioritized.

As indicated above, a VMChannel enables communica-
tions between a JAVA entity (e.g., a JVM) and a native entity.
The two entities may be executing on a mobile device. In one
embodiment, the JAVA entity and native entity execute 1n the
same process space. In alternative embodiments, the JAVA
entity and the native entity may execute in different processes.
The VMChannel architecture does not require the JAVA
entity and the native entity to be 1n the same process space.
The two entities do not even have to be on the same back-
plane.

In one embodiment, for a JAVA entity 1n communication
with a native entity using a VMChannel, the JAVA entity may
be used as a mim runtime engine within a native application
comprising the native entity. The master of the application 1s
the native code. The JAVA entity 1s a slave virtual machine
that runs solely mside the native code application. In another
embodiment, the JAVA entity may be a sibling of the native
code.

FIG. 2 depicts an example of how a VMChannel may

facilitate flow oI messages between a native entity and a JAVA
entity according to an embodiment of the present invention.
As shown 1n FIG. 2, a VMChannel 202 facilitates communi-
cations between a native entity 204 and a JAVA entity 206. In
this example, the native entity and JAVA entity are part of the
same native application. The application bundle may com-
prise an Objective C executable (*.exe) and JAVA lib com-
piled . JAVA class files are treated as resources that run
within the JDM lib. VMChannel 202 enables messages to be
passed from native entity 204 to JAVA entity 206 and from
JAVA entity 206 to native entity 204.

An application developer does not have to know of the
VMChannel. The application developer can develop native
code just the same as belfore, for example, using a native
coding tool. The application developer may develop JAVA
code using a tool such as JDev (JDeveloper). In one embodi-
ment, when the application 1s built, the JAVA code 1s com-
piled into a bunch of * jar files. The *.jars are then embedded
into the native application, for example, as a property {ile, or
as an 1mage. When CVM 1s started, the Jar files are loaded as
data and are executed within the CVM.

Referring again to FIG. 1, a JAVA entity (shown as JVM
116) 1s embedded as a library within the native application
represented by container 106. VMChannels 136 are shown as
an arrow between JVM 116 and the native code component.
Both the native entity and the JAVA entity have their own
separate address spaces within the address space of container
106. VMChannels 136 provide a communication channel to
enable communications between the two. VMChannels 136
allows messages to be communicated between the two envi-
ronments (1.¢., native and JAVA) using a messaging protocol.

One or multiple VMChannels may exist concurrently, each
running to different features/contacts. Each VMChannel pro-
vides security aspects such that a message cannot cross a
boundary from one channel to another. A VMChannel pro-
vides a point-to-point channel between two end point entities.

10

15

20

25

30

35

40

45

50

55

60

65

14

A message sent on one VMChannel 1s not allowed to cross
over to another VMChannel (1.e., no cross pollination). In one
embodiment, the end points of a VMChannel are within the
same application space but 1n their own separate addresses
spaces. The two end points do not need to have the same
process 1d. As the two entity end points are running in their
own separate address spaces, the VMChannel enables com-
munication between the two.

Multiple native entities can communicate with a single
JAVA entity using VMChannels. Likewise, a single JAVA
entity can communicate with multiple native entities using
VMChannels. One or more VMChannels may be created and
used for messaging between two entities.

In one embodiment, a VMChannel uses a networking style
layered protocol for communication of messages. A message
communicated via a VMChannel comprises a header and a
body. The body stores the message content or payload. The
header comprises information that 1s used for communicating
the message via a VMChannel. In one embodiment, the
header comprises information such as identification of a
request, correlation information (e.g., a correlation 1d) that
can be used for correlating a response message to a request
message, priority information indicative of the priority for the
message (e.g., higher priority messages are given preference
over lower priority messages), quality of service information,
and other information. In one embodiment, the header may
comprise multiple headers corresponding to the different lay-
ers.

A VMChannel 1s responsible for marshaling and shoveling
messages between two end points, where one end point can be
in a JAVA environment while the other 1s in the native code. A
VMChannel 1itsell 1s message content agnostic, 1.e., the
VMChannel does not know/care about the actual contents of
the body/payload of the message being communicated. Fur-
ther, the size of messages communicated via a VMChannel
does not need to be fixed. For example, one message could be
1 byte, another several bytes, and the like.

VMChannels are bi-directional, 1.e., when using a
VMChannel between a native entity and a JAVA entity, mes-
sages can be sent from the native entity to the JAVA entity and
from the JAVA entity to the native entity using the same
VMChannel. In a request-response scenario, a request can be
initiated from the JAVA side or from the native side, and
likewise aresponse can be sent from the JAVA side or from the
native side.

Multiple messages may be pumped into a VMChannel
from eirther end point. In one embodiment, a “supply-con-
sumer” model may be used for the messaging, wherein a
supplier entity can send multiple messages into the VM Chan-
nel, and the consumer entity can pick up a message at a time,
process 1t, and then pick the next message, and so on. A
VMChannel thus enables a symmetric, bidirectional, asyn-
chronous messaging protocol.

Priorities may be assigned to messages such that higher
priority messages within a VMChannel are handled before
lower priority messages. In one embodiment, a VMChannel
uses a priority-based queue to facilitate priority messaging.

In one embodiment, a VMChannel uses handlers on the
native entity side and on the JAVA entity side. A message
received by the VMChannel 1s provided to the handler at the
receiving side for further processing of the message. In one
embodiment, a handler 1s responsible for correlating
responses to requests.

FIG. 3 depicts a state diagram for a VMChannel according,
to an embodiment of the present invention. The VMChannel
begins 1n state uninitialized 302. In response to the sending of

a CREATE_CHANNEL message, the VMChannel transi-

US 8,978,023 B2

15

tions to state creating 304. In response to the receiving of a
CREATE_CHANNEL_CONF message, the VMChannel
transitions to state created 306. In response to the receiving of
a LISTENING_IND message, the VMChannel transitions to
state able to send 308. From state 308, if a NOT_LISTEN-
ING_IND message 1s received, then the VMChannel transi-

tions back to state created 306. Alternatively, from state 308,
if a DELETE_REQ message 1s received, then the VMChan-

nel transitions to state deleting 310. Alternatively, from state
308, 1n response to the receving of a DELETE_REQ mes-
sage and the sending of a DELETE_CONF message, the
VMChannel transitions to state deleted 312. From state 310,
in response to the recerving of a DELETE_CONF message,
the VMChannel transitions to state deleted 312.

FIGS. 4A and 4B depict control message sequence dia-
grams for creating a VMChannel, registering a listener for a
VMChannel, and deleting a VMChannel according to an
embodiment of the present invention. For example, in FIG.
4 A, a message 1s shuttled across from the native side to JAVA
side. Once a message 1s 1n the VMChannel, a channel man-
ager on the receiving side (e.g., on the JAVA side) detects the
presence of the message 1n the VMChannel, retrieves the
message from the VMChannel, and hands it to an appropriate
handler for further processing. The message may then get
processed and a response may be sent back. The response
message 1s pushed into the VMChannel from the JAVA side
and communicated over to the native side via the VMChan-
nel. The channel manager on the native side then detects
presence of the message, gets the message from the VMChan-
nel, and hands it to a handler on the native side for further
processing. In one embodiment, a handler may perform the
correlation and may call an appropnate response handler.

There are various ways 1n which correlation between mes-
sages may be performed. For example, in one embodiment,
correlations are done using a correlation/association ID. In
one embodiment, when a request message 1s sent by a sender
to aVMChannel, information 1s maintained on the sender side
about the pending request. When a response message 1S
received by the sender via the same VMChannel, a lookup 1s
performed 1n the pending requests information to determine a
corresponding request for the response. I such a request 1s
found then the response 1s correlated to the request and the
request may be removed from the pending requests informa-
tion. An appropriate callback may be called based upon the
success or failure of the response. If no pending request 1s
tound for the response, then an error condition may be 1ndi-
cated and error recovery processing initiated.

In one embodiment, there 1s a control channel, which 1s
considered the master. Requestors (e.g., native entities or
JAVA entities) may send requests for creation of additional
VMChannels between two end points. The control channel
then creates the requested VMChannel. A negotiation may
take place between the two endpoints for the VMChannel to
be created before the VMChannel 1s established. In one
embodiment, multiple levels of negotiations may take place,
for example, one at the application layer (ADF layer—correct
routing, sandboxing, correlation), one at the protocol layer
(VMChannel layer—ensure robust secure stable environ-
ment for messages). Various header portions may be used for

the multilayered approach. Handlers are then associated with
each side of the created VMChannel. On the native side, the

one or more handlers may be written in a native language
(e.g., objective C). On the JAVA side the one or more handlers
are written 1n JAVA. A handler may be configured to perform
various functions including but restricted to doing correla-

10

15

20

25

30

35

40

45

50

55

60

65

16

tions, checking error conditions (e.g., check for whether 1t 1s
an unsolicited response, invalid response), security and rout-
ing functions, and the like.

In one embodiment, a VMChannel ensures that no mes-
sages recetved by the VMChannel are dropped. The
VMChannel ensures that a message 1s properly handled by
someone listening on the recerving side. The VMChannel
also handles time outs, determines when to abandon, perform
breakdown of the VMChannel, etc.

VMChannels provide several features that were not previ-
ously available, especially on amobile device. A VMChannel
provides an asynchronous communication mechanism that 1s
not bounded by size or directionality while providing quick
access 1n a limited/small footprint such as on a mobile device.
It offers flexibility coupled with priority. It provides a con-
trolled environment for communication between two entities,
which may be embedded or externalized, irrespective of who
1s the sender or receiver.

Hardware Overview

FIG. 5 1s a simplified block diagram 1llustrating compo-
nents of a system environment 100 that may be used 1n accor-
dance with an embodiment of the present invention. As
shown, system environment 500 includes one or more client
computing devices 502, 504, 506, 508, which are configured
to operate client applications imncluding native client applica-
tions and possibly other applications such as a web browser,
or the like. In various embodiments, client computing devices
502, 504, 506, and 508 may interact with a server 512.

Client computing devices 502, 504, 506, 508 may be gen-
eral purpose personal computers (including, by way of
example, personal computers and/or laptop computers run-
ning various versions of Microsoft Windows and/or Apple
Macintosh operating systems), cell phones or PDAs (running
soltware such as Microsoit Windows Mobile and being Inter-
net, e-mail, SMS, Blackberry, or other communication pro-
tocol enabled), and/or workstation computers running any of
a variety of commercially-available UNIX or UNIX-like
operating systems (including without limitation the variety of
GNU/Linux operating systems). Alternatively, client com-
puting devices 502, 504, 506, and 508 may be any other
clectronic device, such as a thin-client computer, Internet-
enabled gaming system, and/or personal messaging device,
capable of communicating over a network (e.g., network 510
described below). Although exemplary system environment
500 1s shown with four client computing devices, any number
of client computing devices may be supported. Other devices
such as devices with sensors, etc. may interact with server
512.

System environment 300 may include a network 510. Net-
work 510 may be any type of network familiar to those skilled
in the art that can support data communications using any of
a variety of commercially-available protocols, including
without limitation TCP/IP, SNA, IPX, Applelalk, and the
like. Merely by way of example, network 510 can be a local
area network (LAN), such as an Ethernet network, a Token-
Ring network and/or the like; a wide-area network; a virtual
network, including without limitation a virtual private net-
work (VPN); the Internet; an intranet; an extranet; a public
switched telephone network (PSTN); an infra-red network; a
wireless network (e.g., a network operating under any of the
IEEE 802.11 suite of protocols, the Bluetooth protocol
known 1n the art, and/or any other wireless protocol); and/or
any combination of these and/or other networks.

System environment 500 also includes one or more server
computers 512 which may be general purpose computers,
specialized server computers (including, by way of example,
PC servers, UNIX servers, mid-range servers, mainframe

US 8,978,023 B2

17

computers, rack-mounted servers, etc.), server farms, server
clusters, or any other appropriate arrangement and/or combi-
nation. In various embodiments, server 512 may be adapted to
run one or more services or software applications.

Server 512 may run an operating system including any of
those discussed above, as well as any commercially available
server operating system. Server 512 may also run any of a
variety of additional server applications and/or mid-tier appli-
cations, including HT'TP servers, F'1P servers, CGI servers,
JAVA servers, database servers, and the like. Exemplary data-
base servers include without limitation those commercially
available from Oracle, Microsoit, Sybase, IBM and the like.

System environment 500 may also include one or more
databases 514, 516. Databases 514, 516 may reside 1n a
variety of locations. By way of example, one or more of
databases 514, 516 may reside on a non-transitory storage
medium local to (and/or resident 1n) server 512. Alternatively,
databases 514, 516 may be remote from server 512, and 1n
communication with server 512 via a network-based or dedi-
cated connection. In one set of embodiments, databases 514,
516 may reside 1n a storage-area network (SAN) familiar to
those skilled 1n the art. Similarly, any necessary files for
performing the functions attributed to server 512 may be
stored locally on server 512 and/or remotely, as appropriate.
In one set of embodiments, databases 514, 516 may include
relational databases, such as databases provided by Oracle,
that are adapted to store, update, and retrieve data in response
to SQL-formatted commands.

FIG. 6 1s a sitmplified block diagram of a computer system
600 that may be used 1n accordance with embodiments of the
present invention. For example server 512 or clients 502, 504,
506, or 508 may be implemented using a system such as
system 600. Computer system 600 1s shown comprising hard-
ware elements that may be electrically coupled via a bus 624.
The hardware elements may include one or more central
processing units (CPUs) 602, one or more mput devices 604
(e.g., a mouse, a keyboard, etc.), and one or more output
devices 606 (e.g., a display device, a printer, etc.). Computer
system 600 may also include one or more storage devices 608.
By way of example, the storage device(s) 608 may include
devices such as disk drives, optical storage devices, and solid-
state storage devices such as a random access memory
(RAM) and/or a read-only memory (ROM), which can be
programmable, flash-updateable and/or the like.

Computer system 600 may additionally include a com-
puter-readable storage media reader 612, a communications
subsystem 614 (¢.g., a modem, a network card (wireless or
wired), an mira-red communication device, etc.), and work-
ing memory 618, which may include RAM and ROM devices
as described above. In some embodiments, computer system
600 may also include a processing acceleration unit 616,
which can include a digital signal processor (DSP), a special-
purpose processor, and/or the like.

Computer-readable storage media reader 612 can further
be connected to a computer-readable storage medium 610,
together (and, optionally, 1n combination with storage
device(s) 608) comprehensively representing remote, local,
fixed, and/or removable storage devices plus storage media
for temporarily and/or more permanently containing com-
puter-readable information. Communications system 614
may permit data to be exchanged with network 510 and/or
any other computer described above with respect to system
environment 500.

Computer system 600 may also comprise software ele-
ments, shown as being currently located within working,
memory 618, including an operating system 620 and/or other
code 622, such as an application program (which may be a

5

10

15

20

25

30

35

40

45

50

55

60

65

18

client application, Web browser, mid-tier application,
RDBMS, etc.). In an exemplary embodiment, working
memory 618 may include executable code and associated
data structures used for relying party and open authorization-
related processing as described above. It should be appreci-
ated that alternative embodiments of computer system 600
may have numerous variations from that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented 1n hardware, soft-
ware (1ncluding portable software, such as applets), or both.
Further, connection to other computing devices such as net-
work mput/output devices may be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used 1n the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile (non-transitory), removable and non-removable
media implemented 1n any method or technology for storage
and/or transmission of information such as computer read-
able 1nstructions, data structures, program modules, or other

data, including RAM, ROM, EEPROM, flash memory or

other memory technology, CD-ROM, digital versatile disk
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
data signals, data transmaissions, or any other medium which
can be used to store or transmit the desired information and
which can be accessed by a computer.

Although specific embodiments of the invention have been
described, various modifications, alterations, alternative con-
structions, and equivalents are also encompassed within the
scope of the invention. Embodiments of the present invention
are not restricted to operation within certain specific data
processing environments, but are free to operate within a
plurality of data processing environments. Additionally,
although embodiments of the present mvention have been
described using a particular series of transactions and steps, 1t
should be apparent to those skilled 1n the art that the scope of
the present invention 1s not limited to the described series of
transactions and steps.

Further, while embodiments of the present invention have
been described using a particular combination of hardware
and software, 1t should be recognized that other combinations
of hardware and software are also within the scope of the
present invention. Embodiments of the present invention may
be implemented only 1n hardware, or only 1n software, or
using combinations thereof.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope.

What 1s claimed 1s:

1. A method comprising:

detecting that a native application executing on a comput-
ing device references a JAVA binding;

in response to detecting that the native application refer-
ences the JAVA binding, determining whether a JAVA
virtual machine is currently executing on the computing
device;

in response to detecting that no JAVA virtual machine 1s
currently executing on the computing device, creating
the JAVA virtual machine from a library that 1s embed-
ded within the native application;

US 8,978,023 B2

19

loading a first set of classes on the computing device using
a first class loader that 1s exclusive to the first set of
classes and that 1s a child of a system class loader of the
JAVA virtual machine;

loading a second set of classes on the computing device
using a second class loader that 1s exclusive to the second
set of classes and that 1s a child of the system class loader
of the JAVA virtual machine;

accessing, from the native application, objects istantiated

from the first set of classes and objects instantiated from
the second set of classes; and

evaluating, using a JAVA evaluator that 1s executed by the

JAVA virtual machine and that i1s contained within a
container created by the native application, a JAVA Uni-
fied Expression Language expression contained within a
web page.

2. The method of claim 1, wherein the computing device 1s
a mobile computing device, wherein the first and second sets
of classes are sets of JAVA classes, and wherein the native
application 1s not coded in JAVA.

3. The method of claim 1, further comprising;

promoting a particular class from one of the first and sec-

ond sets of classes to a project that contains classes that
have system-wide scope;

wherein said promotion causes objects mstantiated from

said particular class to become accessible to objects
instantiated from said first set of classes and objects
instantiated from said second set of classes.

4. The method of claim 1, further comprising;

evaluating, using a JavaScript evaluator, an expression that

refers to an object instantiated from a particular class
from the first set of classes.
5. The method of claim 1, further comprising;
caching, in a cache, results of said evaluating;
obtaining said results from cache without 1involving said
JAVA evaluator; and

evaluating the JAVA Unified Expression Language expres-
s1on using a JavaScript evaluator that 1s also contained
within the container created by the native application.

6. The method of claim 5, further comprising;

determining that particular code within the web page 1s

categorized as being risky; and

in response to determining that the particular code 1s cat-

egorized as being risky, executing code on the web page
other than the particular code without executing the par-
ticular code.

7. The method of claim 1, further comprising;

in response to a data change event modifying a first object

within a JAVA layer, moditying first data corresponding
to the first object withun a JavaScript layer; and

in response to a data change event modifying second data

within the JavaScript layer, modifying a second object
corresponding to the second data within the JAVA layer.

8. The method of claim 1, further comprising:

executing JAVA code referenced by the native application

in one or more threads that execute asynchronously from
the native application.

9. A system comprising;:

a memory; and

a processor coupled to the memory;

wherein the processor 1s configured to:

detect that a native application executing on a computing,

device references a JAVA binding;

in response to detecting that the native application refer-

ences the JAVA binding, determine whether a JAVA
virtual machine 1s currently executing on the computing,
device:

10

15

20

25

30

35

40

45

50

55

60

65

20

in response to detecting that no JAVA virtual machine 1s
currently executing on the computing device, create the
JAVA virtual machine from a library that 1s embedded

within the native application;

load a first set of classes on the computing device using a
first class loader that 1s exclusive to the first set of classes
and that 1s a child of a system class loader of the JAVA
virtual machine;
load a second set of classes on the computing device using,
a second class loader that 1s exclusive to the second set of
classes and that 1s a child of the system class loader of the
JAVA virtual machine;

access, from the native application, objects instantiated
from the first set of classes and objects instantiated from
the second set of classes; and

evaluate, using a JAVA evaluator that 1s executed by the

JAVA virtual machine and that 1s contained within a
container created by the native application, a JAVA Uni-
fied Expression Language expression contained within a
web page.

10. The system of claim 9, wherein the system 1s a mobile
computing device, wherein the first and second sets of classes
are sets ol JAVA classes, and wherein the native application 1s
not coded 1n JAVA.

11. The system of claim 9, wherein the processor 1s con-
figured to:

promote a particular class from one of the first and second

sets of classes to a project that contains classes that have
system-wide scope;

wherein said promotion causes objects 1nstantiated from

said particular class to become accessible to objects
instantiated from said first set of classes and objects
instantiated from said second set of classes.

12. The system of claim 9, wherein the processor 1s con-
figured to:

evaluate, using a JavaScript evaluator, an expression that

refers to an object instantiated from a particular class
from the first set of classes.

13. The system of claim 9, wherein the processor 1s con-
figured to:

place, 1n a cache, results of said evaluating;

obtain said results from cache without involving said JAVA

evaluator; and

cvaluate the JAVA Unified Expression Language expres-

sion using a JavaScript evaluator that 1s also contained
within the container created by the native application.

14. The system of claim 9, wherein the processor 1s con-
figured to:

modity first data corresponding to the first object within a

JavaScript layer in response to a data change event modi-
tying a first object within a JAVA layer; and

modily a second object corresponding to the second data

within the JAVA layer in response to a data change event
modifying second data within the JavaScript layer.

15. A non-transitory computer-readable storage medium
storing a plurality of instructions which, when executed by
one or more processors, cause the one or more processors to
perform steps comprising:

detecting that a native application executing on a comput-

ing device references a JAVA binding;

in response to detecting that the native application refer-

ences the JAVA binding, determining whether a JAVA
virtual machine is currently executing on the computing
device;

in response to detecting that no JAVA virtual machine 1s

currently executing on the computing device, creating

US 8,978,023 B2

21 22
the JAVA virtual machine from a library that 1s embed- wherein said promotion causes objects instantiated from
ded within the native application; said particular class to become accessible to objects
loading a first set of classes on the computing device using instantiated from said first set of classes and objects

a first class loader that 1s exclusive to the first set of
classes and that 1s a child of a system class loader of the s
JAVA virtual machine; and

loading a second set of classes on the computing device
using a second class loader that 1s exclusive to the second

instantiated from said second set of classes.
18. The non-transitory computer-readable storage medium
of claim 15, wherein the steps further comprise:
evaluating, using a JavaScript evaluator, an expression that

set of classes and that is a child of the system class loader refers to an object instantiated from a particular class
of the JAVA virtual machine; 0 from the first set of classes.

accessing, from the native application, objects instantiated 19. The non-transitory computer-readable storage medium
from the first set of classes and objects instantiated from of claim 15, wherein the steps further comprise:
the S?COHd set of classes; and | caching, in a cache, results of said evaluating;

evaluatmg,; using a JAVA evaluator t.hat 15 E?SECUtEd_bB{ the obtaining said results from cache without involving said
JAVA virtual machine and that 1s contained within a JAVA evaluator; and

container created by the native application, a JAVA Uni- °

fied Expression Language expression contained within a
web page.
16. The non-transitory computer-readable storage medium

of claim 15, wherein the computing device 1s a mobile com- . . .
. . . >0 of claim 135, wherein the steps further comprise:
puting device, wherein the first and second sets of classes are

sets of JAVA classes, and wherein the native application 1s not i to a data change. ev:ant modifying a first ObJ?Ct
coded in TAVA within a JAVA layer, moditying first data corresponding

to the first object withun a JavaScript layer; and
in response to a data change event moditying second data
25 within the JavaScript layer, modifying a second object
corresponding to the second data within the JAVA layver.

evaluating the JAVA Unified Expression Language expres-
sion using a JavaScript evaluator that 1s also contained
within the container created by the native application.

20. The non-transitory computer-readable storage medium

17. The non-transitory computer-readable storage medium
of claim 15, wherein the steps further comprise:
promoting a particular class from one of the first and sec-
ond sets of classes to a project that contains classes that
have system-wide scope; I I

	Front Page
	Drawings
	Specification
	Claims

