12 United States Patent

Farrugia et al.

US008966279B2

US 8,966,279 B2
Feb. 24, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

SECURING THE IMPLEMENTATION OF A
CRYPTOGRAPHIC PROCESS USING KEY
EXPANSION

Augustin J. Farrugia, Cupertino, CA
(US); Benoit Chevallier-Mames, Paris
(FR); Mathieu Ciet, Paris (FR); Thomas
Icart, Paris (FR); Bruno Kindarji, Paris
(FR)

Inventors:

Assignee: Apple Inc., Cupertino, CA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 739 days.

Notice:

Appl. No.: 12/975,123

Filed: Dec. 21, 2010
Prior Publication Data
US 2012/0159186 Al Jun. 21, 2012
Int. Cl.
Goel 12/14 (2006.01)
HoO41 9/00 (2006.01)
HO41 9/06 (2006.01)
U.S. CL
CPC HO4L 9/002 (2013.01); HO4L 90631
(2013.01); HO4L 2209/16 (2013.01); HO4L
2209/24 (2013.01)
USPC e et 713/189; 713/190

(38) Field of Classification Search
CPC ... HO4L 9/002; HO4L 9/0631; HO4L 2209/24;
HO4L 2209/16

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0118827 Al* 82002 Luystercccovvvieivrennnn. 380/37
2003/0103626 Al* 6/2003 Stemmetal. 380/42
2004/0255130 Al* 12/2004 Henryetal. 713/189

* cited by examiner

Primary Examiner — Brandon Hoffman

Assistant Examiner — Nega Woldemariam
(74) Attorney, Agent, or Firm — Adeli LLP

(57) ABSTRACT

In the field of computer enabled cryptography, such as a
keyed block cipher having a plurality of rounds, the cipher 1s
hardened against an attack by protecting the cipher key by
means of a key expansion process which obscures the cipher
and/or the round keys by increasing their lengths to provide
an expanded version of the keys for carrying out encryption or
decryption using the cipher. This 1s especially advantageous
in a “White Box” environment where an attacker has full
access to the cipher algorithm, including the algorithm’s
internal state during 1ts execution. This method and the asso-
ciated computing apparatus are useful where the key 1is
derived through a process and so 1s unknown when the soft-
ware code embodying the cipher 1s compiled. This 1s typically
the case where there are many users of the cipher and each has
his own key, or where each user session has 1ts own key.

40 Claims, 5 Drawing Sheets

(MY Jolid)
dhe O Aoy punoyppy
punoul

leul o1 Aoy QNS SMOYJIYS

US 8,966,279 B2

s9}Agans

Aaypunoyppy-

Sheet 1 of S
(+)

SULUN[ODXIA-E
. SMOYMIUS-Z
J sehgans-|
)
S N
OUNOJ O Aeypunoyppy
e
£ay) Joydin e OIES

U.S. Patent

0 ANNOY

s mhhk okl B gy e el shh g)

U.S. Patent Feb. 24, 2015 Sheet 2 of 5 US 8,966,279 B2

el l..- - ‘-I I-
'-l':l -ﬁ"..-“-.“'

FIG. 2A

[o [[z [o [+ s el
[w [s oo [»]=w]s
FIG. 3

'
'

g% Oid

/X px| |gx|Lx
- loxiex| - lex| - | - |oX

.7 uoneluaseldoy

ey
-‘I‘I.r

"INy

*y

US 8,966,279 B2

' "ll;

)

=

L

.

VS Ol

G
:I'rv. F
3

e
»
&
"'
¥
-:."-Iu
nd

Sheet 3 of 5

o5

J

e

-‘.‘ ﬂ_ l.ll..ll.l.'.
12} :
e

’
!
L
N

¥

n
I::-i.f-.

'} uoljejussaldoy

Feb. 24, 2015

L] -.1 l.h_r L I |
ihebinr iy
o A Bl O A l-."_l

..-_i._- I"-_ -.-.-.“h“”.-”"lk”' flﬂ”l“ '“ ‘.I._"il
rats _u.._._. _..u
o Sk

U.S. Patent

)
o
=
~ 9 'Ol
G’
S
L
P
>

S|NPON

S3av
o1
g a|npop
5 uopied
= (NOY)
opod
7o Ovi
= 108$9820.d
3 8C1
R abesso|n
&
(WVY) ebeloys
obessa|y obessa|y

ocl

U.S. Patent

(NVY)
obelo]g

(NVH)
abelo]s

J0d

851

¢Sl

cel

091

obessoN

U.S. Patent Feb. 24, 2015 Sheet 5 of 5 US 8,966,279 B2

’/—160

162

164
168
170

Storage Devices

BUS

184

Communications m
l/F

FIG. 7

US 8,966,279 B2

1

SECURING THE IMPLEMENTATION OF A
CRYPTOGRAPHIC PROCESS USING KEY
EXPANSION

FIELD OF THE INVENTION

This 1invention relates to data security and cryptography
and to improving the security of computer enabled crypto-
graphic processes.

BACKGROUND

In the field of data security, there 1s a need for fast and
secure encryption. This 1s why the AES (Advanced Encryp-
tion Standard) cipher has been designed and standardized.
Cryptographic algorithms are widely used for encryption and
decryption of messages, authentication, digital signatures
and i1dentification. AES 1s a well known symmetric block
cipher. Block ciphers operate on blocks of plaintext and
ciphertext, usually of 64 or 128 bits length but sometimes
longer. Stream ciphers are the other main type of cipher and
operate on streams of plain text and cipher text 1 bit or byte
(sometimes one word) at a time. There are modes (notably the
ECB, electronic code block) where a given block 1s encrypted
to always the same ciphertext block. This 1s an 1ssue which 1s
solved by a more evolved mode of operations, e.g. CBC
(cipher block chaining) where a chaining value 1s used to
solve the 1-to-1 map.

AES 1s approved as an encryption standard by the U.S.
Government. Unlike 1ts predecessor DES (Data Encryption
Standard) it 1s a substitution permutation network (SPN).
AES 15 fast to execute 1n both computer software and hard-
ware i1mplementation, relatively easy to implement, and
requires little memory. AES has a fixed block size o1 128 bits
and a key s1ze of 128, 192 or 256 bits. Due to the fixed block
s1ze of 128 bits, AES operates on a 4x4 array of bytes. It uses
key expansion and like most block ciphers a set of encryption
and decryption rounds (iterations). Each round involves the
same processes. Use of multiple rounds enhances security.
Block ciphers of this type use in each round a substitution box
(s-box). This operation provides non-linearity in the cipher
and significantly enhances security.

Note that these block ciphers are symmetric ciphers, mean-
ing the same key 1s used for encryption and decryption. As 1s
typical in most modern ciphers, security rests with the (secret)
key rather than the algorithm. The s-boxes or substitution
boxes accept an n bit input and provide an m bit output. The
values of m and n vary with the cipher and the s-box 1tself. The
input bits specily an entry in the s-box in a particular manner
well known 1n the field.

Many encryption algorithms are primarily concerned with
producing encrypted data that 1s resistant to decrypting by an
attacker who can interact with the encryption algorithm only
as a “Black Box” (input-output) model, and cannot observe
internal workings of the algorithm or memory contents, etc
due to lack of system access. The Black Box model 1s appro-
priate for applications where trusted parties control the com-
puting systems for both encoding and decoding ciphered
materials.

However, many applications of encryption do not allow for
the assumption that an attacker cannot access internal work-
ings of the algorithm. For example, encrypted digital media
often needs to be decrypted on computing systems that are
completely controlled by an adversary (attacker). There are
many degrees to which the Black Box model can be relaxed.
An extreme relaxation is called the “White Box” model. In a
White Box model, it 1s presumed that an attacker has total

10

15

20

25

30

35

40

45

50

55

60

65

2

access to the system performing an encryption, including
being able to observe directly a state of memory, program
execution, modifying an execution, etc. In such a model, an
encryption key can be observed 1n or extracted from memory,
and so ways to conceal operations indicative of a secret key
are important.

Classically, software implementations of cryptographic
building blocks are msecure 1n the White Box threat model
where the attacker controls the execution process. The
attacker can easily lift the secret key from memory by just
observing the operations acting on the secret key. For
example, the attacker can learn the secret key of an AES
soltware implementation by observing the execution of the
key schedule algorithm.

Hence there are two basic principles 1in the implementation
ol secure computer applications (software). The Black Box
model implicitly supposes that the user does not have access
to the computer code nor any cryptographic keys themselves.
The computer code security 1s based on the tampering resis-
tance over which the application 1s running, as this 1s typically
the case with SmartCards. For the White Box model, 1t 1s
assumed the (hostile) user has partially or fully access to the
implemented code algorithms; including the cryptographic
keys themselves. It 1s assumed the user can also become an
attacker and can try to modily or duplicate the code since he
has full access to 1t 1n a binary (object code) form. The White
Box implementations are widely used (1n particular) i con-
tent protection applications to protect e.g. audio and video
content.

Software implementations of cryptographic building
blocks are insecure 1n the White Box threat model where the
attacker controls the computer execution process. The
attacker can easily extract the (secret) key from the memory
by just observing the operations acting on the secret key. For
instance, the attacker can learn the secret key of an AES
cipher software implementation by passively monitoring the
execution of the key schedule algorithm. Also, the attacker
could be able to retrieve partial cryptographic result and use 1t
in another context (using in a standalone code, or injecting 1t
in another program, as an example).

Content protection applications are one instance where 1t 1s
desired to keep the attacker from finding the secret key even
though the attacker has complete control of the execution
process. The publication “White-Box Cryptography in an
AES mmplementation” Lecture Notes in Computer Science
Vol. 2595, Revised Papers from the 9th Annual International
Workshop on Selected Areas 1 Cryptography pp. 250-270
(2002) by Chow et al. discloses implementations of AES that
obscure the operations performed during AES by using table
lookups (also referred to as TLUSs) to obscure the secret key
within the table lookups, and obscure intermediate state infor-
mation that would otherwise be available 1n arithmetic imple-
mentations of AES. In the computer field, a table lookup table
1s an operation consisting of looking 1n a table (also called an
array) at a given index position in the table.

Chow et al. (for his White Box implementation where the
key 1s known at the computer code compilation time) uses 160
separate tables to implement the 11 AddRoundKey opera-
tions and 10 SubByte Operations (10 rounds, with 16 tables
per round, where each table 1s for 1 byte of the 16 byte
long—128 bit—AES block). These 160 tables embed a par-
ticular AES key, such that output from lookups mmvolving
these tables embeds data that would normally result from the
AddRoundKey and SubByte operations of the AES algo-
rithm, except that this data includes mput/output permuta-
tions that make it more difficult to determine what parts of
these tables represent round key information derived from the

US 8,966,279 B2

3

AES key. Chow et al. provide a construction of the AES
algorithm for such White Box model. The security of this
construction resides in the use of table lookups and masked
data. The mnput and output mask applied to this data 1s never
removed along the process. In this solution, there 1s a need for
knowing the key value at the compilation time, or at least to be
able to derive the tables from the orniginal key in a secure
environment.

The conventional implementation of a block cipher 1n the
White Box model 1s carried out by creating a set of table
lookups. Given a dedicated cipher key, the goal 1s to store 1n
a table the results for all the possible input messages. This
principle 1s applied for each basic operation of the block
cipher. In the case of the AES cipher, these are the shiftRow,
the add RoundKey, the subByte and the mixColumns opera-
tions.

However, Chow et al. do not solve all the security needs for
block cipher encryption 1n a White Box environment. Indeed,
the case where the cipher key 1s derived through a given
process and so 1s unknown at the code compilation time 1s not
included in Chow et al.

SUMMARY

A typical situation not addressed by Chow et al. 1s when a
computer enabled and solftware based cryptographic process
1s distributed over several users and each user has his own
cipher key; 1t 1s, from a practical point of view, impossible to
disseminate different software code to each user. Another
situation 1s when generating session keys (which by defini-
tion are different for each user session) through a given pro-
cess. Of course, 1n this case the key 1s unknown at the software
code compilation time.

This disclosure 1s of a powertul, efficient and new solution
to harden the extraction of an AES (or other cryptographic)
key 1n a White Box environment by means of a key expansion
process. Further, the present method may be used 1n a more
general case of other cryptographic processes, e€.g., encryp-
tion or decryption of respectively a plamtext or ciphertext
message. The present disclosure therefore 1s directed to hid-
ing the key in a better way. This disclosure further 1s of two
powerlul, efficient and new solutions to protect an AES (or
other) key 1n a White Box implementation. The first solution
expands the support of binary vectors. The second solution
performs binary operations 1n a covert way. These solutions
may be used 1n a more general case, to perform all the cryp-
tographic operations in a larger and obtuscated “world” than
the conventional bytes set as explained below, being a generic
and efficient protection scheme.

The present system and method address those cases when
the cipher key 1s unknown at the software code compilation
time or when the code size 1s limited, and there 1s a need to
harden “dynamically” the process and hide the key to protect
against an attacker. This aspect of the present disclosure can
be combined with prior existing solutions. The most simple
and known existing solution to combined with 1s to perform
data transforms on the cipher key, done to avoid visible
removable during execution of the cryptographic process.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows 1n the prior art AES encryption.
FIGS. 2A, 2B show two byte expansions.

FI1G. 3 shows another byte expansion.
FI1G. 4 shows a folding function.

FIGS. 5A, 5B show another type of expansion.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 shows a computing system in accordance with the
ivention.

FIG. 7 shows a computing system as known in the art and
used 1n accordance with the invention.

DETAILED DESCRIPTION

AES Description

See the NIST AES standard for a more detailed description
of the AES cipher (Specification for the ADVANCED
ENCRYPTION STANDARD (AES), NIST, http://csrc.nist.
gov/publications/fips/tips197/1ips-197.pd1). The following 1s
a summary of the well known AES cipher. The AES cipher
uses a 16 byte cipher long key, and has 10 rounds (final plus
9 others). The entire AES algorithm has the following opera-
tions as depicted 1n prior art FIG. 1 graphically and showing
round zero of the 9 rounds:

11 AddRoundKey Operations

10 SubByte Operations

10 ShiftRow Operations
9 MixColumn Operations

AES 1s computed using a 16-byte buller (computer
memory) referred to as the AES “state” 1n this disclosure and
shown 1n FIG. 1.

To summarize,

(1) AddRoundKeys (ARK) are logically XOR’d (the Bool-

can exclusive OR operation) with some subkey bytes.

(11) ShiftRows (SR) are a move from one byte location to

another.

(111) MixColums (MC) are a linear table-look up (TLU),

applied to 4 bytes.

(1v) SubBytes (SB) are anon-linear TLU, applied to 1 byte.

Preliminarly to the decryption itself, 1n the 1nitial round 1n
FIG. 1, the original 16-byte cipher key 1s expanded to 11
subkeys designated KO, .. ., K10, so there 1s a subkey for each
round during what 1s called the key-schedule. Each subkey,
like the original key, 1s 16-bytes long.

The following explains the AES encryption process round
by round. For the corresponding decryption process, one
generally performs the inverse of each operation, i the
inverse order. (The same 1s true for the cryptographic pro-
cesses 1n accordance with the mvention as set forth below.
The iverse operation of ARK 1s ARK 1itself, the inverse
operation of SB 1s the inverse subbyte (ISB) which 1s basi-
cally another TLU, the inverse operation of MC 1s the inverse
mix column (IMC) which 1s basically another TLU, and the
inverse operation of SR 1s the inverse shuft row (ISR) which 1s
another move from one byte location to another.

Expressed schematically, AES decryption is as follows:

ARK (K10)
ISR

ISB

ARK (K9)
IMC

ISR

ISB

ARK (K8)
IMC

ISR

ISB

ARK (K7)
IMC

ISR

ISB

ARK (K6)
IMC

ISR

US 8,966,279 B2

ISB

ARK (K5)
IMC

ISR

ISB

ARK (K4)
IMC

ISR

ISB

ARK (K3)
IMC

ISR

ISB

ARK (K2)
IMC

ISR

ISB

ARK (K1)
IMC

ISR

ISB

ARK (KO)

Without lack of generality, the description below of the
present method 1s for the case of decryption, but 1t 1s evident
that the method 1n accordance with the invention can be used
also for encryption or other cryptographic processes. The
method 1n accordance with the invention also can easily be
applied to other variants of AES with more rounds (the 192
and 256-bit key length versions) as well as to other block
ciphers and more generally to non-block ciphers and other
key based cryptographic processes.

AES 1s considered very efficient in terms of execution on
many different computer architectures since 1t can be
executed only with table lookups (TLU) and the exclusive-or
(XOR) operation. It 1s known that the AES state can be
handled as a 4x4 square of bytes. As a square, 1t can be seen
as 4 columns of 4 bytes each.

As described above, AES decryption 1s a succession of
basic operations: ISB for the inverse of SubByte, IMC (for the
imverse of MixColumn) and ISR (for the inverse of
ShiftRow). The ISR operation modifies the state by shifting
cach row of the square. This operation does not modity the
bytes themselves but only their respective positions. The ISB
operation1s a permutation from [0, 255] to [0, 255], which can
be implemented by a table look-up.

The IMC operation 1s a bijective linear function from a
column (4B) to a column. As a linear function, 1t accepts a
matrix as a representation expressed as:

[Oe, 09, 0d, 0b]

[0b, Oe, 09, 0d]

[0d, Ob, Oe, 09]

[09, 0d, Ob, O¢]
where each coellicient 1n this matrix represents a linear func-
tion applied to a byte. Fora vector [w, X, v, z] of four bytes, the

output of operation IMC 1s expressed as:
[[Oe.w XOR 09.x XOR 0d.y XOR 0b.7],

[0b.w XOR 0Oe.x XOR 09.y XOR 0d.z],
[0d.w XOR 0b.x XOR Oe.y XOR 09.z],
[09.w XOR 0d.x XOR 0b.y XOR 0e.z]]
In order to be implemented efliciently, one needs to modify
the order o the operations executed in AES decryption. Since
IMC 1s a linear operation and since the ARK operation con-
sists of logically XORing a constant to the AES state, these
operations can be permuted. This 1dea 1s known and 1s used
often 1n optimized AES decryption implementations.
However, this implies a modification of the keys used in the
ARK operation. Let K1 be the 16-Byte subkey used 1n the

10

15

20

25

30

35

40

45

50

55

60

65

6

round designated by index value 1 and let Kil, K12, K13 and
Ki4 be the four sets of four bytes of the keys related to the
columns of the AES state. By definition,

Ki=[Kil,Ki2,Ki3,Ki4].

The normal flow of operations for an AES decryption 1s
expressed as:

ARK([K1l, Ki2, K13, Ki4])

IMC

But this 1s equivalent to:

IMC

ARK ([IMC(K1l), IMC(K12), IMC(K13), IMC(K14)])
because operation IMC 1s linear.

For this reason, the AES decryption 1s expressed schemati-
cally as:

ARK (K10)

ISR

ISB

IMC

ARK (Kx9)
ISR

ISB

IMC

ARK (Kx8)
ISR

ISB

IMC

ARK (Kx7)
ISR

ISB

IMC

ARK (Kx6)
ISR

ISB

IMC

ARK (Kx5)
ISR

ISB

IMC

ARK (Kx4)
ISR

ISB

IMC

ARK (Kx3)
ISR

ISB

IMC

ARK (Kx2)
ISR

ISB

IMC

ARK (Kx1)

ISR

ISB

ARK (KO0)
where Kxi 1s the subround key designated above Ki and
modified as explained above (with the application of the IMC
operation to it). So 1n this new tlow of operations, each ISB
operation 1s followed by an IMC operation except for the ISB
operation between keys Kx1 and KO. This property improves
elliciency between K10 and K 1. Note that the computation of
keys Kxi1 can be done 1n the key initialization phase.

Let IS be the function applying operation ISB on a byte and
let “—"" define the function “x—1(x)” meaning “x becomes
1(x)” so:

IS1 1s the

IS2 1s the

function on x: Xx—=09.15(x)
function on x: x—=0b.IS(x)

US 8,966,279 B2

7

IS3 1s the function on x: x—=0d.IS(x)

IS4 1s the function on x: x—=0e.IS(x)

These functions are permutations from [0, 255] to [0, 255]
and are implemented by a table look-up.

Applying operations ISB and IMC to a vector designated
[w, X, v, z] as 1n the previous example 1s done by computing;:

[[IS4(w) XOR IS1(x) XOR IS3(y) XOR IS2(z)].

[IS2(w) XOR IS4(x) XOR IS1(y) XOR IS3(z)],
[IS3(w) XOR IS2(x) XOR IS4(y) XOR IS1(z)],
[IS1(w) XOR IS3(x) XOR IS2(y) XOR IS4(z)]]

So to apply the operations ISB and IMC during the rounds
10to 1, 1t 1s suificient to apply the functions IS1 to IS4 to each
byte. The output bytes remain to be logically XORed together
to obtain the output of the function, as shown 1n the example.

Note that the final round, as depicted 1n FIG. 1, 1s different
since no IMC operation 1s used. This implies that instead of
using the operations IS1, 1t suifices to replace them by the
operation IS.

To sum up, the AES decryption 1s understood as a sequence
of ARK and (ISB-IMC) operations. The (ISB-IMC) operation
1s done by table look-up and XOR operations. This last opera-
tion 1s implemented with 64 table look ups for each round (4
for each byte) and 48 XOR operations.

The ISR function 1s simply a reordering of the AES state
bytes and can be 1gnored 1n the flow of operations since it can
be done at the software code compilation time.

Present Method

As explained above, the White Box implementation of the
AES cipher can be expressed as a sequence of ARK and TLU
(table look up) operations. The ARK operations are done over
16 bytes and the TLUs can be done with tables of size 256
bytes.

The ARK 1s an exclusive-or (XOR) Boolean operation,
which 1s a bit-by-bit operation.

If x1 and x2 are two n-bit long numbers, then the bit
number 1 of (x1 XOR x2) 1s equal to (the bit number 1 of x1)
XOR (the bit number 1 01 x2). In other words, the XOR 1s a b1t
order independent operation.

This leads to the following: instead of performing the XOR
operation over 8-bit long values, 1t 1s possible to expand such
a byte so that the byte 1s expressed 1n a greater number of bits
(1.e., n bits where n>8), perform the XOR operation 1n the
n-bit long “world,” and then return to the original “byte
world.”

The following therefore describes a class of methods to

expand one byte into an n-bit long element. Since it 15 man-
datory not to lose information from the original byte, n has be
greater or equal to 8 (there being 8 bits per byte).

Let x be a conventional byte of 8 bits designated (b__0,
b_2,b_3,b_4,b_5b_6,b_ 7). Amethod to represent x in
expanded form 1s to append to x some extra (n—8) bits. These
“extra” bits can be random or not. Let X' designate this
expanded form. Note that the original value x can easily be
recovered from X' by just picking the first 8 bits of x'.

For mstance, in binary form, b_ Ollb__11lb_ 211b_ 31lb__
411b__ Sllb__6llb__71sexpandedtob_ Ollb__11lb_ 21l1b_ 31lb__
411b__Sllb__611b__711r_Ollr__111 . . . 1lr-{n-9}, with random
(r_0,...,r_{n-9}) bits, where 1l designates the concatena-
tion operation).

Going further, 1t 1s not necessary to store the original x bits
b_Otob_ 71inthe first 8 bits oI x'. In fact, if one permutes the
8 significant bits of x into random positions of the expanded
value {0, 1, ...,n-1}, it is still possible to uniquely recover
x from x'. The direct (expansion) and reverse (recovery) trans-
formations can be done in the following way:

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Choose a random function P from [0:7] to [0:n-1], such
that each function P(1) 1s unique (1.e., for all 1 1n [0:7], P(1) 1s
different). P1s, €.g., an operation of the type i1llustrated in FIG.
2 A and explained below.

Direct transformation to expand x to x':

Represent a value x=(b_0, . . . b_7) by x'=(b'_0, . ..
b'{n-1}) such that if j=P(i), b'_j=b_i. For other bits, b'_j is
random. (X here 1s the state value s or the subkey byte b.)
Apply the direct transformation P independently to s and b to
provide respectively s' and b'. Then compute the transformed
value t' as: t'=s' XOR b'.

Reverse transformation to recover x from x":

From x'=(b'{n-1}), compute x=(b__0, . .. b__7) by select-
ing the components b'_j for each 1=P(1). In other words, the
added bits that were random above are removed 1n this step.

So this reverse transformation 1s applied to t', to recover t=s
XOR b.

This transformation method 1s referred to here as “support
expansion of the bits”. This 1s because the 8 bits 1ssued from
a byte are stored 1n expanded form in n bits, with the con-
straint that the relevant positions of [0:n—1] that are effec-
tively used are the same for all the bytes, and depend only on
the function P(1) for 1 1n [0:7] (that 1s to say, the position are
only defined by the index value and not by the bit value itselt).

The set of the relevant indexes {P(0), . . . P(7)} is called
here the “support” of the byte 1n the n-bit (expanded) value.
The goal of this expansion 1s to be able to perform binary
operations 1nitially done on value x instead directly on the
expanded value X'

FIG. 2A shows an example of an expansion from x which
has 8 bits (top row) to X' which has 32 bits (bottom row), using
a specific expansion function Po, defined by the table of FIG.
2A. One can then expand a byte x ito a 32-bit value x' as
shown 1n FIG. 2B, where the grey cells in x' have undefined
values 1n the most general case.

From a practical point of view, this direct transformation 1s
only a TLU, where the table has 256 (=2°) entries and the
outputs X' are of n bits length. The reverse transformation to
recover X 15 more complicated, and can be done 1n several
ways as explained below.

The best case 1s when n 1s strictly greater than 8. In this
case, there are extra (as explained above) random bits 1n X' to
confuse the attacker. The case n 1s equal to 8 consists of
permuting the bits themselves; this 1s the simplest to use 1n
practice.

Doing an XOR Over the Expanded Elements

Betore explaining how to return from the n-bit world to the
8-bit world, consider the advantage of the transformation
(expansion) into the n-bit world. As stated above, the result of
an XOR operation does not depend on the order 1n which 1t 1s
performed over the bits. As a result, 11 x and vy are two bytes
and x' and y' are their respective expansion values, then (X'
XOR v') 15 an expansion of (x XOR v). In other words, when
performing a cryptographic process 1t 1s possible to stay in the
expanded world and perform all XOR operations 1n it, and
then return to the byte world.

Therefore, one can simply XOR values 1n the n-bit world,
without returming to the regular 8-bit world. That 1s a key
teature to hide both data and operations. As explained above,
in the n-bit world there are bits present that are random bits:
the goal 1s to confuse the attacker who needs to understand
what the process 1s doing and 1s trying to extract from the
obfuscated code information and values.

Another embodiment, uses several tables using the same
support (1.e., with different random values 1n place of bits not
used 1n the support). This embodiment 1s as follows:

US 8,966,279 B2

9

perform the direct transformation of s 1nto s' using a first
TLU

perform the direct transformation of b 1into b' using a sec-

ond TLU.

The advantage 1s that the worlds (that 1s, the transformation
algorithm) of b and s then are not exactly the same.

For the direct transformation, going from the 8-bit world to
the expanded n-bit world 1s straight forward as described
above: 1t 1s a TLU. Returning (the reverse transformation)
from the n-bit (expanded) world to the 8-bit world 1s much
more complicated. Indeed, using a TLU would be possible,
but the size of such a table 1s 2", which 1s much too large in
many cases (for instance if n=16). This disclosure presents
solutions to solve this 1ssue, 1.e. how to return from the n-bit
world to the 8-bit world efficiently (so 1t 1s practically imple-
mentable).

Reverse Transformation

Without loss of generality, suppose that n 1s an integer
multiple oI 8 (if not, then 1t 1s possible to pad a representation
with additional bits until 1ts length 1s a multiple of 8). Taking
n as a multiple of 8 1s also easily understood from an 1mple-
mentation point of view. So an n-bit word consists of m=(n/8)
bytes. Let x' be an n-bit long number.

x' 1s designated as (x'_0, . .., x'_m-1) where each of the
clements x'1 1s a byte.

The goal 1s to construct m TLUs each of 256 bytes, and
combine each of the output bytes, in a way to reduce the total
size of the tables. This 1s done with m tables designated
T1,...Tm.

The m tables are used to recover the bits of x that were sent
to the m-th byte. E.g., if n=32, and if the bits 0 and 3 of x are
sent to first byte of X', and other bits of x are sent to second/
third/fourth bytes, then the table T1 will be used to only
recover bits 0 and 3 1n the first byte of x'.

Table Tk 1s constructed such that for each index value 1, 1
P(1) 1s between 8%k and 8*k+7, then the 1th bit of y=Tk[x" k]
1s equal to the P(1)-th bitof x'. The remainder of the bits can be
set to value O.

With this construction, then x=T1[x'_ 1] XOR T2[x'_ 2]
XOR ... XOR Tm[x'_m)].

One can refine this solution by masking the tables. Mask-
ing 1s well known 1n the field. A mask value (“mask™) 1s
logically or mathematically combined with an original value
to mask (hide or obscure) the original value. The original
value 1s readily recovered from the masked value by an
iverse process since the mask 1s known. Let Mi be m masks
of (n/m) bits. Replace the previous table 'T1 with masked table
T'1, where: T'1[x]=T1[x] XOR Mi. Then, 1f each M=M1 XOR
M2 ... XOR Mm, one recovers X by computing;

x=T1[x'_1]XORT2[x'_2]XOR ...XORTm[x' m]
XORM.

Second Embodiment

Reverse Transformation with a Small Number of
XOR Operations: Iterative Folding

The previous reverse transformation embodiment 1s quite
costly 1 terms of requiring many computing operations. It
requires m TLUs, (im—1) XORs, plus the cost of extracting
x'_1outof X', which can be a bit rotation, followed by a mask
operation for each given 1.

If m 1s a power of two ({or example m=4, so n=32), then 1t
1s possible to do this more efficiently 1n terms of operations as
tollows. Restrict oneself to functions P such that for each 11n
[0,7], P(1) % 8 1s unique (where “%” designates the math-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

ematical modulo operation). With this condition, x'_ 0 XOR
x' 1 XOR ...XORx'{m-1} is in one-to-one association
with x, and a dedicated table ensures that it 1s possible to
recover X from X'. This recovery (reverse transformation) 1s
carried out as:

Tocomputex' 0XORx' _1XOR...XORx'{m-1}outof

X', use the following procedure:
1. setindex1at 1

2. rotate X' from 8*(m/(2")) bits to the left into y' (this is

operative whatever the bit endianess 1s)

3. update x'«<—x'XOR V'

4. repeat steps (1) and (2) with index 1=1+1 until m=21

5. X' 1s now equal to (x'0 XOR x'1 XOR . . . XOR

x'(m-1),...,x'0 XOR x'] XOR...XORx'(m-1))and
masking all (m-1)*8 first bits of x' gives x'0 XOR x'l
XOR ... XOR x'(m-1)

FIG. 3 1llustrates function P1 1n a table which provides an
expansion from the set of bytes (top row) 1nto the set of 32-bat
words (bottom row). This function P1 is such that all the
values o P1(1) % 8 are different; expanding a byte x using the
expansion method described above provides the 32-bit vector
x=[x"_0,x"_1,x'_2, x'_3] where each x'_1 1s a byte. One
can see that X' 0 XOR x'_1 XOR x'_ 2 XOR x'_ 3=(x_ 4,
x_0x_5x 2x 6,x_ 7x_1,x_3) which 1s in one-to-one
association with x.

This method enables construction of a TLU on x where the
TLU 1s designated T[x], given x'. One constructs a table
designated R which maps all the values (x_4,x_ 0,x_ 5x
2x_6x_7x_1,x_ 3)tothetable valuesof T[(x_0,x_1,x
2x_3x 4x 5x_ 6,x 7)]. To make the TLU T[x] on x
given X', then compute y=x'_ 0 XOR x'_1 XOR x'_ 2 XOR
X' 3, and then return R[y]. Such a method advantageously
does not reveal x. To construct table R given table T, do the
tollowing: for each x, expand x into x' fold x' into y, and set
R[y] to T[n]. In the case where vy 1s more than 8 bits long, set
the remaining values of R to be random.

This method requires only log 2(m) (bitsize) rotations, log
2(m) XORs, one mask and one TLU, and 1s more efficient
than the above method. For m=4 (i.e., n=32 bits), the overall
costi1s of 2 rotations, 2 XORs, 1 mask application and 1 TLU,
to be compared to 3 XORs, 3 rotations, 4 TLUs and 4 masks.
This method 1s called 1terative folding because the vector x' 1s
tolded to itself, thus reducing the number of information bits
by half at each iteration, until the number of information bits
1s equal to 8.

Third Embodiment

Reverse Transformation with Adaptive Iterative
Folding

The above iterative folding method 1s operative when the
function P 1s such that all the values P(1) % 8 are difierent.
However, considering other folding methods, it 1s possible to
describe the class of functions P that are compatible with
them. This method 1s as follows:

A given folding algorithm 1s “acceptable™ if the function

that expands x into x', then folds x' into y, 1s such that for
all bytes x_1, x_2 and theirr images yv_1, y_ 2,
y_ 1=y 2onlyifx_ 1=x_ 2 (i.e., after folding x', there
1s no ambiguity over the choice of x).

The folding algorithm can output vectors of length differ-
ent than 8. For example, if the final length 15 9, then any
expanding method such that there are 256 different 9-bat
vectors after expanding and folding 1s acceptable. A
possible construction 1s to use a function P such that all

US 8,966,279 B2

11

the P(1) % 9 are different, and expand x into X' using the
alorementioned expansion method.

FIG. 4 1s an example of such a function P2 expressed as a
table such that all values P2(1) % 9 (bottom row) are different.
From function P2, the following 1s an example of a folding
method to obtain a shorter binary string that can be obtained
only from the original byte.

Given P2 and x, expand the support of x into [0:31] bits by
storing the x11nto x'_P2(1). Then, fold x' 2 times over itself by
shifting 18 bit positions to the left, then XORing, then shifting
9 bit positions to the left, then XORing. As all the values of
P2(1) % 9 are different, thus the leading 9 bits of the result can
only be obtained by this method from x.

Another possible construction is to duplicate some bits but
not all, as 1s 1llustrated by the following example:
l.x=(x_0,...,x_7)isexpanded into x'=(x_ 0,x_ 1,x_ 2.x

3x 4x S5x 6x 7x Ox 1x 2x 3x 4x 35X

6,0)

2. X' 1s rotated 9 bits to the left mnto y=(x__ 1,x_2.x_ 3,x_4,

Xx_5x 60,x 0x 1x 2x 3x 4x 5x 6x 7x0)
3. x' and y are XORed together to compute z=(x__ 0 XOR

X 1,x 1 XORx 2.x 2XORx 3, x 3XORx 4, 4

XORx_5,x 5XORx _6,x 6 XORx 7,x_0,...)

4. The 9 (or even 8, here) first bits of z enable one to uniquely
recover X through a TLU.

As seen, there are many possibilities of folding and
expanding methods. So 1n accordance with the invention, the
expansion method 1s constructed from a given folding algo-
rithm. In fact, this method (1) selects a folding algorithm to be
read 1n the reverse transformation; and (11) from it has the
value of P() which defines 1ts direct transformation.

A general case folding algorithm 1s an arbitrary sequence,
designated A, of bit shift and XORs of n-bit vector x'. From
such a sequence A, the construction of an adequate expansion
method can be done by examining the resulting bits, and
solving the equation system (in the function P) 1n such a way
that there 1s only one x for each A(X').

In other words, 1f the expansion algorithm 1s denoted E
such that x'=E(x), and 11 E depends on P, constructing E 1s the
same as {inding an acceptable P such that for all x__ 1, x_ 2,
where x__ 1=x_ 2, A(E(x__1)) 1s different from A(E(x__2)).

For instance, if the folding algorithm A consists of com-
puting x' XOR (RotateLeft(x',12)) XOR (RotateLeft(x', 15))
and taking the first 10 bits of the result, finding algorithm E
consists of finding a map from the set of bytes to all 32-bit
vectors, such that all the values of:

x'0 XOR x']
x'l1 XOR ']
x'2 XOR x'T4 XOR X'l
x'3 XOR x'15 XOR X'18
x4 XOR x16 XOR x'19
x5 XOR x17 XOR x'20
x'6 XORX'T8 XOR x'21
X7 XORX'19 XOR x'22
X8 XOR x20 XOR x'23
X9 XORx21 XOR x'24

2 XOR X'l
3 XOR X'l

*--.]G'*ﬁ.Lh

are different. There are many known solutions for these con-

straints, and any of them 1s an acceptable expanding algo-
rithm.

Fourth Embodiment

Expansion that Replaces XOR with Other Boolean
Operations

The XOR operation can be computed conventionally by a
direct CPU (central processing unit—processor) soitware

5

10

15

20

25

30

35

40

45

50

55

60

65

12

instruction, but as 1s well known, 1t can also be computed 1n
other ways. Where “AND” represents the Boolean “and”
operation, “OR” the Boolean *““or” operation, and “NOT” the
Boolean “not” operation, then the following 1s true by defi-
nition:

a XOR b=(a AND (NOT b)) OR ((NOT a) AND b)

a XOR b=(a OR b) AND ((NOT a) OR (NOT b))

a XOR b=NOT (NOT((NOT a) or b)) or (NOT (a or (NOT

b))
a XOR b=NOT((NOT (a AND (NOT b))) and (NOT ((NOT

a) AND b)))
Rewriting the XOR operation 1n these ways enables other

expansion algorithms. Instead of using 8 bits out of the n bits
finally taken by the expansion x', one uses 16 bits out of bits
n. All the bits of both x and (NOT x) are stored 1n X'

As an example, expand x over 32 bits as (0, .. . 0, x_ 0,x__
1x 2...x 7,NOTx_0,...NOTI x_7)where there are 16
zero bits at the beginning, then all the bits of x, then all the bits
of NOT x.

Let T be a function that expands x into x' in such a way. In
practice, function I may be implemented by a TLU. It 1s
possible to compute x XOR vy 1n the following way:

expand X 1mto x', and y mto '

compute z=x' OR y'. The first 16 bits of z are 0, the follow-
ing 8 bits are the bits of (x OR v), and the last 8 bits are the bits
of (NOT x) OR (NOT y)).

rotate z 8 bits to the rightintoz_ 1, and computezandz_ 1.
This 1s a 32-bit vector whose 8-bit value 1s exactly x XOR y.

It 1s also possible to perform the operations in the other
way: compute z=x' AND (NOT v'), rotate of 8 bits to the right
into z_ 1, and compute z OR z 1. The last 8 bits provide
directly the result of x XOR v.

The advantage of such a method 1s enhanced security, since
the XOR operation 1s never revealed as such to an attacker. It
1s possible to provide TLUSs to create the expanded versions of
x and v, then another TL U provides x XOR y. The first method
1s called here the conjunctive method since the final step 1s to
compute a Boolean “and”, and the second method 1s called
the disjunctive method, since the final step 1s to compute a
Boolean “or”.

A refinement of this method consists of mixing the bits of
x and those of (NOT x) 1n the expansion x'. This means that a
bit of X' can randomly be set to x_1 (case 1) or to (NOT x_1)
(case 2) provided that the corresponding bit (NOT x_1) in case
1 and x_1 1n case 2 appears 1n x. FIGS. 5A, 5B illustrate two
different representations of x=(x_ 0,x_ 1, ..., x_7) which
provide the same result if one applies the XOR rewriting. The
NOT operation here is designated “|,”

The advantage of using the second representation 1s that it
1s difficult to know which bit 1s a bit of x and which bit is the
negation of a bit of x (NOT x).

Since the remaining n-16 bits are not used (these are the
grey cells in FIGS. 5A, 5B), 1t 1s possible to assign those grey
cells to random values without interfering with the above
calculations.

It 1s also possible to combine this method with a folding
method, for example to represent x with x'=(m, x XOR m, m1,
(NOT x) XOR m__1) where m and m1 are two 8-bit masks.
Then, after one shifting from 8 positions to the right and
XORing (1.e. computing x' XOR (rotateRight(x",8)), recover
(0,x,0, NOT x), and apply the above conjunctive or disjunc-
tive method. Here again, the order of the bits of m and x XOR
m can be mixed; even more, the order of the bits of x XOR m
and (not x) XOR m__1 can be mixed as long as the order 1s
known 1n advance.

US 8,966,279 B2

13

The overall process 1s as follows:
From X, construct x'=T1[x]| where T1 1s a 256-entry table that
outputs n-bit values, using an expansmn algorlthm =8
To compute (x XOR y)', compute x' and y' with the table
T1. Apply the method described above, to obtain z' 1n which

the last 8 bits or more (designated z__ 1) uniquely represent x
XOR y; apply a second table T2 so that T2[z_ 1]=T1[x XOR

yl.

The choice of table T1 and the method to obtain z' can be
one of the above methods, or a combination of them.

The following 1s an example of the processing steps to
perform an ARK operation (which 1s in practice a XOR opera-
tion) followed by a TL U over a table T.

x 1s the byte to be XORed with the round key k (where each
of x and k are bytes). First, expand x and kusing a table T_R2
that implements Representation 2 (FIG. 3B), 1.e. takes 8 bits
as mputs, and outputs 32 bits. This provides the vectors x' and
k'. Compute z'=x' or K', then z'=z and RotateLett(z,16). The
ARK step 1s done. It 1s then possible to do a TLU (as 1s
conventional in the AES cipher) using the table T.

FIG. 6 shows in a block diagram relevant portions of a
computing device (system) 160 in accordance with the mven-
tion which carries out the cryptographic process as described
above. This 1s, €.g., a server platform, computer, mobile tele-
phone, Smart Phone, personal digital assistant or similar
device, or part of such a device and includes conventional
hardware components executing in one embodiment software
(computer code) which carries out the above examples. This
code may be, e.g., 1n the C or C++ computer language or 1ts
functionality may be expressed in the form of firmware or
hardware logic; writing such code or designing such logic
would be routine 1n light of the above examples and logical
expressions. Of course, the above examples are not limiting.
Only relevant portions of this apparatus are shown for sim-
plicity. Essentially a similar apparatus encrypts the message,
and may 1indeed be part of the same platform.

The computer code i1s conventionally stored in code
memory (computer readable storage medium) 140 (as object
code or source code) associated with conventional processor
138 for execution by processor 138. The incoming ciphertext
(or plaintext) message (in digital form) 1s received at port 132
and stored in computer readable storage (memory 136 where
it 1s coupled to processor 138. Processor 138 conventionally
then partitions the message into suitable sized blocks at par-
tittoning module 142. Another software (code) module in
processor 138 1s the decryption module 146 which carries out
the key-schedule functionality and decryption functions set
forth above, with 1ts associated computer readable storage
(memory) 152.

Also coupled to processor 138 1s a computer readable
storage (memory) 158 for the resulting decrypted plaintext
message. Storage locations 136, 140, 152, 158 may be 1n one
or several conventional physical memory devices (such as
semiconductor RAM or its variants or a hard disk drive).
Electric signals conventionally are carried between the vari-
ous elements of FIG. 6. Not shown in FIG. 6 1s any subsequent
conventional use of the resulting plaintext or ciphertext stored
in storage 145.

FIG. 7 1llustrates detaill of a typical and conventional
embodiment of computing system 160 that may be employed
to implement processing functionality in embodiments of the
invention as indicated 1n FIG. 6 and includes corresponding
clements. Computing systems of this type may be used 1n a
computer server or user (client) computer or other computing
device, for example. Those skilled 1n the relevant art will also
recognize how to implement embodiments of the invention
using other computer systems or architectures. Computing,

10

15

20

25

30

35

40

45

50

55

60

65

14

system 160 may represent, for example, a desktop, laptop or
notebook computer, hand-held computing device (personal
digital assistant (PDA), cell phone, palmtop, etc.), main-
frame, server, client, or any other type of special or general
purpose computing device as may be desirable or appropriate
for a given application or environment. Computing system
160 can 1nclude one or more processors, such as a processor
164 (equivalent to processor 138 1n FIG. 6). Processor 164
can be implemented using a general or special purpose pro-
cessing engine such as, for example, a microprocessor, micro-
controller or other control logic. In this example, processor
164 1s connected to a bus 162 or other communications
medium.

Computing system 160 can also include a main memory

168 (equivalent of memories 136, 140,152, and 158), such as

random access memory (RAM) or other dynamic memory,
for storing information and instructions to be executed by
processor 164. Main memory 168 also may be used for stor-
ing temporary variables or other intermediate imnformation
during execution of instructions to be executed by processor
164. Computing system 160 may likewise include a read only
memory (ROM) or other static storage device coupled to bus
162 for storing static information and instructions for proces-
sor 164.

Computing system 160 may also include information stor-
age system 170, which may include, for example, a media
drive 162 and a removable storage interface 180. The media
drive 172 may include a drive or other mechanism to support
fixed or removable storage media, such as flash memory, a
hard disk drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a compact disk (CD) or digital versatile
disk (DVD) drive (R or RW), or other removable or fixed
media drive. Storage media 178 may include, for example, a
hard disk, floppy disk, magnetic tape, optical disk, CD or
DVD, or other fixed or removable medium that 1s read by and
written to by media drive 72. As these examples 1llustrate, the
storage media 178 may include a computer-readable storage
medium having stored therein particular computer software
or data.

In alternative embodiments, information storage system
170 may include other similar components for allowing com-
puter programs or other instructions or data to be loaded into
computing system 160. Such components may include, for
example, a removable storage unit 182 and an interface 180,
such as a program cartridge and cartridge interface, a remov-
able memory (for example, a flash memory or other remov-
able memory module) and memory slot, and other removable
storage units 182 and interfaces 180 that allow software and
data to be transferred from the removable storage unit 178 to
computing system 160.

Computing system 160 can also include a communications
interface 184 (equivalent to part 132 1n FIG. 6). Communi-
cations mnterface 184 can be used to allow software and data to
be transferred between computing system 160 and external
devices. Examples of communications interface 184 can
include a modem, a network interface (such as an Ethernet or
other network interface card (NIC)), a communications port
(such as for example, a USB port), a PCMCIA slot and card,
etc. Software and data transierred via communications inter-
face 184 are in the form of signals which can be electronic,
clectromagnetic, optical or other signals capable of being
received by communications interface 184. These signals are
provided to communications interface 184 via a channel 188.
This channel 188 may carry signals and may be implemented
using a wireless medium, wire or cable, fiber optics, or other
communications medium. Some examples of a channel

US 8,966,279 B2

15

include a phone line, a cellular phone link, an RF link, a
network interface, a local or wide area network, and other
communications channels.

In this disclosure, the terms “computer program product,”
“computer-readable medium” and the like may be used gen-
crally to refer to media such as, for example, memory 168,
storage device 178, or storage unit 182. These and other forms
of computer-readable media may store one or more mstruc-
tions for use by processor 164, to cause the processor to
perform specified operations. Such instructions, generally
referred to as “computer program code” (which may be
grouped 1n the form of computer programs or other group-
ings), when executed, enable the computing system 160 to
perform functions of embodiments of the invention. Note that
the code may directly cause the processor to perform speci-
fied operations, be compiled to do so, and/or be combined
with other software, hardware, and/or firmware elements
(e.g., libraries for performing standard functions) to do so.

In an embodiment where the elements are implemented
using soltware, the software may be stored in a computer-
readable medium and loaded into computing system 160
using, for example, removable storage drive 174, drive 172 or
communications interface 184. The control logic (in this
example, software instructions or computer program code),
when executed by the processor 164, causes the processor
164 to perform the functions of embodiments of the invention
as described herein.

This disclosure 1s 1illustrative and not limiting. Further
modifications will be apparent to these skilled in the art in
light of this disclosure and are intended to fall within the
scope of the appended claims.

We claim:

1. A method for applying a cryptographic process to a
message using at least one key, the method comprising;:

expanding a key for the cryptographic process into a plu-

rality ol new keys using a first expansion function, each
new key associated with a different round of the crypto-
graphic process;
prior to using a particular one of the new keys for an
associated particular round of the cryptographic pro-
cess, applying a second expansion function to the par-
ticular new key that uniquely maps each bit of the par-
ticular new key to a different location 1n an expanded
new key 1n a different order, wherein the expanded new
key includes additional bits between the mapped bits;

applying the particular round of the cryptographic process
to a portion of the message using the expanded new key
to produce an expanded result; and

recovering an encrypted version of the message portion

from the expanded result using a recovery function,
wherein the recovery function recovers only bits from
the expanded result that have been subject to a crypto-
graphic operation mvolving the mapped bits from the
expanded new key.

2. The method of claim 1 further comprising looking up an
expansion of the portion of the message 1n an expansion table,
wherein applying the particular round of the cryptographic
process to the portion of the message comprises applying the
cryptographic process to the expansion of the portion of the
message.

3. The method of claim 2, wherein the expansion table 1s
part of a set ol expansion tables, each expansion table includ-
ing a plurality of random entries differing between the tables.

4. The method of claim 1, wherein the cryptographic pro-
cess 1s a block cipher which includes a plurality of rounds.

5. The method of claim 1, wherein the second expansion
function 1includes a table with a plurality of random entries.

10

15

20

25

30

35

40

45

50

55

60

65

16

6. The method of claim 1, wherein the second expansion
function includes a table that randomly permutes an order of
bits of the particular new key in order to produce the different

order of the expanded new key.

7. The method of claim 1, wherein each round of the
cryptographic process includes applying a predetermined set
of operations, each operation being one of an exclusive OR, a
bit move, and a table lookup, and wherein all exclusive-OR
operations 1n the cryptographic process are performed using
expanded new keys.

8. The method of claim 1, wherein the recovery function
performs a plurality of table look-ups 1 a set of look-up
tables, each look-up table associated with a unique section of
the expanded result.

9. The method of claim 8, wherein the look-up tables are
masked.

10. The method of claim 1, wherein the expanded result 1s
n bits 1n length.

11. The method of claim 10, further comprising padding
the expanded result with additional bits until the padded result
1s a multiple of 8.

12. The method of claim 10, turther comprising reducing
the expanded results to be n/2 bits 1n length by applying a
sequence of bit shift operations and exclusive-OR operations
to the expanded result.

13. A non-transitory machine readable medium storing a
program which when executed by at least one processing unit
applies a cryptographic process to a message using at least
one key, the program comprising sets of instructions for:

expanding a key for the cryptographic process mto a plu-

rality of new keys using a {irst expansion function, each
new key associated with a different round of the crypto-
graphic process;

prior to using a particular one of the new keys for an

associated particular round of the cryptographic pro-

CeSS:

applying a second expansion function to the particular
new key that uniquely assigns each bit of the particu-
lar new key to a different location 1n an expanded new
key; and

applying the second expansion function to a segment of
cryptographic state derived from the message that
uniquely assigns each bit of the segment of crypto-
graphic state to a different location 1n an expanded
segment of cryptographic state;

applying the particular round of the cryptographic process

to the expanded segment of cryptographic state using the

expanded new key to produce an expanded result; and
recovering an encrypted version of the message portion

from the expanded result using a recovery function.

14. The non-transitory machine readable medium of claim
13, wherein the second expansion function comprises an
expansion table.

15. The non-transitory machine readable medium of claim
14, wherein the expansion table 1s part of a set of expansion
tables, each expansion table having a plurality of pseudo-
random entries differing between the tables.

16. The non-transitory machine readable medium of claim
13, wherein the cryptographic process 1s a block cipher.

17. The non-transitory machine readable medium of claim
13, wherein the second expansion function comprises an
expansion table with a plurality of pseudo-random entries.

18. The non-transitory machine readable medium of claim
13, wherein the second expansion function comprises an
expansion table that pseudo-randomly permutes an order of
bits of the particular new key.

US 8,966,279 B2

17

19. The non-transitory machine readable medium of claim
13, wherein each round of the cryptographic process includes
applying a predetermined set of operations, each operation
being one of an exclusive OR, a bit move, and a table lookup,
and wherein all exclusive-OR operations 1n the cryptographic
process are performed using expanded new keys.

20. The non-transitory machine readable medium of claim
13, wherein the recovery function performs at least one table
look-up.

21. The non-transitory machine readable medium of claim
13, wherein the recovery function performs a plurality of
table look-ups 1n a set of look-up tables, each look-up table
associated with a unique section of the expanded result.

22. The non-transitory machine readable medium of claim
21, wherein the look-up tables are masked.

23. The non-transitory machine readable medium of claim
13, wherein the expanded result 1s n bits 1n length.

24. The non-transitory machine readable medium of claim
23, wherein the program further comprises a set of instruc-
tions for padding the expanded result with additional bits until
the padded result 1s a multiple of 8.

25. The non-transitory machine readable medium of claim
23, wheremn the set of instructions for recovering the
encrypted version of the message portion comprises a set of
instructions for reducing the expanded results to be n/2 bits 1n
length by applying a sequence of bit shiift operations and
exclusive-OR operations to the expanded result 1n order to
produce a reduced result.

26. The non-transitory machine readable medium of claim
25, wheremn the set of instructions for recovering the
encrypted version of the message portion further comprises a
set of instructions for mapping the reduced result to a plurality
of different recovered bytes of the encrypted version of the
message portion.

277. The non-transitory machine readable medium of claim
13, wherein the second expansion function changes an order
of the bits of the new key as represented 1n the expanded new
key.

28. A method for applying a cryptographic process to an
encrypted message using at least one key, the method com-
prising:

expanding a cipher key for the cryptographic process mnto

a plurality of new keys using a first expansion function,
wherein each new key has a same length as the cipher
key, and wherein each new key 1s associated with a
different round of the cryptographic process;

prior to using a particular one of the new keys for an

associated particular round of the cryptographic pro-
cess, applying a second expansion function to the par-
ticular new key that uniquely assigns each bit of the
particular new key to a different location in an expanded
new key, wherein the expanded new key 1s longer than
the particular new key;

applying the particular round of the cryptographic process

to a portion of the encrypted message using the

expanded new key to produce an expanded result; and
recovering a decrypted version of the message portion

from the expanded result using a recovery function.

29. The method of claim 28 further comprising looking up
an expansion of the portion of the encrypted message 1n an
expansion table, wherein applying the particular round of the
cryptographic process to the portion of the message further
comprises applying the cryptographic process to the expan-
s1on of the portion of the encrypted message.

10

15

20

25

30

35

40

45

50

55

60

18

30. The method of claim 29, wherein the expansion table 1s
part of a set of expansion tables, each expansion table includ-
ing a plurality of random entries differing between the tables.

31. The method of claim 28, wherein each round of the
cryptographic process includes applying a predetermined set
of operations, each operation being one of an exclusive OR, a
bit move, and a table lookup, and wherein all exclusive-OR
operations 1n the cryptographic process are performed using

expanded new keys.
32. The method of claim 28, wherein the recovery function

performs a plurality of table look-ups 1n a set of look-up
tables, each look-up table associated with a unique section of

the expanded result.

33. The method of claim 28, wherein the expanded result 1s
n bits 1n length and wherein the method further comprises
reducing the expanded results to be n/2 bits in length by
applying a sequence of bit shift operations and exclusive-OR
operations to the expanded result.

34. The method of claim 28, wherein the second expansion
function changes an order of the bits of the new key as rep-

resented 1n the expanded new key.
35. A non-transitory machine readable medium storing a

program which when executed by at least one processing unit
applies a cryptographic process to an encrypted message
using at least one key, the program comprising sets of instruc-
tions for:

expanding a key for the cryptographic process mto a plu-

rality ol new keys using a {irst expansion function, each
new key associated with a different round of the crypto-
graphic process;
applying, prior to using a particular one of the new keys for
an associated particular round of the cryptographic pro-
cess, a second expansion function to the particular new
key that uniquely maps each bit of the particular new key
to a different location 1n an expanded new key 1n a
different order, wherein the expanded new key includes
additional bits between the mapped bats;
applying the particular round of the cryptographic process
to a portion of the encrypted message using the
expanded new key to produce an expanded result; and

recovering a decrypted version of the message portion
from the expanded result using a recovery function,
wherein the recovery function recovers only bits from
the expanded result that have been subject to a crypto-
graphic operation mvolving the mapped bits from the
expanded new key.

36. The non-transitory machine readable medium of claim
35, wherein the recovery function performs a plurality of
table look-ups 1n a set of look-up tables, each look-up table
associated with a unique section of the expanded result.

3’7. The non-transitory machine readable medium of claim
36, wherein the look-up tables are masked.

38. The non-transitory machine readable medium of claim
35, wherein the expanded result 1s n bits 1n length.

39. The non-transitory machine readable medium of claim
38, wherein the set of instructions for recovering a decrypted
version of the message portion comprises a set of mnstructions
for padding the expanded result with additional bits until the
padded result 1s a multiple of 8.

40. The non-transitory machine readable medium of claim
38, wherein the set of instructions for recovering a decrypted
version of the message portion comprises a set of mnstructions
for reducing the expanded result to be n/2 bits 1n length by
applying a sequence of bit shift operations and exclusive-OR
operations to the expanded result.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

