12 United States Patent

Jayaraman

US008965852B2

US 8,965,852 B2
Feb. 24, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND APPARATUS FOR
NETWORK EFFICIENT DEDUPLICATION

Inventor: Vinod Jayaraman, San Francisco, CA
(US)

Assignee: Dell Products L.P., Round Rock, TX
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 113 days.

Appl. No.: 12/954,348

Filed: Nov. 24, 2010
Prior Publication Data
US 2011/0125720 Al May 26, 2011

Related U.S. Application Data

Provisional application No. 61/264,233, filed on Nov.
24, 2009.

Int. Cl.

GoOol 7700 (2006.01)

GoOol 17/00 (2006.01)

GOol 17/30 (2006.01)

U.S. CL

CPC i, GO6F 17/30156 (2013.01)

USPC e, 707/664; 707/692

Field of Classification Search

CPC GO6F 17/30156; GO6F 17/3015; GO6F
17/30489; GO6F 3/0641; GO6F 11/1453

USPC 707/664, 672, 673, 692, 697, 713/324;

711/161, 162, 170
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0133561 Al* 6/2008 Dubnickietal. 707/101

2009/0063795 Al* 3/2009 Yuehoooooovivviininnnnnnn, 711/162

2010/0094817 Al* 4/2010 Ben-Shaul etal. 707/697

2010/0121825 Al* 5/2010 Batesetal. 707/692

2011/0066628 Al* 3/2011 Jayaraman 707/758

2012/0017054 Al* 1/2012 Araretal.c. 711/154
OTHER PUBLICATIONS

Srinivasan, Kiran et al., “iDedup: Latency-aware, inline data
deduplication for primary storage”, NetdApp, Inc. , [Online].
Retrieved from the Internet: <http://static.usenix.org/events/fast12/
tech/full__papers/Srinivasan.pdf >,(Accessed on May 23, 2012), 14

pgs.
“EMC Data Domain Global Deduplication Array”, EMC Corpora-

tion, [Online]. Retrieved from the Internet: <http://www.datadomain.
com/pdf/DataDomain-GlobalDeduplication Array-Datasheet.pdf >

Accessed on May 30, 2012,(2011).4 pgs.

* cited by examiner

Primary Examiner — Md. 1 Uddin
(74) Attorney, Agent, or Firm — Kwan & Olynick LLP

(57) ABSTRACT

Mechanisms are provided for performing network efficient
deduplication. Segments are extracted from files recerved for
deduplication at a host connected to a target over one or more
networks and/or fabrics 1n a deduplication system. Segment
identifiers (IDs) are determined and compared with segment
IDs for segments already deduplicated. Segments already
deduplicated need not be transmitted to a target system. Ret-
erences and reference counts are modified at a target system.
Updating references and reference counts may involve modi-
tying filemaps, dictionaries, and datastore suitcases for both
already deduplicated and not already deduplicated segments.

16 Claims, 7 Drawing Sheets

.~ Tape Device 101
Host 101 '. . File Scrver 121
Tape Device 163
! | Dircet Attached
“.I | Storage 131
Host 103 !
S | Storage Arca Network 141 |
xll, ! i File Server 123
,-'f Dircet Attached
Host 105 Storage 133
" Redundant
Array of
! File Server 125 x Individual Disks
; (RAID) 151
Host 107 !
Dircct Attached _
Storage 135 Vlrtu_al Tapc
Device 165

US 8,965,852 B2

Sheet 1 of 7

Feb. 24, 2015

U.S. Patent

[ST (AIvy)
SYSIJ [enpraIpuy
JO Avary
JUepunpYy

f,,,,f

€T 901A(T ade],

C9T 29140
dce], TenIA

[Q] Q01AQ(q dde] -

V1 2In31]

CCT 03BI0IS
POy 30d1I(]

S IRALRS 9l

POYILNVY 19d11(]

€€ 93e10)S

e PALRS 9T

[€] 93RI0IS
PoYdBIY 19011(]

4 1T IeAIaS 214

LO1 50H

01 15OH

t01 $50H

[OT ¥50H

US 8,965,852 B2

Sheet 2 of 7

Feb. 24, 2015

U.S. Patent

d] 2Ins1q

SLL Z2Id d &jed d eied d vied
Ll ARld D tle(d d eied d vied
ILT X 2[4 D Bled d eied Vv Bled

U.S. Patent Feb. 24, 2015 Sheet 3 of 7 US 8.965,852 B2
Figure 2A
Filemap File X 201
Offset 203 Index 205 Lname 207
OK 0.1 NULL
8K 0.2 NULL
16K 0.3 NULL
Figure 2B
Datastore Suitcase 271
Data Table 251
Index 253 Data Offset 255 Data Reference Count 257
] Offset-Data A |
2 Offset-Data B 1
3 Oftfset-Data C 1
Datastore
Data 261 Last File 263
] Data A File X 201
2 Data B File X 201
3 Data C File X 201

U.S. Patent Feb. 24, 2015 Sheet 4 of 7 US 8.965,852 B2
Figure 3
Dictionary 301
Hash 311 Storage Location 321
a Location 323
b Location 325
C Location 327
Dictionary 351
Hash 361 Storage Location 371
1 Location 373
] Location 375
k Location 377

US 8,965,852 B2

Sheet S of 7

Feb. 24, 2015

U.S. Patent

_ Sy el

T\ IOUIRIUO))

uh\ﬂmow 2[1q

LLY
uouoduoN
N
C /1 o3 [L JUoW32S | 01 JUOWI3S | /0 JUOWISIS
R AL
CO 1R /0 IdUIRuO))
397 $ST
usuoduwon uduoduwoN
_,,,,,, ,/:
N \
[OF TUOW3AS / Gt TUAWZIG
[$7 Bled
d{ o3I
SOt FUOWTOS
[0F Bled
Vi 23]

US 8,965,852 B2

Sheet 6 of 7

Feb. 24, 2015

U.S. Patent

C AIN3I]

CIS SIUNO) dOUDIJJY
PUY SAOUAIAJY AJIPOIA

A

€7S SIUNOY) QOUAIDJIY
PUY SOOUAIIIY AITPOIA

t1s
dsedINng A10)seIe(O, PPV

$0S
ST JUQWSIS QUTWIA(]

A

A

A

[CS
WOISAQ 19818 [O] JUWISIQ

BIR(] JO UOISSTWSURI], ON

[1S WIISAQ 103Ie],
O I, JUOWISIS BIR(] NWISURI],

€05 so11g ordnny
uy vie(J 10 souepunoyg
JUQWISAS QUTWLId(]

A

SO A

ON

\\\ /
606 {paeorjdnpsg—_

Apearpy juowdog —
/h\m

LOS payedtjdnpa(q usdy

APBAI[Y JABH SIUQUWISIS |«

TRYAN SAIROIPUT 19318 |

A

[0S s3It d1dnnA
dnyoeg o], 1s0nboy dreniuf

A

e

—— T

e

@ uonesrdnpa(g N
/

v

JUDTOIJJH I0MION %

US 8,965,852 B2

Sheet 7 of 7

Feb. 24, 2015

U.S. Patent

0 2IN31

[19 991U

$19 sty

€09 AIOWIN

109 10SS9001]

009 WAISAS

US 8,965,852 B2

1

METHODS AND APPARATUS FOR
NETWORK EFFICIENT DEDUPLICATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 U.S.C. 119(¢)
of U.S. Provisional Application No. 61/264,233 filed Nov. 24,
2009 and titled “METHODS AND APPARATUS FOR NET-
WORK EFFICIENT DEDUPLICATION”, all of which 1s
incorporated herein by this reference 1n 1ts entirety for all
pUrposes.

TECHNICAL FIELD

The present disclosure relates to performing etficient dedu-
plication over one or more networks.

DESCRIPTION OF RELATED ART

Maintaining vast amounts of data 1s resource intensive not
just 1n terms of the physical hardware costs but also 1n terms
of system administration and infrastructure costs. Some
mechanisms provide compression of data to save resources.
For example, some file formats such as the Portable Docu-
ment Format (PDF) are compressed. Some other utilities
allow compression on an individual file level 1n a relatively
ineflicient manner.

Data deduplication refers to the ability of a system to
climinate data duplication across files to increase storage,
transmission, and/or processing elliciency. A storage system
which incorporates deduplication technology 1nvolves stor-
ing a single istance of a data segment that 1s common across
multiple files. In some examples, data sent to a storage system
1s segmented 1n fixed or vaniable sized segments. Each seg-
ment 1s provided with a segment 1dentifier (ID), such as a
digital signature or a hash of the actual data. Once the segment
ID 1s generated, 1t can be used to determine 11 the data segment
already exists 1n the system. If the data segment does exist, 1t
need not be stored again. The reference count for the single
instance data segment 1s incremented and some form of file
mapping construct 1s used to associate the deduplicated seg-
ment from a particular file to the single mstance stored in the
storage system.

However, mechanisms for performing deduplication are
limited. Consequently, mechanisms are provided for improv-
ing the efficiency of deduplication when compression 1s also
used.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may best be understood by reference to the
tollowing description taken 1n conjunction with the accom-
panying drawings, which illustrate particular embodiments of
the present invention.

FIG. 1 Aillustrates a particular example of network that can
use the techniques and mechanisms of the present invention.

FIG. 1B 1illustrates a particular example of files and data
segments.

FIG. 2A 1llustrates a particular example of a filemap.

FIG. 2B illustrates a particular example of a datastore
suitcase.

FI1G. 3 1llustrates a particular example of a deduplication
dictionary.

FIG. 4 A 1illustrates a particular example of a file having a
single data segment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4B illustrates a particular example of a file having
multiple data segments and components.

FIG. 5 illustrates a particular example of network etficient
optimization.

FIG. 6 illustrates a particular example of a computer sys-
tem.

DESCRIPTION OF PARTICULAR
EMBODIMENTS

Retference will now be made 1n detail to some specific
examples of the invention including the best modes contem-
plated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated 1n the
accompanying drawings. While the invention 1s described 1n
conjunction with these specific embodiments, 1t will be
understood that 1t 1s not mtended to limit the mvention to the
described embodiments. On the contrary, it 1s intended to
cover alternatives, modifications, and equivalents as may be
included within the spirit and scope of the invention as
defined by the appended claims.

For example, the technmiques and mechanisms of the
present invention will be described 1n the context of particular
network architectures. However, 1t should be noted that the
techniques and mechanisms of the present invention apply to
a variety of different network architectures. In the following
description, numerous specific details are set forth 1n order to
provide a thorough understanding of the present invention.
Particular example embodiments of the present mvention
may be implemented without some or all of these specific
details. In other instances, well known process operations
have not been described 1n detail 1n order not to unnecessarily
obscure the present invention.

Various techniques and mechanisms of the present imnven-
tion will sometimes be described in singular form for clarity.
However, 1t should be noted that some embodiments include
multiple iterations of a technique or multiple instantiations of
a mechanism unless noted otherwise. For example, a system
uses a processor 1n a variety ol contexts. However, 1t will be
appreciated that a system can use multiple processors while
remaining within the scope of the present invention unless
otherwise noted. Furthermore, the techniques and mecha-
nisms ol the present mvention will sometimes describe a
connection between two entities. It should be noted that a
connection between two entities does not necessarily mean a
direct, unimpeded connection, as a variety of other entities
may reside between the two entities. For example, a processor
may be connected to memory, but it will be appreciated that a
variety ol bridges and controllers may reside between the
processor and memory. Consequently, a connection does not
necessarily mean a direct, unimpeded connection unless oth-
erwise noted.

Overview

Mechanisms are provided for performing network efficient
deduplication. Segments are extracted from files received for
deduplication at a host connected to a target over one or more
networks and/or fabrics 1n a deduplication system. Segment
identifiers (IDs) are determined and compared with segment
IDs for segments already deduplicated. Segments already
deduplicated need not be transmitted to a target system. Ret-
erences and reference counts are modified at a target system.
Updating references and reference counts may involve modi-
tying filemaps, dictionaries, and datastore suitcases for both
already deduplicated and not already deduplicated segments.

Example Embodiments

Maintaining, managing, transmitting, and/or processing,
large amounts of data can have significant costs. These costs

US 8,965,852 B2

3

include not only power and cooling costs but system mainte-
nance, network bandwidth, and hardware costs as well.
Some efforts have been made to reduce the footprint of data
maintained by file servers and reduce the associated network
traific. A vanety of utilities compress files on an individual
basis prior to writing data to file servers. Compression algo-
rithms are well developed and widely available. Some com-
pression algorithms target specific types of data or specific
types of files. Compressions algorithms operate 1n a variety of
manners, but many compression algorithms analyze data to
determine source sequences in data that can be mapped to
shorter code words. In many implementations, the most fre-

quent source sequences or the most frequent long source
sequences are replaced with the shortest possible code words.

Data deduplication reduces storage footprints by reducing,
the amount of redundant data. Deduplication may involve
identifying variable or fixed sized segments. According to

various embodiments, each segment of data 1s processed
using a hash algorithm such as MD3S or SHA-1. This process
generates a unique 1D, hash, or reference for each segment.
That 1s, if only a few bytes of a document or presentation are
changed, only changed portions are saved. In some 1nstances,
a deduplication system searches for matching sequences
using a fixed or sliding window and uses references to 1den-
tify matching sequences instead of storing the matching
sequences again.

In a data deduplication system, the backup server working,
in conjunction with a backup agent identifies candidate files
for backup, creates a backup stream and sends the data to the
deduplication system. A typical target system 1n a deduplica-
tion system will deduplicate data as data segments are
received. A block that has a duplicate already stored on the
deduplication system will not need to be stored again. How-
ever, other information such as references and reference
counts may need to be updated. Some implementations allow
the candidate data to be directly moved to the deduplication
system without using backup software by exposing a NAS
drive that a user can manipulate to backup and archive files.

It 1s also possible that the source of the backup 1s a dedu-
plicated storage subsystem which 1s being backed up to
another deduplicated storage subsystem. In this situation and
in other situations, 1t 1s the source storage subsystem that will
reduplicate blocks when it sends the data to the backup stor-
age. The data blocks stored on the source system will remain
deduplicated. But as files are read and sent over the network,
cach file 1s sent as a completely intact file, consuming valu-
able network resources.

Conventional deduplication storage systems require all the
data be sent to the target before 1t can be determined which
data segments are duplicates and need not be stored. For
example, consider a 10 TB data set which 1s to be backed up
to a deduplicating storage sub-system. Because of previous
backups which are stored on the de-duplicating storage sub-
system, 5 TB may already be held within the storage sub-
system. However, the entire 10 TB must be sent to the dedu-
plicating storage subsystem before 1t 1s determined that only
5 of the 10 'TB need be stored.

The techniques and mechanisms of the present invention
improve network efficiency in deduplication systems. Mul-
tiple files within the stream will reference the same data
segment 11 the data segment 1s deduplicated. By not redupli-
cating blocks 1n the backup stream, network resource con-
sumption will be reduced. In addition to maintaining the
deduplication in the backup stream, a mechanism has been
created which allows the source system to determine 1f a data
segment 15 already present on the target system.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to various embodiments, a data management
application receives files for optimization. Segment 1dentifi-
ers (IDs) are determined for segments 1n the files recerved for
optimization. In particular embodiments, 1t 1s determined
whether the segments have already been deduplicated or are
already maintained at a target system. In some examples,
information about segment IDs already deduplicated is pro-
vided by a target system to a host system. In other examples,
a host contacts the target to request specific information about
a particular segment. IT the segment already exists in the
target system, the segment need not be transmitted over the
network. Instead, references and reference counts can be
modified at the target system to reflect an additional reference
to the deduplicated segment. If the segment does not already
exist 1n the target system, the segment 1s transmitted for
deduplication.

By not reduplicating data in the backup stream and by
determining what data segments are already present on the
target system, network bandwidth utilization for backup can
be significantly reduced. Additionally, the backup window
can also be reduced.

FIG. 1A illustrates a particular example of a network that
can use the techniques and mechanisms of the present inven-
tion. Hosts 101, 103, 105, and 107 are connected to file
servers 121, 123, and 125 through a network 111. Hosts may
include computer systems, application servers, devices, etc. A
network 111 may be a single network or a combination of
different networks. According to various embodiments, each
host101, 103,105, and 107 runs applications that require data
storage. The file servers 121, 123, and 125 provide data stor-
age through active storage mechanisms such as disk arrays.

One example of active storage 1s a Redundant Array of Indi-
vidual Disks (RAID) 151 connected to file server 123 through

storage arca network (SAN) 141. The file servers 121, 123,
and 125 also provide data storage through passive storage
mechanisms such as tape devices 161 and 163, and virtual
tape device 165.

According to various embodiments, hosts 101, 103, 105,
and 107 are connected to file servers 121, 123, and 123 using
file level protocols such as Server Message Block (SMB),
Network File System (NFS), or the Andrew File System
(AFS) that are capable of providing network attached storage
(NAS) to heterogeneous clients. In particular examples, NAS
includes both a file system and storage. SMB, NFS, and AFS
generally allow hosts 101, 103, 105, and 107 to access data at
the file level. The file servers 121, 123, and 125 then use block
level protocols such as serial advanced technology attach-
ment (SATA), Internet Small Computer Systems Interface
(1SCSI), and storage area networks (SANs) to access 1ndi-
vidual blocks of data.

Block level protocols generally do not provide any f{ile
system capabilities to file servers but instead leave file system
operations on the application server side. The data accessed
by the file servers 121, 123, and 125 may be physically stored
on direct attached storage 131, 133, and 1335, such as hard
drives included 1n the corresponding file servers. Alterna-
tively, the data may be physically stored on tape devices 161
or 163, or on virtual tape device 1635. A virtual tape device 165
may be implemented as an array of disks. The data may also
be stored on RAID 151 connected over a SAN 141.

According to various embodiments, a segment 1D index
may be implemented at hosts 101, 103, 105, and 107, at
network 111, or at file servers 121, 123, and 125 or at a
combination of entities. The segment 1D generator intercepts
requests to store a data segment and determines whether the
data segment has already been stored at a target system. For
example, 11 a client associated with host 101 requests dedu-

US 8,965,852 B2

S

plication of multiple files 1n a directory, the segment ID gen-
crator determines what segments 1n the multiple files have
already been deduplicated. For segments already dedupli-
cated, references and reference counts may be updated, but
the data segments need not be transmitted again to the target
system for deduplication. The determination can be made by
comparing segment IDs or hashes of segments for dedupli-
cation.

FIG. 1B illustrates examples of files and data segments.
According to various embodiments, file X 171 includes data
A, data B, and data C. File Y 173 includes data D, data B, and
data C. File Z 175 includes data D, data B, and data E.
Accordmg to various embodiments, each data segment 1s 8K
in s1ze. The three files include five different segments A, B, C,
D, and E. Files X 171,Y 173, and Z 175 can be deduplicated
to remove redundancy 1n storing the different segments. For
example, data B need only be stored once instead of three
times. Data C and data D need only be stored once mstead of
twice. To further improve storage elficiency, each data seg-
ment 1s also compressed with segment specific compression
contexts. A variety of compression algorithms may be applied
to each segment.

FI1G. 2A 1llustrates one example of a filemap and FIG. 2B
illustrates a corresponding datastore suitcase created after
optimizing a file X. Filemap file X 201 includes ofiset 203,
index 205, and Iname 207 fields. According to various
embodiments, each segment 1n the filemap for file X 1s 8K 1n
s1ize. In particular embodiments, each data segment has an
index of format <Datastore Suitcase ID>. <Data Table
Index>. For example, 0.1 corresponds to suitcase 1D 0 and
datatable index 1. while 2.3 corresponds to suitcase 1D 2 and

database index 3. The segments corresponding to oifsets OK,
8K, and 16K all reside 1n suitcase ID 0 while the data table

indices are 1, 2, and 3. The lname field 207 1s NULL 1n the
filemap because each segment has not previously been refer-
enced by any file.

FIG. 2B illustrates one example of a datastore suitcase
corresponding to the filemap file X 201. According to various
embodiments, datastore suitcase 271 includes an index por-
tion and a data portion. The index section mcludes indices
253, data offsets 255, and data reference counts 257. The data
section includes indices 253, data 261, and last file references
263. According to various embodiments, arranging a data
table 251 1n this manner allows a system to perform a bulk
read of the index portion to obtain oifset data to allow parallel
reads of large amounts of data in the data section.

According to various embodiments, datastore suitcase 251
includes three offset, reference count pairs which map to the
data segments of the filemap file X 201. In the index portion,
index 1 corresponding to data in offset-data A has been ret-
erenced once. Index 2 corresponding to data 1n offset-data B
has been referenced once. Index 3 corresponding to data in
offset-data C has been referenced once. In the data portion,
index 1 includes data A and a reference to File X 201 which
was last to place a reference on the data A. Index 2 includes
data B and a reference to File X 201 which was last to place
a reference on the data B. Index 3 includes data C and a
reference to File X 201 which was last to place a reference on
the data C.

According to various embodiments, the dictionary 1s a key
tor the deduplication system. The dictionary 1s used to 1den-
tify duplicate data segments and point to the location of the
data segment. When numerous small data segments exist in a
system, the size of a dictionary can become inefficiently
large. Furthermore, when multiple optimizers nodes are
working on the same data set they will each create their own
dictionary. This approach can lead to suboptimal deduplica-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion since a first node may have already 1dentified a redundant
data segment but a second node 1s not yet aware of 1t because
the dictionary 1s not shared between the two nodes. Thus, the
second node stores the same data segment as an original
segment. Sharing the entire dictionary would be possible with
a locking mechanism and a mechanism for coalescing
updates from multiple nodes. However, such mechanisms can
be complicated and adversely impact performance.

Consequently, a work partitioning scheme can be applied
based on segment ID or hash value ranges for various data
segments. Ranges of hash values are assigned to different
nodes within the cluster. If a node 1s processing a data seg-
ment which has a hash value which maps to another node, 1t
will contact the other node that owns the range to find out it
the data segments already exist in a datastore.

FIG. 3 illustrates multiple dictionaries assigned to difierent
segment ID or hash ranges. Although hash ranges are
described, 1t should be recognized that the dictionary index
can be hash ranges, reference values, or other types of keys.
According to various embodiments, the hash values are
SHA1 hash values. In particular embodiments, dictionary
301 1s used by a first node and includes hash ranges from
0x0000 0000 0000 0000-0x0000 0000 FFFF FFFF. Daictio-

nary 351 1s used by a second node and includes hash ranges
from 0x0000 0001 0000 0000-0X0000 0001 FFFF FFFF.

Hash values 311 within the range for dictionary 301 are
represented by symbols a, b, and ¢ for simplicity. Hash values
361 within the range for dictionary 331 are represented by
symbols 1, 1, and k for simplicity. According to various
embodiments, each hash value 1n dictionary 301 1s mapped to
a particular storage location 321 such as location 323, 325, or
327. Each hash value 1n dictionary 3351 1s mapped to a par-

ticular storage location 371 such as location 373, 375, and
377.

Having numerous small segments increases the likelithood
that duplicates will be found. However, having numerous
small segments decreases the efliciency of using the dictio-
nary itself as well as the elfficiency of using associated
filemaps and datastore suitcases.

FIG. 4A 1llustrates one example of a non-container {ile.

According to various embodiments, container files such as
ZIP files, archives, productivity suite documents such as
docx, xlsx, etc., mnclude multiple objects of different types.
Non-container files such as images and simple text files typi-
cally do not contain disparate objects.

According to various embodiments, 1t 1s recognized that
certain types ol non-container files do not benefit from having
a segment size smaller than the size of the file itself. For
example, many 1image files such as .jpg and .t1if files do not
have many segments in common with other .jpg and .tiff files.
Consequently, selecting small segments for such file types 1s
inefficient. Consequently, the segment boundaries for an
image file may be the boundaries for the file itself. For
example, noncontainer data 401 includes file 403 of a type
that does not benefit from finer grain segmentation. File types
that do not benefit from finer grain segmentation include
image files such as .jpg, .png, .gif, .and .bmp files. Conse-
quently, file 403 1s provided with a single segment 405. A
single segment 1s maintained 1n the deduplication dictionary.
Providing a single large segment encompassing an entire file
can also make compression of the segment more eflicient.
According to various embodiments, multiple segments
encompassing multiple files of the same type are compressed
at the same time. In particular embodiments, only segments

having data from the same type of file are compressed using

US 8,965,852 B2

7

a single compression context. It 1s recognized that specialized
compressors may be applied to particular segments associ-
ated with the same file type.

FIG. 4B 1illustrates one example of a container file having,
multiple disparate objects. Data 451 includes a container file
that does benefit from more intelligent segmentation. Accord-
ing to various embodiments, segmentation can be performed
intelligently while allowing compression of multiple seg-
ments using a single compression context. Segmentation can
be implemented in an intelligent manner for deduplication
while improving compression efficiency. Instead of selecting,
a single segment size or using a sliding segment window, file
4353 1s delayered to extract file components. For example, a
.docx file may include text, images, as well as other container
files. For example, file 453 may include components 455,
4359, and 463. Component 455 may be a component that does
not benefit from finer grain segmentation and consequently
includes only segment 457. Similarly, component 459 also
includes a single segment 461. By contrast, component 463 1s
actually an embedded container file 463 that includes not only
data that does benefit from additional segmentation but also
includes another component 473. For example, data 465 may
include text. According to various embodiments, the segment
s1ze for text may be a predetermined size or a dynamic or
tunable size. In particular embodiments, text 1s separated 1nto
equal sized segments 467, 469, and 471. Consequently, data
may also include a non-text object 473 that 1s provided with
segment boundaries aligned with the object boundaries 475.

FIG. 5 illustrates one technique for performing network
cilicient deduplication. At 501, a data management applica-
tion at a host mitiates a request to backup multiple files to a
de-duplicating storage sub-system. I the source system 1is
also a de-duplicating storage sub-system there will be a dic-
tionary at the source system which contains segment IDs for
all of the processed segments. The segment boundaries may
have been determined based on data type after files are delay-
ered 503. Segment sizes may have been determined using file
type or characteristics of the data. The segment IDs are col-
lected for the files the data management application wants to
back up at 505.

A communication channel between the source and target
systems 1s used by the source to send the segment I1Ds for the
files that will be backed up to the target system. This commu-
nication does not have to mvolve the data management appli-
cation as long as the source and target systems have imple-
mented the mechanisms described herein. Upon receiving the
source segment IDs, the target will respond specitying which
segments the target already has 507. According to various
embodiments, the determination can be made by comparing
hashes of data segments with hashes in a deduplication dic-
tionary at a source device. Data segment ID databases can
also be provided at hosts, network devices, etc. According to
various embodiments, deduplication involves modifying and/
or creating filemaps, datastore suitcases, and deduplication
dictionaries. If the data segment has not been deduplicated at
509, the data segment 1s transmitted to the target system at
511 for deduplication and 1s added to a datastore suitcase 513.
References and reference counts are updated at 515. If the
data segment has already been deduplicated, the segment
need not be transmitted again and network resources are
conserved at 321. In particular embodiments, references and
reference counts are updated in associated filemaps and
datastore suitcases at 523.

By not reduplicating data in the backup stream and by
determining what data segments are already present on the

10

15

20

25

30

35

40

45

50

55

60

65

8

target system, network bandwidth utilization for backup can
be significantly reduced. Additionally the backup window
can be reduced as well.

A variety of devices and applications can implement par-
ticular examples of network efficient deduplication. FIG. 6
illustrates one example of a computer system. According to
particular example embodiments, a system 600 suitable for
implementing particular embodiments of the present mven-
tion includes a processor 601, a memory 603, an interface
611, and a bus 615 (e.g., a PCI bus). When acting under the
control of appropriate soltware or firmware, the processor
601 1s responsible for such tasks such as optimization. Vari-
ous specially configured devices can also be used 1n place of
a processor 601 or 1n addition to processor 601. The complete
implementation can also be done 1n custom hardware. The
interface 611 1s typically configured to send and receive data
packets or data segments over a network. Particular examples
of interfaces the device supports include Ethernet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces, token
ring interfaces, and the like.

In addition, various very high-speed interfaces may be
provided such as fast Ethernet interfaces, Gigabit Ethernet
interfaces, ATM interfaces, HSSI interfaces, POS interfaces,
FDDI interfaces and the like. Generally, these interfaces may
include ports appropriate for communication with the appro-
priate media. In some cases, they may also 1include an inde-
pendent processor and, 1n some instances, volatile RAM. The
independent processors may control such communications
intensive tasks as packet switching, media control and man-
agement.

According to particular example embodiments, the system
600 uses memory 603 to store data and program instructions
and maintained a local side cache. The program instructions
may control the operation of an operating system and/or one
or more applications, for example. The memory or memories
may also be configured to store received metadata and batch
requested metadata.

Because such information and program instructions may
be employed to implement the systems/methods described
herein, the present invention relates to tangible, machine
readable media that include program nstructions, state infor-
mation, etc. for performing various operations described
herein. Examples of machine-readable media include hard
disks, floppy disks, magnetic tape, optical media such as
CD-ROM disks and DVDs; magneto-optical media such as
optical disks, and hardware devices that are specially config-
ured to store and perform program instructions, such as read-
only memory devices (ROM) and programmable read-only
memory devices (PROMSs). Examples of program instruc-
tions include both machine code, such as produced by a
compiler, and files containing higher level code that may be
executed by the computer using an interpreter.

Although many of the components and processes are
described above 1n the singular for convenience, it will be
appreciated by one of skill in the art that multiple components
and repeated processes can also be used to practice the tech-
niques of the present invention.

While the mvention has been particularly shown and
described with reference to specific embodiments thereof, 1t
will be understood by those skilled 1n the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the inven-
tion. It 1s therefore intended that the invention be interpreted
to iclude all variations and equivalents that fall within the
true spirit and scope of the present invention.

US 8,965,852 B2

What 1s claimed 1s:
1. A method, comprising;:
receiving a request at a host to deduplicate a plurality of
files, the host and a plurality of other hosts connected to
a target system and a plurality of other target systems
over a network, wherein the host communicates over the
network with the target system by using a file level
protocol, wherein the target system 1s a file server;

determining at the host whether segments 1n the plurality of
files have already been deduplicated at the target system
in a deduplication system by comparing segment 1den-
tifiers (segment I1Ds) for the segments to match segment
IDs for segments already deduplicated, wherein seg-
ment IDs are evaluated by transmitting segment IDs to
the target system to compare the segment IDs with
entries 1n a deduplication dictionary;
transmitting a first plurality of segments over a network to
the target system by using the file level protocol, the first
plurality of segments not already deduplicated at the
target system, and not transmitting a second plurality of
segments to the target system to reduce network band-
width utilization, the second plurality of segments
already deduplicated at the target system;
modilying references and reference counts at the target
system for the first plurality of segments and the second
plurality of segments, wherein modifying references
and reference counts includes modifying a filemap, dic-
tionaries, and a datastore suitcase for both already dedu-
plicated and not already deduplicated segments;

wherein the dictionary 1s used to identily duplicate data
segments and point to the location of the data segments,
the datastore suitcase includes an index portion and a
data portion to allow a system to perform a bulk read of
the index portion to obtain offset data to allow parallel
reads of large amounts of data 1n the data section and
turther includes three offset, reference count pairs which
map to the data segments of the filemap file.

2. The method of claim 1, wherein the plurality of segments
span a plurality of files.

3. The method of claim 1, wherein the plurality of files are
determined to be container or non-container files based on the
file types associated with the files.

4. The method of claim 1, wherein the second plurality of
segments already deduplicated correspond to a plurality of
filemaps.

5. The method of claim 1, wherein the second plurality of
segments already deduplicated correspond to a plurality of
datastore suitcases.

6. The method of claim 5, wherein a datastore suitcase 1n
the plurality of datastore suitcases further comprises a plural-
ity of reference counts corresponding to the plurality of dedu-
plicated data segments.

7. The method of claim 1, wherein segment 1Ds are evalu-
ated using a segment 1D database at the host.

8. The method of claim 1, wherein modifying references
and reference counts at the target system for the first plurality
ol segments and a second plurality of segments comprises.

9. An apparatus, comprising;

an mnput interface configured to receive a request to dedu-

plicate a plurality of files, the host and a plurality of other

hosts connected to a target system and a plurality of

other target systems over a network, wherein the host
communicates over the network with the target system
by using a file level protocol, wherein the target system
1s a file server;

a processor configured to determine at the host whether
segments 1n the plurality of files have already been dedu-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

plicated at the target system 1n a deduplication system by
comparing segment identifiers (segment IDs) for the
segments to match segment IDs for segments already
deduplicated, wherein segment IDs are evaluated by
transmitting segment IDs to the target system to com-
pare the segment IDs with entries 1n a deduplication
dictionary;

an output interface configured to transmit a first plurality of

segments over a network to the target system by using,
the file level protocol, the first plurality of segments not
already deduplicated at the target system, and not trans-
mitting a second plurality of segments to the target sys-
tem to reduce network bandwidth utilization, the second
plurality of segments already deduplicated at the target
system:

wherein references and reference counts at the target sys-

tem are modified for the first plurality of segments and
the second plurality of segments, wherein modifying
references and reference counts includes modifying a
filemap, dictionaries, and a datastore suitcase for both
already deduplicated and not already deduplicated seg-
ments;

wherein the dictionary 1s used to i1dentity duplicate data

segments and point to the location of the data segments,
the datastore suitcase includes an index portion and a
data portion to allow a system to perform a bulk read of
the mndex portion to obtain offset data to allow parallel
reads of large amounts of data i1n the data section and
further includes three offset, reference count pairs which
map to the data segments of the filemap file.

10. The apparatus of claim 9, wherein the plurality of
segments span a plurality of files.

11. The apparatus of claim 9, wherein the plurality of files
are determined to be container or non-container files based on
the file types associated with the files.

12. The apparatus of claim 9, wherein the second plurality
of segments already deduplicated correspond to a plurality of
filemaps.

13. The apparatus of claim 9, wherein the second plurality
of segments already deduplicated correspond to a plurality of
datastore suitcases.

14. The apparatus of claim 13, wherein a datastore suitcase
in the plurality of datastore suitcases further comprises a
plurality of reference counts corresponding to the plurality of
deduplicated data segments.

15. The apparatus of claim 9, wherein segment IDs are
evaluated using a segment ID database at the host.

16. A non-transitory computer readable medium, compris-
ng:

computer code for recerving a request at a host to dedupli-

cate a plurality of files, the host and a plurality of other
hosts connected to a target system and a plurality of
other target systems over a network, wherein the host
communicates over the network with the target system
by using a file level protocol, wherein the target system
1s a file server;

computer code for determining at the host whether seg-

ments 1n the plurality of files have already been dedu-
plicated at the target system 1n a deduplication system by
comparing segment 1dentifiers (segment IDs) for the
segments to match segment IDs for segments already
deduplicated, wherein segment IDs are evaluated by
transmitting segment IDs to the target system to com-
pare the segment IDs with entries 1n a deduplication
dictionary;

computer code for transmitting a first plurality of segments

over a network to the target system by using the file level

US 8,965,852 B2
11

protocol, the first plurality of segments not already dedu-
plicated at the target system, and not transmitting a sec-
ond plurality of segments to the target system to reduce
network bandwidth utilization, the second plurality of
segments already deduplicated at the target system; 5

computer code for modilying references and reference
counts at the target system for the first plurality of seg-
ments and the second plurality of segments, wherein
moditying references and reference counts includes
moditying a filemap, dictionaries, and a datastore suit- 10
case for both already deduplicated and not already dedu-
plicated segments;

wherein the dictionary 1s used to identify duplicate data
segments and point to the location of the data segments,
the datastore suitcase includes an index portion and a 15
data portion to allow a system to perform a bulk read of
the imndex portion to obtain offset data to allow parallel
reads of large amounts of data 1n the data section and
further includes three oifset, reference count pairs which
map to the data segments of the filemap file. 20

G e x Gx s

	Front Page
	Drawings
	Specification
	Claims

