US008964417B1 ### (12) United States Patent Shen et al. ### (10) Patent No.: US 8,964,417 B1 (45) Date of Patent: Feb. 24, 2015 # (54) POWER CONTROLLERS AND CONTROL METHODS SUITABLE FOR OPERATING A SWITCHED MODE POWER SUPPLY IN QUASI-RESONANT MODE - (71) Applicant: Grenergy Opto Inc., Hsin-Chu (TW) - (72) Inventors: Yi-Lun Shen, Hsin-Chu (TW); Yu-Yun - Huang, Hsin-Chu (TW) - (73) Assignee: Grenergy Opto Inc., Hsin-Chu (TW) - (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. - (21) Appl. No.: 14/094,610 - (22) Filed: Dec. 2, 2013 - (51) Int. Cl. **H02M 3/335** (2006.01) **H02M 3/04** (2006.01) (52) **U.S. Cl.** CPC (58) Field of Classification Search See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,631,652 A * | 12/1986 | Wendt 363/16 | |---------------|---------|------------------------| | 4,999,568 A * | 3/1991 | Gulczynski 323/351 | | 5,382,783 A * | | Bremer | | 5,404,092 A * | 4/1995 | Gegner 323/207 | | 5,528,010 A * | 6/1996 | Herwig et al 219/76.16 | | 5,745,359 A * | 4/1998 | Faulk | | 5,825,638 A * | 10/1998 | Shutts 363/21.11 | | 5,841,641 A * | 11/1998 | Faulk 363/21.14 | | 5,959,851 A * | 9/1999 | Shutts 363/21.18 | | 6,134,124 A * | 10/2000 | Jungreis et al 363/34 | | C 0 5 C 4 C 5 D 1 S | 2/2002 | D 1 1 1 1 T 262/24 | |---------------------|---------|------------------------------| | 6,356,467 B1* | | Belehradek, Jr 363/24 | | 6,366,481 B1* | 4/2002 | Balakrishnan et al 363/21.15 | | 6,373,725 B1* | 4/2002 | Chang et al 363/21.01 | | 6,434,247 B1* | | Kates et al 381/312 | | 6,462,971 B1* | | Balakrishnan et al 363/95 | | 6,597,586 B2 * | | Balakrishnan et al 363/16 | | 6,631,064 B2 * | | Schuellein et al 361/93.1 | | 6,853,563 B1* | 2/2005 | Yang et al 363/21.15 | | 6,952,355 B2 * | | Riggio et al 363/21.15 | | 7,848,117 B2 * | 12/2010 | Reinberger et al 363/16 | | 8,089,323 B2 * | 1/2012 | Tarng et al 331/117 FE | | 8,115,457 B2 * | 2/2012 | Balakrishnan et al 320/166 | | 8,134,848 B2 * | 3/2012 | Whittam et al 363/84 | | 8,369,111 B2 * | 2/2013 | Balakrishnan et al 363/21.15 | | 8,461,813 B2 * | 6/2013 | Chapman 323/259 | | 8,749,994 B2* | 6/2014 | Kleinpenning 363/19 | | 2010/0202169 A1* | 8/2010 | Gaboury et al 363/49 | | 2010/0202175 A1* | 8/2010 | Balakrishnan et al 363/126 | | 2010/0308026 A1* | 12/2010 | Vogel 219/130.21 | | 2013/0106379 A1* | 5/2013 | Morrish 323/282 | | 2013/0127353 A1* | 5/2013 | Athalye et al 315/193 | | 2014/0119078 A1* | | Walters et al 363/89 | | | | | ^{*} cited by examiner Primary Examiner — Adolf Berhane (74) Attorney, Agent, or Firm — McClure, Qualey & Rodack, LLP #### (57) ABSTRACT The disclosure provides a power controller and related control method for a switch mode power supply operating in a quasi-resonant mode. The switched mode power supply has a power switch and an auxiliary winding. The power controller has a feedback pin connected to the auxiliary winding. A clamp circuit is connected to the feedback pin and configured for clamping a voltage at the feedback pin by providing a clamp current. A peak hold circuit is connected to the clamp circuit for generating a peak record substantially corresponding to a peak value of the clamp current. A valley detector is configured for providing an entry signal indicating a start of a voltage valley. A delay circuit provides a trigger signal a delay time after the entry signal is provided. The delay time varies in response to the peak record, and the trigger signal is capable of turning on the power switch. #### 20 Claims, 5 Drawing Sheets FIG. 2 (PRIOR ART) FIG. 3 FIG. 5 FIG. 7 FIG. 8 1 # POWER CONTROLLERS AND CONTROL METHODS SUITABLE FOR OPERATING A SWITCHED MODE POWER SUPPLY IN QUASI-RESONANT MODE #### **BACKGROUND** The present disclosure relates generally to power controllers and control methods for switched mode power supplies, especially to power controllers suitable for operating a 10 switched mode power supply in quasi-resonant mode. Power converters or adapters are devices that convert electric power provided from batteries or power grid lines into power with a regulated voltage or current, such that electronic apparatuses are powered properly. For advanced apparatuses 15 that are required to be environment-friendly, conversion efficiency of a power converter, defined as the ratio of the power that the power converter outputs to a load over the power that the power converter consumes, is always a big concern. The less the power consumed by a power converter itself, the 20 higher the conversion efficiency. It is a trend for power supply manufactures to pursue higher and higher conversion efficiency. Power converters operating in quasi-resonant (QR) mode are proved, in both theory and practice, to work efficiently. 25 FIG. 1 shows a switched mode power supply 10 capable of operating in QR mode. Bridge rectifier 20 performs full-wave rectification, converting the alternative-current (AC) power source from an AC mains outlet into a direct-current (DC) input power source $30 \, \mathrm{V}_{IN}$. The voltage of input power source V_{IN} could have an M-shaped waveform or be substantially a constant. Power controller 26 could be an integrated circuit with pins connected to peripheral devices. Via a drive pin GATE, power controller 26 periodically turns ON and OFF a power switch 35 34. When power switch 34 is ON, a primary winding PRM of the transformer energizes; and when it is OFF, the transformer de-energizes via a secondary winding SEC and an auxiliary winding AUX to build up an output power source V_{OUT} for load 24 and an operation power source V_{CC} for power controller 26, respectively. Resisters 28 and 30 form a voltage divider to detect voltage drop V_{AUX} across the auxiliary winding AUX and to provide a feedback voltage signal V_{FB} at a feedback pin FB of power controller 26. FIG. 2 demonstrates waveforms of some signals in FIG. 1. Driving signal V_{GATE} at drive pin GATE drops at time t_0 to turn OFF the power switch 34, starting OFF time T_{OFF} . Signal V_p at the joint P between the primary winding PRM and the power switch 34 raises sharply. Voltage drop V_{AUX} , 50 which is a reflective voltage in proportion to the voltage across the primary winding PRM, becomes positive suddenly at time t_0 . So does the feedback voltage signal V_{FB} , which is a divided result of the voltage drop V_{AUX} . The transformer starts de-energizing at time t_0 . After the completion of de-energizing at time t_1 , voltage drop V_{AUX} oscillates, substantially because of the resonant circuit substantially consisting of the primary winding PRM and any parasitic capacitors at the joint P. The waveform of voltage drop V_{AUX} shown in FIG. 2 has three voltage valleys 60 VL1, VL2 and VL3 where voltage drop V_{AUX} is below 0V, and OFF time T_{OFF} ends before valley VL3 completes. A power controller operating in QR mode operation turns on a power switch at a moment when a voltage valley occurs, and this skill is also referred to as valley switching. If the power switch 65 34 is turned on at the moment when voltage drop V_{AUX} is at the bottom of a voltage valley, signal V_p is discharged from a 2 local minimum, enjoying less switching loss. It is not always the case, however. A well-known conventional control method for a quasi-resonant switched mode power supply is to turn on a power switch after a constant delay time T_d when a voltage valley starts. Exemplified in FIG. 2, the power switch 34 is turned on after voltage valley VL3 has started for a delay time T_d . This constant delay time T_d is generally a design choice, a constant fixed in an integrated circuit. Once the delay time T_d is inappropriately chosen, the switching loss of the power switch 34 is not optimized. #### BRIEF DESCRIPTION OF THE DRAWINGS Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified. These drawings are not necessarily drawn to scale. Likewise, the relative sizes of elements illustrated by the drawings may differ from the relative sizes depicted. The invention can be more fully understood by the subsequent detailed description and examples with references made to the accompanying drawings, wherein: FIG. 1 shows a switched mode power supply capable of operating in QR mode; FIG. 2 demonstrates waveforms of some signals in FIG. 1; FIG. 3 exemplifies a power controller accordingly to embodiments of the invention; FIG. 4 exemplifies the FB clamp circuit of FIG. 3; FIG. 5 exemplifies the peak hold circuit of FIG. 3; FIG. 6 exemplifies the bottom finder of FIG. 3; FIG. 7 exemplifies the delay circuit of FIG. 3; and FIG. 8 demonstrates waveforms of some signals in FIGS. 1 and 3 when the power controller of FIG. 3 replaces the power controller of FIG. 1. #### DETAILED DESCRIPTION FIG. 3 exemplifies a power controller 60 accordingly to embodiments of the invention. Operation of power controller 60 will be detailed in reference to the embodiments having the power controller 26 in FIG. 1 replaced by power controller 60. Power controller 60 is capable of performing valley switching at the moment when voltage drop V_{AUX} is about at the bottom of a voltage valley. Accordingly, switching power loss could be substantially minimized in embodiments of the invention. Power controller 60 has FB clamp circuit 62, peak hold circuit 64, valley detector 65, bottom finder 70, delay circuit 72, maximum frequency limiter 74, and ON time controller 76. When power controller 60 replaces the power controller 26 in FIG. 1, the feedback pin FB is connected to the auxiliary winding AUX via resistor 30. ON time controller **76** is configured to reset SR register **80**, for de-asserting the driving signal V_{GATE} at drive pin GATE and starting an OFF time T_{OFF} . In some embodiments, the duration of an ON time T_{ON} , when the driving signal V_{GATE} is asserted, is determined by a signal monitoring a character at an output node, the output voltage V_{OUT} of FIG. **1** for example. FB clamp circuit **62** provides a clamp current I_{CLMP} to clamp the feedback voltage signal V_{FB} at about 0V when voltage drop V_{AUX} is negative. A sense voltage V_A in proportion to the clamp current I_{CLMP} is provided by FB clamp circuit **62** to peak hold circuit **64**, which tracks the sense voltage V_A and generates a peak record V_{PEAK} corresponding to a peak value of the sense voltage V_A . In order to track peak values in subsequent voltage valleys, peak record V_{PEAK} is 3 slightly diminished at the time when a voltage valley ends, by way of the timing provided by an exit signal S_{EXIT} . It will be detailed that the deeper a voltage valley the larger the peak record V_{PEAK} . Valley detector **65** has entry detector **68** and exit detector **66**. In this non-limiting example, when feedback voltage signal V_{FB} drops across 0.1V during OFF time T_{OFF} , the entry detector **68** issues a short pulse as an entry signal S_{QRD} to indicate a start of a voltage valley; in the opposite, when the feedback voltage signal V_{FB} raises across 0.3V during OFF 10 time T_{OFF} , exit detector **66** issues a short pulse as an exit signal S_{EXIT} to indicate an end of a voltage valley. 0.3V and 0.1V shown in FIG. **3** are design choices and could be replaced by other values depending on design preferences. In some other embodiments, a start of a valley could be identified at the moment when sense voltage V_A just exceeds a predetermined value and an end of the valley could be identified at the moment when sense voltage V_A drops across another predetermined value. Bottom finder 70 compares the peak record V_{PEAK} and the sense voltage V_A , to provide a bottom signal S_{BOTTOM} , substantially indicating the occurrence of a bottom of a voltage valley. Understandably, as the peak record V_{PEAK} records about the peak value of sense voltage V_A at the moment when a bottom of a voltage valley appears, if sense voltage V_A of a 25 subsequent voltage valley is in proximity to the peak record V_{PEAK} it is about the moment when the bottom of the subsequent valley appears, such that the bottom signal S_{BOTTOM} is asserted. Delay circuit 72 provides a trigger signal S_{ORD-TD} a delay 30 time T_{D-NEW} after the entry signal S_{ORD} occurs. As shown in FIG. 3, the trigger signal S_{ORD-TD} could set SR register 80, asserting driving signal V_{GATE} at drive pin GATE, to turn on a power switch. The delay time T_{D-NEW} , dislike the constant delay time T_D in the prior art, is not a constant, and could vary 35 in response to the bottom signal S_{BOTTOM} . For example, the delay time T_{D-NEW} could end at the moment when the bottom signal S_{BOTTOM} of a voltage valley is asserted. As peak record V_{PEAK} tracks the peak values of subsequent voltage valleys, the bottom signal S_{BOTTOM} is asserted differently in view of 40 timing, and the delay time T_{D-NEW} varies accordingly. This delay time T_{D-NEW} as will be detailed later, will be a kind of indication that a bottom of a voltage valley occurs, and a power switch is accordingly turned ON to minimize the power loss of a power switch. Maximum frequency limiter 74 provides a block signal S_{MAX-F} for preventing the trigger signal S_{QRD-TD} turning on a power switch. For example, the block signal S_{MAX-F} is asserted only if a switch cycle has lasted for 16 us, so as to limit the switch frequency of a switched mode power supply 50 no more than 60 Khz. FIG. 4 exemplifies FB clamp circuit 62, where NMOS 90 has a gate electrode biased at voltage V_{nth} a threshold voltage of NMOS 90. If the voltage drop V_{AUX} is negative, NMOS 90 automatically provides clamp current I_{CLMP} to substantially 55 clamp the feedback voltage signal V_{FB} at about 0V. The current mirror in FIG. 4 provides a mirror current in response to the clamp current I_{CLMP} and the mirror current passes through a resistor to generate the sense voltage V_A . FIG. 5 exemplifies peak hold circuit 64, where NMOS 92 charges a capacitor to increase the peak record V_{PEAK} if the peak record V_{PEAK} is less than the sense voltage V_A , so as to track the increment of the sense voltage V_A . The charging provided by NMOS 92 stops if the peak record V_{PEAK} exceeds the sense voltage V_A . Accordingly, the peak record V_{PEAK} 65 represents a peak value of the sense voltage V_A . The deeper a voltage valley, the more negative the bottom of the voltage 4 valley, the larger the peak current of the clamp current I_{CLMP} the larger the peak record V_{PEAK} . The exit signal S_{EXIT} , which indicates an end of a voltage valley, is used to discharge the capacitor for a very short period of time, thereby lightly diminishing the peak record V_{PEAK} after a voltage valley ends. FIG. 6 exemplifies the bottom finder 70 of FIG. 3. As aforementioned, the bottom signal S_{BOTTOM} is asserted to indicate that the sense voltage V_A is in proximity of the peak record V_{PEAK} . In FIG. 6, a comparator 94 compares the sense voltage V_A with the peak record V_{PEAK} , and could have an offset voltage imbedded in one of its two inputs. If the sense voltage V_A increases across the peak record V_{PEAK} minus 0.1V, for example, SR register 96 is set to assert the bottom signal S_{BOTTOM} , declaring a start of a bottom of a voltage valley. Similarly, if the sense voltage V_A drops across the peak record V_{PEAK} minus 0.1V, for example, SR register **96** is reset to de-assert the bottom signal S_{BOTTOM} , declaring an end of a bottom of a voltage valley. In FIG. 6, signal S_{P-GATE} , which is equivalent to the driving signal V_{GATE} as shown in FIG. 3, is used to reset the SR register 96 and to de-assert the bottom signal S_{BOTTOM} , because the start of an ON time T_{ON} is also an end of a bottom of a voltage valley. FIG. 7 exemplifies the delay circuit 72 of FIG. 3. The entry signal S_{ORD} resets ramp signal V_{TD} , making it increase from 0V. Accordingly, ramp signal V_{TD} represents the time duration after the start of a voltage valley. Reference signal \mathbf{V}_D represents an optimized delay time $T_{\mathcal{M}}$. The comparator in FIG. 7 could have an offset voltage in one of its two inputs. A short pulse as the trigger signal S_{ORD-TD} is issued if ramp signal V_{TD} exceeds the reference signal V_D minus a predetermined offset voltage, for example. In other words, if the time duration after the start of a voltage valley reaches the optimized delay time $T_{\mathcal{M}}$ represented by the reference signal V_D , the trigger signal S_{ORD-TD} is asserted to have a short pulse, probably turning ON a power switch. This optimized delay time T_{M} limits the delay time T_{D-NEW} from the start of a valley to the moment that the delay circuit 72 actually issues a short pulse as the trigger signal S_{ORD-TD} . If the reference signal V_D does not change over time, the short pulse will be faithfully issued no later than the optimized delay time $T_{\mathcal{M}}$. When the bottom signal S_{BOTTOM} is asserted, the reference signal V_D is updated, however, by the ramp signal V_{TD} . At the same time, the trigger signal S_{QRD-TD} is also asserted to have a short pulse, causing a delay time T_{D-NEW} shorter than the optimized delay time T_M . The reference signal V_D eventually records the value of the ramp signal V_{TD} at the moment when the bottom signal S_{BOTTOM} is de-asserted, or when a bottom of a voltage valley ends. FIG. 8 demonstrates waveforms of some signals in FIGS. 1 and 3 when the power controller 60 of FIG. 3 replaces the power controller 26 of FIG. 1. At time t_{00} , the driving signal V_{GATE} is de-asserted, and the signal V_p , the voltage drop V_{AUX} and the feedback voltage signal V_{FB} all rise sharply, starting an OFF time T_{OFF} . After the completion of discharge of the transformer, the signal V_p and the voltage drop V_{AUX} start to oscillate. At times t_{01} , t_{05} , and t_{09} , when the voltage drop V_{AUX} drops almost to be negative, the entry signal S_{QRD} has short pulses to indicate the starts of voltage valleys VL1, VL2, and VL3, respectively. Similarly, at times t_{04} , and t_{07} , when the voltage drop V_{AUX} raises to be about positive, the exit signal S_{EXIT} has short pulses to indicate the ends of voltage valleys VL1 and VL2, respectively. Shown in FIG. 8, the peak record V_{PEAK} tracks the sense voltage V_A during the time period from t_{02} to t_{03} , for example, but holds if the sense voltage V_A decreases from its peak value. The peak record V_{PEAK} is slightly diminished at the ends of voltage valleys VL1 and VL2, triggered by the exit signal S_{EXIT} . The bottom signal S_{BOTTOM} is asserted from time t_{02} to t_{03} , for example, as the sense voltage V_A is about in proximity to the peak record V_{PEAK} . The ramp signal V_{TD} starts ramping up at times t_{01} . At time t_{02} , the bottom signal S_{BOTTOM} is asserted, and the reference signal V_D is updated by the ramp signal V_{TD} , until the bottom signal S_{BOTTOM} is de-asserted at time t_{03} . At time t_{02} when the reference signal V_D is the first time updated to be the same with the ramp signal V_{TD} , the trigger signal S_{ORD-TD} is asserted to have a short pulse, as shown in FIG. 8. The driving signal V_{GATE} stays de-asserted at time t_{02} , nevertheless, t_{15} intended to cover various modifications and similar arrangebecause the block signal S_{MAX-F} is de-asserted currently. Accordingly, the delay time T_{D-NEW} for voltage valley VL1 is the duration from t_0 to t_{02} , substantially determined by the bottom signal S_{BOTTOM} , which is in response to the peak record V_{PEAK} . The duration from the start of a voltage valley 20 to the moment when the bottom signal S_{BOTTOM} is de-asserted, such as the duration from time t_{01} to t_{03} , is referred to as an optimized delay time $T_{\mathcal{M}}$, which is memorized by and corresponds to reference signal V_D . The operation described in the previous paragraph is also 25 applicable to the operation for voltage valley VL2 from time t_{05} to t_{07} . The duration when the bottom signal S_{BOTTOM} is asserted in a voltage valley becomes shorter in subsequent voltage valleys, as shown by the waveform of the bottom signal 30 S_{BOTTOM} , because the peak value of sense voltage V_A decreases over time and the slightly-diminished peak record V_{PEAK} cannot track the decrement timely. Shown in FIG. 8, for voltage valley VL3 starting from t_{09} , the duration when the bottom signal S_{BOTTOM} is asserted disappears completely, 35 because the peak record V_{PEAK} is always higher than the sense voltage V_A . The trigger signal S_{ORD-TD} is asserted at time t_{10} , nevertheless, as the ramp signal V_{TD} goes across the reference signal V_D , which was updated to memorize the optimized delay time T_{M} . Please note that the optimized delay time T_{M} 40 is about a quarter of a constant oscillation cycle time of the resonant circuit substantially consisting of the primary winding PRM and parasitic capacitors, and this optimized delay time $T_{\mathcal{M}}$ should be a constant suitable for every voltage valley. That is the reason why the optimized delay time $T_{\mathcal{M}}$ is about 45 the same for each voltage valley shown in FIG. 8. If the trigger signal S_{ORD-TD} is asserted substantially at the moment the optimized delay time $T_{\mathcal{M}}$ after the start of a voltage valley, QR mode operation performs almost perfectly, with minimized switching loss. It is just the case shown in FIG. 8, where the 50 delay time T_{D-NEW} for the voltage valley VL3 is exactly the same as the optimized delay time $T_{\mathcal{M}}$. The trigger signal S_{ORD-TD} is asserted at time t_{10} , when the block signal S_{MAX-F} has been asserted at time T_{08} , such that the driving signal V_{GATE} is asserted to turn on a power switch at time t_{10} . As the block signal S_{MAX-E} is asserted after the second short pulse of the trigger signal S_{ORD-TD} appears, FIG. 8 demonstrates an operation of valley switching in the 3rd voltage valley VL3. It is possible that the block signal S_{MAX-E} is voltage valley (VL1 and VL2). If block signal S_{MAX-E} in FIG. **8** is asserted earlier at time t_{01} , for example, it can be derived that the peak record V_{PEAK} after several switch cycles, mainly due to signal propagation delay of the block signal S_{MAX-F} , will become very close to the first peak value of the sense 65 voltage V_A eventually. The delay time T_{D-NEW} , as peak record V_{PEAK} is almost the same as the first peak value of the sense voltage V_A , will be substantially the same as the optimized delay time $T_{\mathcal{M}}$, almost performing perfect valley switching with minimized switch loss. Dislike the constant delay time T_D in the prior art, the delay time T_{D-NEW} adaptively varies in response to the bottom signal S_{BOTTOM} , which is adjusted in response to the peak record V_{PEAK} . Based on the aforementioned teaching and analysis, the moment when a bottom of a voltage valley occurs can be memorized such that a power controller according to embodiments of the invention could perform valley switching in an optimized way to reduce the switch loss of a power switch. While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is ments (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. What is claimed is: - 1. A power controller suitable for a switched mode power supply comprising a power switch, the power controller comprising: - a feedback pin connected to an auxiliary winding of a transformer; - a clamp circuit connected to the feedback pin and configured for clamping a voltage at the feedback pin by providing a clamp current; - a peak hold circuit connected to the clamp circuit for generating a peak record substantially corresponding to a peak value of the clamp current; - a valley detector connected to the feedback pin and configured for providing an entry signal indicating a start of a voltage valley; and - a delay circuit configured for providing a trigger signal a delay time after the entry signal is provided, wherein the delay time varies in response to the peak record, and the trigger signal is capable of turning on the power switch. - 2. The power controller as claimed in claim 1, wherein the clamp circuit provides a sense voltage in response to the clamp current, and the peak hold circuit tracks a peak value of the sense voltage to provide the peak record. - 3. The power controller as claimed in claim 2, further comprising a bottom finder configured for comparing the sense voltage and the peak record to providing a bottom signal, the bottom signal substantially indicating the occurrence of a bottom of the voltage valley. - 4. The power controller as claimed in claim 3, wherein the delay time ends in response to the bottom signal. - 5. The power controller as claimed in claim 4, wherein the delay circuit compares a ramp signal with a reference signal to determine the delay time, and the reference signal updates when the bottom signal is asserted. - **6**. The power controller as claimed in claim **5**, wherein the 55 ramp signal is reset when the entry signal is asserted. - 7. The power controller as claimed in claim 1, wherein the valley detector is also configured for providing an exit signal indicating an end of the voltage valley. - 8. The power controller as claimed in claim 7, wherein the asserted earlier to perform valley switching in the 1^{st} or 2^{nd} 60 peak hold circuit diminishes the peak record when the valley exit signal is asserted. - **9**. The power controller as claimed in claim **1**, further comprising: - a maximum frequency limiter configured for providing a block signal for preventing the trigger signal turning on the power switch, thereby limiting the switch frequency of the switched mode power supply. 7 - 10. A power controller suitable for a switched mode power supply comprising a power switch, the power controller comprising: - a feedback pin connected to an auxiliary winding of a transformer, wherein a waveform of a voltage drop across the auxiliary winding is capable of providing a voltage valley; - a clamp circuit connected to the feedback pin and configured for clamping a voltage at the feedback pin by providing a clamp current; - a bottom finder configured for providing a bottom signal in response to the clamp current, the bottom signal substantially indicating the occurrence of a bottom of the voltage valley; - a valley detector connected to the feedback pin and configured for providing an entry signal indicating a start of 15 the voltage valley; and - a delay circuit configured for providing a reference signal corresponding to an optimized delay time from the start of the voltage valley to the moment when the bottom of the voltage valley ends, and for providing a trigger signal 20 a delay time after the entry signal occurs, wherein the delay time is no more than the optimized delay time, and the trigger signal is capable of turning on the power switch. - 11. The power controller as claimed in claim 10, further 25 comprising: - a peak hold circuit connected to the clamp circuit for generating a peak record substantially corresponding to a peak value of the clamp current; - wherein the bottom signal is provided in response to the clamp current. - 12. The power controller as claimed in claim 11, wherein the clamp circuit provides a sense voltage in response to the clamp current, and the peak hold circuit tracks a peak value of the sense voltage to provide the peak record. - 13. The power controller as claimed in claim 12, wherein 35 the bottom finder provides the bottom signal by comparing the peak record and the sense voltage. - 14. The power controller as claimed in claim 10, wherein the delay circuit compares a ramp signal with the reference signal to determine the delay time. - 15. The power controller as claimed in claim 14, wherein the delay circuit uses the ramp signal to update the reference signal during the occurrence of the bottom of the voltage valley. 8 - 16. The power controller as claimed in claim 10, wherein the valley detector is also configured for providing an exit signal indicating an end of the voltage valley. - 17. A control method for a switched mode power supply having a transformer and a power switch, the control method comprising: - clamping a voltage at a feedback pin by providing a clamp current, wherein the feedback pin is connected to an auxiliary winding via a resistor, and a voltage drop across the auxiliary winding is capable of providing a voltage valley; - generating a peak record substantially corresponding to a peak value of the clamp current; - providing an entry signal indicating a start of the voltage valley; - providing a bottom signal in response to the peak record to substantially indicate the occurrence of a bottom of the voltage valley; and - providing a reference signal corresponding to an optimized delay time from the start of the voltage valley to the moment when the bottom of the voltage valley ends; and - providing a trigger signal when the bottom signal is asserted to indicate a start of the bottom, wherein the trigger signal is capable of turning on the power switch; - wherein a delay time from the start of the voltage valley to the moment when the trigger signal is provided is no longer than the optimized delay time. - 18. The control method as claimed in claim 17, further comprising: - providing a ramp signal in response to the entry signal; and using the ramp signal to update the reference signal during the occurrence of the bottom. - 19. The control method as claimed in claim 18, comprising: providing a sense voltage in response to the clamp current; tracking the sense voltage to provide the peak record; and comparing the sense voltage with the peak record to generate the bottom signal. - 20. The control method as claimed in claim 18, comprising: providing an exit signal indicating an end of the voltage valley; and diminishing the peak record in response to the exit signal. * * * *