US008949991B2
12 United States Patent (10) Patent No.: US 8.949.991 B2
Beskrovny et al. 45) Date of Patent: Feb. 3, 2015
(54) TESTING WEB SERVICES THAT ARE 2006/0277606 Al* 12/2006 Yunusetal.o......... 726/25
2007/0220370 Al1* 9/2007 Brandaetal. 714/49
ACCESSIBLE VIA SERVICE ORIENTED 2007/0268822 Al1* 11/2007 Brunswig et al. 370/229
ARCHITECTURE (SOA) INTERCEPTORS 2008/0256517 Al* 10/2008 Atkin etal.ccc........ 717/124
2009/0172012 Al1* 7/2009 Chellametal. 707/103 R
(75) Inventors: Evgeny Beskrovny, Ramat Gan (IL); 2009/0205047 Al1* 8/2009 Podjarnycceeeen.n 726/25
: _ 2009/0313639 A1* 12/2009 Davisetal.cocuveee, 719/317
Omer Tripp, Har-Adar (IL) 2010/0305986 Al* 12/2010 Ponnalagu et al. 705/7
: _ : : : 2011/0145924 Al1* 6/2011 Kolseketal. 726/25
(73) Assignee: International Business Machines 2011/0264964 Al* 10/2011 Murphy et al.o........... 714/48
Corporation, Armonk, NY (US) 2013/0212539 Al1* 8/2013 Hebbaretal. 715/854
(*) Notice: Subject to any disclaimer, the term of this OLHER PUBLICATIONS
patent 1s extended or adjusted under 35 Bryson (Brian Bryson, “Hello Worldk: IBM Rational Tester for SOA
U.S.C. 154(b) by 435 days. Quality Tesing Web services to ensure high-quality service-oriented
architecture”, IBMs Developer Works, May 2007).*
(21) Appl. No.: 13/016,813 [PCOMO000208558D.*
Singhal e tal. “Guide to Secure Web Services”, NIST Special Publi-
(22) Filed: Jan. 28, 2011 cation 800-95, Aug. 2007
Balzarotti, D., M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C.
. T Kruegel, and G. Vigna, “Saner: Composing Static and Dynamic
(65) Prior Publication Data Analysis to Validate Sanitization in Web Applications™, Proceedings
US 2012/0198555 A1l Aug. 2, 2012 of the 2008 IEEE Symposium on Security and Privacy, May 2008, 15
pp. (Also at URL: http://www.computer.org/portal/web/csdl/do1/10.
(51) Int.Cl. 1109/SP.2008.22).
GOol 11/00 (2006.01) (Continued)
GOo6l 21/00 (2013.01)
e L L rimary txaminer — reter Poltora
(52) US.] Primary Exami Peter Poltorak
CPC o, Goorl 21/00 (2013.01) (74) Attorney, Agent, or Firm — Janaki K. Davda; Konrad,
USSP e 726/25 Raynes, Davda and Victor LLP
(58) Field of Classification Search
None (57) ABSTRACT

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,222,121 B2* 5/2007 Casatietal.oeeeeerenn, 1/1
7,313,564 B2* 12/2007 Melamed etal. 717/124
7,849,448 B2 * 12/2010 Yunusetal. 717/126
8,621,639 B1* 12/2013 Pennington etal. 726/25
2004/0128650 A1* 7/2004 Chamberlain 717/124
2006/0023857 Al1* 2/2006 Schneideretal. 379/142.01
2006/0150246 Al* 7/2006 Kamadaetal. 726/17

1UU~\1

STATIC

Systems, methods, and computer program products are dis-
closed for testing web service-related elements, where the
instructions of a web service-related element are statically
analyzed to identily a characteristic of an output of the web
service-related element, and where 1t 1s determined {from a
received response to a web service request that the web ser-
vice request was processed by the web service-related ele-
ment 11 at least a portion of the response matches the charac-
teristic ol the output of the web service-related element.

21 Claims, 5 Drawing Sheets

102

N

WEB J

ANALYZER

105-\]
¥

BLACK-BCOX
TESTER

OUTPUTS,
CHARACTERISTICS

WEB SERVICE
REQUEST-BASED
ATTACKS

SERVICE API

L

WEB J
SERVICE
INTERCEPTOR

[o\
104

WEB SERVICE
REQUEST RESPONSES

4

Y
TARGET

REACHED/NOT REACHED

Y

O

108

US 8,949,991 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Cobb, M., “Application Security Increased by Static and Dynamic
Code Analysis”, [online], May 2, 2006, [Retrieved on Feb. 15, 2011],
retrieved from the Internet at <URL: http://searchsoftwarequality.

techtarget.com/tip/0,289483,51d92_ gc11186167,00 . html>, 2 pp.

D1 Lucca, G.A. and M. D1 Penta, “Integrating Static and Dynamic
Analysis to Improve the Comprehension of Existing Web Applica-
tions”, Proceedings of the Seventh IEEE International Symposium
on Web Site Evolution , 2005, 8 pp. (Also at URL http://portal.acm.
org/citation.cim?1d=1092701).

IBM Corp., “Mapping White Box Issues to Black Box Entry Point
Using Runtime Analysis”, Technical Disclosure, IP.com No.
[PCOMO000186943D, Aug. 31, 2009, 4 pp.

Lam, M.S., M. Martin, B. Livshits, and J. Whaley, “Securing Web
Applications with Static and Dynamic Information Flow Tracking”,
Proceedings of the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, Jan. 2008, 10

pp. (Also at URL http://suif.stanford.eduw/papers/pepm0O8.pdt).
Smaragdakis, Y. and C. Csallner, “Combining Static and Dynamic

Reasoning for Bug Detection”, 2007, 16 pp. (Also at URL: http://
www.cs.umass.edu/~yannis/tap07.pdf).

* cited by examiner

U.S. Patent Feb. 3, 2015 Sheet 1 of 5 US 8,949,991 B2

102
100 R
STATIC WEB
ANALYZER SERVICE API

WEB I
SERVICE

INTERCEPTOR

OUTPUTS,

CHARACTERISTICS
106

WEB SERVICE

BLACK-BOX REQUEST-BASED
TESTER ATTACKS

104

WEB SERVICE
REQUEST RESPONSES

TARGET
REACHED/NOT REACHED

Fig. 1

U.S. Patent Feb. 3, 2015 Sheet 2 of 5 US 8,949,991 B2

200

[SecurityPermissionAttribute (SecurityvAction.Demand,
Flags=SecurityPermissionFlag.UnmanagedCode)]
public class CustomUsernameTokenManager
UsernameTokenManager
{
// Returns the password or password equivalent for a user
name .
protected override string
AuthenticateToken (UsernameToken token)

{

// Ensure the SOCAP message contained a
UsernameToken.

1f (token == null)
throw new ArgumentNullException ("Token must not

e null!"™);

// This 1s a very simple provider.

// In most production systems the following code

// typilcally consults an external database to abtain
the password or

// password equivalent for a given user name.

byvte|]| password =
System.Text.Encoding.UTF8.GetBytes (token.Username) ;
Array.Reverse (password) ;

return Convert.ToBase6dString (password) ;

Fig. 2

U.S. Patent Feb. 3, 2015 Sheet 3 of 5 US 8,949,991 B2

START

300 STATICALLY ANALYZE WEB SERVICE-
RELATED ELEMENTS TO IDENTIFY
OUTPUTS AND THEIR CHARACTERISTICS
302

SYNTHESIZE WEB SERVICE REQUEST

FOR TARGET WEB SERVICE-RELATED
ELEMENT

304 RECEIVE RESPONSE TO WEB SERVICE
REQUEST

DOES
RESPONSE
MATCH ANY
TARGET
OUTPUT?

306
NO

310

WEB SERVICE
REQUEST WAS

NOT PROCESSED
BY TARGET

YES

308 WEB SERVICE REQUEST WAS
PROCESSED BY TARGET
FINISH

Fig. 3

U.S. Patent Feb. 3, 2015 Sheet 4 of 5 US 8,949,991 B2

START

400 STATICALLY ANALYZE WEB SERVICE-RELATED
ELEMENTS TO IDENTIFY OUTPUTS AND THEIR
CHARACTERISTICS
402 DO MULTIPLE WEB SERVICE-

RELATED ELEMENTS HAVE

THE SAME OUTPUT?
S OUTPU NO

YES PERFORM
404 DETERMINE INPUT CONDITIONS OF PROCESSING
FACH WEB SERVICE-RELATED ELEMENT OF FIG. 3
THAT RESULT IN THE OUTPUTS
406

SYNTHESIZE WEB SERVICE REQUEST

USING TARGET INPUT CONDITIONS

408 RECEIVE RESPONSE TO WEB SERVICE

REQUEST

410
DOES RESPONSE MATCH
ANY TARGET OUTPUT?
NO
416
WEB SERVICE
REQUEST WAS
YES NOT PROCESSED
BY TARGET
412 WEB SERVICE REQUEST WAS
PROCESSED BY TARGET
FINISH

Fig. 4

U.S. Patent Feb. 3, 2015 Sheet 5 of 5 US 8,949,991 B2

500

510 514

512
PROCESSOR /O DEVICES

216

MEMORY NETWORK

INTERFACE

518

Fig. 5

US 8,949,991 B2

1

TESTING WEB SERVICES THAT ARE
ACCESSIBLE VIA SERVICE ORIENTED
ARCHITECTURE (SOA) INTERCEPTORS

BACKGROUND

The present invention relates to computer software analy-
s1s and testing 1n general.

Computer software applications are often tested to deter-
mine whether they are vulnerable to malicious attacks or
otherwise show signs of security vulnerabilities. One such
type of testing known as “black-box” testing involves execut-
ing a computer software application and attacking the appli-
cation using known forms of malicious attacks. When per-
forming black-box testing on a computer software
application 1t 1s 1mportant to determine which part of the
computer software application 1s vulnerable to a particular
black-box attack. This 1s particularly challenging when per-
forming black-box testing on web services, such as web ser-
vices that expose one or more Application Programming
Interfaces (APIs) that are accessible via Hypertext Transfer
Protocol (HT'TP) for execution on one or more computers,
where the web services are accessible via a layer of one or
more Service Oriented Architecture (SOA) interceptors. For
example, where a black-box attack 1s intended to test a par-
ticular web service API for vulnerabilities, such as a web
service API that contains business logic, the attack may first
have to go through several layers of SOA -related interceptors,
such as those that are related to authentication, authorization,
session management, etc. Thus, when a response 1s received
to the black-box attack on a web service API, 1t1s important to
determine whether the attack indeed reached its intended
target or whether the attack never made 1t past an intermediate
web service request interceptor.

SUMMARY

In one aspect of the mvention a method 1s provided for
testing web service-related elements, the method including
statically analyzing instructions of a web service-related ele-
ment to 1dentify a characteristic of an output of the web
service-related element, receiving a response to a web service
request, and determining that the web service request was
processed by the web service-related element 11 at least a
portion of the response matches the characteristic of the out-

put of the web service-related element.
In other aspects of the invention one or more systems and
computer program products are also provided.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The mvention will be understood and appreciated more
tully from the following detailed description taken in con-
junction with the appended drawings in which:

FI1G. 1 1s a simplified conceptual 1llustration of a system for
testing web services that are accessible via Service Oriented
Architecture (SOA) iterceptors, constructed and operative
in accordance with an embodiment of the invention;

FIG. 2 1s an example of user-name/token handler mnstruc-
tions ol a web service API that provides security for peer
authentication, useful 1n understanding the invention;

FI1G. 3 1s a sitmplified flowchart illustration of an exemplary
method of operation of the system of FIG. 1, operative in
accordance with an embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 which 1s a sismplified flowchart illustration of an
exemplary method of operation of the system of FIG. 1,
operative 1n accordance with another embodiment of the
invention; and

FIG. 5 1s a simplified block diagram illustration of an
exemplary hardware implementation of a computing system,

constructed and operative 1n accordance with an embodiment
of the ivention.

DETAILED DESCRIPTION

The invention 1s now described within the context of one or
more embodiments, although the description is intended to be
illustrative of the invention as a whole, and 1s not to be
construed as limiting the mnvention to the embodiments
shown. It 1s appreciated that various modifications may occur
to those skilled in the art that, while not specifically shown

herein, are nevertheless within the true spirit and scope of the
invention.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical data storage device, a mag-
netic data storage device, or any suitable combination of the
foregoing. In the context of this document, a computer read-
able storage medium may be any tangible medium that can
contain, or store a program for use by or 1n connection with an
instruction execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

US 8,949,991 B2

3

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C”” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart i1llustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Reference 1s now made to FIG. 1 which 1s a simplified
conceptual illustration of a system for testing web services
that are accessible via Service Oriented Architecture (SOA)
interceptors, constructed and operative 1n accordance with an
embodiment of the invention. In the system of FIG. 1, a static
analyzer 100 1s configured to statically analyze one or more
web service APIs, generally designated 102, such as may be
hosted by one or more computers accessible via a computer
network (not shown). Web service APIs 102 may, for
example, contain logic embodying the core functions of a
business application. Static analyzer 100 1s additionally or
alternatively configured to statically analyze one or more
SOA terceptors, generally designated 104, such as may be
hosted by one or more computers accessible via a computer
network (not shown). SOA 1nterceptors 104 may be layered
with respect to each other and to web service APIs 102, such
as where web service APIs 102 logically reside on top of a
layered stack of SOA interceptors 104, such as in the form of

10

15

20

25

30

35

40

45

50

55

60

65

4

SOA handlers, related to authentication, authorization, and
session management. Where SOA 1nterceptors 104 are lay-
ered 1n this manner, a web services request that 1s intended by
a requestor to be processed by a particular one of web service
APIs 102 may first have to go through several layers of SOA
interceptors 104. Web service APIs 102 and SOA 1nterceptors
104 are collectively referred to herein as web service-related
clements.

Static analyzer 100 1s configured in accordance with con-
ventional techniques to statically analyze one or more web
service-related elements, such as where the instructions are in
the form of source code or byte code, to 1dentity the charac-
teristics of one or more outputs of the web service-related
clements, such as return values or exception values, as may be
provided 1n response to a web service request. Such charac-
teristics preferably include the conditions that give rise to a
particular output, as well as the output value 1tself and/or a
template thereof. Examples of such outputs and their charac-
teristics that are identified by static analyzer 100 are
described in greater detail hereinbelow with reference to FIG.
2.

A black-box tester 106 1s shown in FIG. 1 and 1s configured
to synthesize one or more attacks in accordance with conven-
tional techniques using the output characteristics of one or
more web service-related elements, such as those that are
identified by static analyzer 100. In certain embodiments, the
black-box tester 106 may be described as performing
dynamic-analysis to build web service requests that are able
to exercise different layers in the SOA and obtain validation
signals. Black-box tester 106 preferably presents an attack in
the form of a web service request 1n an attempt to reach a
target web service-related element among the web service-
related elements, such as where an attack 1s designed to test
for security vulnerabilities 1n a particular one of web service
APIs 102 that contains a particular business-related function.
Black-box tester 106 1s also preferably configured to receive
a response to such a web service request-based attack, and to
determine 11 the web service request was processed by the
target web service-related element 1t at least a portion of the
response matches the characteristics of any of the outputs of
the target web service-related element, such as were previ-
ously identified by static analyzer 100. If no portion of the
response matches the characteristics of any of the outputs of
the target web service-related element, then the web service
request most likely was not processed by the target web
service-related element. Furthermore, 11 at least a portion of
the response matches the characteristics of any of the outputs
of a web service-related element other than the target web
service-related element, then the web service request most
likely was prevented by the non-target web service-related
clement from reaching the target web service-related ele-
ment.

Any of the elements shown in FIG. 1 are preferably
executed by or otherwise made accessible to a computer 108
such as by implementing any of the elements 1n computer
hardware and/or 1n computer software embodied 1n a physi-
cally-tangible, non-transitory, computer-readable medium 1n
accordance with conventional techniques.

The operation of FIG. 1 1s illustrated with reference to FIG.
2 which shows an example of user-name/token handler
instructions 200 of a SOA nterceptor that provides security
for peer authentication. Static analyzer 100 determines that
tfor the mstructions to complete their task normally, a recerved
token should not be empty, and a password should be found
for a given user. Static analyzer 100 1dentifies the output text
“Token should not be null!” as associated with an argument-
null exception. Using this mnformation, black-box tester 106

US 8,949,991 B2

S

preferably synthesizes one or more web service requests
using conventional techniques in an attempt to reach a target
web service API by providing inputs that satisty all necessary
pre-conditions of any intermediate SOA 1nterceptors like the
SOA 1nterceptor shown in FIG. 2, such as are 1dentified by
static analyzer 100. Black-box tester 106 determines whether
a web service request reached 1ts intended target web service
API by analyzing a response to the web service request. Thus,
if a response includes the message “Token should not be
null!”, black-box tester 106 determines that the web service
request did not reach the target web service API, and was
instead prevented from reaching the target web service API
by the SOA nterceptor shown 1n FIG. 2. Thus, the black-box
tester 106 validates behavior of each layer based on observ-
able indications of failure or success.

Reference 1s now made to FIG. 3 which 1s a simplified
flowchart illustration of an exemplary method of operation of
the system of FI1G. 1, operative 1n accordance with an embodi-
ment of the invention. In the method of FIG. 3, the instruc-
tions of one or more web service-related elements are stati-
cally analyzed to i1dentily characteristics of one or more of
their outputs (block 300). One or more web service requests
are synthesized 1n an attempt to reach a target web service-
related element among the statically analyzed web service-
related elements (block 302). A response to a web service
request 1s recerved (block 304). If at least a portion of the
response matches the known characteristics of any of the
outputs of the target (block 306), then 1t 1s determined that the
web service request was processed by the target (block 308),
which information may be presented via a computer output
device, such as a computer display, otherwise, 1t 1s determined
that the web service request was not processed by the target
(block 310). After blocks 308 or 310, processing 1s finished.

Reference 1s now made to FIG. 4 which 1s a simplified
flowchart illustration of an exemplary method of operation of
the system of FIG. 1, operative 1n accordance with another
embodiment of the invention. The method of FIG. 4 1s sub-
stantially similar to the method of FIG. 3, but may be
employed where different web service-related elements pro-
vide one or more of the same outputs, such as where two or
more web service-related elements provide the same “ID 1s
incorrect” message. In the method of FIG. 4, the instructions
of one or more web service-related elements are statically
analyzed to 1dentily characteristics of one or more of their
outputs (block 400). If two or more of the web service-related
clements have an output thatis the same (block 402), the input
conditions that result in the outputs are determined (block
404), otherwise, the processing of FIG. 3 1s performed (block
414). One or more web service requests are synthesized 1n
accordance with the input conditions 1n an attempt to reach a
target web service-related element among the statically ana-
lyzed web service-related elements (block 406). A response
to a web service request 1s received (block 408). IT at least a
portion of the response matches the known characteristics of
any of the outputs of the target (block 410), then it 1s deter-
mined that the web service request was processed by the
target (block 412), which information may be presented via a
computer output device, such as a computer display, other-
wise, 1t 1s determined that the web service request was not
processed by the target (block 416). After blocks 412 or 416,
processing 1s finished.

Thus, for example, 11 static analysis determines that both an
authentication SOA interceptor and a business transaction
web service API return an “ID 1s incorrect” message, where
the authentication SOA 1interceptor returns the “ID 1s 1ncor-
rect” message 1 a received ID contains one or more letters,
and where the business transaction web service API returns

10

15

20

25

30

35

40

45

50

55

60

65

6

the “ID 1s incorrect” message 1f a recerved ID does not start
with a letter, then this information may be used to formulate
a web service request having the characteristics to trigger a
response {from the web service API rather than the SOA
interceptor, whereupon the received response may be ana-
lyzed to determine whether or not the web service request
reached the target web service API.

Referring now to FIG. 5, block diagram 500 1llustrates an
exemplary hardware implementation of a computing system
in accordance with which one or more components/method-
ologies of the invention (e.g., components/methodologies
described 1n the context of FIGS. 1-4) may be implemented,
according to an embodiment of the invention.

As shown, the techniques for controlling access to at least
one resource may be implemented 1n accordance with a pro-
cessor 510, a memory 512, I/0 devices 514, and a network
interface 516, coupled via a computer bus 518 or alternate
connection arrangement.

It 1s to be appreciated that the term “processor” as used
herein 1s intended to 1include any processing device, such as,
for example, one that includes a CPU (central processing
unit) and/or other processing circuitry. It 1s also to be under-
stood that the term “processor” may refer to more than one
processing device and that various elements associated with a
processing device may be shared by other processing devices.

The term “memory” as used herein 1s intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. Such memory may be considered a computer
readable storage medium.

In addition, the phrase “input/output devices” or “I/O
devices” as used herein 1s intended to 1include, for example,
one or more put devices (e.g., keyboard, mouse, scanner,
etc.) for entering data to the processing unit, and/or one or
more output devices (e.g., speaker, display, printer, etc.) for
presenting results associated with the processing unit.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the invention.
In this regard, each block 1n the flowchart or block diagrams
may represent a module, segment, or portion of code, which
comprises one or more executable istructions for imple-
menting the specified logical function(s). It should also be
noted that, 1n some alternative implementations, the functions
noted in the block may occur out of the order noted 1n the
figures. For example, two blocks shown in succession may, 1n
fact, be executed substantially concurrently, or the blocks
may sometimes be executed 1n the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks 1n the block diagrams and/or tlow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer nstructions.

It will be appreciated that any of the elements described
hereinabove may be implemented as a computer program
product embodied 1n a computer-readable medium, such as in
the form of computer program instructions stored on mag-
netic or optical storage media or embedded within computer
hardware, and may be executed by or otherwise accessible to
a computer (not shown).

While the methods and apparatus herein may or may not
have been described with reference to specific computer hard-
ware or soltware, 1t 1s appreciated that the methods and appa-

US 8,949,991 B2

7

ratus described herein may be readily implemented 1n com-
puter hardware or soitware using conventional techniques.

While the mvention has been described with reference to
one or more specific embodiments, the description is intended
to be illustrative of the invention as a whole and 1s not to be
construed as limiting the mmvention to the embodiments
shown. It 1s appreciated that various modifications may occur
to those skilled 1n the art that, while not specifically shown
herein, are nevertheless within the true spirit and scope of the
invention.

What is claimed 1s:

1. A method for testing web service-related elements, the
method comprising:

statically analyzing instructions of a plurality of web ser-

vice-related elements, including a target web service-
related element to 1dentily a characteristic of an output
of each web service-related element, wherein the target
web service-related element 1s a web service exposed
application programming interface (API);

determining that at least two of the plurality of web service-

related elements have a same output;

in response to determining that at least two of the plurality

of web service-related elements have the same output,
determining an mput condition for each of the at least
two of the plurality of web service-related elements that
results 1n the same output;

synthesizing an attack on the target web service-related

clement using the characteristic of the same output of the
target web service-related element and the 1nput condi-
tion that results 1n the same output;

presenting the attack 1n the form of a web service request to

attempt to reach the target web service-related element
through a plurality of other web-service related elements
layered with respect to each other;

receiving a response to the web service request sent to the

target web service-related element through one or more
of the other web-service related elements; and

in response to determining that at least a portion of the

response matches the characteristic of the output of the
target web service-related element, determining that the
web service request was processed by the target web
service-related element.

2. The method according to claim 1 wherein statically
analyzing comprises statically analyzing multiple web ser-
vice-exposed application programming interfaces (APIs).

3. The method according to claim 1 wherein statically
analyzing comprises statically analyzing the web service-
exposed API that contains logic embodying a core function of
a business application.

4. The method according to claim 1 wherein statically
analyzing comprises statically analyzing a Service Oriented
Architecture (SOA) interceptor that relates to one of authen-
tication, authorization, and session management.

5. The method according to claim 1 wherein statically
analyzing comprises statically analyzing the web service-
exposed API and a Service Ornented Architecture (SOA)
interceptor.

6. The method according to claim 1 wherein statically
analyzing comprises 1dentifying one of a return value and an
exception value of the target web service-related element.

7. The method according to claim 1 and further compris-
ng:

in response to determining that at least a portion of the

response matches a characteristic of output of an Service
Oriented Architecture (SOA) interceptor from among
the plurality of SOA 1nterceptors, identifying the SOA
interceptor from among the plurality of SOA intercep-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

tors as having prevented the web service request from
reaching the target web service-related element.

8. A system for testing web service-related elements, the
system comprising;:

a processor; and

storage coupled to the processor, wherein the storage stores

computer program 1instructions, wherein the computer
program instructions, when executed by the processor,
perform:

statically analyzing instructions of a plurality of web ser-

vice-related elements, including a target web service-
related element to 1dentily a characteristic of an output
of each web service-related element, wherein the target
web service-related element 1s a web service exposed
application programming interface (API);

determiming that at least two of the plurality of web service-

related elements have a same output;

in response to determining that at least two of the plurality

of web service-related elements have the same output,
determining an 1mput condition for each of the at least
two of the plurality of web service-related elements that
results in the same output;

synthesizing an attack on the target web service-related

clement using the characteristic of the same output of the
target web service-related element and the input condi-
tion that results 1n the same output;

presenting the attack 1n the form of a web service request to

attempt to reach the target web service-related element
through a plurality of other web-service related elements
layered with respect to each other;

recerving a response to the web service request sent to the

target web service-related element through one or more
of the other web-service related elements; and

in response to determining that at least a portion of the

response matches the characteristic of the output of the
target web service-related element, determinming that the
web service request was processed by the target web
service-related element.

9. The system according to claim 8 wherein statically ana-
lyzing comprises statically analyzing multiple web service-
exposed application programming interfaces (APIs).

10. The system according to claim 8 wherein statically
analyzing comprises statically analyzing a web service-ex-
posed API that contains logic embodying a core function of a
business application.

11. The system according to claim 8 wherein statically
analyzing comprises statically analyzing a Service Oriented
Architecture (SOA) interceptor that relates to one of authen-
tication, authorization, and session management.

12. The system according to claim 8 wherein statically
analyzing comprises statically analyzing the web service-
exposed API and a Service Oriented Architecture (SOA)
interceptor.

13. The system according to claim 8 wherein statically
analyzing comprises 1identifying one of a return value and an
exception value of the target web service-related element.

14. The system according to claim 8, wherein the opera-
tions further comprise:

in response to determining that at least a portion of the

response matches a characteristic of output of an Service
Oriented Architecture (SOA) mnterceptor from among
the plurality of SOA 1nterceptors, identifying the SOA
interceptor from among the plurality of SOA intercep-
tors as having prevented the web service request from
reaching the target web service-related element.

15. A computer program product for testing web service-
related elements, the computer program product comprising;:

US 8,949,991 B2

9

a computer-readable storage device; and computer-read-
able program code embodied 1n the computer-readable
storage device, wherein the computer-readable program
code 1s configured to:

statically analyze instructions of a plurality of web service-
related elements, including a target web service-related
clement to 1dentify a characteristic of an output of each
web service-related element, wherein the target web
service-related element 1s a web service exposed appli-
cation programming interface (API);

determining that at least two of the plurality of web service-
related elements have a same output;

in response to determining that at least two of the plurality
of web service-related elements have the same output,
determining an mput condition for each of the at least
two of the plurality of web service-related elements that
results 1n the same output;

synthesizing an attack on the target web service-related
clement using the characteristic of the same output of the
target web service-related element and the 1nput condi-
tion that results 1n the same output;

presenting the attack 1n the form of the web service request
to attempt to reach the target web service-related ele-
ment through a plurality of other web-service related
clements layered with respect to each other;

receive a response to the web service request sent to the
target web service-related element through one or more
of the other web-service related elements:

in response to determining that at least a portion of the
response matches the characteristic of the output of the
target web service-related element, determine that the
web service request was processed by the target web
service-related element.

10

15

20

25

30

10

16. The computer program product according to claim 15
wherein the computer-readable program code 1s configured to
identily one of a return value and an exception value of the
target web service-related element.

17. The computer program product according to claim 15
wherein statically analyzing comprises statically analyzing

multiple web service-exposed application programming
interfaces (APIs).

18. The computer program product according to claim 135
wherein statically analyzing comprises statically analyzing
the web service-exposed API that contains logic embodying a
core Tunction of a business application.

19. The computer program product according to claim 135
wherein statically analyzing comprises statically analyzing a
Service Oriented Architecture (SOA) interceptor that relates
to one of authentication, authorization, and session manage-
ment.

20. The computer program product according to claim 15
wherein statically analyzing comprises statically analyzing,
the web service-exposed API and a Service Oriented Archi-
tecture (SOA) interceptor.

21. The computer program product according to claim 15,
wherein the computer-readable program code 1s configured
to:

in response to determining that at least a portion of the

response matches a characteristic of output of an Service
Oriented Architecture (SOA) interceptor from among
the plurality of SOA 1nterceptors, identily the SOA
interceptor from among the plurality of SOA intercep-
tors as having prevented the web service request from
reaching the target web service-related element.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

